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We study the expressive of two semantics for deductive databases and
logic programming: the well-founded semantics and the stable seman-
tics. We compare them especially to two older semantics, the two-
valued and three-valued program completion semantics. We identify
the expressive power of the stable semantics and, in fairly general
circumstances, that of the well-founded semantics. In particular, over
infinite Herbrand universes, the four semantics all have the same
expressive power. We discuss a feature of certain logic programming
semantics, which we call the Principle of Stratification, a feature
allowing a program to be built easily in modules. The three-valued
program completion and well-founded semantics satisfy this principle.
Over infinite Herbrand models, we consider a notion of translatability
between the three-valued program completion and well-founded
semantics which is in a sense uniform in the strata. In this sense of
uniform translatability we show the well-founded semantics to be more
expressive than the three-valued program completion. The proof is a
corollary of our result that over non-Herbrand infinite models, the well-
founded semantics is more expressive than the three-valued program
completion semantics. € 13995 Academic Press, Inc.

1. INTRODUCTION

Deductive databases and logic programming draw
inferences. The goal is to simulate, or idealize the way
humans draw inferences. One starts with, first, a database of
raw information, and second, a set of rules for inferring
more information from information in the database.
For example, a database might contain human(Socrates),
and there might be a rule mortal( X) « human( X)—if X
1s human, then X is mortal-—forcing the inference mor-
tal(Socrates).

Since logic programming attempts to idealize human
inference, many inferences are not so obvious. Particularly
problematical are inferences related to negation as failure : if
some (positive) atomic fact is clearly (in some sense that
must be specified) not derivable with any of the inference
rules, then infer it to be false. For example, if the database
has no other rules and does not contain mortal( Thor) or
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human( Thor), infer —imortal(Thor). Negation as failure is
obviously not sound in classical logic; nevertheless, it seems
a normal pattern of human inference in many circumstan-
ces. It is the analog of an assumption with traditional
databases: if the database does not contain the information
that Socrates is the manager of the sales department, then
infer that he is not.

There has been a continuing search for the “correct”
semantics for logic programming with negation as failure,
primarily a search for the semantics with the most elegant
and intuitively natural rules for deriving negated atomic
facts. Although all these semantics agree in inferring
—mortal( Thor) above, they disagree on many other logic
programs. We investigate two semantics here: the well-
founded semantics of [ VGRS91] and (a variant of) the
stable semantics of [Gel87, GL38]. We compare them
with two older semantics: the two-valued and three-valued
program completion semantics of [ Cla78, Fit85].

Although logic programming semantics are usually
thought of as models of human inference, they can also be
thought of as methods for defining relations on databases.
In the example above, the goal may be thought of as
defining (the extension of) the relation mortal. The usual
question about a logic programming semantics is whether it
is intuitively correct. Our primary concern is different: How
expressive is it; what relations can it define? The main result
of this paper is to determine the expressive power of the
stable semantics and, in fairly general circumstances, that of
the well-founded semantics.

Expressive power is a standard concern in database query
languages. It has also been investigated in several recent
papers in relation to normal logic programming, for
example, in [ AB90] (on the degrees of uncomputability
of the perfect models of stratified programs), [ KP88]
(including a result on the computational complexity of
Clark’s semantics over finite databases), [ Kun88] (some
results on the program completion semantics over finite
extensional databases), and [ MNR92] (an extensive recur-
sion-theoretic discussion of the class of stable Herbrand
models of programs with function symbols, which overlaps
at one significant point with this paper).
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Of course, increased expressive power is both a blessing
and a curse. It is a blessing in that it lets programmers
express more complex relations. It is a curse in that
increased expressive power is generally equivalent to greater
difficulty of computation. This is the case here.

Another way of looking at the comparison of expressive
powers is as a question of translatability. Suppose every-
thing that can be expressed in Semantics | can also be
expressed in Semantics 2. And suppose program P is used to
define relation r under Semantics 1. Then thee is a (probably
different) “equivalent” program Q which defines the
same relation r under Semantics 2. We investigate some
circumstances when such translations are especially natural.

We also discuss a second property of some logic program-
ming semantics, which we call the Principle of Stratification.
The Principle of Stratification does not address expressive
power per se. Rather, it is an assertion that the semantics is
well behaved, relative to one of the common intuitions for
logic programming semantics. (Thus this is our one dis-
cusson in this paper of the intuitive correctness of a seman-
tics, but it differs from other more common example-driven
intuitive correctness discussions.) According to this intui-
tion, logic programs are implicit definitions. ( This intuition
is at the heart of, for example, the perfect model semantics
for stratified logic programs.) Extending that, we suggest
that certain easily identifiable pieces of logic programs
should be treatable as “modules,” or “strata,” defining cer-
tain relations. The Principle of Stratification asserts that, if
a logic program is built by assembling such “modules,” then
these “modules” actually operate relatively independently,
allowing separate “modules” to be written separately, with
no worry about side effects.

We use the Principle of Stratification to make a finer
comparison of expressive powers. Recall that, if two seman-
tics have the same expressive power, it is possible to trans-
late a program in one into an “equivalent” program in the
other. We suggest that one reasonable requirement for
naturalness of a translation is that, since each stratum can
be thought of as a module, it should be possible to translate
the strata of a program separately. In particular, we
show that although the three-valued program completion
semantics and the well-founded semantics have the
same expressive power over infinite Herbrand universes,
programs can be translated stratum by stratum in only one
direction.

2. FORMAL PRELIMINARIES

2.1. Logic Programming Formalism

Consider a logic program, such as the program with the
two rules

ancestor (X, Y) « parent(X, Y).
ancestor( X, Y) « parent( X, Z) A ancestor(Z, Y).

These two rules can be thought of as defining the relation
ancestor from the relation parent. The relation parent, on
the other hand, does not appear in the head of any rule in
the program, so it is generally not thought of as being
defined by the program. One interpretation is that the set of
tuples in the relation parent will be supplied separately. It is
supplied separately in what is called an extensional database
(EDB).

DEefFINITION 2.1. A (normal) logic program is a finite set
of formulas, called rules, of the form
2B A AB,
where a is a positive literal (i.e., atomic formula), and each
B 1s a positive literal or a negative literal (i.e., a negated
atomic formula). (The rule above may be read as “infer « if
B, -, B, are all known to be true,” but « in most semantics
is not the (material) implication of classical logic.) Here « is
the head of the rule, f, A - A f§, is the body, and the f,’s
are subgoals. A rule with no subgoals is just an atomic
formula a, that is, without the « symbol.

For a a positive literal, —a is called the negation of «, and
o is called the negation of —a.

Logic programming is traditionally studied in two
contexts:

» The most common setting is to treat a logic program as
some sort of variant of first-order logic, but with a fixed
universe understood. Normally, this is taken to be the
Herbrand universe of the program, the set of ground
(variable-free) terms of the language of the program. In fact,
the Herbrand preinterpretation is assumed: the universe is
the Herbrand universe, each constant symbol is interpreted
by itself, and each function symbol is interpreted in the
obvious way. The logic program is used to define (the inter-
pretations of) the relation symbols. This domain assump-
tion is generally made with logic programs that contain
both function and constant symbols.

By any standard recursive encoding method (e.g., by
Godel numbering), the Herbrand universe and the set of
ground atoms of a logic program can be considered to be
recursive subsets of the integers. Then computability ques-
tions can be asked about the set of atoms inferred from the
program.

« With logic programs that contain no function symbols,
a somewhat different domain assumption is frequently
made, oriented toward deductive databases. Since there are
no function symbols, the Herbrand universe is the set of
constant symbols of the program, and the program may be
used to calculate the interpretations of the relation symbols
Just as above.

Now think of separating the rules of a logic program into
two parts, a database of information (the rules with no
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subgoals) and a set of rules (the rules with subgoals) for
inferring further information from the database. The
database part is called an extensional database (EDB), the
inference rule part is called an intensional database (IDB).
Presumably, the rules of the IDB correspond to natural
definitions or inference rules that would make sense over
various databases of information—over various EDBs.
Hence a deductive database point of view is to study the
inferences made by a single IDB over varying EDBs. One
traditional study is the computational complexity of
making inferences, as a function of the size of the EDB,; this
1s called data complexity.

For the semantics studied in this paper, we can, with
no loss of generality, assume that the relation symbols
appearing in the EDB never appear in the heads of rules in
the IDB. This makes a nice, clean break; the EDB is a
database of information, defining certain relations. The
EDB is taken as giving complete information. (Under com-
mon treatments, any instance of any relation not explicitly
given to be true may be inferred to be false.) It turns out
that, for the questions studied in this paper, it also causes
no loss of generality to assume that no constant symbols
appear in the IDB and that no variable symbols appear in
the EDB, so we shall make those simplifying assumptions.
In this context, the universe of each interpretation is just the
set of objects (or constant symbols) appearing in the EDB.

For consistency of vocabulary in general contexts, we
shall refer to the IDB as the program, and consider the EDB
to be specified separately.

Since both these constexts are commonly studied, we
address expressive power in both. We shall see that there
are interesting contrasts between the contexts. But more
general contexts have also been studied. Clark [Cla78]
studied not just the Herbrand universe, but all preinter-
pretations satisfying a set of first-order axioms called the
Clark equality theory. Kunen [Kun87] made an even
broader domain assumption. Another variant is presented
in [ VGRS91]. By considering even broader collections of
domains, in particular, infinite universes other than
Herbrand universes, we derive more precise comparisons
among the semantics. At the end of this paper, we shall
relate definability on these exotic universes to definability
over the traditional Herbrand universes.

The usual treatment for logic programs with function
symbols, discussing programs and their Herbrand universes
(or preinterpretations ), could also be treated in an obvious
way as a discussion of EDBs and IDBs. The Herbrand
universe itself could be considered as the preferred EDB for
the logic program. In this case there are no EDB relations,
but instead the function symbols are all treated as being
specified in the EDB. The entire logic program may be
treated as an IDB for inferring relations over the fixed EDB.

DeriNITION 2.2. Let P be a logic program.

e An intensional relation, or IDB relation, of P is a
relation which appears in the head of some rule of P.

e An extensional relation, or EDB relation, of P is a
relation which appears in P, but never in the head of a rule
of P.

o A literal r(t{X)) or m1r(t{X)) is an EDB literal if r is an
EDB relation; it is an IDB literal if r is an IDB relation.

o An extensional database (EDB) for P is a structure ¥
(in the sense of first-order logic) for the language consisting
of the function, constant, and EDB relation symbols of the
program.

If there are no function or constant symbols, it is a
(possibly infinite, relational) database for the set of EDB
relations of P, plus a relation specifying the universe of the
database.

In order to have uniform constructions, we shall assume
that each EDB contains at least two elements. In any case,
definability over one-element databases is not a major
concern in this area.

Logic programming semantics are often defined in terms
of what are called ground literals and ground instantia-
tions of logic programs. These notions are specialized to
Herbrand universes. In order to generalize the semantics to
other universes, it is convenient to generalize the notion of
ground literals and ground instantiations of programs to
arbitrary EDBs. Our definitions of the various semantics
will agree with the standard definitions when & is a finite
EDB for program P or the Herbrand universe for program
P; for other universes, our definitions of the well-founded
and stable semantics are natural extensions of the original
definitions.

DerintTION 2.3, For an EDB %, a @-instantiated literal
is an “expression” r(d) or —ir(d), where d is a tuple of
elements of Z. Form a @-instantiated rule of program P by
replacing all the variable symbols in a rule in P with
elements of ¥ and evaluating the terms in %. The Z-instan-
tiation of P is the set of all such Z-instatiated rules (for all
rules in P and all possible ways to substitute elements of &)
plus the set of all positive EDB literals true in .

