
Unsorted Functional Translations

Carlos Areces 1

FaMAF, Universidad Nacional de Córdoba
Córdoba, Argentina

Daniel Goŕın2

SKS – DFKI Bremen
Bremen, Germany

Abstract

In this article we first show how the functional and the optimized functional translation from modal logic
to many-sorted first-order logic can be naturally extended to the hybrid language H(@, ↓). The translation
is correct not only when reasoning over the class of all models, but for any first-order definable class. We
then show that sorts can be safely removed (i.e., without affecting the satisfiability status of the formula)
for frame classes that can be defined in the basic modal language, and show a counterexample for a frame
class defined using nominals.

Keywords: Automated theorem proving, functional translation, sorts.

1 Introduction

The functional translation is a tool for automated modal reasoning that appeared

independently and almost simultaneously in a number of publications in the late

1980’s and early 1990’s (see, e.g. [12,13,6,20,3,4]). This translation maps formulas

from modal languages to first-order logic in a satisfaction preserving way, much

like the standard translation does (see [5]). But the functional translation uses a

semantic alternative to relational structures, and it has been argued and empirically

demonstrated, that it produces formulas that can be much more compact and with

a shallower term structure than those obtained with the standard translation [15,9].

The two properties are crucial when attempting to use first-order automated rea-

soning. Moreover, and unlike other satisfiability preserving translations tailored for

automated reasoning (e.g., the layered translation of [1]), the functional translation

1 Email: carlos.areces@gmail.com
2 Email: daniel.gorin@dfki.de

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 278 (2011) 3–16

1571-0661 © 2011 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.10.002
Open access under CC BY-NC-ND license.

mailto:carlos.areces@gmail.com
mailto:daniel.gorin@dfki.de
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.10.002
http://dx.doi.org/10.1016/j.entcs.2011.10.002
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

can be used for reasoning over a wide range of model clases, beside the class of all

models. The first result we discuss in this article is that the functional translation

extends naturally to cover the hybrid language H(@, ↓) [2].
The functional translation is often introduced using a many-sorted first-order

language to simplify presentation. This means, in practice, that we need to either

use a theorem prover that handles many-sorted first-order logic (e.g., SPASS [19]) or

simulate sorts in unsorted first-order logic introducing additional one-place predicate

symbols. Both alternatives might have an impact on performance when we attempt

to carry out automated theorem proving.

It is argued in [17], for example, that the simulation of sorts by way of proposition

symbols leads to irrelevant inferences. A system like SPASS, avoids these inferences

but, on the other hand, the additional complexity of the machinery needed to handle

sorted inferences (in the case of SPASS, well-sorted unification [18]) needs to be

accounted for. It is difficult to properly measure whether sorts help or hinder

automated theorem provers, and we will not pursue this matter here. Instead, we

will show that in certain cases one can simply safely “erase” all sort annotations

without changing the satisfiability status of the formula. That this can be done in

the case of the basic modal logic (when reasoning over the class of all models) was

already observed by Hustadt and Schmidt in [10], albeit without proof.

In Sections 2 and 3 we introduce the basic and the optimized functional transla-

tions. To make the article self contained, we include the original proofs of soundness,

with minor corrections and adaptations to accommodate nominals and other hy-

brid machinery. Based on these proofs, we develop in Section 4 our main result:

when reasoning over any modally definable class of models it is safe to erase sort

annotations from formulas obtained using the (optimized) functional translation. In

Section 5, on the other hand, we prove that sort erasure is not sound when reason-

ing over a class that is definable by a pure, hybrid axiom, by providing a concrete

counterexample.

2 Functional models, functional translation

Through all the article, we will work in the multi-modal hybrid language H(@, ↓).
For a fixed signature consisting of a set of proposition symbols Prop, a set of nominals

Nom and a set of relation symbols Rel, all pairwise disjoint, its formulas are given

by:

ϕ ::= p | i | ¬ϕ | ϕ ∧ ϕ | @iϕ | ↓i.ϕ | [r]ϕ,

where p ∈ Prop, i ∈ Nom and r ∈ Rel. We shall freely employ the typical derived

operators ∨, →, 〈r〉, etc. with their usual meaning.

For the semantics we take as models pairs 〈I, g〉, where I = 〈W, ·I〉 is a relational
interpretation such that pI ⊆ W for p ∈ Prop, and rI ⊆ W ×W , for r ∈ Rel; while
g : Nom → W is an assignment for nominals. We can, then, give meaning to

formulas of H(@, ↓) via the standard translation to first-order logic. That is, for

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–164

w ∈ W and j ∈ Nom not occurring in ϕ, we have:

I, g, w |= ϕ ⇐⇒ I |=FO ST j(ϕ)[g
j
w]. (1)

The standard translation commutes with boolean connectives and satisfies:

ST j(p)
def
= p(j) ST j(i)

def
= i = j

ST j(@iϕ)
def
= ST i(ϕ) ST j(↓i.ϕ) def= ∃i.(i = j ∧ ST j(ϕ))

ST j([r]ϕ)
def
= ∀k.(r(j, k) → ST k(ϕ)) (k is fresh)

For a class of models C, ϕ is C-satisfiable (C-valid, notation C |= ϕ) if for some model

(for every model) 〈I, g〉 in C, I, g, w |= ϕ for some w (for all w). If C is the class of

all models, we say that ϕ is satisfiable (valid, notation |= ϕ). The underlying frame

of a model 〈I, g〉 is the restriction of I to symbols in Rel (i.e., ignoring Prop). As it is

standard in modal logic, we are usually interested in classes defined as those models

whose underlying frame satisfy certain condition (e.g., transitivity). Any such class

C is said to be defined by a formula ϕ whenever 〈I, g〉 is in C iff I, g, w |= ϕ for all

w. See [5] for details.

