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We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether sym-
metry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–
Robertson–Walker (FRW) model, a scalar field with potential function V (φ) with which the gravity part 
of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field 
by a coupling function f (φ). Then, the Noether symmetry of such a cosmological model is investigated 
by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired 
symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector 
fields and also the scalar field potential function for which such symmetry exists. Finally, by means of 
the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for 
the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated ex-
pansion universe for which its expansion is due to the presence of the vector field in the early times, 
while the scalar field is responsible of its late time expansion.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Symmetries have always played a central role in conceptual dis-
cussion of the classical and quantum physics. The main reason may 
be that various laws of conservation, such as energy, momentum, 
angular momentum, etc., that provide the integrals of motion for a 
given dynamical system, are indeed the result of existence of some 
kinds of symmetry in that system. From a more general point of 
view, it can be shown that all such conservation laws are partic-
ular cases of the so-called Noether theorem, according to which 
for every one-parameter group of coordinate transformation on the 
configuration space of a system, which preserves the Lagrangian 
function, there exists a first integral of motion [1]. In mathemati-
cal language this means that if the vector field X is the generator 
of the above diffeomorphism, the Lie derivative of the Lagrangian 
function along it should vanish: L XL = 0 [2]. Numerous applica-
tions of this theorem in general relativity and cosmology are those 
concerned with the following form of action (see for instance [3]
and the references therein):

S =
∫
M

dτ

[
1

2
GAB

dqA

dτ

dqB

dτ
− U(q)

]
, (1)
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where qA are the coordinates of the configuration space with met-
ric GAB (the indices A, B , . . . run over the dimension of this space), 
U(q) is the potential function and τ is an affine parameter along 
the evolution path of the system. In time-parameterized theories 
such as general relativity, the action retains its form under time 
reparameterization. Therefore, one may relate the affine parameter 
τ to a time parameter t by a lapse function N(t) through Ndt = dτ . 
In these cases the action (1) can be written as

S =
∫
M

dtL
(
qA, q̇A) =

∫
M

dtN

[
1

2N2
GABq̇Aq̇B − U(q)

]
, (2)

where an over-dot indicates derivation with respect to the time 
parameter t and L(q, ̇q) is the Lagrangian function of the system. 
A straightforward calculation based on the Hamiltonian formalism 
leads us to the Hamiltonian constraint

H = N

[
1

2
G AB P A P B + U(q)

]
= NH ≡ 0, (3)

where P A is the momentum conjugate to qA .
For the systems whose dynamics can be described by the above 

explanation, we may define a vector field X on the tangent space 
T Q = (q, ̇q) by

X = αA(q)
∂

A
+ dαA(q) ∂

A
, (4)
∂q dt ∂q̇
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where αA(q) are unknown functions on configuration space. Ac-
cording to what we have mentioned above, this vector field will 
generate a Noether symmetry if

L XL = αA(q)
∂L
∂qA

+ dαA(q)

dt

∂L
∂q̇A

= 0. (5)

As the other kinds of symmetries, the Noether symmetry is also a 
powerful tool in finding the solutions of equations of motion in a 
dynamical system. Indeed, as we will see in detail in the following 
sections, noting that P A = ∂L

∂q̇A and taking into account the Euler–

Lagrange equations dP A
dt = ∂L

∂qA , from (5) we get the first integrals 
of motion as

Q = αA(q)P A . (6)

In cosmology, when the models are expressed in terms of the 
minisuperspace variables usually the scale factors, matter fields 
and their conjugate momenta play the role of dynamical variables. 
In these models it can be shown that the evolution of the sys-
tem can be obtained from an action of the form (2) [4]. Therefore, 
introduction of Noether symmetry by adopting the approach dis-
cussed above is particularly relevant. This method usually works 
in such a way that first one sets up an effective Lagrangian in 
terms of its configuration variables and their velocities so that its 
variation yields the appropriate equations of motion. However, in 
many of the extended theories of gravity the Lagrangian involves 
potential and coupling functions that are not clearly defined. The 
functional forms of these functions may have their roots in the 
other physical theories such as particle physics and quantum field 
theory. In the Noether symmetry approach, the form of the un-
known functions in the Lagrangian may be found by demanding 
that the Lagrangian admits the desired Noether symmetry. In this 
regard, the condition (5) gives a system of partial differential equa-
tions from its solutions of the unknown functions αA(q) as well as 
the potential and other coupling functions in the Lagrangian are 
extracted.