In defining the semantics we shall use the %-instantiated
rules, not the original rules of P. Thus, when we define what
inferences a semantics makes from a program P over two
different EDBs 2, and &,, we start by forming two different
programs, the Z,-instantiation of P and the %,-instantiation
of P. Note that, although a logic program P is, by definition,
finite, if & is an infinite EDB, then the Z-instantiation of P
is, in general, infinite. In our definitions, we shall still refer
to these as logic programs.

DEFINITION 24. A partial interpretation for a logic
program P over an EDB & is a set I of %-instantiated
literals of P. For f a positive Z-instantiated literal:
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o If BeTand 1 f¢ 1, then §is true in I and 1 f is false
inl

o If mfeland f¢1, then §is false in I and T f is true
in I

e If B, mB ¢ 1, then 5, 1 f are undetermined in 1.

e If f, 1B e, then B, T f are overdetermined in I.

DEfFINITION 2.5. A partial interpretation [ is three-
valued, or consistent, if no literal is overdetermined in 7; 7 is
two-valued if no literal is either over- or un-determined in 7.

Undetermined truth values are common in logic
programming; they correspond to literals which there is no
reason to infer to be either true or false. Overdetermined
values will be inferred in this paper only when a semantics
“considers” a program incoherent.

We treat a logic programming semantics as specifying, for
each program P and EDB &, a set of literals to be inferred.!

DEFINITION 2.6. A logic programming semantics is a
function assigning, to each logic program P and EDB £ for
P, a partial interpretation for P over &. We say a 9-instan-
tiated literal a of P is inferred from P over & in the semantics
if « is in the set resulting from applying the semantics to P
and 2. A partial semantics for logic programming is defined
analogously, but it is a partial function from programs and
EDBs to partial interpretations.

DEFINITION 2.7. A relation s on an EDB & is definable
in a logic programming semantics if there exist a program P
and a relation r in P, where

s={din Z: r(d) is inferred from P over 2

by the semantics}.

In this case the program P is explicitly allowed to refer to
(essentially, have names for) arbitrary elements of 2.

Suppose s parameterizes a set of relations on a set & of
EDB:s, ie., for each EDB Z €6, s, is a relation on &. Then
s is definable in semantics S if there is a program P and a
relation r in P, where for each 2 € &,

sg={din @: r(d) is inferred from P over &

by the semantics}.

! This definition of a semantics seems a natural generalization of usual
treatments of the van Emden Kowalski semantics. We feel it is also fairly
the natural way to treat the three-valued program completion and well-
founded semantics. Some researchers feel it is more natural to define the
semantics to include other formulas, for example, disjunctions « v § of
literals P, or for the semantics instead to specify a set of “preferred” models.
This distinction will be significant in Section 5, where we use it to contrast
what we call the Principle of Stratification and the Weak Principle of
Stratification.
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In this case P is not allowed to refer to elements of & unless
they are named by constant symbols of the language.? (This
1s just to force P to make sense in every Z € &)

A logic programming semantics S, is at least as expressive
as a logic programming semantics S, over an EDB, or a
class of EDBs, if every relation definable in S, over the
EDB, or each EDB in the class, is also definable in §,.
(Note that this does not mean that S, and S, draw the same
inferences from any specific program.) Semantics S, is at
least as expressive as semantics S, if it is at least as
expressive as S, over all EDBs. Semantics S, is uniformly at
least as expressive as S, over a class & of EDBs if every rela-
tion uniformly definable over all EDBs in the class in S, is
also uniformly definable over all EDBs in the class in S,.

Semantics S, is more expressive than S, (over an EDB,
over a class of EDBs, or uniformly over a class of EDBs,
respectively) if it is at least as expressive as S,, but S, is not
at least as expressive as .S, (over the EDB, over the class of
EDBs, or uniformly over the class of EDBs, respectively).
Semantics S, and S, have the same expressive power (over
an EDB, over a class of EDBs, or uniformly over a class of
EDBs, respectively) if each is at least as expressive as the
other (over the EDB, over the class of EDBs, or uniformly
over the class of EDBs, respectively).

2.2. Inductive Definability

Our results relate definability in semantics for logic
programming to (first order, positive) inductive definability,
as discussed in [ Mos74, Bar75, Acz77]. It is the same as
fixed-point logic, but with just one final application of the
fixed point, as discussed in [ AU69, CH82, Imm86, GS86].

Inductive definability is a (large) generalization of tradi-
tional examples. The simplest is the notion of transitive
closure: (X, Y) is in the transitive closure tc of relation r if

X, Y)vaAZ{tc(X, Z) A tc(Z, Y)).

Suppose 2 is a structure and @ is a set of first-order
formulas ¢, (ry, .., r,, X), i=1, .., n (built up using 71, A,
v, 3, and V), where no r; is interpreted in &, every other
symbol of each ¢, is interpreted in &, and no r, appears in
any ¢, inside the scope of a 7 (i.e., each ¢, is positive in each
r;). Individual elements of & may be explicitly mentioned
(essentially as constant symbols) in @.® Then consider the
set of “rules”

ri(X)e—ée,(ry, ... r,, X).

2 Clearly, allowing elements of Z as parameters in the non-uniform
definability case when they are not allowed in the uniform definability case
is a little inconsistent. We have taken this approach since it corresponds to
standard treatments in definability theory.

? Note that if we are discussing definability over an Herbrand universe,
allowing individual constants is moot since each element of the Herbrand
untverse is named by a term.
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There is a < -least interpretation of each r, over &--let us
call in r¥-~—so that the “rules” are all satisfied. These will in
fact satisfy a stronger property: for each i,

r,‘(x)H¢,"rls--'~ rtnx)

will hold. Any relation r/ so definable is said to be ( first-
order positively) inductively definable, or simply inductive. A
relation whose complement is inductively definable is said
to be coinductively definable, or coinductive.

The r7’s can be built up by transfinite induction. Define

and

ret=\J ry

vy

rT={X:¢,(r7" ., r=" X)}.

(For example, r~° =, and that r'={X: ¢, (&, .., &, X)}.)
The sequence of r="’s and the sequence of r?’s are both =-
increasing, so (by a simple cardinality argument) both
sequences must reach fixed points. The least # such that
each r7=r"" (ie, the least # such that each r7 is a fixed
point) is called the closure ordinal of ®. For any structure &,
the supremum of the closure ordinals of all such sets @,
denoted x“, is an important invariant of &.

Inductive definability is related to definability in a very
limited set of formulas in second-order logic, which allows
quantifiers ranging over all relations on a structure as well
as quantifiers ranging over all elements of a structure. A 7}
formula is a formula of the form Vx, Vx,..--V¥x, ¢, where
the Vx,’s range over relations of the structure and ¢ is
first order—involving both the relations, functions, and
constants of the structure and the x,’s. A X'} formula is a
formula in the dual form—3x, 3x, --- 3x, §, where ¢ is first
order.

A relation s on a structure & is X}~ (resp. I1}-) definable
if it satisfies VX(s(X) <> @(X))), where formula @ is X}
(resp. 71}). Again (a finite number of ) elements of % may be
explicitly mentioned. Over the natural numbers the class of
IT}-definable relations was extensively studied by Kleene
and others; there the class coincides with the class of induc-
tively definable relations. Extensions of this result can be
found in [ Mos74, Bar75]. In particular: (1) Over any struc-
ture &, every inductively definable relation is /7,-definable.
(2) If Z is countable and has a first-order definable—or
inductively definable-—pairing function, ie., a function
mapping & x & one-to-one into ¥, then every I7}-definable
relation is inductively definable.

Every Herbrand universe can be represented in the
obvious way inside the integers by Goédel-numbering.

THEOREM 2.1 [Folklore]. A relation r on an infinite
Herbrand universe U is inductively definable over U if and
only if it is IT)-definable over U, if and only if the corre-

sponding set of Godel numbers is inductively definable over
the integers, if and only if the corresponding set of Godel
numbers is I1\-definable over the integers.

Proof. Suppose U has constants ¢, .., ¢;, k=1, and
functions f,, ..., f,,, m = 1.* In order to simplify exposition,
we shall assume that the f;’s are all binary. (However, we
shall avoid a simplification in the proof that is possible if it
1s known that at least one f;is not unary.) We shall similarly
assume that all relations being defined, inductively or 7},
are binary.

First, we know that inductively definable over N = [7}-
definable over N. Second, by Godel numbering we, first,
order define an isomorphic copy of U in N. Accordingly, if
a relation r is inductively (resp. /7}) definable on U, the set
of Godel numbers for elements of r is inductively (resp. I7})
definable on N,

Third, if the set of Gédel numbers of elements in a rela-
tion is inductively (resp. /7}) definable over the natural
numbers (with operations + and -), show that the relation
is also inductively (resp. I7}) definable over the Herbrand
universe U. Here we code a copy of N inside U. The set

A ={ng=c;,n,=fi(ny,c)),n,=f1(ny,c) ..y

nio = filn, ¢y, }

i1s obviously inductively defined. The inductive definition
of U— 4" over U is also easy, using the fact that U is an
Herbrand model: c,e U— .t fori> 1, £, (X, Y)e U— .4 for
i>lorY#c,,andf, (X, c,) € U~ .4 for Xe U~ 4", Treat
each n, as a code for natural number i The successor
function——x — f(x, ¢, )}—Is first-order definable, so the +,
-, and exponentiation functions and their complements can
be defined inductively by standard methods.

What we use to finish the proof is that the function F
mapping each element ¢ of U to the code n ,, for its Godel
number # ! is inductively and coinductively definable. This
is straightforward. To construct it inductively: Explicitly
map each ¢; to n,.. Suppose that the Godel number for
Si{X,Y) is 2.37.5*X.7#Y Then if (X,n,y)eF and
(Y,n,y)eF then (f, (X, Y),ny 3 sex 5¢r) € F-—and all the
necessary arithmetic on the codes in inductively defined.
Also, if a function is inducitvely definable, it is also coinduc-
tively definable:

(X, )¢ F—3Z((X,ZYe FA Y#Z).

Now suppose that r is a relation on Gddel numbers,
inductively definable on N. This inductive definition can be

41f k = 0, the Herbrand universe would be empty. If m =0, the Herbrand
universe would be finite, containing only ¢/, ..., ¢;.
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mimicked inside U on the set .4 of codes, giving a set 7 of
codes for Godel numbers. Since F is inductively definable,
F~!(#) is also inductively definable over U. And this is the
desired set.

Since F is inductively definable over U, it is also I7}-
definable over U. It follows that if r is a 77}-definable set of
Gaoddel numbers then the corresponding set of terms in U is
also I7|-definable. |

The class of (parameterized classes of) relations which
are (untformly) inductively definable over all finite EDBs
for a fixed set of EDB symbols is also well studied. In this
case, since the EDBs are varied, using individual elements of
the EDBs as parameters is not allowed’unless there are
specific EDB constants naming these relations. On EDBs
with linear ordering relations, this is the class of polyno-
mial-time computable relations; over general EDBs, the
class of inductively definable relations is provably some-
what smaller than 2. (For example, one cannot test, in
general, whether the EDB has an even number of elements. )
(See [CHS82, Var82, Imm86, GS86].) Fagin [Fa74]
showed that the class of (parameterized classes of') relations
which are uniformly X'j-definable over the class of all
finite EDBs for a fixed set of EDB symbols is the set of
A "P-definable relations—and thus also the uniformly /7}-
definable relations are the co-.4"#-definable relations.
The result that every inductively definable relation is also
IT}-definable can be made uniform in the EDBs.

