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SUMMARY

Neisseria meningitidis is a life-threatening human
bacterial pathogen responsible for pneumonia,
sepsis, and meningitis. Meningococcal strains with
reduced susceptibility to penicillin G (PenI) carry a
mutated penicillin-binding protein (PBP2) resulting
in a modified peptidoglycan structure. Despite their
antibiotic resistance, PenI strains have failed to
expand clonally. We analyzed the biological con-
sequences of PBP2 alteration among clinical menin-
gococcal strains and found that peptidoglycan
modifications of the PenI strain resulted in dimin-
ished in vitro Nod1-dependent proinflammatory
activity. In an influenza virus-meningococcal
sequential mouse model mimicking human disease,
wild-type meningococci induced a Nod1-dependent
inflammatory response, colonizing the lungs and
surviving in the blood. In contrast, isogenic PenI

strains were attenuated for such response and
were out-competed by meningococci sensitive to
penicillin G. Our results suggest that antibiotic resis-
tance imposes a cost to the success of the pathogen
and may potentially explain the lack of clonal expan-
sion of PenI strains.
Cell H
INTRODUCTION

Antibiotic resistance has become a major healthcare problem

with the emergence of infectious agents that acquired multidrug

resistance such as Mycobacterium tuberculosis or Staphylo-

coccus aureus. In contrast, some important pathogens such as

group A streptococci or Neisseria meningitidis have remained

largely sensitive to the standard b-lactam antibiotic therapy

despite several decades of antibiotic usage. N. meningitidis is

exclusively an opportunistic human pathogen that may cause

invasive infections (septicemia, pneumonia, and/or meningitis),

but for which asymptomatic nasopharyngeal carriage is frequent

(Cartwright et al., 1987).

Frequent DNA horizontal transfer occurs in the nasopharynx

between different meningococcal isolates but also between

N.meningitidis and other commensalNeisseria species (Maiden,

1993). Penicillin G remains the antibiotic of choice in the treat-

ment of meningococcal infections (Quagliarello and Scheld,

1997). Plasmid-encoded b-lactamase has been rarely reported

inN. meningitidis (Botha, 1988; Dillon et al., 1983). However, iso-

lates with reduced susceptibility to penicillin G (PenI), usually

defined by a minimal inhibitory concentration (MIC) for penicillin

G ranging between 0.125 and 1 mg/ml, are becoming increas-

ingly more frequent (Hughes et al., 1993) due to alterations in

the penA gene encoding penicillin-binding protein (PBP) 2

through horizontal DNA transfer from commensal neisserial
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Figure 1. Comparative Virulence between

PenS and PenI Meningococcal Clinical

Isolates in an IAV-Infected BALB/c Mouse

Model

(A) penA allele distrubution in the ST-11 clonal

complex among PenS and PenI isolates. (B and C)

Mice were intranasally challenged with standard-

ized inocula of 53 107 cfu of eight and six different

PenS and PenI meningococcal isolates, respec-

tively, all belonging to the ST-11 clonal complex.

Two PenI strains had a penicillin G MIC of

0.5 mg/ml, one of 0.75 mg/ml, and three of 1 mg/ml.

At least four mice per strain were used. Results are

presented as percentile boxes of bacterial cfu

counts per strain in the lungs 3 (B) and 24 hr (C)

after the bacterial infection and from three different

experiments referred to the penicillin G MIC of

each strain. Statistical analysis was done using the

Mann-Whitney test. See also Figure S1.
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species (Spratt et al., 1992). PBP2 contributes to the late stages

of peptidoglycan (PG) biosynthesis, most likely in the transpep-

tidation reaction necessary for elongation of peptidoglycan

(Spratt and Cromie, 1988). Critical alterations in the penA gene

(encoding the PBP2) were directly linked to reduced susceptibil-

ity to penicillin G and were confirmed by transformation of

altered penA genes into a susceptible strain (Antignac et al.,

2003a). Sequencing of penA from a large collection of 1,670

meningococcal clinical isolates from 22 countries that spanned

60 years suggests that no clonal expansion of clinical isolates

with reduced susceptibility to penicillin G was observed world-

wide. Indeed, these clinical isolates were shown to belong to

distinct genetic lineages and harbored different penA alleles.

We have previously shown that alteration of PBP2 modifies the

structure of meningococcal PG through the increase of propor-

tions and amounts of pentapeptide-containing muropeptides

(Antignac et al., 2003a). Bacterial signaling through PG may

therefore be altered upon alterations of meningococcal PBP2

that confer the reduced susceptibility to penicillin G, affecting

meningococcal acquisition and colonization at the portal of entry

(the respiratory epithelium). The aim of this study was to analyze

the biological consequences of PBP2 alteration among menin-

gococcal strains with reduced susceptibility to penicillin G,

which may explain the absence of expansion of these invasive

isolates.

RESULTS

Alterations of PBP2 in Clinical Strains and Impact on the
Experimental Infection in Mice
We first constructed a collection of 60 clinical isolates of

