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Abstract The aim of the present study is to investigate the Hall and ion slip currents on an incom-

pressible free convective flow, heat and mass transfer of a micropolar fluid in a porous medium

between expanding or contracting walls with chemical reaction, Soret and Dufour effects. Assume

that the walls are moving with a time dependent rate of the distance and the fluid is injecting or

sucking with an absolute velocity. The walls are maintained at constant but different temperatures

and concentrations. The governing partial differential equations are reduced into nonlinear ordi-

nary differential equations by similarity transformations and then the resultant equations are solved

numerically by quasilinearization technique. The results are analyzed for velocity components,

microrotation, temperature and concentration with respect to different fluid and geometric param-

eters and presented in the form of graphs. It is noticed that with the increase in chemical reaction,

Hall and ion slip parameters the temperature of the fluid is enhanced whereas the concentration is

decreased. Also for the Newtonian fluid, the numerical values of axial velocity are compared with

the existing literature and are found to be in good agreement.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The flow through porous channels has many important appli-
cations, in both engineering and biophysical flows. Examples

of this include cosmetic industry, petroleum industry, soil
mechanics, food preservation, the mechanics of the cochlea
in the human ear, blood flow and artificial dialysis. Many

researchers have investigated the numerical simulation of
blood flow through curved geometries in the presence of a
magnetic field by considering the effect of Dean number
[1,2]. The theory of micropolar fluids was introduced by Erin-

gen [3] which are considered as an extension of generalized vis-
cous fluids with microstructure. Examples of micropolar fluids
include lubricants, colloidal suspensions, porous rocks, aero-
gels, polymer blends, micro emulsions. Micropolar fluid flow

in a porous channel was studied by Ashraf et al. [4] and drawn
numerical solution using the finite difference scheme. Ojjela
and Naresh Kumar [5] obtained a numerical solution by the

quasilinearization method for the MHD flow and heat transfer
of a micropolar fluid through a porous channel. Chamkha
et al. [6] considered the transient free convective-radiative
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Nomenclature

t time

a(t) distance between the origin and lower/upper wall
V1 injection/suction velocity
p fluid pressure
q velocity vector

c specific heat at constant temperature
l microrotation vector
N microrotation component

Ec Eckert number, lV1

qacðT2�T1Þ
k thermal conductivity
k1 viscosity parameter

k2 permeability of the medium
k3 chemical reaction rate
u velocity component in x-direction
v velocity component in y-direction

Pr Prandtl number, lc
k

Re suction/injection Reynolds number, qV1a
l

j gyration parameter

J current density
J1 nondimensional gyration parameter, qjaV1

c
B total magnetic field

b induced magnetic field
B0 magnetic flux density
D rate of deformation tensor

E electric field
Ha Hartmann number, B0a

ffiffi
r
l

q
D�1 inverse Darcy parameter, a2

k2
R nondimensional viscosity parameter, k1

l
s1 nondimensional micropolar parameter, k1a

2

c

s2 nondimensional micropolar parameter, cc
a2k

T temperature

T1 temperature of the lower wall

T2 temperature of the upper wall
T� dimensionless temperature, T�T1

T2�T1

C concentration
C* nondimensional concentration, C�C1

C2�C1

C1 concentration of the lower wall
C2 concentration of the upper wall
D1 mass diffusivity

Kr nondimensional chemical reaction parameter, k3a
2

D1

Sc Schmidt number, t
D1

Gr thermal Grashof number, qgbTðT2�T1Þa3
t2

Gc solutal Grashof number, qgbCðC2�C1Þa3
t2

Sh Sherwood number, _nA
at C2�C1ð Þ

_nA mass transfer rate
Sr Soret number, D1kTtV1

cTm _nA

Du Dufour number, D1kT _nAqc
t2V1csk

Tm mean temperature
kT thermal-diffusion ratio

cs concentration susceptibility

Greek letters
k dimensionless y coordinate, y

a

a; b; c gyro viscosity parameters

f dimensionless axial variable, x
a

t kinematic viscosity
q fluid density

l fluid viscosity
l0 magnetic permeability
r conductivity

g wall expansion ratio, a _a
t
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micropolar fluid flow over the vertical porous plate with the
chemical reaction and Joule heating. Aurangzaib et al. [7]