3. THE SEMANTICS

We give here definitions of the semantics we shall con-
sider, the two-valued and three-valued program completion
semantics, the well-founded semantics, a variant of stable
semantics, and the original variant of the stable model
semantics, which we shall call the unique stable model
semantics. We shall also cover some basic expressive power
results for the semantics in this section.

3.1. Program Completion Semantics

The well-founded and stable semantics, our primary con-
cern in this paper, bear strong simularities to the earlier
program completion semantics. We shall start by discussing
them and their expressive powers, summarizing one defini-
tion and some known results.

Clark [Cla78] proposed a notion of a completion of a
logic program, a notion also discussed by Shepherdson
[ She85, She88 ]. Think of a logic program as being a set of
implicit definitions of its IDB predicates. More specifically,
the set of rules with head r is understood to be an implicit
definition for r. Thus a relation r( X, .., X,) should hold if
and only if it is the head of some rule of the program, where
the body of the rule is true. For each finite logic program,
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Clark defined a set of first-order formulas called the comple-
tion of the program, which formally state that intuition.
Since we base our definitions upon instantiated programs
only, our definiotion differs slightly from Clark’s. We more
nearly follow Fitting’s definitions. While Clark’s completion
was a formula of first-order logic, our completion is a quan-
tifier-free formula of an infinitary logic. Essentially, an
infinite disjunction for us will correspond to Clark’s existen-
tial quantifiers, an infinite conjunction to his universal
quantifiers.

DEerINITION 3.1.  Let P be an instantiated logic program.
Then the completion of P is the set of formulas

xe V(B A A B,

where « is an IDB literal of P and the disjunction is over all
formulas f{ A --- A B, where

a‘—ﬁ’l A e Aﬂjx‘

1s a rule of P. For P a logic program and £ an EDB for P,
the completion of P over & is the completion of the
Z-instantiation of P.

Note that if there is a rule, say «, with no subgoals, then
the corresponding disjunct is a conjunction of zero literals,
which, by convention, is the formula true. In particular, if «
is a positive EDB literal true in &, then « is an element of
the Z-instantiation of P, so the completion of P over %
contains (a formula logically equivalent to) the formula
o <> true. On the other hand, if there are no rules with head
a, then the disjunction is over an empty set of formulas,
which, by convention, is the formula false. In particular, if
o is a positive EDB literal false in €, then the completion of
P over & contains the formula o < false.

The original interpretation of the completion was a
theory in ordinary two-valued logic. Fitting [Fit85]
observed that Clark’s completion has an especially nice
interpretation in three-valued logic (truth values true, false,
and undetermined ), where the « of the completion is given
a Lukasiewicz interpretation, shown in the truth tables
below.® Note that the truth tables agree with the standard
truth tables when restricted to the truth values true and
false. Fitting’s three-valued interpretations are our consis-
tent partial interpretations, with truth values true, false, and
undetermined, as described before.

* Kunen [ Kun87] developed a very similar serantics which we shall not
discuss here except in footnotes. Kunen’s semantics makes two significant
changes, one of which is to work over a larger EDB than the Herbrand
universe.
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A true  false  undet.
true true  false  undet.
talse Jalse  false  false
undet. undet.  false  undet.
v true  false  undet.
true true true true
Jalse true  false  undet.
undet. true  undet. undet.
-
true false
false true
under. undet.
> true  false  undet.
true true  false  false
false false  true  false
undet. false  false true

One can think of the truth tables for A, A, and — as the
natural extensions of the two-valued truth tables where
undet. represents lack of knowledge. The extension to
conjunctions and disjunctions of infinitely many formulas is
the obvious one. Lukasiewicz’s truth table for < is more
difficult to grasp intuitively; one might think of it here as
representing that all natural inferences have been made.

DErFINITION 3.2. Let P be a logic program and & be an
EDB for P. A model of the completion of P over ¥ is a con-
sistent partial interpretation / which satisfies all formulas in
the completion of P over &.

The three-valued program completion semantics, given
program P and an EDB & for P, infers all #-instantiated
literals true in all three-valued models of the completion of
P over 4.

The two-valued program completion semantics, given a
program P and an EDB & for P, infers all Z-instantiated
literals true in all two-valued models of the completion of P
over .

Observe that, for any program P over any EDB ¥, every
literal inferred by the three-valued program completion
semantics is also inferred by the two-valued program
completion semantics, since every two-valued model of the
completion of P over ¥ is also a (three-valued) model of
the completion of P over Z.

Fitting noted that the completion above corresponds to
an operator on partial interpretations:

DEerFINITION 3.3, Define an operator pc on partial inter-
pretations as follows: Let & be an EDB for logic program

P and [/ a partial interpretation. A & instantiated literal « is
in pe(/) if

« o is positive literal and it 1s the head of some %-instan-
tiated rule

A By

xe—fiA -

where each f;1s in /, or

« x 1s negative literal Ty and for every &-instantiated
rule

A By

yq_.ﬂl A e

of P with head «, the negation of some £, is in /.

Fitting showed that a consistent partial interpretation is
a model of the completion of P over Z if and only if it is a
fixed point of pe.® Hence the two-valued program comple-
tion semantics infers all literals true in all two-valued fixed
points of pe, and the three-valued program completion
semantics infers all literals true in all three-valued fixed
points.

The operator pc is monotonic in /, so it has a <-least
fixed point, which hence coincides with the set of inferences
in the three-valued program completions semantics.
Moreover, the fixed point can be constructed by transfinite
induction.

pe’ = pe(J), pe' = pe(pe’), .., pe” = pc< U pc"),

In general,
pc’=pe ( U pc“)
vy

This sequence must reach a fixed point—call it pc¢* -which
is the least partial model of the program completion. (If ¥
is a finite EDB, then some pc” is the fixed point.)

TueoreM 3.1 [Fitting].  For every logic program P and
every EDB & for P, the least fixed point of pec is consistent,
and hence is also the intersection of all (three-valued) models
of the completion of P over &.

Proof. Suppose, for some program P and some EDB &
for P, pc™ is inconsistent---.e., contains both some literal «
and its negation. Then there is a least ordinal # such that pe”
Is inconsistent. Since consistency is a finitary property,
U, <, pe” is consistent. Now suppose that both «, "x e pe”.
Since a € pe”, for some instantiated rule with head a, every
subgoal is in | ), _, pe”. On the other hand, since a e pe”,
the negation of some subgoal of that rule is also in {J, _, pe*.
That is a contradiction to the consistency of {J, _, pe”. |l

¢ Our definitions are slightly different from Fitting’s, but that is insigni-
ficant here.
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By contrast, the set of inferences in the two-valued
program completion semantics is not normally two-valued
(it can have either undetermined or overdetermined truth
values) and need not be a fixed point of pe.

ExampPLE 3.1. 1. Let P be the program

{r(A) < r(B), r(B) « wr(C), r(B) « (D),
HB)+ r(E), HC) « —r(D), (D)}

and let & be the Herbrand universe {4, B, C, D, E}. Then
the completion of P over & is

{r(A) e r(B), H{B)+ —r(C) v —ir(D) v r(E),
r(C) < 7K D), r(D) < true, r(E) <—>'false}

which has a unique three-valued model,
{r(E), r(D), 7r(C), r(B), r(A)},

which is also two-valued. Hence both semantics infer
exactly these literals.

2. Let P={r(A4)« 2r(B), r(B) — Tr(A4), r(C) —r(4),
r(C)«<r(B)} and Z be the Herbrand universe {4, B, C}.
The completion is

{r(4) o r(B), r(B)— —1r(A4), r(C) > r(A4) v r(B)}

which has 2 two-valued models, {r(4), 2r(B), r(C)} and
{ —r(A4), r(B), r(C)}, and an additional three-valued model,
. Hence the two-valued program completion semantics
infers r(C) while the three-valued program completion
semantics infers nothing.

3. Let P={r{Ad)« wr(A),r(B)}, and % be the
Herbrand universe {4, B}. The completion, {r(4)«—
—1(A), r( B) < true}, has only one three-valued model, {r(B)}.
Hence the three-valued program completion semantics
infers r( B). Since the completion has no two-valued models,
the two-valued program completion semantics infers the
intersection of the empty set of partial models, {r(A),
—r(A), r(B), r(B)}.

4. Let P={r(4)«<r(A)}. The atomic formula r(A)
depends positively on itself—a simple positive recursion. For
9 = { A}, the completion of P is {r(4) < r(4)}, which is a
tautology. So neither the two-valued program completion
semantics nor the three-valued program completion seman-
tics infers any literals. But P is a Horn-clause program, and
the van Emden-Kowalski semantics [VEK76] infers
—r(A). Thus the program completion semantics do not
capture at least one well-accepted notion of negation as
failure. By contrast, the well-founded and stable semantics
will identify the positive recursion and infer —r(A4).

ExamPLE 3.2. The relation = is not a “logical relation”
in logic programming. That is, it is just another relation to

be defined by the programmer, however the programmer
wishes to define it. However, in the program completion
semantics, both the intended relation = and its negation
— = are definable.

Let P be a logic program which uses the relation = as an
EDB relation. Let Pgg,,;,, be the program consisting of P
plus rules defining the symbols = and #:

Pu{=(X,X), #(X, Y) = 1=(X, V)}.

Then the completion of P, over any database & is the
completion of P over 2, together with

{=(d, d)true :de 2}
uf{=(d,e)false:d ec 2, d+#e}
u{#(d, e)e> 1=(d,e):d ec2}.

Clearly, this completion correctly defines both = and #, in
both two-valued and three-valued program completion
semantics.

Thus, one can freely use = as if it were an EDB relation
with the standard interpretation in both program comple-
tion semantics. Exactly the same construction shows that =
may be treated as an EDB relation in the well-founded and
stable semantics, which we define next.

A well-known property of several logic programming
semantics is that it does not increase the expressive power of
the semantics to allow “rules” p « ¢, where ¢ is any formula
of first-order logic (as opposed to just a conjunction of
literals). This is worked out in detail, for example, for the
well-founded semantics in [ VG93]. We illustrate the proce-
dure in the example below; this translation works for the
two- and three-valued program completion semantics, the
well-founded semantics, and the stable semantics.”’

ExampLE 3.3. The “rule” p(X) VY 3Z(HX, Y, Z) v
r(Y, Z, X)) can be simulated as follows: First rewrite the
formula ¢ using only A, —, and 3: p(X) <« 03I¥Y3Z
WX, Y, Z) A (Y, Z, X)). Now, adding separate
relations for most of the subformulas, construct the
following logic program, working inductively from the
inside out:

P X, Y, Z)« (X, Y, Z) A 1Y, Z, X)
p1(X, Y, Z)« po(X, Y, Z)
X, V)= p(X, Y, Z)
(X, V)= pa(X, Y)
pa(X) = p3(X. Y)
P(X) < (X, Y).

7 However, with the well-founded and stable semantics one must be care-
ful about the relationship between this translation and positive recursion.
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It is fairly easy to see that the above rules “capture
the meaning of the rule” p(X)<VY3IAZ(HX, Y, Z)v
r(Y, Z, X))—but we must first be precise about the meaning
of the quantifiers. Let P be a normal logic program con-
taining the above six rules but no other occurrences of
Po-P1s P2, P2y Ps- Let & be any EDB £ for P.

l. In a two-valued model of the program completion,
define YXy(X) to be true in the model if, for every me &,
Y(m) 1s true in the model, and false otherwise. Define the
truth value of 3Xy/(X) analogously.

