# On the Computation of Minimal Polynomials 

David R. Richman<br>Department of Mathematics and Statistics, University of South Carolina, Columbia, South Carolina 29208

Communicated by David Buchsbaum
Received February 7, 1984


#### Abstract

Let $K$ be a field and let $f$ and $g$ be non-constant elements of $K[T]$. Assume that $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)$ is not divisible by the characteristic of $K$. This paper describes an algorithm to compute the polynomial $p(X, Y)$ of minimal degree such that $p(f, g)=0$. Using ideas needed to justify the algorithm, a new proof is given of the fact that if $K[f, g]=K[T]$, then either $\operatorname{deg} g$ divides $\operatorname{deg} f$ or $\operatorname{deg} f$ divides $\operatorname{deg} g$. (C) 1986 Academic Press, Jnc.


## 1. Introduction

Let $f$ and $g$ be non-constant polynomials in one variable, and let $p(X, Y)$ be the polynomial of minimal degree such that $p(f, g)=0$. In [PR] an algorithm to compute $p(X, Y)$ is described. The authors remark without proof that the algorithm simplifies considerably when the characteristic of the scalar field does not divide the greatest common divisor of $\operatorname{deg} f$ and $\operatorname{deg} g$. The main goal of this paper is to explain this simplified algorithm. Using the principles involved in justifying the algorithm, a new proof is given of the following result.

Theorem A. Let $f, g \in K[T]-\{0\}$. Assume that the characteristic of $K$ does not divide $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)$. If $K[f, g]$ equals $K[T]$ then either $\operatorname{deg} f$ divides $\operatorname{deg} g$ or $\operatorname{deg} g$ divides $\operatorname{deg} f$.

This result, in the case that $K$ is an algebraically closed field of characteristic zero, first appears in [S], but the proof is incorrect. The first correct proof of Theorem A appears in [AM2] and a simplification of the proof can be found in [A] and in [M]. This paper presents a proof of Theorem A which differs from the previous ones in that it does not involve any Puiseux expansions.

Section 2 describes results which are needed to justify the minimal polynomial algorithm. This section also contains a proof of Theorem A.

Section 3 describes two algorithms to compute the minimal polynomial $p(X, Y)$, assuming that the characteristic of $K$ does not divide $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)$. It also describes algorithms to compute generators for the semigroup

$$
\{\operatorname{deg} y: y \in K[f, g], y \neq 0\} .
$$

Abhyankar has a somewhat different algorithm to compute these generators, based on ideas found in [A].

## 2. Some Algebraic Results

Let $N$ denote the degree of the field extension $K(f, g) / K(g)$. It is assumed thoughout this section that $N>1$. Let $d$ be the greatest common divisor of $\operatorname{deg} f$ and $\operatorname{deg} g$. The following is the main result of this section.
(*) Assume that the characteristic of $K$ does not divide deg $g$. There exists elements $h_{1}, \ldots, h_{N-1}$ of $K[T]$ such that
(i) for each $i, h_{i} \in f^{i}+K[g] f^{i-1}+\cdots+K[g]$, and
(ii) the numbers $0, \operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{N-1}$ are pairwise incongruent mod$\operatorname{deg} g$.

Proposition 1. Assume that (*) is true. If the characteristic of $K$ does not divide $d$ and if $K[f, g]$ contains an element of degree $d$, then either $\operatorname{deg} f$ divides $\operatorname{deg} g$ or $\operatorname{deg} g$ divides $\operatorname{deg} f$.

Proof. By interchanging $f$ and $g$ if necessary, we assume that the characteristic of $K$ does not divide deg $g$. Let $h_{1}, \ldots, h_{N-1}$ be polynomials satisfying the conditions of (*). Definc $h_{0}=1$. One can easily show by induction on $j$ that the space $K[g]+K[g] f+\cdots+K[g] f^{j}$ is generated as a $K[g]$ module by the elements $h_{0}, \ldots, h_{j}$, whenever $0 \leqslant j<N$. Hence, if $w$ is a non-zero element of the space

$$
K[g]+\cdots+K[g] f^{j}
$$

there exists elements $c_{0}, \ldots, c_{j}$ in $K[g]$ such that

$$
w=c_{0} h_{0}+\cdots+c_{j} h_{j}
$$

Combining this equation with the fact that the numbers $\operatorname{deg} h_{0}, \ldots, \operatorname{deg} h_{j}$
are pairwise incongruent mod $\operatorname{deg} g$, one concludes that for some subscript $i, \operatorname{deg} w$ equals $\operatorname{deg} c_{i} h_{i}$. Hence there are non-negative integers $s, i$ such that

$$
\begin{equation*}
\operatorname{deg} w=\operatorname{deg} g^{s} h_{i}, \quad 0 \leqslant i \leqslant j . \tag{1}
\end{equation*}
$$

Define $e=(\operatorname{deg} g) / d$. Observe that the numbers

$$
0, \operatorname{deg} f, \ldots,(e-1) \operatorname{deg} f
$$

are pairwise incongruent mod deg $g$. Hence any non-zero element of the space $K[g]+\cdots+K[g] f^{e-1}$ has the same degree as some element of

$$
K[g] \cup \cdots \cup K[g] f^{e-1} .
$$

In particular, if $0 \leqslant j<e$ there exist non-negative integers $p, q$ such that

$$
\begin{equation*}
\operatorname{deg} h_{j}=\operatorname{deg} f^{p} g^{q} . \tag{2}
\end{equation*}
$$

Since $\operatorname{deg} f / d$ and $e$ and relatively prime, there exist integers $m$ and $n$ such that

$$
(m)(\operatorname{deg} f) / d+n e=1 .
$$

One may furthermore choose $m$ so that

$$
0 \leqslant m<e ;
$$

we assume that $m$ satisfies these inequalities. Observe that

$$
\begin{equation*}
m \operatorname{deg} f \equiv d \bmod \operatorname{deg} g . \tag{3}
\end{equation*}
$$

Suppose that $w$ is an element of $K[f, g]$ of degree $d$. Since

$$
K[f, g]=K[g]+K[g] f+\cdots+K[g] f^{N-1}
$$

Eq. (1) implies that there are non-negative integers $s, J$ such that

$$
\begin{equation*}
d=\operatorname{deg} g^{s} h_{J} . \tag{4}
\end{equation*}
$$

This equation and Eq. (3) imply that

$$
\begin{equation*}
m \operatorname{deg} f \equiv \operatorname{deg} h_{J} \bmod \operatorname{deg} g . \tag{5}
\end{equation*}
$$

Equation (1) implies that there is a subscript $i$ for which

$$
\begin{equation*}
\operatorname{deg} f^{m} \equiv \operatorname{deg} h_{i} \bmod \operatorname{deg} g, \tag{6}
\end{equation*}
$$

where $0 \leqslant i \leqslant m$. Congruences (5) and (6) imply that deg $h_{J}$ is congruent to $\operatorname{deg} h_{i} \bmod \operatorname{deg} g$; hence $i=J$. Therefore $J \leqslant m<e$. Equations (4) and (2) imply that

$$
d=\operatorname{deg} g^{q+s} f^{p}
$$

Since $q+s$ and $p$ are non-negative integers, the preceding equation implies that $d \geqslant \min (\operatorname{deg} f, \operatorname{deg} g)$. On the other hand, $d$ divides both $\operatorname{deg} f$ and $\operatorname{deg} g$, so $d=\min (\operatorname{deg} f, \operatorname{deg} g)$. Therefore either $\operatorname{deg} f$ divides $\operatorname{deg} g$ or $\operatorname{dcg} g$ divides $\operatorname{deg} f$. This finishes the proof.