N. meningitidiswith reduced susceptibility to penicillin G in order

to assess their virulence. Their MICs for penicillin G were deter-
736 Cell Host & Microbe 13, 735–745, June 12, 2013 ª2013 Elsevier Inc.
mined by the Etest method (see Supple-

mental Information) and ranged between

0.125 mg/ml and 1 mg/ml. These isolates

from invasive meningococcal infections

were of different serogroups (40, 8, 11,

and 1 isolates of the serogroups B, C,
W135, and Y, respectively; Figure S1). Forty-one isolates be-

longed to the major clonal complexes encountered in invasive

meningococcal infections (7, 6, 16, and 13 isolates of the clonal

complexes ST-8, ST-11, ST-32, and ST-41/44, respectively, as

determined by MSLT). Sequencing of the penA gene from

some of these isolates showed diverse penA alleles (Figure 1A,

data not shown, and Taha et al., 2007), indicating a highly hetero-

geneous structure of PenI isolates compared to the PenS strains

(Figure 1A, data not shown, and Taha et al., 2007). Since PenI

strains appear to result from independent penA acquisition/

mosaic events in multiple different genetic lineages rather than

expansion of one particular clone, we hypothesized that resis-

tance might have a biological cost for meningococci (Dowson

et al., 1989; Jabes et al., 1989). Isolates of the clonal complex

ST-11 are genetically homogeneous and of high virulence (Zar-

antonelli et al., 2008). We therefore used the clinical isolates

belonging to the ST-11 clonal complex showing PenS (eight

strains) or PenI (six strains) phenotypes to challenge mice in

the BALB/c mouse model of sequential IAV-meningococcal

invasive respiratory challenge (Alonso et al., 2003). Bacterial

counts in lungs were determined at 3 and 24 hr postinfection.

PenS isolates yielded higher bacteria counts than PenI isolates

(Figures 1B and 1C, p = 0.006 and p = 0.0036 at 3 and 24 hr post-

infection, respectively). However, while these isolates belonged

to the same clonal complex, they were not totally isogenic.

Impact of Eight Conserved Mutations in PBP2
Associated to PenI Phenotype on Peptidoglycan
Composition
Therefore, to better study the impact of PBP2 alterations on

meningococcal virulence, we constructed an isogenic PenI strain

in the penicillin G susceptible strain LNP8013 by natural transfor-

mation of the altered penA allele carrying eight amino acid



Table 1. Muropeptide Composition of Parental Strain LNP8013

and Its Isogenic PenI Strain TR214/97

Muropeptide Structure LNP8013 TR214/97

1 Tri 1.47 ± 0.01 1.54 ± 0.02

2b Tetra 12.07 ± 0.12 10.71 ± 0.11

4 Di 0.93 ± 0.01 1.06 ± 0.01

5a Penta 1.50 ± 0.01 2.43 ± 0.02

6b tetra OAc 5.76 ± 0.06 6.64 ± 0.07

7 Tetra-tri 1.63 ± 0.02 1.14 ± 0.01

8a Tri (anh) 2.23 ± 0.02 2.00 ± 0.02

8bb Tetra-tetra 10.18 ± 0.10 8.15 ± 0.08

9a Tetra-penta 3.32 ± 0.03 7.09 ± 0.07

10 Tetra-tri OAc 0.95 ± 0.01 0.89 ± 0.01

12ab Tetra-tetra OAc 15.14 ± 0.15 12.61 ± 0.13

12bb Tetra (anh) 4.10 ± 0.04 2.74 ± 0.03

13a Tetra-tetra-penta 2.15 ± 0.02 2.76 ± 0.03

14 Tetra-penta OAc 1.15 ± 0.01 1.31 ± 0.01

15 Tetra-tetra di-OAc 1.86 ± 0.02 1.66 ± 0.02

16b Tetra-tetra-tetra OAc 7.20 ± 0.07 6.58 ± 0.07

18a Tetra-penta di-OAc 4.80 ± 0.05 7.84 ± 0.08

19b Tetra-tetra (anh) 5.15 ± 0.05 2.98 ± 0.03

20b Tetra-tetra-tetra di-OAc 4.78 ± 0.05 4.11 ± 0.04

21 n.d. 4.41 ± 0.04 2.04 ± 0.02

22a Tetra-tetra (anh) OAc 1.31 ± 0.01 2.21 ± 0.02

22b Tetra-tetra-tetra tri-OAc 1.45 ± 0.01 2.28 ± 0.02

23 Tetra-tetra-tri (anh) 1.40 ± 0.01 1.74 ± 0.02

24 Tetra-tetra-tetra (anh) OAc 2.37 ± 0.02 2.44 ± 0.02

25 n.d. 1.25 ± 0.01 2.23 ± 0.02

26 Tetra-tetra-tetra (anh)

di-OAc

1.44 ± 0.01 2.83 ± 0.03

Numbering of muropeptides correspond to the HPLC peaks presented in

Figures S2 and S6. Structures were assigned after MALDI-TOF analysis

of each muropeptide. Lines marked with a superscript ‘‘a’’ and ‘‘b’’ indi-

cate muropeptides that increase and decrease, respectively, in percent-

age, in the PenI strain but also in the heterodiploid strains (Figure S6D)

and the D,D-carboxypeptidase mutants AS7 and AS19 (Figure S6E).
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substitutions common to PenI strains (Antignac et al., 2003a;

Taha et al., 2007). Strain TR214/97 had a MIC of 0.5 mg/ml,

clearly indicating that these eight amino acid substitutions

were sufficient to confer a PenI phenotype to meningococci.

No difference in growth rate in GCB medium was observed

between PenI strain TR214/97 and its PenS parental strain

LNP8013 (Figure S2A). Moreover, electronmicroscopy examina-

tion did not reveal any morphological changes (Figure S2A), indi-

cating that there was no apparent biological cost for the PenI

strain in vitro. However, the analysis of meningococcal PenS

strain LNP8013 and isogenic PenI strain TR214/97 revealed

modifications of peptidoglycan components in the isogenic

PenI strain (Figure S2B and Table 1), particularly a similar

increase in pentapeptide-containing muropeptides and a

decrease in tetrapeptide-containing muropeptides including

the tracheal cytotoxin (TCT) as previously described (Antignac

et al., 2003a). Thus, clinical PenI isolates and the isogenic PenI

strains shared common features (this work and Antignac et al.,
Cell H
2003a): a mosaic penA allele encoding a PBP2 leading to

modifications of PG composition. Since PG fragments termed

muropeptides such as TCT, the muramyl dipeptide (MDP), and

the muramyl tripeptide (MTP) are pathogen-associated molecu-

lar patterns (PAMPs) sensed by pattern recognition receptors

(PRRs) of the Nod-like receptor (NLR) family such as the cyto-

solic proteins Nod1 and Nod2 (Girardin et al., 2003a, 2003b;

Magalhaes et al., 2005; Travassos et al., 2004), the response

of the host to a pathogen will depend on the generation of

such proinflammatory muropeptides.