2. In a three-valued model of the program completion,
define Y Xy/( X) to be true the model if, for every me &, y(m)
is true in the model, false if for some element m of the model,
Y(m) 1s false in the model, and undefined otherwise. Define
the truth value of 3Xy/(X) analogously.

Then, in any model (two-valued or three-valued) of the
completion of P, and for any m € &, the truth value of p(m)
1s equal to the truth value of VY 3Z(rim, Y, Z) v
Y, Z, m)).

THEOREM 3.2. Over all EDBs, the two-valued program
completion semantics is at least as expressive as the three-
valued program completion semantics. Over all classes of
EDBs, the two-valued program completion semantics is
uniformly at least as expressive as the three-valued program
completion semantics.

Proof. Note that, as in Example 3.1, parts 2 and 3, a
single program may not define the same relations in the two
semantics. To prove the theorem, we show a construction
which, given a program P defining a relation r in the two-
valued semantics, gives another program P’ defining r in the
three-valued semantics—over all EDBs ¢ for P. The proof
involves what is sometimes called an “approximation logic”;
compare [ Fit91, Sch91, BSu911].

For each relation r, add a new IDB relation 7. For each
rule of program P-—the example

Py, e ) (12, ) AT, 1))

AT Y, e B A s (8, 1)

1s general enough to illustrate the translation—include two
rules in P’

P e 1) = ra (13, 12) A P85, o 17)

A TS, s ) A TS (1Y, o £))

and

Fr(th, oo 1) = Fy (3, 12) A F5l(13, s 1)

AT, L ) A s (8], ).

JOHN S. SCHLIPF

Finally, for each EDB relation r, include in P’ the rule
FOX, o X=X, X

{The relation r is an EDB relation, but 7 must be an IDB
relation.)

Given a partial interpretation / for the -instantiation of
P, construct a partial interpretation I' as follows:

e rd,,...d.)el'ifand only if rid,, .., d,) € I; otherwise,
—ir(d,y, ... d)el’;

o Tfd,,...d ) el if and only if —rld,,..d)el;
otherwise #d,, .., d,) el

Clearly, this function is a one-to-one correspondence from
the set of partial interpretations for P over & to the set of
two-valued partial interpretations for P’ over &2. We will be
finished if we show that [ is a fixed point of the pc operator
for P over & if and only if I' is a fixed point of the pc
operator for P’ over Z.

For any positive Z-instantiated literal x =r(d,, ..., d,) of
P, let a=#(d,, ..,d,). To simplify notation, we write the
proof as if each rule of the instantiated program were of the
form o« B, A f; A Tyy A y,, where «, the 8., and the y,’s
are all positive literals.

We give one typical step of the proof. Assume that /is a
fixed point of the pc operator for P over &. We check that
I' obeys the fixed point property for negative literals —4&:
{by definition of I')

—del’ iff —ael

iff  for every instantiated rule
ae—fyAfsn Ty, A 1y, 0f P
some T ff, €l orsome y, el
(since [/ 1s a fixed point)

iff for every instantiated rule
&—B, A By A 1y A Ty, of P
some M f3, € I' or some el
{by definition of I'). |}

The following theorem is a {minor variant of a) result of
Kolaitis and Papadimitriou.

THEOREM 3.3 [KP88]. A4 relation s on EDBZ s
definable in the two-valued program completion semantics if
and only if it is IT} definable on %. A ( parameterized collec-
tion of) relation(s) s on the collection of finite EDBs for a
fixed set of EDB relations is definable in the two-valued
program completion semantics if and only if it is co-.A"#.

THEOREM 3.4 (Essentially [Fit85]). A relation s on an
EDB % is definable in the three-valued program completion
smantics if and only if s is inductively definable over %. A
(parameterized collection of ) relation(s) s on the collection of
Sinite EDBs for a fixed set of EDB relations is definable in the
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three-valued program completion semantics if and only if it is
(uniformly) inductively definable.

COROLLARY 3.5. 1. OQver infinite Herbrand models, the
two-valued and three-valued program completion semantics
are equally expressive, i.e., exactly the same sets are definable
in both.

2. Over the class of all finite EDBs for a fixed set of EDB
relations (since those EDBs are, in general, not linearly
ordered by any of their relations) the two-valued program
completion semantics is more expressive than the three-valued
program completion semantics.

3. If attention is restricted to classes of r'elations over
finite EDBs which are trivial if the EDBs are not linearly
ordered by some fixed relation, the two-valued program com-
pletion semantics is more expressive than the three-valued
program completion semantics if and only if P # N P.

- Proof. 1. The three-valued program completion
-semantics defines the relations which are inductively
definable over the Herbrand universe. The two-valued
program completion semantics defines the relations which
are IT, definable over the Herbrand universe. By
Theorem 2.1, those two are the same.

2. The three-valued program completion semantics
defines the relations which are uniformly inductively
definable. The two-valued program completion semantics
defines the sets which are co-.4"2-definable. A set which is
empty if the EDB has an even number of elements and the
entire EDB if the EDB has an odd number of elements is
thus definable in the two-valued semantics but not three-
valued.

3. The three-valued program completion semantics here
defines all P-time computable relations; the two-valued, all
co-.4"#-time computable relations.

3.2. The Well-Founded and Stable Semantics

The well-founded semantics has one basic difference
from the three-valued program completion semantics; it
detects positive recursion—see Example 3.1(4), where it will
infer —r(A4). The well-founded semantics was originally
proposed in [ VGRS91]. Subsequently several equivalent
definitions have been given, including well-known defini-
tions such as in [ VG93, Prz89]. We give here a variant of
Van Gelder’s alternating fixed point definition [ GVG93],
devised jointly with Van Gelder to facilitate this work.®

Van Gelder’s alternating fixed point definition was based
upon the Gelfond-Lifschitz transformation of a logic
program [GL88]. The definition below is Van Gelder’s
minor variant of the original definition.

8 The definition was derived from several related notions presented at the
“Eighth ACM Symposium on Principles of Database Systems” { Ros89,
VG93, Prz89, Bry89].

DerFINITION 3.4. Let P be a logic program, & be an EDB
for P, and 7 be a set of negative Z-instantiated literals of P.
The Gelfond-Lifschitz transform P, of P is the program for-
med from the Z-instantiation P, of P by replacing each
negative subgoal "\ f in P, with true if —1 £ € 7 and with false
if ¢l

The Gelfond-Lifschitz transform of a program is (tri-
vially equivalent to, under Van Gelder’s variant) a Horn
clause program. Gelfond and Lifschitz used it in defining the
stable semantics; Van Gelder used it in (re)defining the well-
founded semantics. A basic step of both is to construct the
minimal model of the P,, exactly as in the van Emden-
Kowalski semantics for Horn clause programs [ VEK76],
by an induction over the natural numbers. For recursion
theoretic reasons, we need in this paper to be able to discuss
a finite object—a “proof”—that demonstrates that a certain
positive literal is inferred in the minimal model of the
Gelfond-Lifschitz transform. Our forward proofs from
negative hypotheses (see below) exactly capture this
construction.

An important point of the van Emden-Kowalski con-
struction is that inferences are made using only two of the
traditional proofs rules of first order logic: modus ponens
and A -introduction.® This sort of proof does not allow, for
example, inference by contraposition. We thus think of this
reasoning style as “forward”—in the forward direction of
the “if” symbol. One very natural way of motivating seman-
tics for normal logic programs is that this restriction
matches the intended meaning of rules (although negation
as failure can complicate the issue somewhat).

DEeriniTION 3.5, Let & be an EDB for a logic program
P, and let « be a Z-instantiated positive literal of P. A
SJorward proof of a from negative hypotheses over P, 9 (or,
simply, a forward proof of a), is a finite sequence s, ..., s, of
Z-instantiated formulas of P, where

« Each statement s;:

(1)

(2) follows from two previous s,’s by modus ponens,

is an P-instantiated rule of P,

(3) 1s a conjunction of two previous s,’s (i.e., follows
from previous 5;’s using A -introduction), or

(4)

e The last formula is a.

is a negative Z-instantiated literal of P.

The s,’s which are negative literals are called hypotheses of
the proof. We explicitly allow —a to be one of the
hypotheses of a forward proof of a from negative
hypotheses. A forward proof of a literal « from negative
hypotheses is minimal if no proper subset of the proof is also
a forward proof of « from negative hypotheses.

® Modus ponens is from « — f§ and « infer B; A-introduction is from a
and f infer « A f.
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Observation 3.6. Since forward proofs from negative
hypotheses are finite, every forward proof of any literal «
from negative hypotheses contains a subset which is a mini-
mal forward proof from negative hypotheses.

Thus, for any set 7 of literals and for any instantiated
program P, there is a forward proof p of a from negative
hypotheses, where all the hypotheses of p are true in 7, if and
only if there is such a minimal proof, and there is a forward
proof of « from negative hypotheses, where no hypotheses of
p are false in 7, if and only if there is such a minimal proof.

If every rule of a program has at most m subgoals, then
every formula in a forward proof of a literal « from negative
hypotheses will be (1) a literal, or (2) a conjunction of at
most m literals, or (3) an instantiated rule of the program.

In Example 3.1, Part 4, note that there is no forward
proof of r{A) from negative hypotheses, since any proof of
r(A) would have to first prove r(4)—an infinite descent of
positive literals.

DEerFINITION 3.6.  The stable completion of P over % is the
set of all formulas

a«—*\/(ﬂ[)’ﬁ/\

A 165,

where a is a positive Z-instantiated literal of P, where the
disjunction is over all minimal forward proofs p, of « from
negative hypotheses and where proof p, has hypotheses

—f4, .., 1f;.. Note that the disjunction may be over
infinitely many formulas.
The formula
ae N (BiA - AR

above is called the definition of « in the stable completion.

DeriNITION 3.7. The well-founded partial model of
program P over EDB & is the set of all %-instantiated
literals true in all three-valued models of the stable comple-
tion of P over &, ie., the intersection of all three-valued
models of the stable completion of P over %. Given a
program P and an EDB £ for P, the well- founded semantics
infers all ¥-instantiated literals of P true in the well-founded
partial model for P over Z.

Exactly corresponding to Fitting’s operator, which we
called pc, there is an operator wf on partial interpretations
giving the well-founded semantics.

DErFINITION 3.8. The operator wf on partial interpreta-
tions is as follows: Let Z be an EDB for logic program P
and 7 a partial interpretation. A & instantiated literal « is in
wi(]) if

e a is a positive literal and there is a minimal forward
proof p of « from negative hypotheses over P, &, where each
hypothesis of p is in /, or

¢ ais a negative literal 1y and for each minimal forward
proof p of y from negative hypotheses over P, &, the nega-
tion of some hypothesis of p is in /.

Using this operator, the least fixed point can be construc-
ted by transfinite induction, exactly analogously to the con-
struction of the least (three-valued) model of the program
completion:

wi® = wi( ), wi! = wi(wf®), .., wf‘“=wf< U wf"),

n <

In general,

wi” = wf( U wf“).

v<n

This sequence must reach a fixed point—-all it wf™. (If & is
a finite EDB for a program P with no function symbols,
then some wf” is the fixed point.)

THeorem 3.7 (Essentially [VGRS91, VG93]). For
every logic program P and every EDB % for P, the least fixed
point of the operator wi is consistent. This fixed point is thus
the well-founded partial model of P over & and is a (three-
valued) model of the stable completion of P over &.