Observe that Theorem $A$ is an immediate consequence of (*) and Proposition 1. The rest of this section is devoted to proving (*).

Definition. Let $S$ be a subset of $K[T]-\{0\}$ whose elements have distinct degrees. If $h$ is an element of $K[T]$, define $R(h, S)$ as follows. Set $R(h, S)=h$ if $\operatorname{deg} h$ is different from the degree of any element of $S$. In general set

$$
R(h, S)=h-s_{1}-\cdots-s_{t}
$$

where $s_{1}, \ldots, s_{t}$ are scalar multiples of elements of $S$ such that

$$
\operatorname{deg} h>\operatorname{deg}\left(h-s_{1}\right)>\cdots>\operatorname{deg}\left(h-s_{1}-\cdots-s_{t}\right)
$$

and such that
$\operatorname{deg}\left(h-s_{1}-\cdots-s_{z}\right)$ is different from the degree of any element of $S$.

Observe that $R(h, S)=0$ if and only if $h$ lies in the span of $S$.
The following result is implicit in [PR, Sect. 4].

Proposition 2. There exist non-zero polynomials $h_{1}, \ldots, h_{N-1}$ such that
(i) for each subscript $i, h_{i} \in K[g] f^{i}+K[g] f^{i-1}+\cdots+K[g]$,
(ii) the numbers $0, \operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{N-1}$ are pairwise incongruent $\bmod \operatorname{deg} g$.

Proof. Set $S=\left\{g^{n}: n=0,1,2, \ldots\right\}$. Define $h_{1}=R(f, S)$. By definition of the function $R, \operatorname{deg} h_{1}$ is not equal to the degree of any element of $S$, so $\operatorname{deg} h_{1}$ is not divisible by $\operatorname{deg} g$.

Assume that $h_{1}, \ldots, h_{i}$ have been defined so that the properties of the Proposition hold. Define $h_{0}=1$ and set

$$
T=T_{i}=\left\{h_{t} g^{n}: 0 \leqslant t \leqslant i, 0 \leqslant n\right\}
$$

Define a sequence of elements $y_{0}, y_{1}, .$. in $K[g] f^{i+1}+K[g] f^{i}+\cdots+$ $K[g]$ by

$$
\begin{aligned}
y_{0} & =R\left(f^{i+1}, T\right) \\
y_{1} & =R\left(g f^{i+1}, T \cup\left\{y_{0}\right\}\right) \\
\quad & \vdots \\
y_{m} & =R\left(g^{m} f^{i+1}, T \cup\left\{y_{0}, y_{1}, \ldots, y_{m-1}\right\}\right)
\end{aligned}
$$

Observe that if $i+1<N$, the elements $y_{0}, y_{1}, \ldots$ are all non-zero. By definition of the function $R$, the degrees of the $y_{i}$ 's are distinct and, for each $i$, deg $y_{i}$ is different from the degree of any element of $T$.
For each integer $t$ satisfying $0 \leqslant t \leqslant i$, there are only finitely many nonnegative integers which are congruent to, but strictly less than, $\operatorname{deg} h_{t}$. Therefore, if $i+1<N$, there must exist a subscript $m$ for which $\operatorname{deg} y_{m}$ is not congruent mod deg $g$ to the degree of any element of $T$. Set $h_{i+1}=y_{m}$ and observe that the elements $h_{0}, \ldots, h_{i+1}$ have the desired properties. By induction this finishes the proof.

Proposition 2 implies that there exist elements $h_{1}, \ldots, h_{N-1}$ in $K(f, g)$ which satisfy the following conditions.
(**) (i) For each i, $h_{i} \in f^{i}+K(g) f^{i-1}+\cdots+K(g)$.
(ii) The numbers $0, \operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{N-1}$ are pairwise incongruent $\bmod \operatorname{deg} g$.
To establish (*) it suffices to find elements $h_{1}, \ldots, h_{N-1}$ which lie in $K[f, g]$ and which satisfy the condition (**). The following proposition gives a criterion for an element of $K(f, g)$ to lie in $K[f, g]$. This criterion was also used in the earlier proofs of Theorem A (cf. [A, pp. 265-270; AM1, pp. 42-49]); for the sake of keeping the exposition selfcontained, the proof is repeated here.

Proposition 3 (Abhyankar and Moh). Let e and $D$ be positive integers such that eD $\leqslant N$ and such that the characteristic of $K$ does not divide e. Let $h \in f^{D}+K(g) f^{D-1}+\cdots+K(g)$ and let $t \in f^{e D}+$ $K[g] f^{e D-1}+\cdots+K[g]$. Assume that $h^{e}-t \in K(g)+K(g) f+\cdots+$ $K(g) f^{e D-D-1}$; then $h \in K[f, g]$.

Proof. Let $H(Y)$ and $T(Y)$ be the monic elements of $K(g)[Y]$ such that $H(f)=h, T(f)=t, \operatorname{deg} H=D$, and $\operatorname{deg} T=e D$. Since $e D \leqslant N, H(Y)$ and $T(Y)$ are uniquely determined by $h$ and by $t$, respectively; the coefficients of $T(Y)$ must lie in $K[g]$. If $j$ is an integer satisfying $e D \geqslant j \geqslant e D-D$, the coefficient of $Y^{j}$ in $H^{e}(Y)$ is the same as the coefficient of $Y^{j}$ in $T(Y)$. It follows that the coefficients of $H(Y)$ are expressible as polynomial functions
of the coefficients of $T(Y)$. Therefore they lie in $K[g]$. Therefore $h=H(f)$ lies in $K[f, g]$.

In order to apply Proposition 3 it is useful to focus on certain divisors of $N$. The next definition and proposition identify such divisors.

Definition. Let $h_{1}, \ldots, h_{N-1}$ be elements of $K(f, g)$ which possess properties (**). Set $h_{0}=g$. Define the gcd-decreasing sequence of $h_{1}, \ldots, h_{N-1}$, denoted $c(1), \ldots, c(k)$, as follows.

