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The purpose of this paper is to introduce a homogenization method for the material behavior of two-
phase composites characterized by a thin-layer-type microstructure. Such microstructures can be found
for example in thermally-sprayed coating materials like WC/Fe in which the phase morphology takes the
form of interpenetrating layers. The basic idea here is to idealize the thin-layered microstructure as a
first-order laminate. Comparison of the methods with existing homogenization schemes as well as with
the reference finite-element model for idealized composites demonstrates the advantage of the current
approach for such microstructures. Further an extension of the approach to a variable interface orienta-
tion is presented. In the end the current method is compared to results based on FE-models of real
micrographs.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The modeling of the material behavior of composites is gener-
ally based on a model for the behavior of each constituent or phase
of the composite together with one for the interaction of the
phases. Traditionally, highly-idealized analytical and semi-analyti-
cal models were developed for this purpose with the help of vol-
ume-averaging or homogenization methods (e.g., Reuss, Voigt,
Hashin–Shtrikmann, and so on), and are limited to linear thermo-
elasticity. More recently, methods for this purpose based on the
assumption of scale-separation and the concept of representative
volume element (RVE) have been developed and applied. These in-
clude the Mori–Tanaka method (e.g., Benveniste, 1987), the inter-
polative double inclusion model (e.g., Pierard et al., 2004),
interaction direct derivative (IDD) method (Zheng and Du, 2001;
Du and Zheng, 2002), self-consistent schemes such as the GSCS
(Christensen and Lo, 1979) or higher-order bounds (Torquato and
Lado, 1992). For a further overview and details see Nemat-Nasser
and Hori (1993, 1999). Generally-speaking, these latter methods
consist of two steps. In the first step, a local problem for a single
inclusion is solved in order to obtain a model for the material
behavior at the RVE-level. The prototype here is the approach of
Eshelby (1957) for the case of an ellipsoidal elastic inclusion in
an infinite matrix. The second step consists of averaging the RVE-
fields to obtain those for the composite as a whole (e.g., Mercier
and Molinari, 2009). As before, the focus here has been on linear
thermoelasticity, also in order to exploit linearity in the mathemat-
ll rights reserved.
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ical formulation. For this case efficient methods are at hand, which
are discussed, e.g., in Klusemann et al. (2012b). By analogy, exten-
sions of these methods to the inelastic case are generally based on
linearized incremental formulations (e.g., Ponte Castaneda and Su-
quet, 1998) pertaining mainly to metal inelasticity. The pioneer
work of Sachs (1928) and Taylor (1938) can be seen as first homog-
enization methods for plasticity. The modification of the Sachs
model by a static model (Zaoui, 1970) lead to a model which as-
sumes that each constituent is subjected to the same stress which
is equal to the macroscopic one which lead to a lower bound for
the effective behavior. In the Taylor model uniform plastic strains
are assumed which are equal to the macroscopic ones which lead
to a upper bound. Dvorak (1992) proposed the so called transfor-
mation field analysis (TFA) in which the plastic strain fields were
assumed to be phase-wise constant to calculate the effective
behavior of inelastic composite materials (see also Dvorak et al.,
1994a,b). As discussed by, e.g., Molinari et al. (1997), many of these
approaches neglect the interactions between the phases, some-
thing which results in too stiff behavior. Because of this, models
were developed which take phase interaction into account in some
fashion (e.g., Molinari et al., 1987; Lebensohn and Tome, 1993). Mi-
chel and Suquet (2003, 2004) modified the transformation field
analysis to account for spatially heterogeneous plastic strain fields
resulting, e.g., from the interaction between the phases, which is
named nonuniform transformation field analysis. They applied
these methods mainly to composites with elastic–plastic phases.
This method was studied further by several authors. For example,
Roussette et al. (2009) applied it to elastic–viscoplastic constitu-
ents, and Fritzen and Böhlke (2011) analyzed the effect of different
particle morphology in a metal-matrix composite with this meth-
od. Originally the nonuniform transformation field analysis was
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used in combination with a fast fourier transform (FFT) framework
(Moulinec and Suquet, 1998). An implementation into the finite
element framework is given by Fritzen and Böhlke (2010). Recently
Agoras and Ponte Castañeda (2011) presented a generalization to
multi-scale systems of the ‘‘variational linear comparison’’ method
of Ponte Castañeda (1991) which allows the conversion from clas-
sical bounds or estimates for linear material behavior to nonlinear
material behavior. A fully computational approach which is getting
more popular in recent times is the use of FE2 techniques (e.g., Smit
et al., 1998; Miehe et al., 1999; Feyel, 2003). An overview about
this topic was given by Geers et al. (2010).

In general the direct computation of the effective properties is
based on an RVE which is the smallest unit of material, which fully
describes the material behavior. The determination of the mini-
mum RVE size is a non-trivial task. Drugan and Willis (1996) and
Monetto and Drugan (2004, 2009) presented approaches to obtain-
ing the minimum size by a non-local approach. Kanit et al. (2003)
studied the necessary RVE size for random microstructure not only
with respect to the wanted precision but also with the number of
realization of a given microstructure volume.

If the RVE is very small or the characteristic size of the system
approaches that of the microstructure, size effects can occur (e.g.,
Fülöp et al., 2006; Klusemann et al., 2012d), which are not ac-
counted for at the macroscale. Furthermore, large spatial gradients
at the macro-scale cannot be resolved by these methods and they
are in general restricted to standard continuum mechanics theory.
Full extension to second-order to incorporate size-effects of the
underlying microstructure can be found by several authors (e.g.,
Kouznetsova et al., 2004; Bargmann et al., 2010; Klusemann,
2012a). Describing local deformation state of microstructured
materials by extended continuum theories is done (e.g., Forest,
2008; Jänicke et al., 2009). In other cases, (e.g., Böhlke et al.,
2008) texture related microstructural effects are accounted for by
using orientation distribution functions and texture coefficients
to predict the resulting anisotropy in sheet metals and the path-
dependent mechanical properties. Houtte et al. (2005) presented
an advanced Taylor-type statistical multi-grain model (ALAMEL)
which accounts for the interactions between neighboring grains
which is used to calculate the deformation texture in cubic metals.