We can regard the standard translation as a direct encoding in first-order logic

of the semantic clauses for the modal operators. The translation is very simple but

it is, in general, not suitable for translation-based automated reasoning. It is easy

to find simple modal formulas which, when translated into first-order logic using

ST and then solved via resolution, result in infinite clause sets (see [1]). This is

the main motivation for the, arguably more complex, functional translation we will

describe below.

The key to understand the functional translation is an alternative representation

of relational structures. Assume for a moment that Rel = {r}. Consider, then,

Figure 1a which shows a relational structure with a domain consisting of three

elements. One can alternatively represent this particular structure using three total

functions f , g and h, and a predicate de, as long as the following property holds:

∀xy.(r(x, y) ↔ (¬de(x) ∧ (f(x) = y ∨ g(x) = y ∨ h(x) = y))
)
. (2)

We use de (for “dead end”) to “mark” those states that have no r-successor, and

f , g and h on each state to “witness” each r-successor. There are many valid

arrangements for f , g and h; Figures 1b and 1c show two such representations. It

is straightforward to verify they both satisfy condition (2).

Proposition 2.1 Let I be a finite first-order interpretation for a signature with

a two-place relation symbol r. Then there exists an interpretation I ′ extending I
to a signature that additionally contains a one-place relation symbol de and unary

function symbols f1, f2, . . . , fn, such that:

I ′ |=FO ∀xy.(r(x, y) ↔ (¬de(x) ∧ (f1(x) = y ∨ f2(x) = y . . . ∨ fn(x) = y))
)
.

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–16 5

(a)

de

f

g
h

f, g
h

f, g, h

(b)

de

h

g
f

f
g, h

g

f, h

(c)

Fig. 1. Relational model (a) is expressed in (b) and (c) with functions f, g, h and a predicate de.

Functions f1, f2, . . . , fn can be alternatively represented using only one binary

function f , that takes a function index as an additional argument. This is easily

expressed in a language with two sorts ω and ι, the former will refer to proper nodes

of the model, the latter to function indices.

Proposition 2.2 Let I be a sorted first-order interpretation for a signature with a

relation symbol of sort r : ω × ω. Then there exists an interpretation I ′ extending
I to a signature that additionally contains a relation symbol de : ω and a function

symbol f : ι× ω → ω, such that:

∀xy:ω.(r(x, y) ↔ (¬de(x) ∧ ∃z:ι.f(z, x) = y)
)
.

Unlike Proposition 2.1, this encoding is suitable for infinite interpretations.

We now have everything in place to define a notion of functional model. First, to

each choice of Prop and Rel we assign a functional (sorted) correspondence language

with sorts ω and ι, where each p ∈ Prop and each der (r ∈ Rel) is a one-place

predicate symbol of sort ω, and where there is a binary function symbol fr : ι×ω →
ω for each r ∈ Rel.

Definition 2.3 [Functional models] A functional model is a many-sorted interpre-

tation for the functional correspondence language, i.e., a structure I = 〈W, I, ·I〉
where W and I are non-empty domains for sorts ω and ι, respectively; pI ⊆ W for

every p ∈ Prop; and, for each r ∈ Rel, fr : I ×W → W and der ⊆ W .

Clearly, every functional model induces a relational model such that for every

relation r the following holds:

∀x, y:ω.r(x, y) ↔ (¬der(x) ∧ ∃z:ι.f(z, x) = y). (3)

Therefore, we say that a functional model satisfies a modal formula ϕ if and only if

its induced relational model satisfies ϕ. In Section 3 we will be interested in maximal

models, that is, functional models where every possible function is realized.

Definition 2.4 [Maximal models] Consider a functional model I = 〈W, I, ·I〉 and
let rI be the relation induced by (3) for each r ∈ Rel. We say I is maximal if for

each total function γ : W → W such that (w, γ(w)) ∈ rI for all w ∈ W , there exists

an i ∈ I for which fr(i, x) = γ(x), for all x.

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–166

Any functional model can be extended to a maximal one without changing the

induced relational model. Hence:

Proposition 2.5 A formula of the basic modal logic is satisfiable iff there exists a

(maximal) functional Kripke model that satisfies it.

Putting all the pieces toghether, then, we can see the functional translation sim-

ply as a “standard” translation to many-sorted first-order logic over the functional

correspondence language.