Set $c(1)=1$.
Suppose that $c(1), \ldots, c(t)$ have been defined. If for every subscript $i$ one has

$$
\operatorname{deg} h_{i} \in \mathbb{Z} \operatorname{deg} h_{0}+\mathbb{Z} \operatorname{deg} h_{1}+\cdots+\mathbb{Z} \operatorname{deg} h_{c(t)}
$$

then $c(t)$ is the last element in the gcd-decreasing sequence. Otherwise let $i$ be the smallest subscript such that $i>c(t)$ and such that

$$
\operatorname{deg} h_{i} \notin \mathbb{Z} \operatorname{deg} h_{0}+\cdots+\mathbb{Z} \operatorname{deg} h_{i-1}
$$

define $c(t+1)=i$.
Note that a positive integer $c$ lies in the gcd-decreasing sequence if and only if the space $f^{c}+K(g) f^{c-1}+\cdots+K(g)$ contains an element whose degree does not lie in the additive group generated by the set

$$
\left\{\operatorname{deg} y: y \in K(g)+K(g) f+\cdots+K(g) f^{c-1}\right\}
$$

Thus the gcd-decreasing sequence depends only on the pair $(f, g)$ and not on the choice of the sequence $h_{1}, \ldots, h_{N-1}$.

For the rest of this section $h_{1}, \ldots, h_{N-1}$ will denote elements of $K(f, g)$ satisfying (**) and $c(1), \ldots, c(k)$ will denote the gcd-decreasing sequence of $h_{1}, \ldots, h_{N-1}$. Set $h_{0}=g$ and set $c(k+1)=N$.

Proposition 4. If $1 \leqslant t \leqslant k$, let $e=e_{t}$ be the smallest positive integer such that

$$
e \operatorname{deg} h_{c(t)} \in \mathbb{Z} \operatorname{deg} h_{0}+\cdots+\mathbb{Z} \operatorname{deg} h_{c(t)-1}
$$

then ec $(t)=c(t+1)$. In particular $c(t)$ divides $c(k+1)=N$ for all $t$.
Proof. Set

$$
B=B_{t}=\left\{h_{n} h_{c(t)}^{j}: 0 \leqslant n<c(t), 0 \leqslant j<e_{t}\right\} .
$$

Observe that the set $B$ contains one element from each of the sets

$$
\{g\}, f+K(g), \ldots, f^{e c(t)-1}+K(g) f^{e c(t)-2}+\cdots+K(g)
$$

Therefore the $K(g)$ span of $B$ is the set $K(g)+K(g) f+\cdots+K(g) f^{e c(t)-1}$. Furthermore the degrees of the elements of $B$ are pairwise incongruent $\bmod \operatorname{deg} g$. Therefore, for any non-zero element $w \in K(g)+\cdots+$ $K(g) f^{e c(t)-1}, \operatorname{deg} w$ is congruent $\bmod \operatorname{deg} g$ to the degree of some element of $B$. In particular

$$
\operatorname{deg} h_{m} \in \mathbb{Z} \operatorname{deg} h_{0}+\cdots+\mathbb{Z} \operatorname{deg} h_{c(t)} \quad \text { when } \quad 0 \leqslant m<e c(t)
$$

On the other hand, by the definition of ged-decreasing sequence,

$$
\operatorname{deg} h_{c(t+1)} \notin \mathbb{Z} \operatorname{deg} h_{0}+\cdots+\mathbb{Z} \operatorname{deg} h_{c(t)} \quad \text { when } \quad t \leqslant k-1 .
$$

Therefore

$$
\begin{equation*}
e c(t) \leqslant c(t+1) \tag{7}
\end{equation*}
$$

when $t \leqslant k-1$. The elements of $B$ are linearly independent over $K(g)$ because their degrees are pairwise incongruent mod deg $g$. Therefore

$$
e c(t)=|B| \leqslant N
$$

this shows that (7) also holds when $t=k$.
It will be shown that $e c(t)=c(t+1)$ by induction on $t$.
Claim. Let $D=D_{t}$, be the additive group generated by the numbers $\operatorname{deg} h_{0}, \operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{c(t)}$. For any $d \in D$ there exists an element $b \in B$ such that $d \equiv \operatorname{deg} b \bmod \operatorname{deg} g$.

Let $\bar{D}$ denote the natural image of $D$ in $\mathbb{Z} / \operatorname{deg} g \mathbb{Z}$ and observe that $\left|\bar{D}_{t}\right|=e_{t} e_{t-1} \cdots e_{1}$. Furthermore $|B|=e_{t} c(t)$, so by applying the induction hypothesis repeatedly one gets $|B|=e_{1} e_{t-1} \cdots e_{1}$. Thus $|B|=|\bar{D}|$. The claim is an immediate consequence of this and of the fact that the degrees of the elements of $B$ are pairwise incongruent $\bmod \operatorname{deg} g$.

Set $n=e c(t)$ and suppose that $n<N$. Since by (**), the numbers $\operatorname{deg} h_{0}, \ldots, \operatorname{deg} h_{n}$ are pairwise incongruent $\bmod \operatorname{deg} g, \operatorname{deg} h_{n}$ is different from the degree of any element in the $K(g)$ span of $h_{0}, \ldots, h_{n-1}$. Therefore $\operatorname{deg} h_{n}$ is different from the degree of any element of $B$, so by the Claim, $\operatorname{deg} h_{n}$ does not lie in $D_{t}$. Hence by the definition of gcd-decreasing sequence, $\operatorname{deg} h_{n}$ does not lie in the additive group generated by $\operatorname{deg} h_{0}, \ldots, \operatorname{deg} h_{c(t+1)-1}$. Therefore $n \geqslant c(t+1)$. This inequality and (7) imply that $e c(t)=c(t+1)$ whenever $e c(t)<N$. If $e c(t) \geqslant N$ then by (7) $t=k$ and $e c(t)=N=c(k+1)$. This finishes the proof.

Proposition 5. Define $e=e_{t}$ as in Proposition 4. Set $h=h_{c(t)}$ and set $h_{N}=0$. There exist elements $w_{1}, \ldots, w_{e}$ in $K(g)+K(g) f+\cdots+K(g) f^{c(t)-1}$ such that

$$
\begin{equation*}
h^{e}-h_{c(t+1)}=w_{1} h^{e-1}+w_{2} h^{e-2}+\cdots+w_{e} \tag{8}
\end{equation*}
$$

The elements $w_{1}, \ldots, w_{e}$ are uniquely determined by (8). Furthermore, $\operatorname{deg} w_{1}<\operatorname{deg} h$.