The purpose of the current work is to present a homogenization
approach for two-phase composites whose microstructure is char-
acterized by being layer- or lamellar-like (laminate model). Such
microstructures are present for example in thermally-sprayed
coatings. The layered phase morphology arising here is determined
among other things by the nature of the manufacturing process.
The current homogenization strategy is based on the idealization
of such microstructure as first-order laminate (e.g., Silhavy, 1997;
Ortiz et al., 2000). This kind of idealization is used in the literature
for different applications.

Ahzi et al. (1995) proposed a method to estimate the overall
elastic properties of semi-crystalline polymers showing a layered
structure. In Ahzi et al. (2007) three approaches are presented to
determine the effective elastic properties of such structure by
using a two-phase inclusion model with a crystalline lamella and
amorphous domain connected over a planar interface as the local
representative element of the polymer. Viscoplastic Taylor-type
models have been used by, for example, Parks and Ahzi (1990);
Ahzi et al. (1990) and Lee et al. (1995) for the prediction of texture
evolution for a semi-crystalline polymeric material with a layered
structure. In this context formulated Lee et al. (1993a,b) a rigid-
viscoplastic inclusion model. van Dommelen et al. (2003) extended
this model to an elasto-viscoplastic formulation which is used to
determine the deformation and texture evolution of semi-crystal-
line polymers under loading. In Lee et al. (2002) bicrystal-based
averaging schemes are presented for modeling the behavior of
polycrystals for rigid viscoplasticity at large deformations. In this
work the local homogenization is achieved by volume-averaging
the bicrystal and considering the jump conditions at the planar
interface between the two crystals assumed as occurring in a lay-
ered structure. Ortiz et al. (2000) used the idea of laminates for the
description of the evolution of microstructures which show lamel-
lar dislocation structures at large strains under monotonic loading.
In this work the microstructure is idealized as first-order laminate.
Furthermore models based on the idealization of first-order lami-
nates are used for the transformation interface between, e.g., aus-
tenite and martensite in the realm of phase transformations (e.g.,
Kouznetsova et al., 2009). One main difference to most previously
mentioned approaches is the used energy approach in this work.

The paper begins in Section 2 with a brief summary of the visco-
plastic material model for each phase of the two-phase composite
under consideration. The current approach as based on first-order
laminate theory is introduced in Section 3. After investigating the
behavior of this model with the help of simple deformation cases
together with corresponding FE results for layered composites in
Section 4, a comparison of results from the laminate model with
analogous ones from selected existing homogenization models
(e.g., Taylor, phase-wise constant plastic deformation) is given in
Section 5. Followed by a discussion of a variable interface direction
in Section 6. Next in Section 7 the creation of FE-models based on
real micrographs and comparison to the current homogenization
approach are discussed. The work ends (Section 8) with a summary
and conclusions. For simplicity, the current work is restricted to
small deformation.

2. Material model

In the current work, material models are formulated in the con-
text of continuum thermodynamics. In this context, the material
behavior is related to energetic and dissipative processes. As usual,
the energetic part is determined by the free energy density w. For
simplicity, attention is restricted here to quasi-static conditions
and metallic materials exhibiting small deformation and Voce
(i.e., saturation) isotropic hardening. In this case, the additive form

wðEE;aPÞ ¼
1
2

EE � CEEE þ sH aP þ
1
cH

e�cHaP � 1ð Þ
� �

ð1Þ

of w into elastic and hardening contributions, respectively, is as-
sumed. In particular, the former depends on the elastic strain

EE ¼ E � EP; ð2Þ

corresponding inelastic strain EP, and total (small) strain E ¼
symðF � IÞ, with F the deformation gradient. Here, symðAÞ : ¼
1
2 ðAþ ATÞ, represents the symmetric part of any second-order ten-
sor A. The evolution of EP depends on that of the accumulated
equivalent inelastic deformation aP, as shown in (6) below. Material
properties here include the elastic stiffness tensor CE, the difference
sH between the initial and saturated values of the yield stress, and
the rate cH of hardening saturation. As usual, the free energy deter-
mines in particular the stress

T ¼ @EE w: ð3Þ

Assuming dislocation glide as the dominant mechanism of inelastic
deformation, the inelastic behavior is determined by an inelastic
potential /P modeled by the simple viscoplastic form

/Pð1PÞ ¼ rD _ar exp
h1P � rAiþ

rD

� �
� h1P � rAiþ

rD

� �
ð4Þ

for the activation of dislocation motion and inelastic deformation.
Here, hf iþ : ¼ 1

2 ðf þ jf jÞ represents the ramp function. In particular,
this potential determines the flow rule

_aP ¼ @h1P�rAiþ/P ð5Þ
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for aP. Here, rA is the initial activation (yield) stress, rD represents
the drag stress, and _ar is the characteristic deformation rate associ-
ated with dislocation motion. In addition, 1P ¼ rvM � @aP w is the
thermodynamic conjugate to aP for the current model, where
rvMðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3devðTÞ � devðTÞ=2

p
represents the von Mises equivalent

stress measure. Here, devðAÞ : ¼ A� 1
3 trðAÞI represents the devia-

toric part, and trðAÞ the trace, of any second-order tensor A. The
evolution of EP is assumed to be activated by that of aP. Consider
in this regard the constitutive relation

_EP ¼ _aPNP ð6Þ

for the evolution of EP quasi-linear in _aP, with NP ¼ @TrvMðTÞ the
flow direction. Here we have assumed that the deformation is small
enough so that no significant grain rotation and no texture develop-
ment takes place.