Impaired In Vitro Inflammation of Isogenic PenI Strain
Thus, we next tested the PenS strain LNP8013 and its isogenic

PenI variant TR214/97 in an epithelial infection model using the

Hec1B cell line (Figure 2) or in a macrophage infection model

(Figures S3A and S3B). While both strains adhered similarly

to epithelial cells (data not shown), strain TR214/97 was

impaired in the induction of IL-8 and TNF-a (Figures 2A and

2B). The distinct phenotype was specific for the epithelial

model as macrophages responded similarly to both strains

(Figures S3A and S3B). This is in agreement with the observa-

tion that epithelial cells downregulate Toll-like receptors (TLRs),

relying mostly on NLRs to detect pathogens while macro-

phages use both types of PRRs. Accordingly, both strains pro-

duced identical LOS (data not shown), which is the major

meningococcal PAMP sensed by macrophages through TLR4

(Zughaier et al., 2004). The phenotype on Hec1B cells could

be recapitulated using highly purified PG (absence of LOS

was tested by western blot; see Figure S3C) from both strains

(Figures 2C and 2D). Experiments using siRNA to block Nod1

or TLR4 in Hec1B cells indicate that these cells responded to

highly purified PG or MTP through Nod1 exclusively, excluding

any contamination by other TLR ligands (Figure 3). These re-

sults also highlight that certain epithelial cells can sense PG

through NLRs from the extracellular compartment without

requiring prior internalization. These results also suggested

that the PG modifications of the isogenic PenI strain TR214/

97 resulted in the synthesis of a meningococcal PG with poor

proinflammatory activity.

PenI Strain Is Impaired in IAV-Meningococcal Mouse
Model
Next, we aimed at testing the isogenic pair on an in vivo model.

N. meningitidis is a human-specific pathogen that does not nor-

mally infect mice. However, N. meningitidis becomes virulent

and invasive in the sequential IAV-meningococcal invasive respi-

ratory model (Alonso et al., 2003). Interestingly, this model

mimics the human epidemiology where meningococcal disease

outbreaks closely follow flu-like episodes (Rameix-Welti et al.,

2009). In this IAV infection model, mice become susceptible to

meningococcal disease at 7 days postinfection (Alonso et al.,

2003). To better understand the effect of the IAV primary

infection on the host, we performed microarray studies of the

lungs of mice that were infected for 7 days with IAV and

compared to naive mice (Figure S4). The analysis revealed that

IAV infection led to suppression of the host immune system, in

particular the downregulation of TLR4 (Figure S4B). Interestingly,

Nod1 was not affected. We confirmed these observations inde-

pendently by RT-PCR (Figure S4A). Thus, IAV primary infection
ost & Microbe 13, 735–745, June 12, 2013 ª2013 Elsevier Inc. 737



Figure 2. Cytokine Production by Hec1B

Cells Stimulated by Purified PAMPs and

Meningococcal Isogenic PenS and PenI

Strains

(A–D) Hec1B cells were infected with isogenic

strains LNP8013 (PenS) and TR214/97 (PenI), and

productions of TNF-a (A) and IL-8 (B) were

measured by ELISA. Similarly, Hec1B cells were

stimulated with highly purified PG from strains

LNP8013 and TR214/97, and TNF-a (C) and IL-8

(D) productions were measured. The isogenic

TR214/97 PenI strain and its corresponding PG

were impaired in inducing TNF-a and IL-8 pro-

ductions compared to the PenS strain LNP8013 or

its PG. Noninfected cells (NIC; only media) and

cells stimulated with meningococcal LOS were

used as negative and positive controls, respec-

tively. Note that to have a positive response in

Hec1B cells using, LOS, the equivalent of 8 3 107

bacteria of LOS was added while we had a

response to 10 mg highly purified PG (equivalent to

107 bacteria, corresponding to 8-fold less). Data

are presented asmean ± SEM. See also Figure S3.

Cell Host & Microbe

Nod1-Mediated Fitness Cost of Resistant Bacteria
predisposes the host to preferentially sense the Nod1 agonists

compared to naive mice.

First, we performed a competition assay between the wild-

type and its isogenic mutant (Figure S4C) and followed the

colonization of the lungs at 3 hr and 24 hr. Despite a 9:1 ratio

of the PenI over the PenS strain, after 24 hr the PenS had sig-

nificantly displaced the PenI strain (around a 1:1 ratio). Next,

we tested each strain individually in the same IAV model. The

colonization of the lungs and bacteremia were scored also

at 3 hr and 24 hr after meningococcal challenge. At time

points beyond 24 hr, meningococci are spontaneously elimi-

nated by lack of a suitable iron source in mice. Despite a

reduced bacterial count in blood, suggesting impaired invasive-

ness and/or rapid clearance, these never reached statistical

significance (p = 0.163 at 24 hr; Figure 4A). In contrast, bacte-

rial loads in lungs were significantly lower for the strain TR214/

97 when compared to wild-type strain LNP8013 (p = 0.0378;