investigated the problem of thermophoresis effect on MHD
micropolar fluid flow over a stretching surface with Soret
and Dufour effects. Srinivasacharya and RamReddy [8] exam-

ined the steady convective flow of a micropolar fluid over a
vertical plate in a non-Darcian porous medium with Soret
and Dufour effects and a numerical solution was obtained

by Keller-Box method. The MHD flow of micropolar fluid
through concentric cylinders with the chemical reaction and
cross diffusion effects was studied by Srinivasacharya and Shi-
feraw [9]. The Magnetohydrodynamic flow of a micropolar

fluid with Hall and ion slip currents plays a great significance
role in the real world applications in engineering. Ayano [10]
considered the mixed convective micropolar fluid flow with

heat and mass transfer in the presence of Hall and ion slip cur-
rents and the reduced governing equations are solved by the
Keller-box method. The MHD flow of a micropolar fluid over

a vertical plate with Hall and ion slip currents was investigated
numerically by Anika et al. [11]. An analytical approximate
solution HAM is applied to the effect of space porosity on
mixed convection flow of micropolar fluid through a vertical

channel with double diffusion and viscous dissipation was
investigated by Muthuraj et al. [12]. Vedavathi et al. [13]
illustrated the Soret and Dufour effects on the free convective

flow of a viscous fluid past a vertical plate with radiation. The
effects of Hall and ion slip on the mixed convection heat and
mass transfer of second grade fluid with Soret and Dufour

effects were investigated analytically by Hayat and Nawaz
[14]. Chamkha and Ben-Nakhi [15] considered the mixed
convection flow of a radiating viscous fluid along a permeable

surface in a porous medium with Soret and Dufour effects.
Soret and Dufour effects on free convective heat and mass
transfer of incompressible viscous fluid from a vertical cone
in a saturated porous medium with varying wall temperature

and concentration were studied by Cheng [16]. The MHD flow
of a viscous fluid over a vertical porous plate with Hall current
has been considered by Anika et al. [17].

The study of magnetohydrodynamic flow, heat and mass
transfer through porous expanding or contracting channels is
attracted by many authors due to great applications in science

and technology, such as transport of biological fluids through
contracting or expanding vessels, the synchronous pulsating of
porous diaphragms, the expanding or contracting jets, transpi-
ration cooling and gaseous diffusion, the air circulation in the

respiratory system, boundary layer control, and MHD pumps.
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Ojjela and Naresh Kumar [18] studied numerically the flow
and heat transfer of chemically reacting micropolar fluid in
porous expanding or contracting walls with slip velocity and

Hall and ion slip effects. Si et al. [19,20] analyzed the problems
of flow and heat transfer of micropolar fluids with expanding
or contracting walls and obtained analytical solution by the

Homotopy analysis method. The two dimensional unsteady
viscous fluid flow between expanding or contracting walls with
permeability investigated by Majdalani et al. [21] and the prob-

lem was solved both numerically and analytically. The viscous
fluid flow through expanding and contracting walls with a less
permeability has been studied by Asghar et al. [22] and
obtained an analytical solution by Adomain decomposition

method. The same problem with Lie-group method was con-
sidered by Boutros et al. [23]. Uchida and Akoi [24] analyzed
the laminar incompressible flow of a viscous fluid through a

semi-infinite porous pipe whose radius varied with time. The
heat and mass transfer analysis for the laminar flow between
expanding or contracting walls with thermal diffusion and dif-

fusion effects was discussed by Subramanyam Reddy et al.
[25]. Hymavathi and Shanker [26] and Hymavathi [27] applied
the quasilinearization method to solve the visco-elastic fluid

flow and heat transfer through a nonisothermal stretching
sheet. The convective flow and heat transfer of viscous fluid
in a vertical channel was studied by Huang [28] and applied
the quasilinearization method to solve the problem.

In the present study, the effects of Hall and ion slip on two
dimensional free convection flow and heat transfer of chemi-
cally reacting micropolar fluid in a porous medium between

expanding or contracting walls with Soret and Dufour are con-
sidered. The reduced flow field equations are solved using the
quasilinearization method. The effects of various parameters

such as inverse Darcy’s parameter, chemical reaction rate,
Soret effect, Dufour effect, Hall and ion slip parameters on
the velocity components, microrotation, temperature distribu-

tion and concentration are studied in detail and shown in the
form of graphs and table.