For simplicity, the inelastic homogenization models to be con-
sidered in what follows are based on the following explicit algo-
rithm. This is formulated on an arbitrary time interval ½tn; tnþ1�
of duration tnþ1;n : ¼ tnþ1 � tn. The algorithm begins with the
forward-Euler update

aPnþ1;n ¼
0 1Pn 6 rA

tnþ1;n _ar exp 1Pn�rA
rD

� �
� 1

n o
1Pn > rA

(
ð7Þ

for aP from (5), with aPnþ1;n : ¼ aPnþ1 � aPn. In turn, this induces the
update

EEnþ1 ¼ Enþ1 � EPnþ1 ¼ Enþ1 � EPn � aPnþ1;nNPn ð8Þ

of the elastic strain, and so that

Tnþ1 ¼ CE½EEnþ1� ð9Þ

of the stress. Consequently, the history variables for each phase in-
clude aP and EP here.

The above model contains the material properties CE, sH, cH, rA,
rD, and _ar, which are to be specified for each phase in what follows.
This completes the short summary of the material model for each
phase. Now we turn to the homogenization scheme of interest in
this work.

The homogenization approach to be discussed in what follows
is based as usual on the assumption of scale separation, which lies
at the heart of the RVE concept. From the numerical point of view,
this facilitates the restriction of microstructural effects on the
material behavior to the integration-point level of a corresponding
finite-element simulation. In the current purely mechanical incre-
mental inelastic context, this involves as usual the specification of
deformation gradients Fn and Fnþ1 at the beginning (t ¼ tn) and end
(t ¼ tnþ1) of the current time interval ½tn; tnþ1�, as well as the values
aPn and EPn of the internal variables at the beginning of this inter-
val. In this case, the total strain En ¼ symðFn � IÞ and Enþ1 ¼
symðFnþ1 � IÞ at the beginning and end of this interval, respec-
tively, are specified.
3. Laminate model

As discussed in the introduction, layer or laminate-like micro-
structures arise in technological processes such as thermal spray-
ing. Both from this point of view, and as an alternative means to
model the interaction of the phases in a composite with the corre-
sponding morphology, it is interesting to formulate the corre-
sponding homogenization model and compare it with selected
existing ones for the inelastic case. For simplicity, attention is re-
stricted here to the case of small deformation. For the case of mi-
cron-thick thermal spray coatings, for example, this assumption
is certainly reasonable. In this case, the kinematics of the two-
phase system is determined by the mixture relation
F ¼ kF1 þ ð1� kÞF2 ¼ F2 þ ksFt ð10Þ

for the deformation gradient F, where sf t ¼ f1 � f2 represents the
‘‘jump’’ of f across the phase interface. In particular, in the laminate
context (e.g., Silhavy, 1997), the jump sFt in deformation state
across the phase interface is modeled constitutively via the rank-
one connection

sFt ¼ h�m ð11Þ

determined by the interface deformation vector h and interface unit
normal m. In this case, note that h = sFtm and sFtðI �m�mÞ ¼ 0
hold at the interface. This is only valid due to the assumption of a
zero-thickness interface between the two phases. Solving (10) and
(11) for Hi ¼ F i � I; i ¼ 1;2, we obtain

H1ðH; k;h;mÞ ¼ H þ ð1� kÞh�m;

H2ðH; k;h;mÞ ¼ H � kh�m; ð12Þ

with the mixture displacement gradient H ¼ F � I. In turn, these
yield the corresponding strains

E1ðE; k;h;mÞ ¼ E þ ð1� kÞsymðh�mÞ;
E2ðE; k;h;mÞ ¼ E � ksymðh�mÞ; ð13Þ

as functions of the mixture strain E, the volume fraction k of phase
1, and the interface properties h and m. Like the deformation and
strain, the free energy density of the mixture is modeled as a vol-
ume-fraction-weighted convex combination

wðE; k;h;m;EP1;aP1;EP2;aP2Þ ¼ kwðE1ðE; k;h;mÞ � EP1;aP1Þ
þ ð1� kÞwðE2ðE; k;h;mÞ
� EP2;aP2Þ ð14Þ

of the corresponding phase quantities, with w given by (1). In this
case, we neglect any additional possible contributions, e.g., coming
from the interface itself. In these relations, the total strain E is given,
and the phase quantities EP1;2 and aP1;2 are determined by the evo-
lution-constitutive relations (5) and (6), respectively. This leaves k,
h and m as independent constitutive variables in the model yet to
be determined. In particular, since k is basically determined by
the technological process and known, we model it as constant here.
In addition, we begin by assuming that the orientation m of the
laminate interface is fixed and parallel to the thickness direction
of the coating/composite. To determine h, we assume that it is
purely energetic in nature and require its value to satisfy mechan-
ical equilibrium

0 ¼ @hw ¼ kð1� kÞsTtm ð15Þ

at the interface (k – 0). This yields an implicit equation for h. A re-
lated deformation-gradient based framework was used by Ortiz
et al. (2000) to describe the evolution of dislocation structures un-
der monotonic strains in the microstructure of Al–Cu alloys.