Figure 4A). These data suggested impaired capacity to colonize

the respiratory tissues. Correlatively, significantly lower levels

of TNF-a and IL-6 (p = 0.02 and p = 0.01, respectively) were

detected in lungs of mice infected with strain TR214/97 at

3 hr after bacterial infection (Figure 4A). To check whether

the TR214/97 strain phenotype was not due to secondary

mutations, we restored the penA allele to a wild-type copy

(strain R1). As illustrated in Figure S4D, the R1 strain recovered

a wild-type virulence phenotype as it out-competed the mutant

TR214/97 in the IAV infection model. The lower virulence of

PenI isolates was further confirmed in another strain belonging

to another meningococcal genetic lineage. We constructed

an isogenic PenI strain (TR7lux) in the penicillin G susceptible

strain LNP24198lux by natural transformation of the altered

penA allele carrying eight amino acid substitutions common

to PenI strains. After intranasal bacterial challenge, the bacte-

rial colonization in lungs was estimated by measuring the

photon emitted by bacteria on lungs, and dynamic imaging

by PenI isogenic strains was significantly lower than that of

the parent PenS strain (p < 0.05 in all tested time points; Figures

S4E–S4G).
738 Cell Host & Microbe 13, 735–745, June 12, 2013 ª2013 Elsevier
IAV-Meningococcal Disease Is Nod1 Dependent
To further characterize the role of PBP2 function in the virulence

of meningococci, we tested whether the impaired virulence of

PenI strain was related to PG sensing by the Nod proteins. As

N. meningitidis is a Gram-negative bacteria carrying meso-

DAP-type PG (thus a Nod1 agonist), we challenged C57BL/6J

and C57BL/6J Nod1-deficient (card4�/�), IAV-infected mice

intranasally with strains LNP8013 and TR214/97 (Figures 4C

and 4D). The PenI strain recapitulated an attenuated phenotype

as in BALB/c mice (Figures 4A and 4C). However, no significant

difference was observed in card4�/� mice in terms of cfu counts

in lungs and blood, nor in the levels of the inflammatory cytokines

in lungs (Figure 4D), indicating that the meningococcal PG plays

a central role in virulence and establishing a local inflammatory

response. The differences in bacterial load burden in the lungs,

either in C57BL/6J or card4�/� mice, correlated with the macro-

scopic aspect of the lungs (Figure 5A). Analysis of bronchioal-

veolar lavage of lungs from C57BL/6J mice infected with either

LNP8013 or TR214/97 revealed a significant difference in cell

numbers (2.9 3 106 cells/ml versus 3.7 3 105 cells/ml, respec-

tively; see Figure 5B). Morphological observation of the cell pop-

ulation recovered in the bronchioalveolar lavage (Figure 5B)

showed an increase in polymorphic neutrophils (PMNs) in the

mice infected with strain LNP8013 compared to the PenI strain

TR214/97. To further characterize the cells infiltrating the lungs

during infection, we sorted the bronchioalveolar lavages by

flow cytometry. In C57BL/6J mice, the parental strain LNP8013

infection led to a significantly higher percentage of granulocytes

compared to the isogenic PenI strain TR214/97 (Figure S5A).

When gating these cells to further characterize them, we

observed that the parental strain predominantly recruited cells

positive for a 40 kDa antigen (Figure S5B) or positive for Ly-6G

(Figure 5C) expressed by neutrophil cells that were absent

from the lavage of mice challenged with TR214/97. Consistent

with our infection experiments and the lung macroscopic obser-

vations, recruitment of cells positive for the 40 kDa antigen (Fig-

ures S5A and 5B) or positive for Ly-6G expressed by neutrophil

cells was exclusively Nod1 dependent (Figure 5C).
Inc.
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Figure 3. Small-Interference RNA Experi-

ments in Hec1B Cells

(A–D)Cellswere transfectedwith a control, a tlr4, or

a nod1 (also known as card4) siRNA. (A) RT-PCR

expression analysis of Hec1B cells after 48 hr of

siRNA treatment. b-actin was used an internal

control. (B) Relative expression of tlr4 and nod1

using b-actin as a housekeeping gene. After 48 hr

of treatment, TNF-a (C) and IL-8 (D) secretion

after siRNA treatment of Hec1B cells, and stimu-

lation with highly pure meningococcal LOS, HPLC

purified N-acetylglucosamine-b(1,4)-N-acetyl-

anydromuraminyl-L-alanyl-D-g-glytamyl-meso-di-

aminopimelic acid (TRP) and highly pure menin-

gococcal PG from the wild-type strain LNP8013.

These experiments indicate that TRP and menin-

gococcal PG were pure and mediated Hec1B

response exclusively through Nod1. Furthermore,

this response occurred by stimulation from the

outside, indicating the Hec1B cells are able to

internalize TRP and PG spontaneously. Statistical

analysis was performed using Student’s t test (two-

tailed, unpaired; p values *p % 0.05, **p % 0.01,

***p% 0.001). Data are presented as mean ± SEM.
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Finally, N. meningitidis is a human-specific pathogen. While

human Nod1 preferentially detects MTP, mouse Nod1 better de-

tects TCT, although the two Nod1 variants have some overlap-

ping specificity (Magalhaes et al., 2005). Thus, we constructed

transgenic human Nod1 mice (hNod1) in the background of the

C57BL/6J card4�/� mice (Figures 6A and 6B). These mice ex-

pressed the transgenic gene in epithelia of different tissues (Fig-

ure 6A), the lung epithelia being the ones that expressed higher

hNod1 gene. Furthermore, the hNod1 protein was functional,

as these mice responded to MTP (Figure 6B) compared to non-

transgenic liter mates, while both responded normally to MDP,

the Nod2 ligand. Next, we compared the virulence of strains

LNP8013 and TR214/97 using the IAV model in the transgenic

mice. As illustrated in Figure 6C, strain TR214/97 colonized

less well the lungs or the bloodstream. Similarly, the strain

TR214/97 induced less damage of the lungs (Figure 5A) and

fewer cytokines in the lungs (Figure 6C). We next explored

whether primary epithelial cells from infected mice are able

to produce proinflammatory cytokines in a Nod1-dependant

manner. We performed bronchioalveolar washes in intranasally

infectedmice (wild-type and card4�/�mice) and sorted the bron-

chioalveolar washes by flow cytometry. In C57BL/6J mice, the

parental strain LNP8013 infection led to a significantly higher

percentage of epithelial cells producing TNF-a (percentage cells

that are positive for both E-cadherin and TNF-a among cells that

are positive for E-cadherin) compared to the isogenic PenI strain

TR214/97 (Figures S5D–S5F).