Proof (Analogous to the proof of Theorem 3.1).

In Example 3.1, part 4, since there is no negatively
founded proof tree for r(A4), the well-founded semantics
infers —1r(A4). A basic property of the well-founded seman-
tics, developed in [ VGRS91 ], is that it extends many of the
common semantics for logic programming, in particular,
the van Emden-Kowalski semantics for Horn clause
programs [VEK76], the stratified semantics [ ABW8S,
CHB8S, Lif88, Prz88, VG861, and the three-valued program
competion semantics—extends in the sense that it makes all
the inferences those semantics make and makes the same
inferences when those semantics infer two-valued sets of
inferences.

DerINITION 3.9. A logic program P is Horn over EDB &
if no IDB relation appears negatively in P.

THEOREM 3.8 [VGRS91]. Suppose program P is Horn
over EDB . Then the well-founded partial model is two-
valued and is the same as the van Emden—Kowalski semantics
[ VEKT76] for P over &, which coniains the positive &-instan-
tiated literals of P true in all (classical, two-valued) models
of P over 9 satisfying all EDB literals true in %, plus the
negations of all other positive %-instantiated literals of P.

As Example 3.1, part 4 shows, neither the two-valued
program completion semantics nor the three-valued
program completion semantics satisfies (the property of)
the above theorem.

The stable semantics is defined in terms of what are called
stable models of programs.
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DerINITION 3.10 [GL88]. A stable model for a program
P over an EDB & is a two-valued partial interpretation /,
where 7 is the van Emden—Kowalski (i.e., minimal) model of
the Gelfond-Lifschitz transform P,.'°

The stable semantics infers all literals true in all stable
models of program P over . If there is a unique stable
model of P over 2, then the unique stable model semantics
infers all literals true in that model. If there are no stable
models, or if there is more than one stable model, the unigue
stable models semantics applied to that program and EDB is
undefined.

Observation 3.9. Let P be a logic program, & be an EDB
for P, and I be a two-valued partial interpretation for P
over Z:

1. [is a stable model of P if and only if / s a model of
the stable completion of P over 2.

2. [Iis a stable model of P if and only if (1) it is a model
of P in the sense of classical logic, (2) each Z-instantiated
EDB literal is in 7 just in case it is true in &, and (3) for every
positive Z-instantiated IDB literal « true in [ there is a mini-
mal forward proof of a from negative hypotheses, where all
the hypotheses are in /.

Gelfond and Lifschitz originally defined the unique stable
model semantics, but the stable model semantics defined
above is a common generalization. Note that if there are no
stable models of P over %, the stable semantics infers all
Z-instantiated literals, so all truth values are overdeter-
mined. One might think of P as being incoherent when
applied to Z.

Gelfond and Lifschitz showed that the unique stable
model semantics satisfies many criteria for a logic program-
ming semantics. For example, it agrees with the van
Emden-Kowalski semantics on Horn clause programs. It
similarly agrees on programs which are Horn over their
EDB:s. It follows that the stable model semantics has the
same nice properties. One difficulty with the unique stable
model semantics is that it is hard to decide whether the
semantics is defined. For example, there are many logic
programs P for which it is co-4"# hard (as a function of the
size of the EDB 2) to decide whether there is a unique
stable model of P over 2. We, on the other hand, would like
to speak of having the semantics assign some meaning to
every program. Hence we shall concentrate primarily upon
the stable semantics rather than upon the unique stable
model semantics. !

THEOREM 3.10. The well-founded semantics is at least
as expressive as the three-valued program completion

'% Here we treat the van Emden—Kowalski model to be the set of ground
literals inferred from P, plus the negations of all other ground literals.

"' Modifying the statement to make the unique stable model semantics
infer & if there is not a unique stable model does not help matters par-
ticularly from the perspective of this paper.

semantics—over any EDB, over any class of EDBs, and
uniform over any class of EDBs. The stable semantics is at
least as expressive as the two-valued program completion
semantics—over any EDB, over any class of EDBs, and
uniformly over any class of EDBs.

Proof (Sketch). It will suffice to prove the following:
Let P be a logic program. Then there is another logic
program P, where, for each EDB % for P and each
Z-instantiated literal a« of P, « is inferred from P and £ in
the three-valued program completion semantics (respec-
tively, the two-valued program completion semantics) if
and only if « is inferred from P and & in the well-founded
semantics (respectively, the stable semantics).

Form P from P as follows. Replace positive subgoals
with double negatives: If a relation r appears in a positive
subgoal of a rule

a— By A s A, G ) A e A By
replace the positive subgoal r(t,, .., ;) with a negative
subgoal =7 (¢, ..., t,), forming

=By A AT, G ) A e A By,

and add a rule

F(t1, o i) = r(t ), oy £y ).

Introducing this double negative does not change the
program completion semantics, but it eliminates all positive
recursion, which makes the well-founded and stable seman-
tics reduce to the three-valued and two-calued program
completion semantics.

Somewhat more formally, since no rule has any positive
subgoals, a minimal forward proof of a literal « from
negative hypotheses must infer a by applying modus ponens
to a rule with head « and all negative subgoals; these
negative subgoals must all be hypotheses in any proof using
this rule; by minimality, that is all there is to the proof.
Hence a disjunction over all minimal forward proofs
corresponds exactly to a disjunction over all rules. |

CorOLLARY 3.11 [VGI93]. Any relation inductively
definable on an EDB % is definable over & in the well-
Sfounded semantics.

CoROLLARY 3.12.  Any relation I} definable on an
EDB D is definable over 2 in the stable semantics.'?

THEOREM 3.13 [Sch91]. Over all EDBs, the stable
semantics is at least as expressive as the well-founded
semantics. Over all classes of EDBs, the stable semantics

12 The same result, for & the natural infinite Herbrand model, has been
separately proved by Marek, Nerode, and Remmel; see the remark after
Theorem 4.4.
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is uniformly at least as expressive as the well-founded
semantics.

Proof (Analogous to the proof of Theorem 3.2). The

proof is worked out in detail in [ Sch91].

3.3. General Expressive Power Summary

We summarize the expressiveness of the four semantics
with the following diagram. An arrow pointing from a
semantics S, to a semantics S, indicates that S, is at least as
expressive as S,. Here it turns our that it also indicates, for
any program given P and for any EDB & for P, that S,
infers all literals that S, infers, and perhaps others:

3-valued program completion semantics — well-founded semantics

! l

2-valued program completion semantics — stable semantics

4. THE EXPRESSIVE POWERS OF THE WELL-FOUNDED
AND STABLE SEMANTICS OVER PARTICULAR
CLASSES OF EDBs

4.1. Uniform Expressibility over Finite Databases

It has been noted aiready that uniform definability in the
three-valued program completion semantics over finite
EDBs is equivalent to inductive definability, which is
equivalent in turn to polynomial time definability when the
EDBs are linearly ordered.

THEOREM 4.1 [VG93]. A relation r is definable in the
well- founded semantics uniformly over all finite EDBs ( for
any fixed set of relation symbols) if and only if r is uniformly
inductively definable over that set of EDBs.

Proof. By Corollary 3.11, every uniformly inductively
definable relation is also definable in the well-founded
semantics. (The construction is uniform in the finite EDBs.)
But the converse is also true. The proof in [ VGRS91 ] that,
for any fixed program P, the well-founded partial model is
constructible in polynomial time (in the size of the EDB),
can easily be converted into a proof that the well-founded
partial model is uniformly inductively definable, using a
result of [Imm86]: if a relation is inductively definable
uniformly over all finite structures, then it is also coinduc-
tively definable uniformly over all finite structures.

The stable semantics is more powerful. Marek and
Truszczynski [ MT91] proved that deciding whether a
propositional logic program P has a stable model is A4"%-
complete. A minor modification of their proof gives that
there is a function-free logic program P, where, as a function
of EDBs 2, deciding whether the stable completion of P
over Z is A P-complete. We give a slightly stronger result
here.

JOHN §. SCHLIPF

THEOREM 4.2. A relation r on finite databases is

definable in the stable semantics if and only if it is co-A"P.

Proof. Both directions of the proof hinge upon Fagin’s
result [Fa74] that a (parameterized collection of)
relation(s) 7 on the class of finite EDBs for a set of EDB
relations in .42 if and only if it is X definable.

First show that if a (parameterized class of ) relation(s) is
definable in the stable semantics, it is (uniformly) co-.4"2,
or as it seems easier to think of,

{{d,, ... d,): 3.4 (.4 is a stable model of P
and r(d,, .., d)e )}

is .47#. This is already almost of the desired form. The
difficulty is that the definition of being a stable model was
not first order.

To complete this, we use a single relation, of high arity, to
represent both .# and a single forward proof from negative
hypotheses—essentially, the concatenation of minimal
proofs of all the positive literals in .#. To do this, represent
each step in the proof as a single tuple. To simplify exposi-
tion, we shall make two simplifying assumptions; it is fairly
straightforward to adjust this for programs with arbitrary
relations: (1) Assume that each relation has the same
number—call it n—of arguments. (2) Assume that each rule
with any subgoals has the same number—call it m—of sub-
goals. Also, since the only conjunctions usable in rules are
conjunctions of m literals, we can replace normal A -intro-
duction with an inference rule which deduces the conjunc-
tion of m literals from the m literals separately. And then the
proof need only store three types of objects: (1) rules, (2)
individual literals, and (3) conjunctions of m literals.

To simplify encoding, we shall assume that there are two
constant symbols, ¢, and c,, appearing in all EDBs."* Use
fixed-length sequences of these two to represent the relation
symbols, in a binary coding; say / bits are used to code the
relations. Then any step can of any minimal forward proof
from negative hypotheses can be represented witha 2 + 1 +
[ +n+m(1+1+ n)tuple of elements of &. Use the first two
positions to identify what type the formula is: ¢,, ¢, for a
rule, ¢,, ¢, for a literal, c,, ¢, for a conjunction of m literals.
The next 1 +/ + n positions can be used to describe the head
of the rule, or the single literal: one position for positive (c,)
versus negative {c,); / positions give the binary code for the
relation symbol using ¢, and ¢,, and n positions give the
arguments of the instantiated literal---n arbitrary elements
of ¢. The remaining m(1 + ! + n) positions similarly store

'3 Recall that we assumed each EDB has at least two elements. The
assumption that there are always constant symbols ¢, and ¢, could be
avoided in the following encoding, essentially by our replacing ¢, with a
pair (x, y), where x = y and ¢, with a pair (x, y) where x # y. This would
only increase the arities of the relations and somewhat complicate the
encoding.



LOGIC PROGRAMMING SEMANTICS 77

the m elements of a conjunction or the m subgoals of a rule.
All this coding can be described in first-order logic,
uniformly in the EDBs (using the constants ¢, ¢,).

To represent

3.4 (¥ is a stable model of P)

use a formula 3.#¢, where ¢ “says” that:

e # is a linear ordering of a set of (distinct) 2+ 1+
{+n+m(1+1+ n)-tuples of elements of &, representing
instantiated literals, conjunctions of m instantiated literals,
and instantiated rules as above. Call the elements of the
ordered set steps of #. For simplicity of exposition, we now
identify the tuples of elements of & with the literals, con-
junctions of literals, and instantiated rules they represent.

+ Each step of # is one of the following:

1. a negative Z-instantiated IDB literal.

2. a Z-instantiated EDB literal (positive or negative)
true in Z.

3. a Z-instantiated rule of P. (Recall that P is fixed, so
this can be described in first-order logic as being a
substitution instance of one of a fixed number of
patterns.)

the conjunction of m previous literals.