On this basis, we can use the following algorithm to solve the
model relations formulated as follows. As already stated above,
for the current time-step, En ¼ symðFn � IÞ and Enþ1 ¼
symðFnþ1 � IÞ are known. In addition, hn, EP1 n;aP1 n, EP2 n, and aP2 n

are known. From the explicit update of the inelastic phase vari-
ables outlined in Section 2, we then have aPx nþ1 and EPx nþ1. Using
these, one can then calculate

EEx nþ1ðhÞ ¼ Ex nþ1ðEnþ1;hÞ � Ex
Pnþ1;

Tx nþ1ðhÞ ¼ CExEEx nþ1ðhÞ; ð16Þ

and so solve (15) for hnþ1. A convergence study for the number of
iteration steps for the solution of h was carried out. The exact solu-
tion was defined for a deviation of 10�12 between hnþ1 and hn. It was
found that after one iteration step the deviation between this value
and the exact solution is less than 0.1%. Therefore only one iteration
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step is necessary. Given hnþ1 and the corresponding current phase
stresses T1 nþ1 and T2 nþ1, (9) determines the current composite
stress, and

@a
Enþ1

Tnþ1 ¼ k@a
Enþ1

T1 nþ1 þ ð1� kÞ@a
Enþ1

T2 nþ1

¼ k @Enþ1 T1 nþ1 þ ð@hnþ1
T1 nþ1Þð@a

Enþ1
hnþ1Þ

n o
þ ð1� kÞ @Enþ1 T2 nþ1 þ ð@hnþ1 T2 nþ1Þð@a

Enþ1
hnþ1Þ

n o
; ð17Þ

the corresponding stress tangent, where a denotes the total
derivative.
4. Model behavior

To apply the laminate model to a given microstructure, the vol-
ume fraction k of phase 1 and normal direction m, which are con-
sidered fixed and known here in the case of manufactured
composites, have to be chosen. In general, these could be chosen
arbitrarily. On the other hand, in the case of thin coatings, the lay-
ered microstructure has a normal direction approximately parallel
to the thickness direction of the coating, as shown in Fig. 1. As dis-
cussed in Section 2, we investigate the laminate model for a com-
posite consisting of isotropic, thermoelastic, viscoplastic phases,
one being soft and the other hard. This is roughly analogous to
the case of WC–FeCSiMn coatings shown in Fig. 1. The parameter
values chosen for the two phases are given in Table 1. In addition,
_ar is fixed at 10�3 s�1, corresponding to quasi-static loading
conditions.

Realistically speaking, we should model a hard ceramic phase
like WC as thermoelastic and brittle. For simplicity, however, we
restrict attention to a model microstructure in which the hard
phase is modeled as being thermoelastic and ideal viscoplastic. In
particular, for lack of more specific information, the value of rA

for the hard phase was set equal to the maximum strength of
Fig. 1. Example of a layered microstructure in an arc sprayed WC–FeCSiMn coating
which has been thermally sprayed at 700 K onto a steel (Ck45) substrate at room
temperature. The different phases in the coating (WC and FeCSiMn) can be
distinguished due to their different densities which are shown in different
brightness coming from regions with atoms having different atomic numbers
(FeCSiMn darker than WC). Note that the normal direction to the interface between
layers is on average more or less parallel to the thickness direction of the coating,
which corresponds to the vertical direction in the figure.

Table 1
Material properties of the two phases in the model microstructure. rD ¼ 10 MPa and
_ar ¼ 0:001s�1 are for both phases the same.

Material E [GPa] m [–] rA [MPa] sH [MPa] cH [–]

Soft 210 0.3 130 240 10
Hard 430 0.19 2000 0 0
WC/Co at low cobalt content (e.g., Han and Mecholsky, 1990;
Okamoto et al., 2005).

Consider next the behavior of the model for this microstructure
with the help of the following four deformation conditions: (i) F33-
extension parallel to the layers, (ii) F11-compression parallel to m,
(iii) F21-shear parallel to the layers, and (iv) F23-shear of both
phases parallel to the interface. These are shown schematically in
Fig. 2. The applied deformation rate for all following simulation
is 10�3 s�1 representing a quasi-static loading.

Below, we will investigate the stress–strain response of the
composite subject to these four deformation conditions predicted
by different homogenization methods, including the current lami-
nate-based one. Before doing this, we first investigate the behavior
of the laminate model using single-element calculations.

To this end, uniform displacement boundary conditions are ap-
plied. For the extension and compression case these are accom-
plished by applying the displacement to the corresponding face
and fixing the three faces connected to the point in the bottom
right in their respective normal directions (bottom in 1, back in 2
and right in 3). The further direction and faces are traction free.
For the shear case. the displacement is applied to the correspond-
ing face and direction and the remaining direction of this face and
the direction of the face on the opposite site of the element are
fixed.

We begin with cases (i) and (ii), i.e., F33-extension parallel to the
layers, and F11-compression parallel to m, respectively. The corre-
sponding results are shown in Fig. 3. The shown macroscopic von
Mises stress is the von Mises stress of the macroscopic stress ten-
sor rvMðTÞ calculated via the mixture rule T ¼ kT1 þ ð1� kÞT2.
Fig. 2. Deformation conditions for investigation of the composite behavior.

Fig. 3. Macroscopic von Mises stress rvM in the composite subject to different
normal deformation conditions as a function of F11 (compression) or F33 (extension)
for soft-phase volume fraction of k ¼ 0:5. Also shown for comparison is the behavior
of the pure hard (solid circles) and pure soft (solid squares) for either extension or
compression.



Fig. 6. FE-model for laminate for k ¼ 0:5 with applied loading cases (red
(bottom) = soft phase, blue (top) = hard phase). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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As shown here, the soft phase (solid squares) is almost immedi-
ately inelastic, whereas the hard phase (solid circles) has a more
pronounced elastic range. Note that the elastic-inelastic transition
for F33-extension takes place in the composite almost at the same
deformation state as in the hard phase alone, numerically 4% later.
On the other hand, this transition is displaced to more than 15%
larger deformation in the F11-compression case. As deformation
proceeds in the inelastic range, the stress–strain response of the
composite for these two cases converges. Mechanical equilibrium
requires the normal traction at the interface to be continuous. Be-
cause of this, the elastic and inelastic strengthening effect of the
hard phase is slightly more pronounced in the F11-compression
perpendicular to the interface than in F33-extension parallel to
the interface.