2. Formulation of the problem

Consider a two dimensional laminar incompressible micropo-
lar fluid flow through an elongated porous semi-infinite chan-
nel for which one end is closed by solid membrane. The walls
Figure 1 The schematic diagram of fluid flow through expanding

or contracting walls.
of the channel are expanding or contracting at the time depen-
dent rate _aðtÞ. Assume that the fluid is injected and aspirated
orthogonally through the plates with injection/suction veloci-

ties – V1 and V1. Also the non-uniform temperature and con-
centration at the lower and upper walls are T1, C1 and T2, C2

respectively. Also the heat and mass transfer processes in the

presence of Soret and Dufour effects are considered. The
region inside the parallel walls is subjected to porous medium
and a constant external magnetic field of strength B0 perpen-

dicular to the XY – plane is considered (Fig. 1).
The governing equations of the micropolar fluid flow, heat

and mass transfer in the presence of buoyancy forces and mag-
netic field are [18,30]

r � q ¼ 0 ð1Þ

q
@q

@t
þ ðq:rÞq

� �
¼ �rpþ k1r� l� lþ k1ð Þr �r� q

� lþ k1
k2

qþ J� Bþ Fb ð2Þ

qj
@l

@t
þ ðq:rÞl

� �
¼ �2k1lþ k1r� q� cr�r� l ð3Þ

qc
@T

@t
þ ðq:rÞT

� �
¼ kr2Tþ 2lD

: Dþ k1
2
ðcurlðqÞ � 2lÞ2 þ crl

: rlþ lþ k1
k2

qj j2 þ J
�� ��2
r

þ qD1kT
cs

r2C ð4Þ

@C

@t
þ ðq:rÞC

� �
¼ D1r2C� k3ðC� C1Þ þD1kT

Tm

r2T ð5Þ

where Fb is the buoyancy force and it is defined as

qgbTðT� T1Þ þ qgbCðC� C1Þð Þî.
Neglecting the displacement currents, the Maxwell

equations and the generalized Ohm’s law are [29]

r:B ¼ 0; r� B ¼ l0J; r� E ¼ @B

@t
;

J ¼ rðEþ q� BÞ � be
B0

J� B
� �þ bebi

B2
0

J� B
� �� B ð6Þ

where B ¼ B0k̂þ b; b is induced magnetic field. Assume that
the induced magnetic field is negligible compared to the
applied magnetic field so that magnetic Reynolds number is

small, the electric field is zero and magnetic permeability is
constant throughout the flow field.

The velocity and microrotation components are

�q ¼ uîþ v̂j and l ¼ Nk̂: ð7Þ
Following Ojjela and Naresh Kumar [18] the velocity, micro-

rotation, temperature and concentration are,

uðx; k; tÞ ¼ � tx
a2

F=ðk; tÞ; vðx; k; tÞ ¼ t
a
Fðk; tÞ;

Nðx; k; tÞ ¼ tx
a3

Gðk; tÞ

Tðx; k; tÞ ¼ T1 þ lþ k1ð ÞV1

qac
u1ðkÞ þ

x

a

� 	2

u2ðkÞ
� �

and
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Cðx; k; tÞ ¼ C1 þ _nA
at

g1ðkÞ þ
x

a

� 	2

g2ðkÞ
� �

ð8Þ

where k ¼ y
h
and F(k, t), Gðk; tÞ;/1ðkÞ;/2ðkÞ; g1ðkÞ and g2ðkÞ are

to be determined.