Proof. Set $B=\left\{h_{n} h^{j}: 0 \leqslant n<c(t), 0 \leqslant j<e_{t}\right\}$. Since the $K(g)$ span of $B$ is the space $K(g)+K(g) f+\cdots+K(g) f^{e c(t)-1}$ and since, by Proposition 4, ec(t) $=c(t+1)$, it is possible to express $h^{e}-h_{c(t+1)}$ as a $K(g)$ linear combination of the elements of $B$. Thus one can write

$$
\begin{equation*}
h^{e}-h_{c(t+1)}=a_{1}(g) b_{1}+\cdots+a_{s}(g) b_{s} \tag{9}
\end{equation*}
$$

where $b_{1}, \ldots, b_{s}$ are distinct elements of $B$. Equation (9) is equivalent to (8). The elements $w_{1}, \ldots, w_{e}$ are uniquely determined because the elements of $B$ are linearly independent over $K(g)$.

Since the degrees of the elements of $B$ are pairwise incongruent $\bmod \operatorname{deg} g$, the non-zero elements in the sequence $a_{1}(g) b_{1}, \ldots, a_{s}(g) b_{s}$ have distinct degrees. Therefore, for some subscript $I$,

$$
\begin{equation*}
\operatorname{deg} a_{I}(g) b_{I}=\operatorname{deg}\left(h^{e}-h_{c(t+1)}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{deg} a_{i}(g) b_{i}<\operatorname{deg}\left(h^{e}-h_{c(t+1)}\right) \quad \text { for all } i \neq I \tag{11}
\end{equation*}
$$

Observe that $\operatorname{deg} a_{I}(g) b_{I}$ and $\operatorname{deg} h^{e}$ lie in the set $\mathbb{Z} \operatorname{deg} h_{0}+\cdots+$ $\mathbb{Z} \operatorname{deg} h_{c(t)}$, whereas $\operatorname{deg} h_{c(t+1)}$ does not. From this and from (10) one concludes that $\operatorname{deg} h_{c(t+1)}<\operatorname{deg} h^{e}$, so $\operatorname{deg}\left(h^{e}-h_{c(t+1)}\right)=e \operatorname{deg} h$. Therefore (11) implies that

$$
\begin{equation*}
\operatorname{deg} a_{i}(g) b_{i}<e \operatorname{deg} h \tag{12}
\end{equation*}
$$

whenever $\operatorname{deg} b_{i}$ is not congruent to $e \operatorname{deg} h \bmod \operatorname{deg} g$. Therefore (12) holds whenever $\operatorname{deg} b_{i}$ does not lie in the set $\mathbb{Z} \operatorname{deg} h_{0}+\cdots+\mathbb{Z} \operatorname{deg} h_{c(t)-1}$. By the definition of $e$ and of gcd-decreasing sequence, $\operatorname{deg} h_{n} h^{e-1} \notin$ $\mathbb{Z} \operatorname{deg} h_{0}+\cdots+\mathbb{Z} \operatorname{deg} h_{c(t)-1}$ when $0 \leqslant n<c(t)$. Therefore $\operatorname{deg} w_{1} h^{e-1}<$ $e \operatorname{deg} h$, so $\operatorname{deg} w_{1}<\operatorname{deg} h$. This finishes the proof.

The next proposition is a special case of a result which can be found in [A, pp. 268-270] and in [AM1, pp. 42-49].

Proposition 6. Fix an integer $t$ such that $1 \leqslant t \leqslant k$. Let $h=h_{c(t)}$ and let $e=e_{t}$ as in Proposition 4. Assume that the characteristic of $K$ does not divide $e$ and set $\bar{h}=h-(1 / e) w_{1}$, where $w_{1}$ is as in (8). Write

$$
\bar{h}^{e}-h_{c(t+1)}=y_{1} \bar{h}^{e-1}+\cdots+y_{e}
$$

where each $y_{i}$ lies in $K(g)+\cdots+K(g) f^{c(t)-1}$. Either $y_{1}=0$ or $\operatorname{deg} y_{1}<\operatorname{deg} w_{1}$.

Proof. Observe that

$$
\begin{aligned}
\bar{h}^{e}-h_{c(t+1)} & =\left(h-(1 / e) w_{1}\right)^{e}-h_{c(t+1)} \\
& =w_{2} h^{e-2}+\cdots+w_{e}+R,
\end{aligned}
$$

where $\operatorname{deg} R<\operatorname{deg} w_{1} h^{e-1}$ when $w_{1} \neq 0$. There exists elements $\bar{w}_{2}, \ldots, \bar{w}_{e}$, $z_{1}, \ldots, z_{e}$ in $K(g)+\cdots+K(g) f^{c(t)-1}$ such that

$$
w_{2} h^{e-2}+\cdots+w_{e}=\bar{w}_{2} h^{e-2}+\cdots+\bar{w}_{e}
$$

and

$$
R=z_{1} \bar{h}^{e-1}+z_{2} \bar{h}^{e-2}+\cdots+z_{e}
$$

Note that $z_{1}$ must equal $y_{1}$. By Proposition 5, $\operatorname{deg} h=\operatorname{deg} h$, so the numbers $0, \operatorname{deg} \hbar, \ldots,(e-1) \operatorname{deg} \hbar$ are pairwise incongruent $\bmod \mathbb{Z} \operatorname{deg} h_{0}+$ $\cdots+\mathbb{Z} \operatorname{deg} h_{c(t)-1}$. Therefore the non-zero terms in the sequence $z_{1} \bar{h}^{e-1}$, $z_{2} \bar{h}^{e-2}, \ldots, z_{e}$ have distinct degrees, so $\operatorname{deg} R \geqslant \operatorname{deg} z_{i} \bar{h}^{--i}$ for all $i$. In particular

$$
\operatorname{deg} z_{1} \bar{h}^{e-1} \leqslant \operatorname{deg} R<\operatorname{deg} w_{1} h^{e-1} \quad \text { when } w_{1} \neq 0 .
$$

Since $\operatorname{deg} \bar{h}=\operatorname{deg} h$, this inequality implies that $\operatorname{deg} z_{1}<\operatorname{deg} w_{1}$ when $w_{1} \neq 0$. When $w_{1}=0, h=\hbar$ and $y_{1}=w_{1}=0$. This finishes the proof.

It is now possible to present a proof of (*).
Proposition 7 Assume that the characteristic of $K$ does not divide deg $g$. There exists a sequence $h_{1}, \ldots, h_{N-1}$ satisfying (**) such that $h_{i} \in f^{i}+$ $K[g] f^{i-1}+\cdots+K[g]$ for all $i$.
Proof. Since $K(f, g)$ is a subfield of $K(T)$ and since $[K(T): K(g)]=$ $\operatorname{deg} g, N$ divides deg $g$. Therefore the characteristic of $K$ does not divide $N$. Hence, by Proposition 4, it does not divide $e$, for any $t$.