5. a positive literal a, where there are two previous
steps, x =B, A - Afand B A - A B,

o For each positive Z-instantiated literal a of P, exactly
one of « and ™ is a step of #.

o Finally, {a: ais a step of #} is a two-valued model of
P, in the sense of classical logic.

All these properties of J# can clearly be expressed in first-
order logic for any fixed program P.

Now if .# is stable, concatenating together the proofs of
the positive IDB literals true in .#, plus a list of all negative
IDB literals and all EDB literals true in .#, will give such an
. On the other hand, if such a J# exists, then for each 2-
instantiated positive IDB literal in .#, some subsequence of
A is a minimal forward proof of « from negative hypotheses
which are true in .#—the only potentially difficult step.is in
proving that the purported forward proof is actually a finite
sequence, but since 2 is finite, # must also be finite, so the
purported forward proofs are finite.'*

The other direction, that every co-4"% relation is
definable in the stable semantics, follows from Theorems 3.3
and 3.10. |

ExaMmpLE 4.1, We illustrate half of the result above by
constructing a program P, where an EDB 2 represents an

' If 2 were infinite, it would be possible to build infinite descending
“proofs.”

instance of a formula in 3-CNF ¢, and P has a stable model
over  if and only if ¢ is satisfiable. The technique is
analogous to that of Example 5.2 and of [ KP88].

The objects are proposition letters. There are eight EDB
relations, for truth values 77T through FFF:con-
Jrrr (X, Y, Z) says that X v Y v —1Z is a conjunct of the
3-CNF formula.

P, = {isT(X) « —isF(X),
isF(X) « —IiST(X)}

a—conjrrr (X, Y, Z) AisF(X) AisSF(Y) A isT(Z),

b« —a, b+« b}.

In any stable model of P,, the isT(X) holds if and only if
isF(X) does not. Any such model is a stable model of P,. So
P, allows totally non-deterministic choice of isT, ie., in
terms of the 3-CNF formula, non-deterministic choice of
which proposition letters are true.

The idea is that P, should check whether the choice of
true proposition letters made for P, “works.” The 3-CNF
formula is satisfiable if and only if there is a stable model of
P, u P,. The final rule forces b to be true in any two-valued
model without providing any negatively founded proof tree
to use in deriving it. So in a stable model,  must be false. In
any stable model a will be true if any conjunct of the original
formula is false, and hence there is no way to derive b unless
every conjunct is true. ||

COROLLARY 4.3. If a relation r on finite databases is
uniformly definable in the unique stable model semantics, it is
in /NP nco-AP. |

4.2. Expressive Power over Infinite Herbrand Universes

As noted before, for logic programs with function sym-
bols, the normal assumption is that the intended universe is
the Herbrand universe of the functions and constants of the
program. And even when that assumption is relaxed, the
intended universe is normally taken to be the Herbrand
universe for a larger set of constant and function symbols.

THEOREM 4.4. Over the class of infinite Herbrand univer-
Ses (generated by a positive, finite number of constant sym-
bols and a positive, finite number of function symbols), the
three-valued program completion semantics, the two-valued
program completion semantics, the well-founded semantics,
and the stable semantics all have the same expressive power.

A relation r on an infinite Herbrand universe is definable in
any of these semantics if and only if it is inductively definable
over the Herbrand universe.
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Proof. We already know that all four of the semantics
are at least as strong as the three-valued program comple-
tion semantics and that the stable semantics is at least as
strong as all four semantics. Hence it suffices to show that
every inductively definable set is definable in the three-
valued program completion semantics and that every set
definable in the stable semantics is inductively definable.
The former we already know, from Fitting’s result,
Theorem 3.4. So we prove the latter.

For the latter it suffices, by Theorem 2.1, to prove that
every relation on the integers (i.e., in a program with one
constant symbol 0 and one function symbol succ) definable
in stable semantics is /7| definable on the integers. For
any such P, all minimal forward proofs from negative
hypotheses can be recursively coded with natural num-
bers—say by Gddel numbering. All obvious predicates
about such forward proofs—that an integer p codes a mini-
mal forward proof over the Herbrand universe, that # codes
a negative instantiated literal which is an hypothesis of p,
etc., can be expressed in first-order logic. Since quantifica-
tion over forward proofs from negative hypotheses can then
be replaced with quantification over integers, the statement
that a given interpretation 7 is a two-valued fixed point of
the operator wf is then first-order definable (in parameter 7).
Hence the statement that a literal is an element of all
two-valued fixed points of P over its Herbrand universe
isi13. 1

Fitting proved essentially the above result for the three-
valued program completion semantics. As he noted—and as
Kunen [ Kun87] also noted—that may be deemed a signifi-
cant disadvantage of that semantics, and hence of all the
semantics considered here in this paper, in that it proves
that, over infinite Herbrand universes, the problem of
deciding whether a tuple of elements of the Herbrand
universe is a correct answer for a query is highly non-recur-
sive.

Theorem 4.4, for the stable semantics, states that a
relation is definable in stable semantics if and only if it is
inducitively (/7}) definable over the integers. This result was
independently proved by Marek, Nerode, and Remmel
[ MNR92] (although for recursive logic programs instead
of finite logic programs). In a series of papers, they
developed a study, not just of the intersection of all stable
models (over Herbrand universes) of recursive logic
programs with function symbols, but of the classes of all
such stable models; the I7] result is included. The following
corollary is also an immediate consequence of one of their
results.

THEOREM 4.5 [ MNRO92]. A relation on the natural num-
bers is definable in the unique stable model semantics ( for
some recursive logic program) if and only if both it and
its compolement are Il)-definable subsets of the natural
numbers.

Thus, over infinite Herbrand models, the two- and three-
valued program completion semantics, the well-founded
semantics, and the stable semantics are all more expressive
than the unique stable model semantics.

4.3, Expressive Powers over Arbitrary Infinite Databases

We now turn to the expressive powers of the well-founded
and stable semantics over infinite EDBs which are not
Herbrand universes. This is rather far afield from the usual
concerns of logic programming. But for purposes of fully
understanding the semantics, finite EDBs and Herbrand
universes are too simple. In Subsection 5.2, we shall relate
this topic back to expressive power over infinite Herbrand
universes.

Recall that, over all infinite Herbrand universes, and
uniformly over all finite EDBs, the well-founded semantics
has the same expressive power as the three-valued program
completion semantics, and the stable semantics has the
same expressive power as the two-valued program comple-
tion semantics, although, as Theorem 3.8 and Example 3.1,
part 4 show, for any particular logic program P the well-
founded semantics and the stable semantics may make more
inferences than the program completion semantics. A more
general example is found with transitive closures.

THEOREM 4.6. Suppose an EDB % contains a binary
relation r (but not relations tc or tc). Let P be the following
program:

{te(X, V) (X, Y), tc(X, ¥) = r(X, Z) A te( X, Y),
(X, )« te(X, Y)}.

From P the well-founded, stable, and unique stable
model semantics infer tc and tc to be the transitive closure
of r and its complement.

The program completion semantics, on the other hand,
infers tc to be the transitive closure of r, but if in & 1t is true
that YX 3Yr(X, Y), then the program completion semantics
will not infer tc(d,, d,) for any pairs d,, d,.

Proof. First consider the well-founded and stable
semantics. The stable completion of P over D consists of a
set of formulas equivalent to the set of EDB literals true in
D plus the formulas, for d,, d, € &,

tc(dosdl)”"\/ \/

n dr,...,dne %
ridy. da), ridy. dsd, . ridy — |, dn). ridy, dy) true in &

true

tc(d,, d,) < tc(dy, dy)

The assertion is obvious from examination of the stable
completion.
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The definition of each tc{d,, d,) in the completion of P
over Z 18

tc(dy, dy) o r(dy, d) v \/ (r(dy, dy) A tc(d,, dy)).

dre @

It is straightforward to prove that both program completion
semantics infer tc(d,, d,) if and only if the pair (d,, d,) is in
the transitive closure of r. But observe that the partial inter-
pretation / which interprets r as in & and contains tc(d,, d,)
for all dy, d, € % is a model of the completion; hence the
program completion semantics cannot infer —1tc(d,, 4,), or
tc(d,, d,), for any (doy, d,). 1

Of course, since the complements of transitive closures
are definable in the well-founded semantics, they are also
definable in the program completion semantics both (1)
uniformly over finite EDBs, and (2) over infinite Herbrand
universes. It is just that the program to define the comple-
ment of a transitive closure is less natural than the program
above (see, e.g.,, [Kun88]). However, over general infinite
EDBs, the complement of a transitive closure may not be
definable at all in the program completion semantics.

The remainder of this section is concerned with exotic
EDBs. In the next section, however, we shall apply these
results to make a finer distinction about the expressive
powers of the other semantics over infinite Herbrand
universes, the standard world of logic programming.

DEerINITION 4.1 [BS76, Sch78]. An EDB 2 is recur-
sively saturated if, for each recursive set of formulas
{¢.(X,Y):iew} and for each d from 2, if for every ne @
there is an ec 2, where ¢,(e,d) A ¢, (e, d) A --- A ¢, (e, d)
is true in 2, then there is a single e € 2 where every ¢; (e, d)
is true in 2.

A basic fact about recursively saturated structures (again
see [BS76, Sch78]) is that if & is recursively saturated,
every inductive definition on 2 closes off in <w steps. It
follows from the Boundedness Theorem of [ Mos74] that if
a relation 7 on a recursively saturated EDB is both induc-
tively and coinductively definable, it is first-order definable.
Similarly, every relation on a countable recursively
saturated structure which is both /7}- and Z|-definable is
first-order definable.

ExaMPLE 4.2. Consider the graph ¢, whose Edge rela-
tion looks like the successor—predecessor relation on the
natural numbers. It can be pictured:

Edge Edge Edge Edge

Ny

N, « ~ N, « N,

There is (up to isomorphism) one countable, recursively
saturated graph %* which satisfies all the same first order

571/51,1-6

sentences as %. It contains copies of the elements Ny, N,
N,, etc, of % plus contains countably infinitely many
disjoint chains

Edge

, 7
s zZ',

Edge

As in Theorem 4.6, the transitive closure of the Edge rela-
tion is definable in the program completion semantics, and
hence is inductively definable. Since %* is recursively
saturated and since the complement of the transitive closure
of Edge is not first-order definable over %*, it is also not
inductively definable; hence it is not definable in the three-
valued program completion semantics. Similarly, the
complement of the transitive closure of Edge is not
IT'-definable, so it is not definable in the two-valued
program completion semantics. '’

Conjecture 4.7. There is a relation on an EDB Z which
is definable in the well-founded semantics but not in the
three-valued program completion semantics if and only if
every inductive definition on 2 closes off in < w stages and
at least one closes off in exactly w stages.

Our final result in this section, studying the expressive
powers of the well-founded and stable semantics in fairly
general circumstances, becomes involved in somewhat more
technical methods from inductive definability theory than
material discussed so far. What it does do is to emphasize
rather strongly, as suggested in Example 4.2, the strong dif-
ference between these two semantics on the one hand and
program completion semantics on the other. Definability in
the well-founded and stable semantics can more generally
be related to inductive definability, but to inductive
definability over an in general somewhat richer structure
than the original EDB.

DeriniTION 4.2 [Bar75]. Let 2 be an EDB. Consider
the elements of Z(as anybody but a set-theorist would) as
being, not sets, but indivisible objects, or urelementen. The
set HF, is the smallest set where 2 <HF, and, if
X, .., X,eHF,, then {X,, .., X,,} e HF ;. The EDB HF
has all the relations, functions, and constants of 2 itself,
plus the set-theoretic relations is4nUrelement and €.