Meningococcal Disease Relies on Peptidoglycan
Modifications by D,D-Carboxypeptidases
To further understand the role of meningococcal PBP2 in PG

metabolism, we constructed heterodiploid strains carrying a

native penA allele and a dominant-negative penA allele (Figures

S6A and S6B). The expression of the dominant-negative penA

allele did not affect the production of native PBP2 (or the two

other PBPs, PBP1 and PBP3; Figure S6C), nor did it affect its

ability to bind penicillin G (Figure S6C). However, analysis of
Cell H
the PG composition by HPLC indicated that the dominant-nega-

tive penA allele also led to an increase of muropeptides carrying

a pentapeptide and a generalized decrease of those carrying

tetrapeptides (Figure S6D). Despite the fact that PBP2 is a

class B high-molecular-weight PBP, our results with the isogenic

TR214/97 and the dominant-negative penA allele suggested

that the meningococcal PBP2 functioned in vivo as a D,D-

carboxypeptidase.

However, several attempts to detect in vitro a D,D-carboxy-

peptidase activity using recombinant PBP2 have failed so far

(data not shown). Alternatively, the decreased D,D-carboxypep-

tidase activity associated with altered PBP2 function could be an

indirect effect. In Escherichia coli, the meningococcal PBP2

homolog PBP3, also known as FtsI, was shown to interact with

the low-molecular-weight PBP7/PBP8, which are true D,D-car-

boxypeptidases (Romeis and Höltje, 1994). Meningococci have

one low-molecular-weight PBP, PBP3, identifiable in fluoro-

graphic PBP assays (see Figure S6C). Additionally, two putative

low-molecular-weight PBPs, PBP4 and PBP5, were revealed by

sequence homology analysis of the complete genome. Hence,

we tested whether the differences in PG composition between

LNP8013 and TR214/97 were indirectly related to PBP3, PBP4,

and PBP5. We constructed derivatives of LNP8013 and

TR214/97, AS7 and AS19, respectively, in which the three genes

pbp3 (Nm665), pbp4 (Nm962), and pbp5 (Nm1095) were inacti-

vated and analyzed the PG composition (Figure S6E). Interest-

ingly, both derivatives, AS7 and AS19, produced identical PG

composition characterized by a very high percentage of penta-

peptide-carrying muropeptides (Figure S6E). These results

suggested that the PBP2-related effects observed on the PG

metabolism were probably indirect and mediated by the low-

molecular-weight PBPs. Thus, we tested whether recombinant

PBP2 and the major D,D-carboxypeptidase, PBP3, formed a

stable protein complex. Indeed, PBP2 and PBP3 associated

strongly with a kDa of 66 nM (Figure S6F). Finally, we tested

whether both a LNP8013 heterodiploid strain carrying a domi-

nant-negative penA allele and a LNP8013Dpbp3 mutant could
ost & Microbe 13, 735–745, June 12, 2013 ª2013 Elsevier Inc. 739
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Figure 4. Comparative Virulence of N. meningitidis for IAV-Infected Mice

(A–D) BALB/cmice were infected with the wild-type PenS strain (LNP8013) and its isogenic PenI derivative (TR214/97) (A) or LNP8013DpenA-22 (penA/penA::erm

heteodiploid) (B). (C) and (D) are results from similar experiments conducted in IAV-infected C57BL/6J (WT) and Nod1�/� mice, respectively. Results are the

means ± SEM (bars) of cfu counts in lungs and blood from threemice per time point and from two independent experiments. In the lungs, cfu counts permicewere

obtained for both lungs homogenized in 1ml of RPMI. Hence, cfu/ml is equivalent to cfu/lungs. TNF-a and IL-6 levels weremeasured in lungs after 3 hr of infection

with strains LNP8013 or TR214/97. Cytokine levels are shown by histograms in (A), (C), and (D). Results are themeans ± SEM (bars) of cytokine levels in lungs from

threemice per time point and from two independent experiments. Statistical analysis was done using theMann-Whitney test. ‘‘*’’ indicates p% 0.05. More details

for each p value can be found in body of the text. See also Figures S4.
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recapitulate the attenuated phenotype in the IAV model (Figures

4B and 6D, respectively). Indeed, both the heterodiploid strain

and the PBP3 mutant were affected in colonizing lungs and per-

sisted in the blood strain similarly to the PenI strain, suggesting

that maintaining a balanced composition of its peptidoglycan

is an important virulence trait of meningococcus.