By successively applying Proposition 6 one can construct a sequence $H_{1}, \ldots, H_{N-1}$ satisfying (**) such that

$$
\begin{equation*}
H_{c(t)}^{e}-H_{c(t+1)} \in K(g)+K(g) f+\cdots+K(g) f^{e c(t)-c(t)-1} \tag{13}
\end{equation*}
$$

for all $t$; here $e$ denotes $c(t+1) / c(t)$.
Recall (see Proposition 5) that $H_{c(k+1)}$ is defined to be 0 . If $p(Y)$ is the monic minimal polynomial of $f$ over $K(g)$, then $p(f)=H_{c(k+1)}$ and the coefficients of $p(Y)$ lie in $K[g]$. Therefore, applying Proposition 3 with $h=H_{c(k)}$ and with $t=p(f)$, one concludes that $H_{c(k)}$ lies in $K[f, g]$.

Assume that $H_{c(t+1)}$ lies in $K[f, g]$. Relation (13) and Proposition 3 imply that $H_{c(t)}$ lies in $K[f, g]$. This shows by induction that $H_{c(t)}$ lies in
$K[f, g]$ for all $t$. A suitable ordering of the set $\left\{H_{c(1)}^{j_{1}} \cdots H_{c(k)}^{j_{k}}: 0 \leqslant j_{s}<e_{s}\right.$ for all $s\}$ yields a sequence $h_{1}, \ldots, h_{N-1}$ having the desired properties.

Recall that $d$ denotes $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)$.
Proposition 8. Assume that the characteristic of $K$ does not divide $d$. There exist elements $h_{1}, \ldots, h_{N-1}$ such that
(i) for each $i, h_{i} \in f^{i}+K[g] f^{i-1}+\cdots+K[g]$, and
(ii) the numbers $0, \operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{N-1}$ are pairwise incongruent $\bmod \operatorname{deg} g$.

Proof. Let $M=[K(f, g): K(f)]$. If $M=1$ there is a polynomial $H(T)$ such that $g(T)=H(f(T))$, and the sequence of polynomials $f, f^{2}, \ldots, f^{(\operatorname{deg} H)-1}$ has the desired properties. Assume for the rest of the proof that $M>1$.

In the case that the characteristic of $K$ does not divide $\operatorname{deg} g$, Proposition 8 reduces to Proposition 7. Assume that the characteristic of $K$ divides $\operatorname{deg} g$. Since the characteristic of $K$ does not divide $d$, it does not divide $\operatorname{deg} f$. By Proposition 7 there is a sequence of polynomials $g_{1}, \ldots, g_{M-1}$ such that
(i) for each $i, g_{i}$ lies in $g^{i}+K[f] g^{i-1}+\cdots+K[f]$,
(ii) the numbers $0, \operatorname{deg} g_{1}, \ldots, \operatorname{deg} g_{M-1}$ are pairwise incongruent $\bmod \operatorname{deg} f$, and
(iii) if $\operatorname{deg} g$ is not divisible by $\operatorname{deg} f, g_{1}=g$.

Let $c(1), \ldots, c(k)$ denote the gcd-decreasing sequence of $g_{1}, \ldots, g_{M-1}$. Define $w_{0}=f$ and define $D_{j}$ to be the additive group generated by $\operatorname{deg} g_{0}, \operatorname{deg} g_{1}, \ldots, \operatorname{deg} g_{j}$. Let $c(k+1)=M$ and define $e$, to be the smallest positive integer such that $e_{t} \operatorname{deg} g_{c(t)}$ lies in $D_{c(t)-1}$. By Proposition 4, $e_{t} c(t)=c(t+1)$ when $1 \leqslant t \leqslant k$. Repeated applications of this equation imply that

$$
\begin{equation*}
c(t+1)=e_{t} e_{t-1} \cdots e_{1} \quad \text { when } \quad 1 \leqslant t \leqslant k \tag{15}
\end{equation*}
$$

Observe that

$$
\operatorname{deg} f=[K(T): K(f)]=[K(T): K(f, g)][K(f, g): K(f)]
$$

and

$$
\operatorname{deg} g=[K(T): K(g)]=[K(T): K(f, g)][K(f, g): K(g)] .
$$

Therefore

$$
\begin{equation*}
(\operatorname{deg} f) / M=(\operatorname{deg} g) / N \tag{16}
\end{equation*}
$$

Define

$$
\begin{aligned}
& B_{0}=\left\{f^{n}: n \geqslant 0\right\}, \\
& B_{1}=\left\{f^{n} g_{c(1)}^{j_{1}}: n \geqslant 0,0 \leqslant j_{1}<e_{1}\right\}, \\
& \vdots \\
& B_{k}=\left\{f^{n} g_{c(1)}^{j_{1}} g_{c(2)}^{j_{2}} \cdots g_{c(k)}^{j_{k}}: n \geqslant 0,0 \leqslant j_{i}<e_{i} \text { for all } i\right\} .
\end{aligned}
$$

The sequence $h_{1}, \ldots, h_{N-1}$ will be constructed by altering certain elements of $B_{k}$.

Let $t$ be an integer such that $1 \leqslant t \leqslant k$. Define $g_{M}=0$. By Proposition 5 there are distinct elements $b_{1}=b_{1}(t), \ldots, b_{v}=b_{v}(t)$ in $B_{t}$ and non-zero scalars $s_{1}=s_{1}(t), \ldots, s_{v}=s_{v}(t)$ such that

$$
\begin{equation*}
g_{c(t)}^{e_{t}}-g_{c(t+1)}=s_{1} b_{1}+\cdots+s_{v} b_{v} . \tag{17a}
\end{equation*}
$$

The definitions of $e_{1}, e_{2}, \ldots, e_{t}$ imply that the elements of $B_{t}$ have distinct degrees. Therefore

$$
\begin{equation*}
\operatorname{deg}\left(s_{1} b_{1}+\cdots+s_{v} b_{v}\right)=\max \left\{\operatorname{deg} b_{1}, \ldots, \operatorname{deg} b_{v}\right\} \tag{17b}
\end{equation*}
$$

Observe that the degrees of $g_{c(t)}^{e_{i}}, b_{1}, \ldots, b_{v}$ all lie in $D_{c t(t)}$. On the other hand, by the definition of gcd-decreasing sequence, either $g_{c(t+1)}=0$ or the degree of $g_{c(t+1)}$ does not lie in $D_{c(t)}$. These remarks and Eqs. (17a) and (17b) imply that

$$
\begin{equation*}
\operatorname{deg}\left(g_{c(t)}^{e_{t}}-g_{c(t+1)}\right)=\operatorname{deg} g_{c(t)}^{e_{t}}>\operatorname{deg} g_{c(t+1)} \tag{17c}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{t} \operatorname{deg} g_{c(t)}=\max \left\{\operatorname{deg} b_{1}, \ldots, \operatorname{deg} b_{v}\right\} . \tag{17d}
\end{equation*}
$$