The boundary conditions for the velocity, microrotation,
temperature and concentration are

uðx; k; tÞ ¼ 0; vðx; k; tÞ ¼ �V1;Nðx; k; tÞ ¼ 0;

Tðx; k; tÞ ¼ T1;Cðx; k; tÞ ¼ C1 at k ¼ �1

uðx; k; tÞ ¼ 0; vðx; k; tÞ ¼ V1;Nðx; k; tÞ ¼ 0;

Tðx; k; tÞ ¼ T2;Cðx; k; tÞ ¼ C2 at k ¼ 1

ð9Þ

Substituting (8) in (2)–(5) then we obtain,

fIV ¼ 1

1þ R
ð�gð3f== þ kf===Þ þ Reðff=== � f=f==Þ þ Rg==

þ ð1þ RÞD�1f== þ Ha2ae
ae2 þ be2

f== þ EcGr

fRe
ð/=

1 þ f2/=
2Þ

þ EcGc

fRe
ðg=1 þ f2g=2ÞÞ ð10Þ

g== ¼ �J1gð3gþ kg=Þ þ J1Reðfg= � f=gÞ � s1ðf== � 2gÞ ð11Þ

u==
1 ¼ �2u2 � Res2g

2

� RePr ð1þ RÞD�1f2 þ Ha2

ae2 þ be2
f2 þ 4f=

2 � fu=
1


 �

�Prgð/1 þ k/=
1Þ �Duðg==1 þ 2g2Þ ð12Þ

u==
2 ¼�RePr

R

2
ðf== � 2gÞ2 þ s2

Pr
g=

2 þ ð1þRÞD�1f=
2




þHa2f=
2 þ f==

2 þ 2f=u2 � fu=
2

	
�Pr 3/2 þ k/=

2

� 	
�Dug

==
2

ð13Þ

g
==
1 ¼ �2g2 þ Krg1 þ ScRefg

=
1 � Scgðg1 þ kg=1Þ

� ScSrðu==
1 þ 2u2Þ ð14Þ

g
==
2 ¼ Krg2 þ ScReðfg=2 � 2f=g2Þ � Scgð3g2 þ kg=2Þ

� ScSru==
2 ð15Þ

where prime denotes the differentiation with respect to k and

f ¼ F
Re
; g ¼ G

Re
.

The dimensionless form of temperature and concentration
from (8) is

T� ¼ T� T1

T2 � T1

¼ Ecð/1 þ f2/2Þ

C� ¼ C� C1

C2 � C1

¼ Shðg1 þ f2 g2Þ ð16Þ

The boundary conditions Eq. (9) in terms of f; g;u1;u2; g1 and
g2 are

fð�1Þ ¼ �1; fð1Þ ¼ 1;

f=ð�1Þ ¼ 0; f=ð1Þ ¼ 0;

gð�1Þ ¼ 0; gð1Þ ¼ 0
u1ð�1Þ ¼ 0; /1ð1Þ ¼ 1=Ec

u2ð�1Þ ¼ 0; /2ð1Þ ¼ 0;

g1ð�1Þ ¼ 0; g1ð1Þ ¼ 1=Sh

g2ð�1Þ ¼ 0; g2ð1Þ ¼ 0 ð17Þ
3. Solution of the problem

The nonlinear Eqs. (10)–(15) are converted into the following
system of first order differential equations by the substitution

( f; f=; f==; f===; g; g=;u1;u
=
1;u2;u

=
2; g1; g

=
1; g2; g

=
2) = x1; x2; x3;ð

x4; x5; x6; x7; x8; x9; x10; x11; x12; x13; x14Þ
dx1

dk
¼ x2;

dx2

dk
¼ x3;

dx3

dk
¼ x4;

dx4

dk
¼ R

1þ R
�s1ðx3 � 2x5Þ þ J1ðx1x6 � x2x5 � 3gx5 � kgx6Þð Þ

� Re

1þ R
ðx2x3 � x1x4Þ þD�1x3 þ Ha2ae

ae2 þ be2ð Þð1þ RÞ x3

� g
ð1þ RÞ 3x3 þ kx4ð Þ þ ShGm

ð1þ RÞfRe ðx12 þ f2x14Þ

þ EcGr

ð1þ RÞfRe ðx8 þ f2x10Þ;

dx5

dk
¼ x6;

dx6

dk
¼ �s1ðx3 � 2x5Þ þ J1ðx1x6 � x2x5 � 3gx6 � kgx7Þ;

dx7

dk
¼ x8;

dx8

dk
¼ �2x9 � RePr

1�DuScSr

g
Re

x7 þ kx8ð Þ þ 4x2
2

�

þð1þ RÞD�1x2
1 þ

Ha2

ae2 þ be2
x2
1 � x1x8 þ s2

Pr
x2
5

�

� KrDu

1�DuScSr
x11 � DuSc

1�DuScSr
Rex1x12

þ ScDu

1�DuScSr
g x11 þ kx12ð Þ;