15 A saturation property—of a class of ultrapowers—was exploited by
Kunen [ Kun87] to characterize the derivations made in the first w steps
of the transfinite inductive construction of the least three-valued model of
the program completion. Although it does not use an ultrapower, our
example clearly is exploiting essentially the same point about the three-
valued program completion semantics that Kunen made. Our contribution
here is to use it to contrast with the well-founded and stable semantics.



80 JOHN S. SCHLIPF

THEOREM 4.8. Let & be an infinite EDB and let r be a
relation on &. Then:

1. Relation r is definable over & in the stable semantics if
and only if it is IT} definable over HF .

2. If & is countable, then r is definable over & in the
stable semantics if and only if it is inductively definable over
HF .

3. Ifris definable over & in the well-founded semantics,
it is inductively definable over HF ,.

4. If'r is inductively definable over 2, it is definable over
% in the well- founded semantics.

S. If there is a pairing function on % which is definable
over Z in the well-founded semantics, the converse to part 3
holds.

6. If a relation r is definable over & in the unique stable
model semantics, both it and its complement are I} -definable
over HF .

Proof (Sketch). 1. Every minimal forward proof from
negative hypotheses over & is an element of HF ., so the
definition of the stable semantics is easily seen to be I7; over
HF _,, just as in the corresponding part of Theorem 4.4.

For the reverse direction, suppose a relation s on & is 1T}
definable on HF . We shall build a logic program in pieces.
Piece P, will “define” =; it contains the one rule = (X, X).

Note that, since & is infinite, HF, has the same
cardinality as . We shall nondeterministically “code”
elements of HF ., with elements of 2. Piece P, will “choose”
relations rg, r, .., r,, € and isAnUrelement’ nondeter-
ministically, as isT and isF are chosen in Exampie 4.1.

Piece P, will “assert” that the relations chosen by P,
actually code HF ,—or some larger structure of sets with
urelementen 2. It will “say” that r,is the graph of a one-to-
one function from £ into itself, that isAnUrelement’ is true
of exactly the elements in the range of r;, and that each r; is
the isomorphic copy of the corresponding r, under r,. It will
also “say” that €' obeys appropriate properties of the € rela-
tion—that nothing is an element of an unrelement, that two
non-unrelementen are equal if they have the same elements,
that for each object X, {X} exists, and for each pair
of sets X, ¥, X'u Y exists. All this will be accomplished by
writing formulas which have no stable models if any of
these properties are violated. (Again, use the technique of
Example 4.1.)

Piece P, will “say” that the collection of sets chosen above
is really isomorphic to HF ;: that it contains no infinite
elements. The essential part here is that, since minimal
forward proofs from negative hypotheses are finite, but
come in arbitrarily large finite sizes, we can use them to
“say” that each element of HF , really has only finitely many
members; so P, =

{ OK(X) « isAnUrelement'( X),
OK(X) < OK(Y) A “X={Y}",
OK(X)«— OK(Y) A misAnUrelement'( Y)
A OK(Z) ~ isAnUrelement'(Z)
ANX=YuZ,
tooBig « T OK(X),
allOK « —tooBig,
allOK « 7allOK},

where the first three rules put all (isomorphic copies of ) sets
in HF ,—and no other elements—into OK, and the last three
rules are the usual trick to prevent there from being a stable
model if any element is not in OK.

Now piece P, will define a relation s’, “containing” the 17}
definition of s as we have done before, and also define s to
be the isomorphic copy of 5" under r,. It is necessary to
replace finitely many parameters in HF ,, with finitely many
parameters from £, but this can be done, with the aid of
explicit information coded into the definition to distinguish
the parameters, say, for a,beZ, {a, b}, {{a, b}}, and
{{a}, (b}}.

For each particular stable model of P, UP, UP,, the
intersection of all the interpretations of the s’s over all stable
models of P,u --- UP, will be the desired relation s.
Hence the intersection of the s’s over all stable models of
P, v --- UP, for all stable models of P, U P, u P will also
be the desired relations s. (It is true that not only does each
piece P, “do” what we claim when taken in isolation, but it
also “does” what we claim when taken in the context of the
other parts. We omit the proof of this fact.)

2. Since Z is countable, so is HF . Also HF ., contains
a first-order definable pairing function, such as the one
mapping X, Y to {{X},{X,Y}}. So any relation on
HF ,—and hence, in particular, any relation on Z—is I7}-
definable over HF ,, if and only if it is inductively definable
over HF ;. By part 1, being /7,-definable over HF , is the
same as being definable in the stable semantics.

3. This is proved just as in the corresponding part of
Theorem 4.4.

4. This is just a restatement of part of Corollary 3.11.

5. Given a relation s on 2 which is inductively definable
over HF ., we build a logic program to define it. Again, we
build the program in pieces.!® We sketch the details below.
Piece P, defines the pairing function.

Next, we use the pairing function to create, essentially,
Godel numbers for all the elements of HF , and to define

' As we shall show in the next section, this type of definition in pieces
is unproblematical in the well-founded semantics.
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TABLE I
Semantics
Expressive Three-valued Two-valued
power over program compl. program compl. Well-founded Stable

Finite EDBs Compl. inductive

Co-A"P-complete

Compl. inductive Co-.A"P-complete

(uniformly) cP? cP
Infinite Herbrand Complete 17} Complete 17} Complete I7} Complete 17}
universes over N over N over N over N
General infinite Compl. inductive Compl. /7] Inductive Compl. 7}
EDBs over & over 4 over HF over HF ,,

all its relations on the Gdodel numbers. We can write a
program P, the second piece, which is Horn over 2 plus
the pairing function and defines all those relations and
whose van Emden-Kowalski model is the intended model;
by Theorem 3.8, the well-founded semantics captures that
model.

Piece P, inductively defines an isomorphic copy s" of s
over HF ,—which is possible by Theorem 3.4. Program P,
uses s' and the pairing function to obtain the isomorphic
copy of 5, on 2, of 5.

6. Similar to the proof for Herbrand models. |}

4.4. Particular Expressive Power Summary

This is outlined in Table L.

5. STRATIFICATION AND MODULARITY

In this section we return to a real-world programming
concern: how programs can be built up out of modules. We
shall discuss a property of programming language seman-
tics, which we call the Principle of Stratification. In the first
subsection we define the principle, discuss its real-world
interest, and determine which of the semantics discussed in
this paper satisfy the principle. In the second subsection we
relate it back to definability issues. In particular, we use it to
tie definability over certain exotic, general EDBs to
definability over infinite Herbrand universes.

5.1. The Principle of Stratification

The Principle of Stratification asserts in part that a
program can be built up, and understood, in natural pieces.
It is perhaps most natural here to use Clark’s intuition, that
a program defines its IDB relations. Suppose, in writing a
program to define a fairly complicated relation (say “in-law
relative™) it is easiest first to define another relation (say
“relative™) and then to use that term in defining the original
term. It is natural to implement this as follows: first write a
program P, which defines the simpler term (“relative”);
then write a second program P, which uses the simpler term

as an EDB relation in the definition of the original term (“in-
law relative”). The Principle of Stratification asserts (1) that
programs can be built up modularly this way, without con-
cern for unexpected side effects: program P,, since it uses
“relative” only as an EDB relation, will not affect the defini-
tion of “relative.” Moreover, (2) if P, is later replaced with
a different program defining the same relation “relative,”
then the resultant definition of “in-law relative” will not be
affected. These two requirements motivate the two parts of
the Principle of Stratification (below).

The same motivation (1) can be given in terms of our
paradigm of proofs by limited proof rules. For example,
since “relative” is only used in P,, not defined, there is no
proof, using only modus ponens and A -introduction, of any
assertion about “relative” which involves (non-trivially) any
fact about “in-law relative.” Hence P, should have no effect
on what is inferred about “relative.”

This notion is captured strongly by the Principle of
Stratification below. The principle is motivated by the
stratified semantics for logic programming [ CH85, VG386,
ABWS88, Lif88, Prz88], motivated strongly enough that we
reuse the word “stratification.” The principle is also
motivated by an example of van Gelder, which we describe
below. As in the stratified semantics, it is natural to look at
a program as being built up out of many layers, or strata.
We shall define the notion only for programs with two
layers; it is trivial to generate more layers here by further
subdivision.

DEefINITION 5.1.  An ordered pair P,, P, of programs is
a stratified pair of programs if no IDB relation of P, appears
atallin P,. If P, P, is a stratified pair of programs, P, and
P, are strata of the program P, UP,. An EDB for a
stratified pair P,, P, isan EDB for P, UP,.

DEerFINITION 5.2. A logic programming semantics S
obeys the Principle of Stratification for every stratified pair
of programs P, P, and every EDB & for the pair,

l. if e is a Z-instantiated literal of P, ; then semantics S
infers « from program P, and & if and only if it infers a from
program P, UP, and 2.
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2. If Q, is any other logic program over & with the same
EDB and IDB relations as P,, and if S infers the same
literals from Q, and ¢ as it does from P, and 2, then S
infers the same literals from Q, U P, and £ as it does from
P,uP,and Z.

ExampLE 5.1. The equality relation = is not normally
assumed to be one of the relations of an EDB. But the
program of Example 3.2 defines the intended interpretation
of both = and # in many standard logic programming
semantics, including the four semantics discussed in this
paper. Thus, if a semantics obeys the Principle of Stratifica-
tion, one may, without loss of generality, use = and # as
if they were an EDB relations.

THEOREM 5.1.  The three-valued program completion and
well- founded semantics satisfy the Principle of Stratification.

Proof. The two proofs are somewhat analogous; we
prove the harder, the result for the well-founded semantics:

1. Suppose P, P, is a stratified pair of programs, P' =
PUP,, and Z is an EDB for P, P,. Recall the inductive
operator wf used to construct the well-founded partial
model by transfinite induction. Use wf, to denote the
operator for program P (over EDB 2) and wf.. to denote
the operator for P’ (over £). Let .# be the set of instantiated
literals of P.

Observe that, for a € ., if p is a minimal forward proof of
« from negative hypotheses over P’, then, by definition of
P, P, being a stratified pair, only rules of P and literals in ¥
may appear in p. Thus p is also a minimal forward proof of
« from negative hypotheses over P.

Prove by transfinite induction that, for each ordinal #,
wfl, = wfl. N #. So assume the result for all v<#. Fora a
positive Z-instantiated literal of P,

for some forward proof p from
negative hypotheses over P
every hypothesis of pisin {J, ., wip

aewfh iff

iff for some forward proof p from
negative hypotheses over P’
every hypothesis of pisin {J, ., wfy,
ff  xewf]

—aewf] iff forevery forward proof p from
negative hypotheses over P

some hypothesis of p is false in {J, ., wip

iff for every forward proof p from
negative hypotheses over P’
some hypothesis of p is false in |}, ., wfy.

iff —aewfl.

2. Let P, P,, and Q be as in the statement of Principle
of Stratification. Let PP=PuUP,and Q' =Q U P,. Let Z be

an EDB for P'—and hence also an EDB for Q'. We have by
the assumptions plus part 1 that, for any Z-instantiated
literal « of P, « is inferred by the well-founded semantics
from P’ and £ if and only if a is inferred by the well-founded
semantics from Q' and 2. Thus it is only necessary to prove
the result for the IDB literals of P,. The proof matches the
motivation: P, uses the relations defined in P or Q. In any
proof, or purported proof, of a literal of P, which incor-
porates subproofs, or purported proofs, of literals of P, it is
possible to replace the subproofs with subproofs over Q.
This “cutting and pasting” of proofs is the heart of the proof
below.