Our goal in this paper is to explore the Noether symmetry in a 
cosmological model for which, in addition to a scalar field, a vector 
field is also present in its action. Although scalar fields have played 
an important role in the development of modern cosmological the-
ories [5], the vector fields to introduce the various cosmological 
aspects have seldom been studied in the literature [6]. Our study is 
based on an action introduced in [7] to investigate the anisotropic 
inflation with gauge fields in which a scalar field has either a min-
imally coupling with gravity or a non-minimally coupling with a 
vector field, see the action (8) below. However, they have shown 
that for special exponential forms (fixed by hand) for the scalar 
field potential and the coupling function between the scalar and 
vector fields, the model has also isotropic power-law inflationary 
solutions. This was a motivation for us to consider the existence 
of Noether symmetry in such models with unknown potential and 
coupling functions. So, we will consider a flat FRW cosmology with 
scale factor a, a scalar field φ with potential V (φ) minimally cou-
pled to it and a vector field Aμ non-minimally coupled to the 
scalar field by a coupling function f (φ). Therefore, the correspond-
ing minisuperspace of our model is a three-dimensional Rieman-
nian manifold with coordinates (a, φ, A) in which we construct a 
point-like Lagrangian to produce the dynamics of the model. We 
then impose the Noether symmetry condition on this Lagrangian 
and see how one can obtain the explicit form of the potential and 
the coupling functions. Since the existence of a symmetry results 
in a constant of motion, we can integrate the field equations which 
would then lead to the expansion law of the universe.
2. The model

In this section we consider a homogeneous and isotropic cos-
mological model in which the space–time is assumed to be of flat 
FRW whose line element can be written

ds2 = −N2(t)dt2 + a2(t)δi jdxidx j, (7)

where N(t) and a(t) are the lapse function and the scale factor,
respectively. In such a background geometry, we consider a gravity 
model whose dynamics is given by the action [7]

S =
∫

d4x
√−g

[
1

2
R − 1

2
gμν∂μφ∂νφ − V (φ)

− 1

4
f (φ)2 Fμν F μν

]
, (8)

where φ(t) is a scalar field minimally coupled to gravity, V (φ) is 
its potential and Fμν is the strength tensor of the vector field Aμ

with standard definition Fμν = ∂μ Aν − ∂ν Aμ . As the action shows,
the vector field is coupled to the scalar field through the coupling 
function f (φ). If we introduce a vector field

Aμ = (
0;0,0, A(t)

)
, (9)

the non-vanishing components of Fμν are

F03 = −F30 = Ȧ ⇒ F 03 = −F 30 = − 1

N2
a−2 Ȧ, (10)

from which we get

Fμν F μν = − 2

N2
a−2 Ȧ2. (11)

With the above results at hand, the action (8) can be written in 
the form S = ∫

dtL(q, ̇q), where q = (a, φ, A) and

L(q, q̇) = 1

N

[
−3aȧ2 + 1

2
a3φ̇2 + 1

2
af (φ)2 Ȧ2 − N2a3 V (φ)

]
(12)

is a point-like Lagrangian from which the dynamics of the model 
can be obtained. It is clear that this Lagrangian has the form of (2)
with

Gμν = diag
(−6a,a3,af (φ)2). (13)

To write the corresponding Hamiltonian, we notice that the mo-
menta conjugate to the dynamical variables may be obtained from 
the definition Pq = ∂L

∂q̇ with result

Pa = −6aȧ

N
, Pφ = a3φ̇

N
, P A = af (φ)2 Ȧ

N
, (14)

leading to the following Hamiltonian

H = NH = N

[
− P 2

a

12a
+ P 2

φ

2a3
+ P 2

A

2af (φ)2
+ a3 V (φ)

]
. (15)

Now, the dynamical equations (in the cosmic time gauge N = 1) of 
the system can be written by using of the Hamiltonian equations
that are
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȧ = {a, H} = − Pa

6a
,

Ṗa = {Pa, H} = − P 2
a

12a2
+ 3P 2

φ

2a4
+ P 2

A

2a2 f (φ)2
− 3a2 V (φ),

φ̇ = {φ, H} = Pφ

a3
,

Ṗφ = {Pφ, H} = P 2
A f ′(φ)

af (φ)3
− a3 V ′(φ),

Ȧ = {A, H} = P A

af (φ)2
,

Ṗ A = {P A, H} = 0.