dx9

dk
¼ x10;

dx10

dk
¼ � RePr

1�DuScSr

g
Re

3x9 þ kx10ð Þ þ R

2
ðx3 � 2x5Þ2




þ x2
3 þ ð1þ RÞD�1x2

2 þ
Ha2

ae2 þ be2
x2
2 þ 2x2x9 � x1x10

�

� DuSc

1�DuScSr
Reðx1x14 � 2x2x13Þ

þ DuSc

1�DuScSr
gð3x13 þ kx14Þ � KrDu

1�DuScSr
x13

dx11

dk
¼ x12;



Figure 2 Effect of Sr on (a) temperature and (b) concentration

for Kr= 0.2, Gr= 5, Gm = 5, Re = 2, Du= 0.2, Sc = 0.8,

Pr= 0.2, R = 10, J1 = 0.2, s1 = 2, s2 = 2, Ha = 2, D�1 = 2,

be = 0.2, bi = 0.2, g= 2.

Chemically reacting micropolar fluid flow and heat transfer 1687
dx12

dk
¼ �2x13 þ ScSrRePr

1�DuScSr

g
Re

ðx7 þ kx8Þ þ 4x2
2

�

þð1þ RÞD�1x2
1 þ

Ha2

ae2 þ be2
x2
1 � x1x8 þ s2

Pr
x2
5

�

þ Kr

1�DuScSr
x11 þ Sc

1�DuScSr
Rex1x12

� Sc

1�DuScSr
gðx11 þ kx12Þ;

dx13

dk
¼ x14;

dx14

dk
¼ ScSrRePr

1�DuScSr

g
Re

ð3x9 þ kx10Þ þ x2
3 þ ð1þRÞD�1x2

2

�

þ Ha2

ae2 þ be2
x2
2 þ

s2
Pr

x2
6 þ

R

2
ðx3 � 2x5Þ2 þ 2x2x9 � x1x10

�

þ Kr

1�DuScSr
x13 þ Sc

1�DuScSr
Reðx1x14 � 2x2x13Þ

� Sc

1�DuScSr
gð3x13 þ kx14Þ ð18Þ

The boundary conditions in terms of x1; x2; x3; x4x5; x6; x7;
x8; x9; x10; x11; x12; x13; x14 are

x1ð�1Þ ¼ �1; x2ð�1Þ ¼ 0; x5ð�1Þ ¼ 0; x7ð�1Þ ¼ 0;

x9ð�1Þ ¼ 0; x11ð�1Þ ¼ 0; x13ð�1Þ ¼ 0;

x1ð1Þ ¼ 1; x2ð1Þ ¼ 0; x5ð1Þ ¼ 0; x7ð1Þ ¼ 1=Ec;

x9ð1Þ ¼ 0; x11ð1Þ ¼ 1=Sh; x13ð1Þ ¼ 0

ð19Þ
The system of Eq. (18) is solved numerically subject to the

boundary conditions (19) using the quasilinearization method

given by Bellman and Kalaba [31].
Let (xr

i , i = 1,2, . . . , 14) be an approximate current solution

and ðxrþ1
i , i= 1,2, . . . , 14) be an improved solution of (18).

Using Taylor’s series expansion about the current solution
by neglecting the second and higher order derivative terms,
the coupled first order system (18) is linearized as follows:

dxrþ1
1

dk
¼ xrþ1

2 ;
dxrþ1

2

dk
¼ xrþ1

3 ;
dxrþ1

3

dk
¼ xrþ1

4 ;

dxrþ1
4

dk
¼ Re

1þR
ðxrþ1

1 xr
4þxrþ1

4 xr
1�xrþ1

2 xr
3�xr

2x
rþ1
3 ÞþD�1xrþ1

3

þ Ha2aexrþ1
3

1þRð Þ ae2þbe2ð Þþ
R

1þR
ð�s1ðxrþ1

3 �2xrþ1
5 Þ

þJ1ðxrþ1
1 xr

6þxr
1x

rþ1
6 �xrþ1

2 xr
5�xrþ1

5 xr
2�3gxrþ1

5 �kgxrþ1
6 ÞÞ

þ EGr

ð1þRÞfRe xrþ1
8 þf2xrþ1

10

� �

þ ShGm

ð1þRÞfRe xrþ1
12 þf2xrþ1

14

� �� Re

1þR
�xr

2x
r
3þxr

1x
r
4

� �

� J1
1þR

ðxr
1x

r
6�xr

2x
r
5Þ�

g
ð1þRÞ 3xrþ1

3 þkxrþ1
4

� �
;