DISCUSSION

The induction of the Nod1-dependent proinflammatory pathway

relies on the ability of a bacterial pathogen (either invasive

or extracellular) to translocate Gram-negative peptidoglycan

to the intracellular environment (Girardin et al., 2003a). For

example, Helicobacter pylori, an exclusively extracellular path-

ogen, uses a type four secretion system to deliver PG fragments

into gastric epithelial cells (Viala et al., 2004). Alternatively, target

cells can express transporters able to translocate through the

membrane into the cytosol PG fragments. Several such trans-

porters have been previously described, such as hPepT1,

hPepT2, and SLC15A4 (Charrière et al., 2010; Lee et al., 2009;

Vavricka et al., 2004). Furthermore, the human genome encodes

for a homolog of the bacterial muropeptide transporter, AmpG

(Park and Uehara, 2008). Although these transporters seem

poorly expressed in epithelial cells, these can be induced under

certain conditions such as endocytosis (Charrière et al., 2010;
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Vavricka et al., 2004). However, certain cell lines might present

higher basal levels of these transporters, allowing for sensing

PG fragments released by extracellular bacteria. Indeed, certain

extracellular pathogens such asBordetella pertussis, sharing the

same ecological niche as N. meningitidis, are known to mediate

inflammation though release of PG fragment while remaining

extracellular. Finally, N. meningitidis releases large amounts

of outer membrane vesicles that can serve as delivery system

for PG. In fact, this mechanism has been shown to occur in

H. pylori (Kaparakis et al., 2010).

The reduced virulence of PenI strains correlates with a

decrease in tetrapeptide-containing muropeptides in meningo-

coccal PG and a decrease in the proinflammatory response in

the exposed host. The monomeric muropeptide anhydrous

disaccharide-tetrapeptide, also known as the TCT, was first

identified in gonococci and latter shown to reproduce the cyto-

pathologic effect associated with whooping cough (Goldman

and Herwaldt, 1985; Sinha and Rosenthal, 1980). TCT is known

to have proinflammatory properties and to induce oxidative burst

by phagocytic cells. Therefore, we reason that the PenI strains

generate less TCT during host colonization. Since, in our mouse

model, bacteremia is subsequent to a strong inflammatory

response in the lungs (Alonso et al., 2003), the reduced virulence

of the PenI strains could be explained by an impaired ability to

generate enough TCT to allow transepithelial invasion to reach
Inc.



Figure 5. Recruitment of Cell Types and Morphological Aspects of Lungs from IAV-Infected Mice with an Isogenic Pair of PenS and PenI

Strains

(A–C) C57BL/6J WT, Nod1�/�, and hNod1 transgenic mice were challenged with PenS strain LNP8013 and its isogenic PenI derivative TR214/97. (A) Lungs were

extracted and photographed 24 hr after bacterial infection. (B) Cells counts were determined in bronchioalveolar lavage from lungs of C57BL/6J mice infected

with PenS strain LNP8013 and its isogenic PenI derivative TR214/97. The infection with the PenS strain resulted in 10-fold higher number of cells per ml in the

lavage compared to its isogenic PenI derivative. Observation by optical microscopy of the cells present in the lavage indicated that strain LNP8013 induced

essentially a recruitment of PMNs, which was drastically reduced for strain TR214/97. (C) Flow cytometry analysis of neutrophil in bronchioalveolar lavages (BAL).

Neutrophil cells were scored as positive event for Gr-1 and also for a 40 kDa antigen expressed by neutrophil using a monoclonal antibody (clone 7/4) against this

protein (Abcam) (see Supplemental Information). Controls were performed using unlabelled BAL or BAL labeled with secondary fluorescein goat anti-rat IgG

alone. BALs were from C57BL/6J wild-type mice or Nod1 KO mice C57BL/6J card4�/�. Mice were infected as in (A) by IAV alone or by IAV followed at day 7 by

bacteria using PenS strain (LNP8013) or its isogenic PenI strain (TR214/97). Statistical analysis was done using unpaired t test or Mann-Whitney test (p = 0.048).

See also Figures S5.
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the blood and provokemeningococcemia. Indeed, TCT signaling

has been recently shown to be dependent on Nod1 (Magalhaes

et al., 2005). Our results showing that the PenI strain reduced

virulence and altered cytokine production are both mouse and

human Nod1 dependent are in accordance with this hypothesis.

Furthermore, our results using the hNod1 transgenic mice argue

against a mouse-specific phenotype, suggesting that PenI

strains face the same constraints in humans. Our data strongly

suggest that Nod1 signaling pathway is directly involved in

meningococcal infection in our infection model and in humans.

Accordingly, meningococci without lipooligosaccharide (LOS)

still induce a vigorous inflammatory response in lungs of infected

mice (Zarantonelli et al., 2006), reinforcing the notion that

meningococcal PG has a central role in the pathogenesis of

N. meningitidis. This small difference in the composition of PG

between PenS and PenI isolates may therefore have important

evolutionary consequences that contribute to more rapid inva-

siveness and transmission of PenS isolates, which might be a
Cell H
selective advantage that would explain the expanding of PenS

but not that of PenI isolates. Accordingly, small but significant

differences in the ability to induce early innate inflammatory

response were recently reported between ancient and modern

lineages of Mycobacterium tuberculosis. This difference was

suggested to be associated with rapid disease progression

and transmission, explaining the expansion of modern lineages

in human populations (Portevin et al., 2011). The inflammation

induced by N. meningitidis in the upper respiratory pathways

could create the ideal environment for dissemination of

N. meningitidis to a new host through extensive airway-prone

droplets. Thus, in addition to the impaired virulence, PenI strains

that are less proinflammatory would be also less fit for host-to-

host dissemination.

Meningococcal disease, as well as other invasive bacterial in-

fections, is favored by respiratory viral infections (at the portal of

entry of these bacteria). In our mouse model, we show that

IAV mediates immune suppression of the host, in particular
ost & Microbe 13, 735–745, June 12, 2013 ª2013 Elsevier Inc. 741
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Figure 6. Human Nod1 Transgenic Mice and Meningococcal Virulence

(A) The expression of the transgene in hNod1-transgenic mice was assayed by LCM of the epithelial layer of ileum, lung, and stomach using as internal control the

housekeeping genes gapdh and hsp90.