(16)

Also, it is well known that the Hamiltonian of a gravitational sys-
tem is constrained to vanish due to the invariant property of the 
action under time reparameterization. By using of the relations 
(14) and (15), the Hamiltonian constraint H = 0 reads

−3ȧ2 + 1

2
a2φ̇2 + 1

2
f (φ)2 Ȧ2 + a2 V (φ) = 0. (17)

It is clear that to solve the above equations first of all one should 
decide for the form of the potential function V (φ) and the cou-
pling function f (φ). In the next section we will fix this issue by 
demanding that the Lagrangian (12) satisfies a Noether symmetry 
condition.

3. Noether symmetry

In this section we assume that the Lie derivative of the La-
grangian (12) along a vector field X vanishes which means that 
the model has the so-called Noether symmetry. Under this condi-
tion, we have

L XL = 0, (18)

where X has the form of Eq. (4), that is

X = α
∂

∂a
+ β

∂

∂φ
+ γ

∂

∂ A
+ α̇

∂

∂ȧ
+ β̇

∂

∂φ̇
+ γ̇

∂

∂ Ȧ
, (19)

in which α(a, φ, A), β(a, φ, A) and γ (a, φ, A) are some unknown 
functions of the configuration space variables (a, φ, A). Now, by 
imposing the condition (18), we arrive at

0 = −3ȧ2
(
α + 2a

∂α

∂a

)
+ a2φ̇2

(
3

2
α + a

∂β

∂φ

)

+ f (φ) Ȧ2
[

1

2
α f (φ) + aβ f ′(φ) + a2 f (φ)

∂γ

∂ A

]

+ aȧφ̇

(
−6

∂α

∂φ
+ a2 ∂β

∂a

)
+ aȧ Ȧ

(
−6

∂α

∂ A
+ f (φ)2 ∂γ

∂a

)

+ aφ̇ Ȧ

(
a2 ∂β

∂ A
+ f (φ)2 ∂γ

∂φ

)

− a2[3αV (φ) + aβV ′(φ)
]
. (20)

It is seen that the above expression is a quadratic polynomial in 
terms of ȧ, φ̇, Ȧ. Therefore, the necessary and sufficient condition 
for this expression to be identically equal to zero is that all of its 
coefficients are zero which leads to a system of partial differential 
equations for α, β and γ . With this argument, we are led to the 
following system:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α + 2a
∂α

∂a
= 0,

3α + 2a
∂β

∂φ
= 0,

−6
∂α

∂φ
+ a2 ∂β

∂a
= 0,

−6
∂α

∂ A
+ f (φ)2 ∂γ

∂a
= 0,

a2 ∂β

∂ A
+ f (φ)2 ∂γ

∂φ
= 0,

α f (φ) + 2aβ f ′(φ) + 2a2 f (φ)
∂γ

∂ A
= 0,

3αV (φ) + aβV ′(φ) = 0.

(21)

From the first equation of this system, we can immediately sepa-
rate the function α as

α(a, φ, A) = a−1/2G(φ)H(A), (22)

where G(φ) and H(A) are arbitrary functions of φ and A, respec-
tively. Using this expression in the second equation of the system 
(21), we obtain

β(a, φ, A) = −3

2
a−3/2 H(A)

∫
G(φ)dφ. (23)

Upon substitution these results into the third equation of (21), we 
obtain the following expression for G(φ):

G(φ) = c1eωφ + c2e−ωφ, (24)

where ω2 = 3/8 and c1,2 are integration constants. Now from the 
fourth equation of (21), we have ∂γ

∂a = 6a−1/2 f −2(φ)G(φ) dH
dA which 

after integration with respect to a gives

γ (a, φ, A) = 12a1/2 f −2(φ)G(φ)
dH

dA
. (25)