Suppose that $\operatorname{deg} f$ does not divide $\operatorname{deg} g$. By property (iii) of the definition of $g_{1}, \ldots, g_{M-1}, g_{1}=g$. Therefore $B_{1}=\left\{f^{n} g^{j}: n \geqslant 0,0 \leqslant j<e_{1}\right\}$ and $e_{1}=(\operatorname{deg} f) / d$. Set

$$
q=(\operatorname{deg} g) /(\operatorname{deg} f)
$$

By Eq. (17c) there is a non-zero scalar $u$ such that

$$
\operatorname{deg}\left(g_{c(2)}-g^{e_{1}}-u f^{e_{19}}\right)<e_{1} \operatorname{deg} g=q e_{1} \operatorname{deg} f .
$$

This inequality, Eq. (17a), and the fact that the elements of $B_{1}$ have distinct
degrees imply that $g_{c(2)}-g^{e_{1}}-u f^{e_{19}}$ is a linear combination of elements in the set $\left\{f^{n} g^{j}: 0 \leqslant n<e_{1} q, 0 \leqslant j<e_{1}\right\}$. Therefore

$$
\begin{align*}
& \text { if } \operatorname{deg} f \text { does not divide } \operatorname{deg} g, g_{c(2)} \text { lies in } \\
& u f^{e_{19}}+K[g] f^{e_{19-1}+\cdots+K[g] .} \tag{18a}
\end{align*}
$$

Suppose now that $\operatorname{deg} f$ divides deg $g$. There is a polynomial $H(T)$ such that $g_{1}=g-H(f)$. Since $\operatorname{deg} f$ divides $\operatorname{deg} g$, since $\operatorname{deg} f$ does not divide $\operatorname{deg} g_{1}$ and since $g_{1}=g-H(f)$,

$$
\operatorname{deg} g_{1}<\operatorname{deg} g=\operatorname{deg} H(f)=\operatorname{deg} H(T) \operatorname{deg} f .
$$

Thus

> if $\operatorname{deg} f \operatorname{divides} \operatorname{deg} g, \operatorname{deg} g_{1}<\operatorname{deg} g$ and there is a polynomial $H(T)$ of degree $q$ such that $g_{1}=g-H(f)$.

Set $t_{0}=1$ if $\operatorname{deg} f$ divides deg $g$ and set $t_{0}=2$ otherwise. The next goal will be to show that, if $t_{0} \leqslant t \leqslant k$, there is a non-zero scalar $u_{t}$ such that $g_{c(t)}$ lies in $u_{t} f^{c(t) q}+K[g] f^{c(t) q-1}+\cdots+K[g]$. This relation will be established by induction on $t$. Statements (18a) and (18b) imply that the relation holds when $t=t_{0}$. Suppose now that $t_{0} \leqslant t<k$. By the induction hypothesis one may assume that there are non-zero scalars $u_{1}, \ldots, u_{t}$ such that
when $t_{0} \leqslant j \leqslant t, \quad g_{c(j)}$ lies in $u_{j} f^{c(j) q}+K[g] f^{c(j) q-1}+\cdots+K[g]$.
I want to show that this relation also holds when $j=t+1$. Suppose that $b_{r}$ is an element of $B_{t}$ which appears in Eq. (17a). Since $b_{r}$ lies in $B_{t}$ there are non-negative integers $n, j_{1} \ldots, j_{t}$ such that $j_{i}<e_{i}$ for all $i$ and such that

$$
\begin{equation*}
b_{r}=f^{n} g_{c(1)}^{i_{1}} g_{c(2)}^{i_{1}} \cdots g_{c(1)}^{i_{i}} . \tag{19b}
\end{equation*}
$$

Set

$$
m=n+j_{2} c(2) q+j_{3}(3) q+\cdots+j_{t} c(t) q
$$

if $\operatorname{deg} f$ does not divide $\operatorname{deg} g$ and set

$$
m=n+j_{1} c(1) q+j_{2} c(2) q+\cdots+j_{t} c(t) q
$$

if $\operatorname{deg} f$ divides $\operatorname{deg} g$.
Recall that $g_{1}=g$ if $\operatorname{deg} f$ does not divide $\operatorname{deg} g$ and that there is a polynomial $H(T)$ of degree $q$ such that $g_{1}=g-H(f)$ if deg $f$ divides deg $g$. These remarks and statements (19a) and (19b) imply that

$$
\begin{equation*}
b_{r} \text { lies in } K[g] f^{m}+K[g] f^{m-1}+\cdots+K[g] . \tag{19c}
\end{equation*}
$$

I want to show that $m<q c(t+1)$. Relations (17d) and (19b) imply that

$$
\begin{equation*}
n \operatorname{deg} f \leqslant e_{t} \operatorname{deg} g_{c(t)}-j_{1} \operatorname{deg} g_{c(1)}-\cdots-j_{t} \operatorname{deg} g_{c(t)} \tag{19d}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
m \leqslant & n+j_{1} c(1) q+j_{2} c(2) q+\cdots+j_{t} c(t) q \\
= & (1 / \operatorname{deg} f)\left(n \operatorname{deg} f+j_{1} c(1) \operatorname{deg} g+j_{2} c(2) \operatorname{deg} g\right. \\
& \left.+\cdots+j_{t} c(t) \operatorname{deg} g\right) \\
\leqslant & (1 / \operatorname{deg} f)\left[e_{t} \operatorname{deg} g_{c(t)}\right. \\
& +j_{1}\left(c(1) \operatorname{deg} g-\operatorname{deg} g_{c(1)}\right)+\cdots \\
& \left.\left.+j_{t}\left(c(t) \operatorname{deg} g-\operatorname{deg} g_{c(t)}\right)\right] \quad \text { (by }(19 \mathrm{~d})\right)
\end{aligned}
$$

$\leqslant(1 / \operatorname{deg} f)\left(e_{t} \operatorname{deg} g_{c(t)}\right.$
$+\left(e_{1}-1\right)\left(c(1) \operatorname{deg} g-\operatorname{deg} g_{c(1)}\right)$
$+\left(e_{2}-1\right)\left(c(2) \operatorname{deg} g-\operatorname{deg} g_{c(2)}\right)+\cdots$
$\left.+\left(e_{t}-1\right)\left(c(t) \operatorname{deg} g-\operatorname{deg} g_{c(t)}\right)\right) \quad\left(\right.$ since $j_{i}<e_{i}$ and by (17c) and (15), $\left.\operatorname{deg} g_{c(j)} \leqslant c(j) \operatorname{deg} w_{1} \leqslant c(j) \operatorname{deg} g\right)$
$=(1 / \operatorname{deg} f)\left(e_{t} \operatorname{deg} g_{c(t)}-\left(e_{t}-1\right) \operatorname{deg} g_{c(t)}\right.$