Consider next the development of the normal ðh �mÞm compo-
nent of h at the interface during extension and compression defor-
mation as shown in Fig. 4. Relative to the coordinate system in
Fig. 2, note that h �m ¼ sF11t holds. In addition, note that
sF22t ¼ �sF33t follows from continuity of the tangential deforma-
tion state at the interface. Consequently, as exhibited in Fig. 4,
h �m is much larger in F11-compression than in F33-extension.
After transition to the inelastic regime, h �m decreases slightly
due to hardening in the soft phase.

The behavior in the case of shear is different than for extension–
compression. In particular, for the F23-shear case, the results seem
to be quite similar to those observed in the extension–compression
case. In this case, the interface lies in the shear plane, and both
phases are loaded equally. Because of this, the resulting behavior
is equivalent to the behavior of the Taylor model (Taylor, 1938).
On the other hand, in F21-shear case, the laminate model shows
completely different behavior. As shown in Fig. 5, F21-shear is dom-
inated by the behavior of the soft phase. The stress–strain curve of
Fig. 4. Relative normal deformation h �m across the interface for F11-compression
and F33-extension at k ¼ 0:5.

Fig. 5. Macroscopic von Mises stress rvM in the composite subject to different shear
deformation conditions as a function of strain in the form of displacement u divided
by length l for soft-phase volume fraction of k ¼ 0:5. See text for details.
the composite is nearly coincident with the curve for the soft mate-
rial. This result is quite similar to the behavior of the Sachs model
(Sachs, 1928).

The externally applied strain leads to large deformation of the
softer phase while the hard phase undergoes only small deforma-
tion due to a nearly-uniform stress distribution. Before comparing
different homogenization approaches below, a verification of the
laminate model will be carried out with the help of the FE-model
shown in Fig. 6. The FE model consists of layers of hexahedral finite
elements of the type C3D8 with 8 integration points where the dif-
ferent layers are tied together. To verify that the response of the
structural model is not influenced by boundary effects the compar-
ison between the FE model (where the laminate is modeled explic-
itly, see Fig. 6) and the laminate model is done on the structural FE
model. In this regard, the results for the laminate model are ob-
tained from the structural model by applying the same material
parameters in both layers. The finite material model used for the
structural laminate model can be seen in Section 2.

In contrast to the single element test, displacement boundary
conditions are applied in such a fashion that material flow which
would otherwise lead to formation of bulges at the faces is pre-
vented. This reflects that in a real compression experiment, e.g. for-
mation of a bulge due to material flow would be prevented for
interior regions by surrounded material. For the F11-compression
loading case the following boundary conditions are applied: the
bottom face is fixed in 1-direction, the back face in 2-direction
and the left face in 3-direction. Additionally the displacement for
the front and the right face is restricted to be equal in both faces
for 2- and 3-direction, respectively, which is guaranteed by intro-
ducing a reference point for these two faces and coupling of each
face to the corresponding reference point. These boundary condi-
tions guarantee that the deformation conditions considered lead
to homogeneous deformation in every phase. For the F33-extension
loading case the same boundary conditions are applied with the
change that now the displacement on the right face in 3-direction
is given and that the top face is traction free. Fig. 7 shows the
resulting stress–strain curves for the FE-model and laminate mod-
el. Additionally the local behavior of the soft phase is exemplarily
shown in Fig. 8. As stated above the resulting behavior of the lam-
inate here is mainly influenced by the different behavior of the soft
phase under the different loading condition due to the ideal visco-
plastic behavior of the hard phase. From both comparisons it can
be seen that the behavior of FE model and the laminate model
agrees quite well, i.e., in the case of homogeneous deformation.

Consider next inhomogeneous conditions. These are relevant
for example to the technological case of compaction of the coating
via incremental forming methods. Related to this is the material
testing of such coatings with the help of indentor tests. Conse-
quently, consider the indentation of the coating using a spherical



Fig. 7. Comparison between the FE model and the laminate model for k ¼ 0:5. Both
models show the same behavior under the applied loads.

Fig. 8. Comparison between the FE model and the laminate model for the behavior
of the soft phase for k ¼ 0:5. Both models show the same behavior under the
applied loads.
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indentor. Since we expect ideal RVE-related boundary conditions
being employed in this work not to be completely correct in this
case, the relation of the microstructural size to the indentor radius
is examined here. In particular, we examine the dependence of the
results on the ratio w=r of the width w of the structure to the radius
r of the indentor. As this ratio increases, the boundaries are farther
away from the region of loading. Consequently, the difference in
the stresses predicted by the homogenization model and the FE
model should decrease as this ratio increases.

The results of the indenter test are shown in Fig. 9. It is clear
that the stress distribution is more homogeneous for the homoge-
nized laminate model due to the fact that in the FE-model there is a
sharp transition at the interface between the layers due to the con-
trast in material properties. In addition, the results as a function of
Fig. 9. Comparison of von Mises stress distribution in the structure of twelve layers (arra
the laminate model (below) for w=r ¼ 2 (left) and w=r ¼ 10 (right) with the radius r ¼
Although more inhomogeneous in the FE-case, the stress distribution in both cases is q
w=r clearly show the decrease of boundary effects (especially near
the indentor at the top) on the vertical stress distribution. As
shown and as expected, the agreement improves the boundary
influence decreases, i.e., as w=r increases. Except for the differences
due to such boundary effects, then, we are justified in concluding
that the laminate homogenization model is a reasonable ‘‘mean-
field’’ approximation to the FE model results.
5. Comparison with other homogenization approaches

In this section, the current laminate-based homogenization
model (laminate model) is compared to standard homogenization
assumptions like Taylor, as well as to that of phase-wise constant
plastic deformation (EPc) considered.