(B) The functionality of the transgenic mice was assayed by intraperitoneal injection of either PBS, the human Nod1 ligand muramyltripetide (MTP; 50 mg) and as

control the Nod2 ligand, the muramyldipeptide (MDP; 50 mg). Two hours after intraperitoneal injection of the ligands, the level of KC was measured in the blood of

mice. In the presence of the transgene, MTP induced a response that was absent from littermates devoid of both hNod1 and the mouse Nod1. In contrast, both

transgenic and littermates responded normally to Nod2 stimulation.

(C) hNod1 transgenic mice were challenged by the IAV model with strains LNP8013 and TR214/97. Colony-forming units/ml were scored at 3 and 24 hr post-

infection, while TNF-a and IL-6 levels were measured in lungs after 3 hr of infection. Statistical analysis was done using Student’s t test (two-tailed, unpaired).

(D) Deletion of the meningococcal low-molecular-weight PBP3 in strain LNP8013 mimics the PenI phenotype. PBP3 was identified previously in STM screen as

required formeningococci to sustain a bacteremia in the rat infant model (Sun et al., 2000). As shown in Figure 4, PenI strains are impaired in both lung colonization

and bacteremia. We constructed an isogenic mutant of strain LNP8013 deleted for PBP3 and tested whether this mutant was also impaired for bacteremia using

the IAV infection model. In the IAV infection model, the PBP3mutant was impaired in colonizing the lungs, persisting in the blood, and in inducing an inflammatory

response as measured by TNF-a and IL-6 secretion into the bronchioalveolar lavage. Data are presented as mean ± SEM. Statistical analysis was done using

Student’s t test (two-tailed, unpaired). See also Figure S6.
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downregulation of the TLR4 pathway, unmasking a role for Nod1

in detecting meningococci. This is in agreement with recent

reports showing viral suppression of TLRs through RIG-1 activa-

tion (Negishi et al., 2012). Also, it has been shown that viral infec-

tion leads to glucocorticoid production, also favoring immune

suppression (Jamieson et al., 2010). Thus, our experimental

model that mimics human epidemiology shows that meningo-

cocci exploit the host immune suppression to develop disease

and reach new niches (lungs and blood). In the lungs, meningo-

cocci engage Nod1 in epithelial cells, leading to a Nod1-depen-

dent meningococcal infection with recruitment of PMNs. This

is consistent with a central role of Nod1 in recruiting PMNs

(Dharancy et al., 2010; Masumoto et al., 2006). However, this

response is unable to clear efficiently the PenS strains, probably

due to the generalized immune suppression in respiratory path-

ways (Figure S4). Invasion of the bloodstream subsequently

occurs with PenS strains. In agreement, viral infections have
742 Cell Host & Microbe 13, 735–745, June 12, 2013 ª2013 Elsevier
been shown to potentiate Nod1/2-mediated lethality of second-

ary bacterial infections (Kim et al., 2011). In contrast, PenI strains

are less fit in inducing the initial Nod1 trigger in epithelial cells and

recruitment of PMNs, resulting in a less productive persistence in

the respiratory pathways and subsequent invasiveness.

Similar mechanisms of reduced susceptibility to penicillin G

and other b-lactams have been described in other major human

pathogens. For example, Streptococcus pneumoniae acquires

mosaic genes encoding several PBPs to confer reduced suscep-

tibility or even resistance to b-lactams. Recently, it has been

shown that these variants display a fitness cost in an infant rat

nasal colonization model (Trzcinski et al., 2006). Our results

also provide an explanation for the lack of clonal expansion of

meningococcal strains with reduced susceptibility to penicillin

G. We propose the following model. N. meningitidis is a

commensal of the nasopharynx flora that can take advantage

of local inflammatory response in respiratory pathways to cross
Inc.
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the respiratory epithelium and to invade blood. Indeed,

N. meningitidis invasiveness is tightly associated with an inflam-

matory response. Hence, penicillin G-reduced susceptibility

carries a biological burden for the invasive strains.

Our results suggest that despite the increase in antibiotic

resistance driven by their selective pressure, the fitness cost

of resistance could be an ally in managing the problem of anti-

biotic resistance in bacteria.

EXPERIMENTAL PROCEDURES

Bacteria and Culture Conditions

Clinical isolates of N. meningitidis (n = 60) were from invasive meningococcal

infections. MICs for penicillin G were determined by the Etest method (Solna,

Sweden), and the serological typing was performed as previously described

(Vázquez et al., 2003). Isolates were genotyped by multilocus sequence typing

(MLST), as previously described (Maiden et al., 1998; Taha et al., 2004). Cul-

tureswere performed onGCBmedium (Difco) containing Kellogg supplements

(Kellogg et al., 1963) for 18 hr at 37�C under 5% CO2. Transformation of

N. meningitidis was done as previously described (Taha et al., 1996). Escher-

ichia coliDH5was used as a host for cloning experiments. E. coli cultures were

done in Luria-Bertani medium supplemented with 40 mg/ml kanamycin and

300 mg/ml erythromycin when necessary. Detailed construction of all mutants

is described in the Supplemental Information.

Peptidoglycan Purification

Bacterial strains were grown to exponential phase with or without penicillin G

at different concentrations. Purification of peptidoglycan and structural anal-

ysis by high-pressure liquid chromatography (HPLC) were performed as

described previously (Antignac et al., 2003b).