$$
\begin{aligned}
& -\left(e_{t-1}-1\right) \operatorname{deg} g_{c(t-1)}-\cdots \\
& \left.-\left(e_{1}-1\right) \operatorname{deg} g_{c(1)}\right)
\end{aligned}
$$

$$
+q\left(\left(e_{1}-1\right) c(1)+\left(e_{2}-1\right) c(2)+\cdots\right.
$$

$$
\left.+\left(e_{t}-1\right) c(t)\right)
$$

$$
=(1 / \operatorname{deg} f)\left(\left(\operatorname{deg} g_{c(t)}-e_{t-1} \operatorname{deg} g_{c(t-1)}\right)+\cdots\right.
$$

$$
\left.+\left(\operatorname{deg} g_{c(2)}-e_{1} \operatorname{deg} g_{1}\right)\right)+\left(\operatorname{deg} g_{1}\right) /(\operatorname{deg} f)
$$

$$
\begin{equation*}
+q(c(t+1)-1) \quad(b y(15 b)) \tag{19e}
\end{equation*}
$$

$\leqslant q c(t+1)$ with strict inequality when $t>1 \quad$ (by (17c)).

Note also that the definition of $g_{1}$ and relation (18b) imply that $\operatorname{deg} g_{1} \leqslant \operatorname{deg} g$ and $\operatorname{deg} g_{1}<\operatorname{deg} g$ when $\operatorname{deg} f$ divides $\operatorname{deg} g$. Therefore relation (19e) implies that $m<q c(t+1)$. This inequality and statement (19c) imply that the polynomials $b_{1}, \ldots, b_{v}$ all lie in $K[g] f^{q c(t+1)-1}+$ $K[g] f^{q c(t+1)-2}+\cdots+K[g]$. This observation and statements (15), (17a), and (19a) imply that $g_{c(t+1)}$ lies in $u_{t}^{e_{t}} f^{c(t+1) q}+$ $K[g] f^{c(t+1) q-1}+\cdots+K[g] f+K[g]$. This proves by induction that

$$
\begin{align*}
g_{c(t)} \text { lies in } u_{t} f^{c(t) q}+K[g] f^{c(t) q-1}+ & \cdots+K[g] \\
& \text { when } t_{0} \leqslant j \leqslant k . \tag{20}
\end{align*}
$$

If $\operatorname{deg} f$ does not divide $\operatorname{deg} g$, define

$$
S=\left\{f^{n} g_{c(2)}^{j_{2}} \cdots g_{c(k)}^{j_{k}}: 0 \leqslant n<e_{1} q, 0 \leqslant j_{i}<e_{i} \text { for all } i \geqslant 2\right\} .
$$

If $\operatorname{deg} f$ divides $\operatorname{deg} g$, define

$$
S=\left\{f^{n} g_{c(1)}^{j_{1}^{\prime}} \cdots g_{c(k)}^{i_{k}}: 0 \leqslant n<q, 0 \leqslant j_{i}<e_{i} \text { for all } i \geqslant 1\right\} .
$$

By Eqs. (15), (16), and (20) there are non-zero scalars $u_{1}, \ldots, u_{N-1}$ such that the set $S$ contains an element of $u_{i} f^{i}+K[g] f^{i-1}+\cdots+K[g] f+K[g]$ when $1 \leqslant i<N$. Note that the degrees of the elements of $S$ are pairwise incongruent $\bmod \operatorname{deg} g$. Therefore, by multiplying the elements of $S-\{1\}$ by suitable scalars, one obtains polynomials $h_{1}, \ldots, h_{N-1}$ having the desired properties.

## 3. Some Algorithms

As in the previous section, $f$ and $g$ denote non-constant elements of $K[T]$ and $N$ denotes [ $K(f, g): K(g)]$. It is assumed throughout this section that the characteristic of $K$ does not divide $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)$. If $n \geqslant 0$ we let $L_{n}$ denote the space $K[g]+\cdots+K[g] f^{n}$.
The goal of this section is to describe algorithms which solve the following problems:

1. If $0<n<N$, find an element $h_{n}$ in $f^{n}+L_{n-1}$ whose degree is incongruent $\bmod \operatorname{deg} g$ to the degree of any element of $L_{n-1}$.
2. Find semigroup generators for the set $\{\operatorname{deg} y: y \in K[f, g], y \neq 0\}$.
3. Compute the polynomial $p(X, Y) \in K[X, Y]$ of minimal degree such that $p(f, g)=0$.
4. Given $h \in K[T]$, determine if $h$ lies in $K[f, g]$.

Define a sequence $h_{0}, \ldots, h_{N-1}$ recursively as follows:
Set $h_{0}=1$.
Assume that $h_{0}, \ldots, h_{j}$ have been defined. Set $S_{j}=\left\{h_{i} g^{q}: 0 \leqslant i \leqslant j, q \geqslant 0\right\}$ and define

$$
h_{j+1}=R\left(f h_{j}, S_{j}\right) ;
$$

the function $R$ is defined in the previous section, just before Proposition 2.
An easy induction argument shows that $h_{n}$ lies in $f^{n}+L_{n-1}$ for all $n$.

Claim 1. If $0<n<N, \operatorname{deg} h_{n}$ is incongruent $\bmod \operatorname{deg} g$ to the degree of any element of $L_{n-1}$.

Proof. By Proposition 8 there exists an element $\bar{h}_{n}$ in $f^{n}+L_{n-1}$ whose degree is not congruent mod deg $g$ to that of any element of $L_{n-1}$. Since $h_{n}-\bar{h}_{n}$ lies in $L_{n-1}, \operatorname{deg} \bar{h}_{n}$ does not equal $\operatorname{deg}\left(h_{n}-\bar{h}_{n}\right)$. Hence

$$
\begin{equation*}
\operatorname{deg} h_{n}=\max \left(\operatorname{deg} \bar{h}_{n}, \operatorname{deg}\left(h_{n}-\bar{h}_{n}\right)\right) . \tag{21}
\end{equation*}
$$

By the definition of $h_{n}$, deg $h_{n}$ must be different from the degree of any element of $S_{n-1}$. Observe that $S_{n-1}$ spans $L_{n-1}$; furthermore by induction we may assume that the numbers $0, \operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{n-1}$ are pairwise incongruent $\bmod \operatorname{deg} g$, so the elements of $S_{n-1}$ have distinct degrees. Therefore the degree of any non-zero element of $L_{n-1}$ equals the degree of some element of $S_{n-1}$. Hence $\operatorname{deg} h_{n}$ must be different from the degree of any element of $L_{n-1}$. In particular $\operatorname{deg} h_{n}$ does not equal $\operatorname{deg}\left(h_{n}-\bar{h}_{n}\right)$, so by Eq. (21) $\operatorname{deg} h_{n}=\operatorname{deg} \bar{h}_{n}$. This establishes the claim.