Computing ∂γ
∂φ

from this equation and equating it with ∂γ
∂φ

from 
the fifth equation of (21) yields

f (φ) = G1/3(φ) = (
c1eωφ + c2e−ωφ

)1/3
. (26)

Using the above relations in the last equation of the system (21)
leads us to

V ′(φ)

V (φ)
= 2ω

c1eωφ + c2e−ωφ

c1eωφ − c2e−ωφ
, (27)

from which we immediately obtain the form of the potential func-
tion as

V (φ) = (
c1eωφ − c2e−ωφ

)2
. (28)

What remains is to examine the solutions obtained until now into 
the sixth equation of (21). If one does so, gets

24

H(A)

d2 H

dA2
= a−3

(
− f (φ)2 + 3 f (φ) f ′(φ)

G(φ)

∫
G(φ)dφ

)
. (29)

This equation is consistent if its both sides are equal to zero. There-
fore, from 24

H(A)
d2 H
dA2 = 0, we obtain

H(A) = d1 A + d2, (30)

where d1 and d2 are some integration constants. Also, if we use the 
relations (24) and (26) in the right-hand side of (29) and then put 
it equal to zero, we arrive at c1c2 = 0. The analysis of the solutions 
to the system (21) is now complete and two sets of its solutions 
are achieved as
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• I (c1 = 0)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α(a, φ, A) = α0a−1/2e−ωφ(d1 A + d2),

β(a, φ, A) = β0a−3/2e−ωφ(d1 A + d2),

γ (a, φ, A) = γ0a1/2e−ωφ/3,

V (φ) = V 0e−2ωφ,

f (φ) = f0e−ωφ/3,

(31)

and

• II (c2 = 0)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α(a, φ, A) = α0a−1/2eωφ(d1 A + d2),

β(a, φ, A) = −β0a−3/2eωφ(d1 A + d2),

γ (a, φ, A) = γ0a1/2eωφ/3,

V (φ) = V 0e2ωφ,

f (φ) = f0eωφ/3,

(32)

where in each case V 0 is a positive constant in terms of which 

we have α0 = V 1/2
0 , β0 = 3V 1/2

0
2ω , γ0 = 12V 1/6

0 d1 and f0 = V 1/6
0 . It 

is seen that the Noether symmetry fixes the potential function for 
the scalar field and the coupling function between the scalar and 
vector fields in the form of exponential functions. These are exactly 
the same as are chosen in [7] to get exact power-law isotropic 
inflation with the help of the above model.

4. Cosmological dynamics

With the functions V (φ) and f (φ) at hand, we may look for 
the solutions to the equations of motion (16) and (17). However, 
before dealing with this issue, we note that the model has some 
constants of motion. One of them, P0A , comes from the last equa-
tion of (16) and indeed is the reflection of the fact that A is a 
cyclic variable in the Lagrangian (12). Another constant of motion 
arises from the existence of the Noether symmetry in the model 
under consideration. To see this, we rewrite Eq. (18) as

L XL =
(
α

∂L
∂a

+ dα

dt

∂L
∂ȧ

)
+

(
β

∂L
∂φ

+ dβ

dt

∂L
∂φ̇

)

+
(
γ

∂L
∂ A

+ dγ

dt

∂L
∂ Ȧ

)
= 0. (33)

Noting from the Euler–Lagrange equation that ∂L
∂q = dPq

dt , we have

(
α

dPa

dt
+ dα

dt
Pa

)
+

(
β

dPφ

dt
+ dβ

dt
Pφ

)

+
(
γ

dP A

dt
+ dγ

dt
P A

)
= 0, (34)

which yields

d

dt
(αPa + β Pφ + γ P A) = 0. (35)

Thus the constant of motion is found as

Q = αPa + β Pφ + γ P A . (36)

With the help of the relations (14), (31) and (32), the above inte-
gral of motion can be written as
(
α0a−1/2e∓ωφ A

)
(−6aȧ) ± (

β0a−3/2e∓ωφ A
)(

a3φ̇
)

+ (
γ0a1/2e∓ωφ/3)(af 2

0 e∓2ωφ/3 Ȧ
) = Q , (37)
in which we have set d1 = 1 and d2 = 0. Also, the upper and lower 
signs correspond to the class I and class II solutions, respectively. 
After a little algebra in which the fifth equation of the system (16)
is also considered, this expression results in