dxrþ1
5

dk
¼ xrþ1

6 ;
dxrþ1
6

dk
¼�s1ðxrþ1

3 �2xrþ1
5 ÞþJ1ðxrþ1

1 xr
6þxr

1x
rþ1
6 �xrþ1

2 xr
5

�xrþ1
5 xr

2�3gxrþ1
5 �kgxrþ1

6 Þ�J1ðxr
1x

r
6�xr

2x
r
5Þ;

dxrþ1
7

dk
¼ xrþ1

8

dxrþ1
8

dk
¼ �2xrþ1

9 � RePr

1�DuScSr



g
Re

xrþ1
7 þ kxrþ1

8

� �þ 8xr
2x

rþ1
2

þ 2ð1þ RÞD�1xr
1x

rþ1
1 þ 2Ha2

ae2 þ be2
xr
1x

rþ1
1 � xr

1x
rþ1
8

� xr
8x

rþ1
1 þ 2s2

Pr
xr
5x

rþ1
5

�
� KrDu

1�DuScSr
xrþ1
11

þ ScDu

1�DuScSr
g xrþ1

11 þ kxrþ1
12

� �

� DuSc

1�DuScSr
Re xr

1x
rþ1
12 þ xr

12x
rþ1
1 � xr

1x
r
12

� �

þ RePr

1�DuScSr



4xr

2x
r
2 þ ð1þ RÞD�1xr

1x
r
1

þ Ha2

ae2 þ be2
xr
1x

r
1 � xr

1x
r
8 þ

s2
Pr

xr
5x

r
5

�
;

dxrþ1
9

dk
¼ xrþ1

10 ;
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dxrþ1
10

dk
¼ � RePr

1�DuScSr

g
Re

3xrþ1
9 þ kxrþ1

10

� �þ R

2
ð2xr
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Figure 3 Effect of Du on (a) temperature and (b) concentration

for Kr= 0.2, Gr= 5, Gm = 5, Re = 2, Sr= 0.2, Sc = 0.8,

Pr= 0.2, R = 10, J1 = 0.2, s1 = 2, s2 = 2, Ha = 2, D�1 = 2,

be = 0.2, bi = 0.2, g= 2.
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Figure 4 Effect of Kr on (a) temperature and (b) concentration

for Du= 2, Gr= 5, Gm= 5, Re = 2, Sr = 0.02, Sc = 0.8,

Pr= 0.2, R = 10, J1 = 0.2, s1 = 2, s2 = 2, Ha = 2, D�1 = 2,

be = 0.2, bi = 0.2, g= 2.



Figure 5 Effect of bi on (a) axial velocity, (b) radial velocity, (c) microrotation, (d) temperature and (e) concentration for Du= 2,

Gr= 5, Gm = 5, Re = 2, Sr= 0.2, Sc = 0.8, Pr = 0.2, R = 10, J1 = 0.2, s1 = 2, s2 = 2, Ha = 2, D�1 = 2, Kr= 2, be = 0.2, g= 0.2.
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To solve for (xrþ1
i , i= 1,2, . . . , 14), the solution to seven

separate initial value problems, are denoted by xh1
i ðkÞ; xh2

i ðkÞ;
xh3
i ðkÞ; xh4

i ðkÞ; xh5
i ðkÞ; xh6

i ðkÞ; xh7
i ðkÞ (which are the solutions of
Figure 6 Effect of be on (a) axial velocity, (b) radial velocity, (c) mi

Gr= 5, Gm = 5, Re = 2, Sr= 0.2, Sc = 0.8, Pr= 0.2, R = 10, J1 =
the homogeneous system corresponding to (20)) and xp1
i ðkÞ

(which is the particular solution of (20)), with the following
initial conditions are obtained by using the 4th order Runge–