Suppose « is a Z-instantiated positive IDB literal of P,
and suppose pp ts a mimimal forward proof of « from
negative hypotheses over P’ and 2. Furthermore, suppose
no hypothesis of pp is inferred false by the well-founded
semantics over P and Z.

Suppose f is a positive Z-instantiated IDB literal of P
which is a step of p,. Note that the well-founded semantics
cannot infer 1§ over P and 2, since some subsequence p;
of pp is a forward proof of § from negative hypotheses over
P, where no hypothesis has been inferred false by the
well-founded semantics over P and 2. Similarly, if every
hypothesis of p, is inferred true by the well-founded seman-
tics over P and %, then the well-founded semantics also
infers f.

Construct a minimal forward proof p, of « from negative
hypotheses over Q' and Z, by “cutting and pasting” forward
proofs, as follows:

(a)

Remove from pp each step which is an instance of
a rule of P.

{b) For each positive Z-instantiated IDB literal § of
P which is a step of p,, determine whether the
well-founded semantics over P and Z infers §. If
f is inferred, then the well-founded semantics also
infers f over Q and 2. So there is a forward proof
pj of B over Q, where each hypothesis is inferred
by the well-founded semantics over Q and 2.
Insert any such proof p, ito p, immediately in
front of step .

If § 1s not inferred true, then, by the remark
above, at least it is not inferred false. Hence it is
also not inferred false by the well-founded seman-
tics over Q and 2. So there is a forward proof p,
of f# over Q where no hypothesis is inferred false
by the well-founded semantics over Q and 2.
Insert any such proof pj into p, immediately in
front of step §.

The result of this “cutting and pasting” is a
forward proof of a from negative hypotheses over
Q and %. Some subsequence of it is hence a mini-
mal forward proof,of « from negative hypotheses
over Q and . Some subsequence of it is hence a
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minimal forward proof of « from negative
hypotheses over Q and 2. Pick one such minimal
forward proof and call it p,.

Similarly, given such a forward proof p, over Q and 2,
define a forward proof p, over P and 2. Now prove, by
transfinite induction on #, that

wil. cwfg and wij, cwig.
We prove the first; the second is analogous. Assume that
U, <, Wi cwig.

For positive IDB literal « of P, suppose that « € wf},. So
there is a forward proof pp of « from negative hypotheses
over P, all of whose hypotheses are in {J, _, (wfp.)". Then
Pqis aforward proof of « from negative hypotheses over Q’,
and all of its hypothesis are in either wfJ or U, _, wf}.
Hence a € wig..

Suppose xewfl. We must show that —xewfy.
Suppose not. Then there is a forward proof p, of «
from negative hypotheses over Q and 2, none of whose
hypotheses are false in wfg.. Construct proof pp as above.
Its hypotheses are all either (1) negative literals of % not
inferred false by the well-founded semantics over Q and 2,
and thus over P and Z, or (2) negative literals of pq. Since,
by inductive hypothesis, U, ., wf} cwfg., none of the
negative literals of pp are false in {J, ., wf}.. This con-
tradicts the assumption that —a e wf}.. |

v<n$n

ExaMpPLE 5.2. The two-valued program completion and
stable semantics do not satisfy the Principle of Stratifica-
tion. We give three examples that work for both semantics.
For simplicity of presentation, we use propositional logic
examples.

1. Let P, be {a« —b} and P, be {c¢ < —1c}. The com-
pletion and stable completion of P, are both {a < b,
b « false}. From P, both semantics infer {a, —b}.

The completion and stable completion of P, P, are
both

{a e b, b false, c &> T}

This completion is inconsistent; i.e., it has no two-valued
model. Hence from P, UP, both semantics infer {a, Ta,
b, 71b, ¢, ¢} This violates the first part of the Principle of
Stratification.

2. This is an example of Van Gelder [ VGRS91 ], broken
into two pieces:

P,={a =bbe Da}, P,={p<p, p Ta}.

The completion and stable completion of P, are both
{a < —b, b Ta}, which has two models, {a, b} and

{—a, b}. So from P, the two semantics infer nothing. But
the completion and stable completion of P, U P, are

{ae —b, b ma, po —p v Tal,

which has a unique model, {a, —1b, p}. Essentially, the rule
p « —p forces p to be true in all two-valued models without
giving any way to make a forward proof of p from negative
hypotheses. Hence —a must be true in any model of the
completion in order for there be a forward proof of p.
So from P, U P, both semantics infer { —a, b, p}. This is
a counterexample to the first part of the Principle of
Stratification. It gives an abductive inference, which does
not match the modus ponens-only paradigm at the root of
some views of logic programming.

3. The two-valued program completion semantics and
the stable semantics also do not obey the second part of the
Principle of Stratification. Let

P={a« b b a, c— d d ¢}
Q={a4— —d,d a,c— b, b« —bc}

P,={e«—a, e« b}

From P and Q the two semantics both infer noting. But
from P U P, they both infer e, while from Q u P, they both
infer noting.

This example shows the second half of the Principle of
Stratification to be, in part, a requirement of constructivity.
Here the two-valued program completion semantics and the
stable semantics “infer” a v b from P, and that gives e from
P, by reasoning by cases. The three-valued semantics never
“infer” such a disjunction unless they infer one of the dis-
junctis; in this they resemble more constructive logics.
In ordinary logic such constructivity is a controversial
property of, for example, intuitionistic logic. In this case it
is, of course, arguable whether the constructivity is a bug or
a feature, but 1t is our opinion that some sort of construc-
tivity is appropriate to be consistent with the limitation of
proof rules (to modus ponens and A -introduction in our dis-
cussion) frequently made in negation-as-failure paradigms.

This constructivity in the second part of the Principle of
Stratification is an artifact of the definition of a semantics.
We defined a semantics to assign a set of ground literals to
a program, not, for example, a set of sentances or a set of
two-valued models. Obviously, one could also consider the
Principle of Stratification under such variants. Also, we find
it reasonable that one might require only the first part of the
Principle of Stratification of a programming language
semantics. Elsewhere [ Sch92] we have referred to the first
requirement of the Principle of Stratification alone as the
Weak Principle of Stratification. There we also suggested
a logic programming semantics which obeys the weak
principle but not the entire Principle of Stratification.
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THEOREM 5.2. The wunique stable model semantics
satisfies the principle of stratification, in the following sense :

1. Suppose P, P, is a stratified pair programs and, over
an EDB 2, both P, and P, U P, have unique stable models. If
ais a &-instantiated 1D B literal of P, then the unique stable
model semantics infers o from program P and < if and only
if it infers o from program P, U P, and &.

2. Suppose P\, Q| are logic programs with the same EDB
and IDB relations, and P |, P, is a stratified pair of programs.
Suppose further that P,, Q, and P, P, all have unique
stable models over EDB & and that the stable models for P,
and for Q. are the same. Then Q, U P, also has a unique
stable model over &, and the stable model is the same as the
unique stable for P, U P, over &.

Proof. 1. Suppose P,, P, is a stratified pair and & is
an EDB for the pair. For each positive Z-instantiated « of
P,, the definition of « in the stable completion of P, is the
same as the definition of « in the stable completion of
P, u P,. Hence the restriction of a stable model /of P, U P,
to the literals of P, is a stable model of P,. So if I is a stable
model of P, u P, over &, and if J is the unique stable model
of P, over Z, then J must be the restriction of / to the literals
of P,.

2. We omit the proof of the second half. The proof is
rather similar to the proof of the second half of the Principle
of Stratification for the well-founded semantics.

The method of Example 5.1 can be used to define = in the
stable and two-valued program completion semantics,
despite the fact that these semantics do not satisfy the Prin-
ciple of Stratification. This is due to the fact that, for each
EDB %, there is a unique model of the completion and
stable completion of the rule defining = .

5.2. Uniform Translation over Strata

The results of Subsection 4.3 on the expressive power of
logic programming semantics over infinite non-Herbrand
EDBs seem far afield from the oridinary con-cerns of logic
programming. Here, using the notion of stratified pairs of
programs, we use them to prove results concerning logic
programming over infinite Herbrand universes. The results
concern translations between two different semantics.

Over Herbrand universes we have shown that the three-
valued program completion and well-founded semantics
have equal expressive power. That is, given a logic program
P defining a relation r on an Herbrand universe & in one of
the semantics, one can construct a logic program P’ defining
the same relation r on 2 in the other. Think of P’ as a trans-
lation of P. Now suppose one starts with a stratified pair
P,,P,. Is it possible to do the translation so that P, is
used to construct P, P, is used to construct P,, and in
transiating P, we never need to look to see what P, is—and
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similarly, in translating P,, we never need to look at what
P, is? We shall say a translation where one can translate one
stratum at a time is uniform in the strata. The intuition for
the Principle of Stratification suggests that each stratum is
an independent module. We are asking here for a transia-
tion which respects this independence, rather like requiring
a compiler to be able to compile separate modules
separately. We propose this as necessary for the translation
to be considered “natural.”

DeriniTION 53, Let S, 8" be two logic programming
semantics. An Herbrand translation function from S to S' is
a function mapping each program P to a program P’, built
from the same constant, function, and relation symbols as P
plus possibly extra relation symbols, where, if U is the
Herbrand universe for P, for any U-instantiated literal
o of P, semantics S infers a from P and U if and only if
semantics S’ infers a from P’ and U.

Theorem 4.4 implies that there are Herbrand translations
functions from each of the three-valued program comple-
tion semantics, the two-valued program completions
semantics, the well-founded semantics, and the stable
semantics to each of the others, for all programs containing
at least one constant symbol and one function symbol.
(The translatability is, in fact, trivial for programs with no
function symbols.)

DerFINITION 54. An Herbrand translation function,
mapping program each program P to a program P’ trans-
lates uniformly by strata if the following holds: Suppose
P,, P, is a stratified pair of logic programs and suppose that
each function or constant symbol] appearing in P, also
appears in P,."” Then (P, UP,) =P, UP,.

THEOREM 5.3. 1. There is an Herbrand translation
Sfunction from the three-valued program completion semantics
to be well-founded semantics that translates uniformly by
strata.

2. There is no Herbrand translation function from the
well- founded semantics to the three-valued program comple-
tion semantics that translates uniformly by strata.

Proof. 1.
3.10 suffices.

2. Choose P, to have an IDB relation, Edge, so that, for
its natural Herbrand universe, it defines the graph 4* of
Example 4.2. (Such a P, is easy to construct.) Then suppose
that P, is the program of Theorem 4.6. In the well-founded
semantics, tc obtains its intended meaning. But since %* is
recursively saturated, no program with just the EDB rela-
tion Edge can define the intended interpretation of tc in the

The double-negative construction of Theorem

'7 This is just a technicality; otherwise the Herbrand universes for the
two programs would be different, and the statement of the Principle of
Stratification would not apply.
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three-valued program completion semantics. Hence the
translation of P, must use one of the original functions of
the Herbrand universe (or some symbol of P, other than
Edge), none of which appear in P,. So in translating P, one
must look back at P, to see which function symbols
appeared init. |

These results can be interpreted to mean that, although
the three-valued program completion semantics and the
well-founded semantics have equivalent expressive power
over infinite Herbrand models, in this notion of uniform
translatability, the well-founded semantics 1is more
expressive in natural ways.'®
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