−3

2

ȧ

a
± ωφ̇ + 3

Ȧ

A
= 1

4
Q P−3/2

0A

Ȧ3/2

A
. (38)

In what follows, we shall deal with the solutions of the above 
equation only for the simple case Q = 0 for which integration of 
(38) gives

ωφ = ∓ ln
A3

a3/2
. (39)

With the help of these relations and from the last equations of (31)
and (32) the expression f = f0 Aa−1/2 will be obtained in which 
the function f is expressed in terms of A and a. By using of this 
result in the fifth equation of the system (16), we obtain

A(t) = (ω0t)1/3, (40)

where ω0 = 3 f −2
0 P0A and we have set P A = P0A = constant from 

the last equation of (16). Now, we may insert the relations (39), 
(40) and the expressions for V (φ) from (31) and (32) into (17) to 
get the following equation for the scale factor

−ta2ȧ + 1

3
a3 + 1

9
ξt4/3 + ηt4 = 0, (41)

where ξ = f 2
0 ω

4/3
0 /8 and η = V 0ω

2
0/4. This equation can be easily 

integrated to yield

a(t) = (
ηt4 + ξt4/3 + Ct

)1/3
, (42)

in which C is an integration constant. Finally, the time evolution 
of the scalar field can now be achieved from (39) as

ωφ(t) = ∓ ln
ω0t

(ηt4 + ξt4/3 + Ct)1/2
. (43)

The above expressions for the corresponding cosmology which de-
scribe an isotropic accelerated expansion universe, are comparable 
with the relations (4.39) and (4.41) of [7]. Fig. 1 shows the qual-
itative behavior of the scale factor and scalar field for the class I 
of solutions. As is clear from the figure, in the early times of cos-
mic evolution, the amount of the scalar field (and also its kinetic 
energy) decreases while at the same time, according to relations 
of (31), the coupling with the vector field (and also the vector 
field’s kinetic energy) is growing. So during this period, the cou-
pling between the scalar and the vector fields is responsible for the 
expansion of the universe. However, after the scalar field reaches 
its minimum value, its incremental behavior begins. A glance at 
the relations of (31) shows that in this era the coupling function 
rapidly decreases and the vector field loses its energy. Therefore, 
the late time acceleration is due to the presence of the scalar field 
without a significant roll of the vector field. A similar discussion 
can be raised for the class II of solutions.

5. Summary

In this letter, we have studied a scalar–vector field model of 
cosmology in a Noether symmetry point of view, in such a way 
that in its action, in addition to a minimally coupling between the 
scalar field and gravity, there is also a coupling between the scalar 
and the kinetic energy of the vector field. For the background ge-
ometry, we have considered a flat FRW metric and then set up the 
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Fig. 1. Qualitative behavior of the scale factor (left) and scalar field (right) versus time.
phase space by taking the scale factor a, scalar field φ and the vec-
tor field A as the independent dynamical variables. The Lagrangian 
of the model in the configuration space spanned by {a, φ, A} is so 
constructed that its variation with respect to these dynamical vari-
ables yields the Einstein field equations. The existence of Noether 
symmetry implies that the Lie derivative of this Lagrangian with 
respect to the infinitesimal generator of the desired symmetry van-
ishes. By applying this condition to the Lagrangian of the model, 
we have obtained the explicit form of the corresponding potential 
function of the scalar field and the coupling function between the 
scalar and the vector fields. We then obtained the constant of mo-
tion related to the Noether symmetry by means of which we could 
integrate the dynamics to yield the exact expressions for the dy-
namical variables a(t), φ(t) and A(t). The evolutionary behavior of 
these quantities shows that with a growing vector field we have 
an isotropic accelerated expansion universe. Our analysis showed 
that in the early times of evolution the amount of the scalar field 
decreases continuously to reach a minimum value, simultaneously 
the kinetic energy of the vector field and its coupling to the scalar 
field increase. On the other hand, after this period this behavior 
is reversed, the scalar field begins to increase while its coupling 
with vector field as well as the vector field’s kinetic energy rapidly 
decrease. Therefore, in the late times, the universe is scalar field 
dominated and the vector field plays a subdued role in the expan-
sion in this epoch.
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