In Vitro Cellular Infection Assays

The Hec1B epithelial cells were grown in RPMI 1640medium (Gibco BRL) sup-

plemented with 10% inactivated fetal bovine serum. Hec1B cells (106 cells/

well) were harvested and seeded into a 24-well plate with fresh medium

without serum. The Hec1B monolayer was infected 24 hr later with 107/ml

bacteria (LNP8013, PenS; TR214/97, isogenic PenI transformant), with

human Nod1 ligand N-acetylglucosamine-b(1,4)-N-acetyl-anydromuraminyl-

L-alanyl-D-g-glytamyl-meso-diamino pimelic acid (TRP) purified by HPLC

(10 nM) or with 10 mg highly purified PG (equivalent to 107 bacteria) from

both strains (Antignac et al., 2003b). Noninfected cells (only medium) were

used as a negative control. Highly purified meningococcal LOS (equivalent

to 8 3 107 bacteria of strain LNP8013) was used as a positive control. After

4 hr of incubation, bacteria-free supernatants were used to measure the levels

of TNF-a and IL-8 by the ELISA assays using anti-human TNF-a polyclonal

antibody (Innogenetics) and anti-human IL-8 polyclonal antibody (PeproTech),

respectively. The RAW264.7 macrophage cell line was grown as previously

described (Boneca et al., 2007). Macrophages were infected with 107/ml bac-

teria (LNP8013 and TR214/97). After 1.5 hr and 8.5 hr of incubation, bacteria-

free supernatants were used to measure the levels of TNF-a and IL-6 by the

ELISA assays using Quantikine kits (R&D Systems). The Hec1B epithelial cell

transfection with siRNA oligonucleotides is fully described in the Supplemental

Information.

Mice Experiments

Mice were treated in accordance with French legislation and the Comité

d’Hygiène, de Sécurité et des Conditions de Travail (Institut Pasteur, Paris,

France). The virulence properties of meningococcal strains were tested in

the mouse model of sequential influenza A virus (IAV)-bacterial infection

(Alonso et al., 2003). This model was used in BALB/c (Charles River Labora-

tories), C57BL/6J, C57BL/6J card4�/� (Magalhaes et al., 2005; Viala et al.,

2004), and transgenic C57BL/6J hnod1+/card4�/� mice. Colony-forming unit

counts were performed in samples of blood and lung homogenates (both lungs

were taken in 1 ml of RPMI) from three mice at 3 and 24 hr after challenge.

TNF-a and IL-6 levels were determined in lungs after 3 hr of bacterial challenge

as previously described (Alonso et al., 2003) using Quantikine kits. The viru-
Cell H
lence of the PBP3 mutant was compared to the meningococcal wild-type

isogenic strain LNP8013 in an IAV injection mouse model. Statistical analysis

was performed using unpaired t test or Mann-Whitney test as appropriate. A

p value of % 0.05 was considered to be statistically significant. Dynamic

imaging was performed in BALB/c (Société Janvier) IAV-infected mice as

above. Intranasal bacteria challengewas performed and the bacterial infection

images were acquired using an IVIS100 system (Xenogen Corp.) according to

instructions from the manufacturer and as previously described (Szatanik

et al., 2011).

Flow Cytometry

Bronchioalveolar lavage (BAL) fluid was recovered by introducing 1 ml of

phosphate buffer using a 2.5 ml syringe. After several passages the liquid

was withdrawn. Each BAL (100 ml) was incubated with anti-neutrophil anti-

body directed against a polymorphic 40 kDa antigen expressed by neutrophil

cells (monoclonal antibody clone 7/4 Abcam), anti-mouse Ly-6G coupled to

phycoerythrin (PE), and anti-CD3-FITC and anti-CD19-FITC (BD Biosciences)

and analyzed using a FACSCalibur flow cytometer (BD Biosciences). To test

the production of TNF-a in respiratory epithelial cells in BALs, flow cytometry

was performed using monoclonal antibodies anti-murine E-cadherin-PE and

anti-TNF-a-FITC. Prior to anti-TNF-a-FITC antibody labeling, cells from

BALs were permeabilized for 15 min in saponin at a final concentration of

1%. Fluorescence was recorded from a total of 10,000 events per sample.

The acquired fluorescence data were subsequently analyzed using WinMDI

2.9 software.

Full methods and associated references are available in the Supplemental

Information.
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Tedin, K., Taha, M.K., Labigne, A., Zähringer, U., et al. (2003a). Nod1 detects a

unique muropeptide from gram-negative bacterial peptidoglycan. Science

300, 1584–1587.

Girardin, S.E., Boneca, I.G., Viala, J., Chamaillard, M., Labigne, A., Thomas,

G., Philpott, D.J., and Sansonetti, P.J. (2003b). Nod2 is a general sensor of

peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem.

278, 8869–8872.

Goldman, W.E., and Herwaldt, L.A. (1985). Bordetella pertussis tracheal cyto-

toxin. Dev. Biol. Stand. 61, 103–111.

Hughes, J.H., Biedenbach, D.J., Erwin, M.E., and Jones, R.N. (1993). E test as

susceptibility test and epidemiologic tool for evaluation of Neisseria meningi-

tidis isolates. J. Clin. Microbiol. 31, 3255–3259.

Jabes, D., Nachman, S., and Tomasz, A. (1989). Penicillin-binding protein

families: evidence for the clonal nature of penicillin resistance in clinical iso-

lates of pneumococci. J. Infect. Dis. 159, 16–25.

Jamieson, A.M., Yu, S., Annicelli, C.H., and Medzhitov, R. (2010). Influenza

virus-induced glucocorticoids compromise innate host defense against a

secondary bacterial infection. Cell Host Microbe 7, 103–114.

Kaparakis, M., Turnbull, L., Carneiro, L., Firth, S., Coleman, H.A., Parkington,

H.C., Le Bourhis, L., Karrar, A., Viala, J., Mak, J., et al. (2010). Bacterial

membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell.

Microbiol. 12, 372–385.

Kellogg, D.S., Jr., Peacock, W.L., Jr., Deacon, W.E., Brown, L., and Pirkle, D.I.

(1963). Neisseria gonorrhoeae. I. Virulence genetically linked to clonal varia-

tion. J. Bacteriol. 85, 1274–1279.

Kim, Y.G., Park, J.H., Reimer, T., Baker, D.P., Kawai, T., Kumar, H., Akira, S.,
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