Kutta method.

xh1
3 ð0Þ ¼ 1; xh1

i ð0Þ ¼ 0 for i– 3;

xh2
4 ð0Þ ¼ 1; xh2

i ð0Þ ¼ 0 for i – 4;
crorotation, (d) temperature and (e) concentration for Du= 0.02,

0.2, s1 = 4, s2 = 2, Ha = 2, D�1 = 2, Kr= 2, bi = 5, g= 0.2.
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xh3
6 ð0Þ ¼ 1; xh3

i ð0Þ ¼ 0 for i – 6;

xh4
8 ð0Þ ¼ 1; xh4

i ð0Þ ¼ 0 for i – 8;

xh5
10ð0Þ ¼ 1; xh5

i ð0Þ ¼ 0 for i – 10;

xh6
12ð0Þ ¼ 1; xh6

i ð0Þ ¼ 0 for i – 12;

xh7
14ð0Þ ¼ 1; xh7

i ð0Þ ¼ 0 for i – 14;
Figure 7 Effect of D�1 on (a) axial velocity, (b) radial velocity, (c) m

Gr= 5, Gm = 5, Re = 2, Sr= 0.2, Sc = 0.8, Pr = 0.2, R = 10, J1 =
xp1
1 ð0Þ ¼ �1;

xp1
2 ð0Þ ¼ xp1

3 ð0Þ ¼ xp1
4 ð0Þ ¼ xp1

5 ð0Þ ¼ 0

xp1
6 ð0Þ ¼ xp1

7 ð0Þ ¼ xp1
8 ð0Þ ¼ xp1

9 ð0Þ ¼ xp1
10ð0Þ ¼ xp1

11ð0Þ
¼ xp1

12ð0Þ ¼ xp1
13ð0Þ ¼ xp1

14ð0Þ ¼ 0 ð21Þ
icrorotation, (d) temperature and (e) concentration for Du = 0.02,

0.2, s1 = 2, s2 = 2, Ha = 2, bi = 0.2, Kr= 2, be = 5, g= 0.2.



Table 1 The numerical values of axial velocity with present

and existing results for g= 0.5 and Re = 5 (Newtonian case).

k Present Majdalani et al.

[21]

Asghar et al.

[22]

Boutros et al.

[23]

0 1.53785 1.536002 1.559474 1.556324

0.05 1.53344 1.531846 1.554822 1.551780

0.1 1.52025 1.519377 1.540888 1.538164

0.15 1.49834 1.498596 1.517743 1.515522

0.2 1.46782 1.469505 1.485503 1.483935

0.25 1.42883 1.432114 1.444331 1.443517

0.3 1.38158 1.386445 1.394435 1.394421

0.35 1.32627 1.332539 1.336071 1.336839

0.4 1.26318 1.270464 1.269540 1.271006

0.45 1.19258 1.200325 1.195188 1.197207

0.5 1.11478 1.122275 1.113403 1.115778

0.55 1.03011 1.036527 1.024617 1.027110

0.6 0.93888 0.943364 0.929302 0.931656

0.65 0.84142 0.843156 0.827971 0.829933

0.7 0.73802 0.736373 0.721170 0.722523

0.75 0.62892 0.623597 0.609480 0.610078

0.8 0.51432 0.505538 0.493513 0.493322

0.85 0.39429 0.383052 0.373909 0.373046

0.9 0.26877 0.257149 0.251330 0.250109

0.95 0.13751 0.129010 0.126461 0.125435

1 0.000000 0.000000 0.000000 0.000000
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By using the principle of superposition, the general solution

can be written as

xnþ1
i ðkÞ ¼ C1x

h1
i ðkÞ þ C2x

h2
i ðkÞ þ C3x

h3
i ðkÞ þ C4x

h4
i ðkÞ

þ C5x
h5
i ðkÞ þ C6x

h6
i ðkÞ þ C7x

h7
i ðkÞ þ xp1

i ðkÞ ð22Þ
where C1;C2;C3;C4;C5;C6 and C7 are the unknown constants
and are determined by considering the boundary conditions at

k ¼ 1. This solution ðxrþ1
i , i = 1,2, . . . , 14) is then compared

with solution at the previous step (xr
i , i= 1,2, . . . , 14) and fur-

ther iteration is performed if the convergence has not been
achieved.