The assumption of phase-wise constant plastic strain is a spe-
cial case of the so-called Transformation Field Analysis (TFA) pro-
posed by Dvorak (1992). TFA offers an interesting way of
reducing the number of macroscopic internal variables by assum-
ing that phase fields are phase-wise constant. In particular, this
assumption is reasonable for microstructures consisting of plasti-
cally-homogeneous domains. In general, however, it results in a
model for the effective behavior of the composite which is too stiff.
Indeed, this method prohibits the localization of inelastic deforma-
tion at phase boundaries as a means of stress relaxation, resulting
in unrealistic stress concentration there and generally higher stres-
ses. On the other hand, in special cases, e.g., the current one of thin
layer-like composites, the relative uniformity of the stress and
strain fields almost everywhere may minimize this error and lead
to reasonable results. Details about the numerical implementation
about the EPc method can be found in Gross and Seelig (2006) and
Klusemann (2010).

To begin, consider first the compression and extension of the
thin-coating-like layered microstructure from Fig. 6. Fig. 10 shows
the stress–strain curves for the different homogenization methods.
In the elastic range, the Taylor model agrees quite well with the
laminate model in the case of extension, whereas the EPc-model
agrees with the laminate model in the case of compression. In con-
trast to the laminate model, the EPc model exhibits the same
behavior for different loading cases in the elastic range. In addition,
for the chosen material parameter combination, the Taylor and EPc
models show a behavior between the extension and compression
response of the laminate model in the inelastic range. In particular,
the yield stress of both models lies between the extremal values of
the laminate model for extension and compression. With increas-
ing deformation the Taylor model response converges to the re-
sponse of the compression case of the laminate model, whereas
nged as hard-soft laminate from the top) predicted by the FE model (above) and by
6:5 mm of the indentor, the width w and the thickness h ¼ 9 mm of the structure.
uite similar. As shown, with increasing w=r, better agreement is obtained.



Fig. 10. Comparison of stress–strain behavior predicted by different homogeniza-
tion approaches for k ¼ 0:5.

Fig. 11. Comparison of stress–strain behavior of different homogenization models
for k ¼ 0:6 and k ¼ 0:3. Different homogeneous methods show analogous results as
described in Fig. 10.

1 b describes in a sense the interface stiffness and will be defined after the next text

Fig. 12. Comparison of stress–strain behavior of laminate model for variable m for
different values of the interface resistance c ¼ bEsoft under compression with
m0 ¼ f100g and k ¼ 0:7. For comparison, the corresponding results for fixed
m ¼ f100g are also shown.

1834 B. Klusemann, B. Svendsen / International Journal of Solids and Structures 49 (2012) 1828–1838
the EPc-model response converges to the extension case. The same
behavior can also be observed for different volume fractions k as
shown in Fig. 11. Clearly, model differences are magnified upon in-
crease of the volume fraction of the soft phase, especially in the
elastic range.

The results for shear deformation are qualitatively the same as
in the normal deformation cases just considered. For F23-shear, in
which the interface lies in the shear plane, the predictions of the
laminate model and Taylor model correspond quite well. This is
to be expected since, in this case, both phases experience the same
deformation state (see Fig. 2). As before, for this case, the EPc mod-
el predicts softer behavior. As for the Taylor case, this is due to the
fact that the material behavior is independent of loading direction
for an isotropic material. For F21-shear, the Taylor and EPc models
predict the same behavior as before, in contrast to the behavior of
the laminate model. In this case, the Sachs model would give the
best prediction, but for all other loading conditions this model is
absolutely inappropriate.

6. The case of variable interface orientation

For simplicity, the phase interface orientation m has been kept
fixed and oriented in the direction of the coating thickness. In real-
ity, however, there is no reason to believe that it may not vary lo-
cally in the coating during loading. To have a first look at the effect
this might have on the material behavior of the composite, we now
allow m to vary. For simplicity, we assume to this end that m is
purely energetic and varies only in order to satisfy angular
momentum at the interface, i.e.,

0 ¼ @mw ¼ kð1� kÞs@Ewt
Th ð18Þ
vanishes there in equilibrium, yielding an implicit relation for m.
This is of course subject to the constraint m �m ¼ 1 which is taken
into account by minimizing the associated Lagrangian function

‘ðEE;aP;m;hÞ ¼ wEðEE;m;hÞ þ wHðaPÞ þ lðm �m� 1Þ ð19Þ

with Lagrange multiplier l.
The values of m obtained in this fashion show that the laminate

interface is reorienting to a diagonal in one plane, depending on
the direction of loading as well as the initial condition. This corre-
sponds to a reorientation of 45� for m0 ¼ f100g. The correspond-
ing stress–strain behavior (b ¼ 01 is shown for compression in
Fig. 12 and compared to the case of fixed interface orientation
m ¼ f100g (b ¼ 1). Since the equilibrium value of m represents
energetically the most favorable orientation, it results in the lowest
stress levels.

On the other hand, a reorientation of 45� of the interface for
such laminates is physically unrealistic. To prevent this, we assume
that the interface has a certain stiffness in the sense that reorien-
tation beyond a certain degree is energetically unfavorable. To this
end, we add a corresponding penalty term to (19), i.e.,

‘ðEE;aP;m;hÞ ¼ wEðEE;m;hÞ þ wHðaPÞ þ
1
2
cð1�m �m0Þ2

þ lðm �m� 1Þ; ð20Þ

where c represents the interface resistance to reorientation relative
to the initial orientation m0.

First results for compression are shown in Fig. 12 for different
values of the ration b ¼ c=Esoft of c to Young’s modulus Esoft of
the soft phase. The corresponding development of the reorienta-
tion angle a ¼ arccosðm �m0Þ is displayed in Fig. 13. For large c,
the results agree with those for fixed m as expected. As c decreases
and the interface becomes more pliable, the stress level also de-
creases, again as expected. Consequently, a variable m can have a
significant influence on the stress level in the composite. The ques-
tion arises, is the variation of m purely energetic in nature. More
generally, one could expect inelastic/kinetic/dissipative processes
to influence the orientation of the interface. In this case, (18) could
be generalized to

0 ¼ @mwþ @ _mv ð21Þ

in terms of a dissipation potential v depending in particular on the
rate _m of interface rotation. Detailed analysis of results for varia-
tional m under different loading conditions represent ongoing
research.
block.