The claim implies that the elements $\operatorname{deg} g, \operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{N-1}$ generated the set $\{\operatorname{deg} y: y \in K[f, g]$ and $y \neq 0\}$ as a semigroup.

Observe that $S_{N-1}$ is a $K$ basis for $K[f, g]$ whose elements have distinct degrees. Hence an element $h$ in $K[T]$ lies in $K[f, g]$ if and only if $R\left(h, S_{N-1}\right)=0$. The equation $R\left(f^{N}, S_{N-1}\right)=0\left(\right.$ or $\left.R\left(h_{N-1} f, S_{N-1}\right)=0\right)$ is equivalent to an expression for $f^{N}$ as an element of $L_{N-1}$. This expression is in turn equivalent to the minimal polynomial $p(X, Y)$ relating $f$ and $g$.
The following is another approach for constructing a $K$ basis for $K[f, g]$ whose elements have distinct degrees.

Define elements $A_{0}, A_{1}, \ldots, A_{t}$ recursively as follows.
Set $S_{0}=\left\{g^{q}: 0 \leqslant q\right\}$ and define $A_{0}=R\left(f, S_{0}\right)$.
Assume that $A_{0} \ldots, A_{n}$ have been defined. If $A_{n}=0$, stop. Otherwise define $A_{n+1}$ as follows. Let

$$
\begin{aligned}
e_{0} & =\operatorname{deg} g \\
e_{1} & =\operatorname{gcd}\left(\operatorname{deg} A_{0}, \operatorname{deg} g\right), \ldots \\
e_{n+1} & =\operatorname{gcd}\left(\operatorname{deg} A_{n}, \operatorname{deg} A_{n-1}, \ldots, \operatorname{deg} A_{0}, \operatorname{deg} g\right)
\end{aligned}
$$

Set

$$
S_{n+1}=\left\{g^{q} A_{0}^{b_{0}} \cdots A_{n}^{b_{n}}: 0 \leqslant q, 0 \leqslant b_{j}<e_{j} / e_{j+1} \text { for all } j\right\}
$$

and set

$$
A_{n+1}=R\left(A_{n}^{e_{n} / e_{n+1}}, S_{n+1}\right)
$$

Note that, by the definition of the $b_{i}$ 's and the $e_{i}$ 's, the elements of $S_{n}$
have distinct degrees for all $n$. Hence the expression $R\left(A_{n}^{e_{n} / e_{n+1}}, S_{n+1}\right)$ makes sense.

An easy induction argument shows that $A_{n}$ lies in $f^{\operatorname{deg} g / e_{n}}+L_{\left(\operatorname{deg} g / e_{n}\right)-1}$ for all $n$. Hence if $0 \leqslant j<\operatorname{deg} g / e_{n}$, the set $S_{n}$ contains an element of $f^{j}+L_{j-1}$. Therefore $S_{n}$ spans $L_{\left(\operatorname{deg} g / e_{n}\right)-1}$ over $K$. On the other hand $S_{n}$ is a subset of $L_{\left(\operatorname{deg} g / e_{n}\right)-1}$ and the elements of $S_{n}$ have distinct degrees. Therefore $S_{n}$ is a basis for $L_{\left(\operatorname{deg} g / e_{n}\right)-1}$.

It is necessary to show that the sequence $e_{0}, e_{1}, \ldots, e_{t}$ is strictly decreasing, otherwise the sequence $A_{0}, A_{1}, \ldots$ would eventually become constant without every hitting zero.

Suppose that $0 \leqslant n<t$. The proof of Claim 1 implies that $\operatorname{deg} A_{n}$ is incongruent $\bmod \operatorname{deg} g$ to the degree of any element of $L_{\left(\operatorname{deg} g / e_{n}\right)-1}$, and hence to that of any element of $S_{n}$. For any integer $c$, it is possible to find integers $B, b_{0}, \ldots, b_{n-1}$ such that

$$
B \operatorname{deg} g+b_{0} \operatorname{deg} A_{0}+\cdots+b_{n-1} \operatorname{deg} A_{n-1}=c e_{n}
$$

and such that $0 \leqslant b_{j}<e_{j} / e_{j+1}$ for all $j$. Since $A_{0}^{b_{0}} \cdots A_{n-1}^{b_{n-1}}$ lies in $S_{n}, \operatorname{deg} A_{n}$ is incongruent mod $\operatorname{deg} g$ to $b_{0} \operatorname{deg} A_{0}+\cdots+b_{n-1} \operatorname{deg} A_{n-1}$ and hence to $c e_{n}$. Therefore $\operatorname{deg} A_{n}$ is not a multiple of $e_{n}$, so $e_{n+1}<e_{n}$. Thus $e_{0}, e_{1}, \ldots$ is strictly decreasing, so for some subscript $t, A_{t}=0$. Therefore $S_{t}$ is a basis for $K[f, g]$ whose elements have distinct degrees. The numbers $\operatorname{deg} A_{0}, \ldots, \operatorname{deg} A_{t-1}$ generate $\{\operatorname{deg} y: y \in K[f, g]$ and $y \neq 0\}$ as a semigroup.
 a $K(g)$ basis for $K(f, g)$. There are $\operatorname{deg} g / e_{t} t$-tuples ( $b_{0}, \ldots, b_{t-1}$ ) such that $0 \leqslant b_{j}<e_{j} / e_{j+1}$ for all $j$; hence $N=\operatorname{deg} g / e_{t}$. The equation

$$
A_{t}=R\left(A_{t-1}^{e_{t-1} / e_{t}}, S_{t}\right)=0
$$

is equivalent to an expression for $f^{N}$ as an element of $L_{N-1}$. Thus the calculation of the $A_{i}$ 's leads to the minimal polynomial $p(X, Y)$ relating $f$ and $g$.

## Acknowledgment

I am grateful to Professor S. S. Abhyankar for his encouragement of this work.

## References

[A] S. S. Abhyankar, On the semigroup of a meromorphic curve, I, in "Proceedings, International Symposium on Algebraic Geometry, Kyoto" (M. Nagata, Ed.), pp. 249-414, Kinokuniya Book-Store Co., Ltd., Tokyo, 1978.
[AM1] S. S. Abhyankar and T. T. Мoh, Newton-Puiseux expansion and generalized Tchirnhausen transformation, II, J. Reine Angew. Math. 261 (1973), 29-54.
[AM2] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 149-166.
[M] T. T. MoH, On the concept of approximate roots for algebra, J. Algebra 65 (1980), 347-360.
[PR] B. R. Peskin and D. R. Richman, A method to compute minimal polynomials, SIAM J. Algebraic Discrete Methods 6 (1985), 292-299.
[S] B. Serge, Corrispondenze di Mobius e Transformazioni cremoniane intere, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. 91 (1956-1957), 3-19.