4. Results and discussion

A numerical solution for the system of nonlinear differential
equations Eq. (18) subject to the boundary conditions Eq.
(19) is obtained by the method of quasilinearization. The

effects of various parameters such as Soret number Sr, Dufour
number Du, chemical reaction parameter Kr, inverse Darcy’s
parameter D�1, Hall parameter be and ion slip parameter bi
on nondimensional velocity components, temperature distribu-
tion, microrotation and concentration are discussed through
graphs in the domain [�1,1].

The effect of Sr on temperature and concentration is pre-
sented in Fig. 2. From this it is evident that as Sr increases
the concentration is also increasing, whereas the temperature
distribution is decreasing. This is because of the mass flux

created by the temperature gradient is inversely proportional
to the mean temperature, this causes the loss of temperature
of the fluid and the concentration of the fluid increases due to

the thermal diffusion rate is increasing with the suction/injec-
tion velocity. Fig. 3 displays the change in the temperature
distribution and concentration for different values of Du.

From this it is observed that when Du increases, the temper-
ature distribution and concentration are decreasing toward
the upper wall. This is due to the fact that the energy flux

created by the concentration gradient is inversely propor-
tional to the suction/injection velocity. Fig. 4 describes the
behavior of the temperature distribution and concentration
for various values of Kr. As Kr increases the temperature dis-

tribution of the fluid also increases, whereas the concentra-
tion decreases toward the upper wall. It means that
increase in the chemical reaction rate produces a decrease

in the species concentration. This causes the concentration
buoyancy effects to decrease as chemical reaction increases.
The effect of ion slip parameter bi on velocity components,

microrotation, temperature distribution and concentration is
presented in Fig. 5. From this it is noticed that as bi increases
the temperature is increasing, whereas concentration is

decreasing toward the upper wall and the microrotation
decreases in the region �1 < k < 0 and increases in
0 < k < 1 whereas the radial velocity follows the opposite
trend of microrotation. However, the axial velocity attains

the maximum at the center of the walls. This is due to
decrease in the effective conductivity which reduces the
damping force on the flow field. Fig. 6 displays the effect

of Hall parameter be on velocity components, microrotation,
temperature and concentration. As be increases the profiles of
velocity components, microrotation, temperature and concen-

tration follow the similar trend of bi. This is because of the
velocity of the fluid increases with current density. The vari-
ation of the velocity components, microrotation, temperature
distribution and concentration for different values of D�1 is

shown in Fig. 7. From this one can analyze that the temper-
ature and concentration are increasing with D�1 and the
radial velocity decreases up to the center of the channel,

and then increases whereas the microrotation follows the
opposite trend of radial velocity. However, As D�1 increases
the axial velocity decreases at the center of the walls and

increasing near the walls due to the resistance offered by
the porosity of the medium is more than the resistance due
to the magnetic lines of force.

The numerical values of axial velocity with a2 ¼ 0:5 and

Re= 5 for Newtonian fluid case are presented in Table 1. It
is observed that the results are showing excellent agreement
with Majdalani et al. [21], Asghar et al. [22] and Boutros

et al. [23].

5. Conclusions

The influence of Hall and ion slip currents on the free convec-
tive flow of chemically reacting micropolar fluid in a porous
expanding or contracting walls with Soret and Dufour effects

is considered. The numerical solution of the reduced governing
equations is obtained by the method of quasilinearization. It is
observed that.

� The temperature distribution of the fluid is decreased with
the increase of Sr and Du and the concentration of the fluid
is enhanced with Sr whereas it is decreased as Du increases.

� The velocity components, microrotation, temperature and
concentration of the fluid have the similar effects for Hall
and ion slip parameters.

� The concentration of the fluid is decreased whereas the tem-
perature is enhanced with Kr.
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� D�1 exhibits the similar effect for temperature and concen-

tration of the fluid.
� The present results are compared with previously published
work [21–23] and found that the axial velocity values are

showing a remarkable agreement.

These results have possible applications in engineering and
applied sciences such as the regression of the burning surface in

solid rocket motors, paper manufacturing, irrigation, and
transport of biological fluids through expanding or contracting
vessels.
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