Fig. 13. Development of the reorientation angle a ¼ arccosðm �m0Þ during com-
pression for m0 ¼ f100g and various c ¼ bEsoft with k ¼ 0:7. Fig. 14. Exemplary FE mesh based on digitalized image from a micrograph of WC–

FeCSiMn obtained with Scanning Electron Microscopy (SEM). The mesh was
generated with help of the software tool OOF2.
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7. Comparison with discrete microstructure model

For heterogeneous materials it might be advantages to compute
directly the material behavior on FE-models which use discretized
microstructure images from Light Microscopy (LM) or Scanning
Electron Microscopy (SEM). Such an approach was applied, e.g.,
by Tillmann et al. (2011) for evaluating the elastic properties and
by Klusemann et al. (2012c) to analyze residual stresses in thermal
sprayed coatings. In the following we will shortly summarize the
generation of an FE-model of a discretized microstructure and
afterwards we will compare the results to the introduced laminate
homogenization approach.
Fig. 15. Comparison of stress–strain behavior for ‘‘hard’’ boundary conditions of
laminate model (-laminate) for fixed m ¼ f100g for k ¼ 0:63 under compression
and extension with FE-model of the real microstructure (-real).
7.1. Generation of FE-model from micrographs

Following Tillmann et al. (2011), as the basis for modeling the
microstructure explicit micrographs from Scanning Electron
Microscope (SEM) are used. SEM micrographs serve as a basis
for the determination of the chemical composition of different
phases. The micrograph provides the possibility to distinguish be-
tween the phases due to their different densities which are
shown in different brightness coming from regions with atoms
having different atomic numbers. Due to the huge difference be-
tween the relative atomic weight of tungsten (183.84 g/mol) and
that of iron (55.845 g/mol), the phases of the sprayed WCFeCSiMn
feature a good contrast. In addition to these two phases, pseudo-
alloyed splats containing WC as well as FeCSiMn are visible which
cannot be clearly identified. Here it can be distinguished between
the matrix material Fe, the inclusion material WC, and pores. An
exemplary micrograph is shown in Fig. 1. The differentiation be-
tween the phases is carried out using an image processing tool by
finding optimal thresholds based on the color distribution, from
which the different phases are separated. To make the image
more feasible additional smoothing and cleanup algorithms are
applied (see e.g., Jain, 1989). The generation of the FE-mesh from
such an image is performed with the software Object Oriented Fi-
nite Element 2 (OOF2). OOF2 creates a FE-mesh which reflects the
shape of the different phases in the microstructure with the asso-
ciated material parameters. For further details about the program
OOF2 see Langer et al. (2001) and Reid et al. (2008). The resulting
mesh on the digitalized image is shown in Fig. 14. Due to the
lamellar structure of the coating it is assumed that the micro-
structure would be continuous in the third dimension. Therefore
the 2D mesh is extruded in the third dimension which leads to
a columnar structure. In general, as shown in Wiederkehr et al.
(2010) this simple extrusion leads to an incorrect result for com-
plex structures. However, due to the lamellas (and therefore con-
tinuous structure into the third dimension) this procedure is
assumed to be valid here.
7.2. Comparison

In the following results from the FE model based on real micro-
graphs are compared to the previous introduced laminate homog-
enization approach with respect to their macroscopic stress–strain
responses. The WC phase is modeled as hard phase and the Fe
phase as soft phase via the material parameters given in Table 1.
The pores are assumed to have zero stiffness. Two types of bound-
ary conditions will be used within this section. First the simula-
tions are performed with macroscopic strain boundary conditions
(‘hard’), meaning that the strain on all outside surfaces is pre-
scribed (cp., e.g., Pahr and Zysset, 2008). This leads to a nearly Tay-
lor-like behavior. Furthermore the interface is assumed to stay
nearly fixed for these boundary conditions which is considered
for the laminate model by using an infinite interface stiffness.
These boundary conditions lead to high hydrostatic stresses in
the material which do not lead to plastic flow and are not relevant
for this comparison, which is accounted for by using the von Mises
stress rvM for comparison.

Fig. 15 shows the resulting stress–strain curves from the micro-
structural FE-model in comparison to the laminate model. The FE-
model of the real microstructure shows similar behavior as the
laminate model. The macroscopic stress for is obtained by averag-
ing over the volume. First the F33-real shows a stiffer behavior than
the F11-real, however, with increasing deformation the hardening
is more pronounced for F11-real. The modeling approaches show
a certain deviation in the transition region from elastic to inelastic
(meaning that both phases behave inelastic) where the laminate
model predicts a stiffer behavior. However, in general both models
show the same tendency in the behavior for the different loading
directions.



Fig. 17. Comparison of stress–strain behavior for non-monotonic loading for
‘‘relaxed’’ boundary conditions of laminate model with variational m for k ¼ 0:63
with b ¼ 0:095 and minitial ¼ f100g under extension and shear with microstructural
model.
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As second type of boundary conditions, ‘relaxed’ boundary con-
ditions are applied which are the same as for the single-element
test in Section 4. For the extension and compression case this
means that the bottom face is fixed in 1, the back face in 2 and
the right face in 3 and the displacement is applied to the top face
in 1 (compression) and to the left face in 3 (extension) direction,
respectively. This might lead to inhomogeneous deformation
which can result into necking phenomena which may lead to a
reorientation of the layers. An interface stiffness b ¼ 0:095 is fitted
by achieving the same stress level at 10% deformation for the lam-
inate model as for the simulation results with real micrographs.
The results are shown in Fig. 16. As a comparison the simulation
results with infinite interface stiffness for F33 are also shown
(F33- m-fixed). The stress–strain results for the laminate model
with variable interface orientation show a stress level which is
lower compared to the simulation results for a fixed interface ori-
entation m. For both loading directions the laminate model shows
a higher yield point at the transition from elastic to inelastic
behavior. Afterwards the stress is slightly decreasing for increasing
deformation due to the occurring reorientation.

For ‘relaxed’ boundary conditions F33-real shows a softer behav-
ior than F11-real except for deformation above 9%. Both loading
cases show lower stress–strain curves as for ‘hard’ boundary con-
ditions due to higher deformation in the Fe-phase which results
from the discontinuities in the WC-lamellas. Furthermore reorien-
tation occurs of these lamellas which also lead to necking of the
specimen. This necking/reorientation also leads to a decrease in
the stress at larger deformation.

Finally the behavior for non-monotonic loading is exemplary
investigated. The previous discussed set-up with variable interface
direction and ‘‘relaxed’’ boundary conditions is used up to a defor-
mation of F33 ¼ 1:05. Afterwards the sample is deformed by
F13 ¼ 0:02 simple shear using the boundary conditions explained
in Section 4. Fig. 17 shows two representative stress components
for this non-monotonic loading path. The results for S33 are in
accordance to the previous results for the von Mises stress up to
F33 ¼ 1:05. As the shear deformation starts a decrease of this stress
component can be observed. The laminate model (S33-laminate)
shows in general the same tendency as the investigated real struc-
ture (S33-real), however, the stress decrease is higher for the real
structure, resulting form the complex microstructure. The stress
component S13 is in the laminate model for F33 negligible whereas
the real structure shows a non-negligible S13 value as a result of the
complex interaction between soft and hard phase. For F13 loading
the S13 component shows for both models a qualitative similar
behavior. As this exemplary investigation indicates, the laminate
model is also able to show the correct qualitative behavior for a
non-monotonic loading path.

In general the homogenized laminate and the microstructural
model show qualitatively similar stress–strain results, especially
Fig. 16. Comparison of stress–strain behavior for ‘‘relaxed’’ boundary conditions of
laminate model with fixed and variational m for k ¼ 0:63 with b ¼ 0:095 and
minitial ¼ f100g under compression and extension with microstructural model.
for ‘‘hard’’ boundary conditions which are more relevant here
due to avoid phenomena like necking. The calculation time is much
less for the laminate model compared to the microstructural model
which is important for technological simulations like a roller bur-
nishing process (e.g., Wiederkehr et al., 2011).
8. Discussion and conclusions

As mentioned in previous sections, in a more realistic approach,
brittle failure would have to be included in the model for the hard
phase. To get a first impression how the model behaves, a compu-
tation is done according to the loading cases in Fig. 3. To model the
behavior of brittle failure and the resulting softening the material
parameters are chosen as displayed in Table 1, but changing the
parameters for the hard phase to sH ¼ �1870 MPa and cH ¼ 100.
The resulting behavior is shown in Fig. 18. The differences for the
extension and compression load case are clearly visible. Due to
the lower amount of deformation for the hard phase in the com-
pression case as in the extension case (see Fig. 4) it takes more
overall deformation until the softening begins. Up to this point
the soft phase was subjected to deformation which leads to an
inelastic behavior with resulting hardening. Therefore the differ-
ences in the effective yield stress as well as strain are higher for
the two deformation cases in contrast to ideal viscoplasticity.

In this work, we have investigated the application of first-order
laminate theory as a homogenization ansatz to model the inelastic
behavior of thin-coating-like or thin-film-like two-phase compos-
ites whose microstructural morphology is characterized by being
layered or lamellar in nature. This approach has been developed
Fig. 18. Macroscopic von Mises stress rvM in the composite subject to different
normal deformation conditions as a function of F11 (compression) or F33 (extension)
for soft-phase volume fraction of k ¼ 0:5. The material parameters of the hard phase
are changed to sH ¼ �1870 MPa and cH ¼ 100. Also shown for comparison is the
behavior of the pure hard (solid circles), modeled with softening behavior and pure
soft (solid squares) for either extension or compression.
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and compared with a number of existing homogenization methods
as well as with finite-element (FE) models for ideal and real micro-
structures. The laminate-based homogenization model showed
very good agreement with the ideal FE model for a number of dif-
ferent deformation conditions including extension, compression
and shear. This was the case both for homogeneous and inhomoge-
neous deformation conditions. Additional comparisons were car-
ried out with standard homogenization assumptions like those of
Taylor, as well as with homogenization based on the assumption
of phase-wise constant plastic strain (EPc). These comparisons
show that the Taylor model predicts the behavior for extension
quite well. On the other hand, the EPc model predicts the behavior
well only for compression. The Sachs model is not appropriate in
any of these cases.

A first extension of this model is presented where the interface
normal m is variable within the limits of a cone around the initial
orientation, which can physically interpreted as an interface stiff-
ness. In the last part of the work, the laminate homogenization
models with and without variable interface normal m are com-
pared to FE-models based on real discretized micrographs which
show a laminate structure. It was shown that both models show
a qualitative similar behavior.

For simplicity, the hard phase of the model microstructures
considered in this work was treated as thermoelastic, ideal visco-
plastic in nature, with elastic and yield properties significantly lar-
ger than those of the soft phase. It would be more realistic to model
this phase as thermoelastic and brittle. Furthermore the reorienta-
tion of the interface is modeled purely energetic in nature. More
generally, one could expect inelastic/kinetic/dissipative processes
to influence the orientation of the interface. These generalizations
of the current laminate-based approach, along with the application
of the approach to the modeling and simulation of the compaction
of thermally-sprayed coatings, represent work in progress, and will
be reported on in the future.
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