Definition 2.6 [FT] Let j be variable of sort ω occurring in a term t of the func-

tional language. The functional translation to first-order logic FT t maps formulas

of H(@, ↓) into first-order logic formulas in the functional correspondence language

with a free j as follows (it commutes with boolean connectives):

FT t(p)
def
= p(t) FT t(i)

def
= i = t

FT t(↓i.ϕ) def= ∃i:ω.(i = t ∧ FT t(ϕ)) FT t(@iϕ)
def
= FT i(ϕ)

FT t([r]ϕ)
def
= ¬der(t) → ∀z:ι.FT fr(z,t)(ϕ) (z is fresh)

Theorem 2.7 Let ϕ be a formula of H(@, ↓) and let i be a nominal not occurring

in ϕ. Then the following hold:

(i) |= ϕ iff |=FO ∀i:ω.FT i(ϕ).

(ii) ϕ is satisfiable iff ∃i:ω.FT i(ϕ) is satisfiable.

It is straightforward to see that Theorem 2.7 can be extended to the case where

we are reasoning with respect to a first-order definable class of models. For example,

suppose we require r to be interpreted as a transitive relation, which is expressible

in first-order logic as ∀xyz.(r(x, y) ∧ r(y, z) → r(x, z)). By combining it with the

equivalence (3) and performing some valid transformations we obtain the functional

equivalent:

∀x:ω.(¬de(x) → ∀ab:ι∃c:ι.fr(b, fr(a, x)) = fr(c, x)). (4)

The formula ϕ in H(@, ↓) will be satisfiable in the class of models where r is tran-

sitive if and only if the conjunction of (4) and FT (ϕ) is satisfiable.

3 Optimized functional translations

Consider the following simple modal formula:

[r](p → 〈r〉p). (5)

By Theorem 2.7, this formula is satisfiable if and only if its functional translation

is satisfiable too:

∃i:ω.(¬de(i) → ∀y:ι.(p(f(y, i)) → (¬de(f(y, i)) ∧ ∃z:ι.p(f(z, f(y, i)))))). (6)

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–16 7

w

p p

p p

(a)

w

p p

p p

f g

f g gf

f, g f, g

f, g

(b)

w

p p

p p

f g

g f gf

f, g f, g

f, g

(c)

Fig. 2. A model (a) for formula (5) and two models (b) and (c) for its functional translation

By skolemizing i and z we obtain the equisatisfiable formula:

¬de(c) → ∀y:ι.(p(f(y, c)) → (¬de(f(y, c)) ∧ p(f(g(y), f(y, c))))). (7)

This formula contains two skolem symbols: a constant c and a unary function g.

The so-called “optimized functional translation” [14] guarantees that only constants

need to be introduced during skolemization. Because skolem functions may cause

complex terms to be built up during resolution, the optimized translation may

drastically reduce the saturation process. Moreover, this simplifies the development

of terminating resolution strategies [16].

To illustrate the idea behind the optimized translation, let us consider again

formula (5). Figure 2a shows a model that satisfies (5) at node w. Figure 2b, on

the other hand, shows a functional model for (7). It is easy to verify using (3) that

this model induces the one of Figure 2a.

Observe now that if i is interpreted as w (notation: i �→ w) there are two possible

values for y, namely f and g. If y �→ f , then we must pick z �→ f , while for y �→ g

we must select z �→ g. Therefore, the right value for z is effectively a function

of y, as witnessed by the skolemization. But here comes the interesting part: we

can “rearrange” the assignment of functions in a way that makes the choice of z

independent of y. An example is shown in Figure 2c; this model also induces (a)

but here the right choice is z �→ g independent of the value of y. In maximal models

(cf. Definition 2.4) where all possible “rearrangement” of functions are included, it

is always possible to make the interpretation of each variable independent of the

others.

Ohlbach and Schmidt [14] take advantage of this observation and prove that it

is sound, in terms of satisfiability, to swap two consecutive quantifiers. Therefore

one can take a formula obtained using the basic functional translation and simply

make all the existential quantifiers come before universal ones, effectively avoiding

the introduction of skolem functions. This is exactly what the optimized functional

translation does.

Definition 3.1 The optimized functional translation to first-order logic OFT is

defined as OFT j(ϕ) = ϑ(FT j(ϕ)), where ϑ(γ) takes γ to prenex normal form and

moves all existential quantifiers of sort ι to the front.

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–168

The soundness of this translation follows from the next proposition [14].

Proposition 3.2 If γ is a formula in prenex normal form with a quantifier-free

matrix δ and γ is equivalent to the functional translation of a modal formula, then

γ is satisfiable iff ∃x:ι∀y:ιδ is satisfiable too, where all the x and y are existentially

and universally quantified, respectively, in γ.

We will follow the proof given in [14] to verify that the result also holds in the

hybrid case. The proof uses a syntactic invariant which functionally translated terms

possess, known as “prefix stability” [12] or “unique path property” [4]. Intuitively,

what this property says is that we can build a tree (or a forest) out of the set of

terms and subterms occurring in a formula such that: i) nodes of the tree are terms,

ii) arcs are labeled with variables of sort ι, iii) t1 is the father of t2 using an arc

labeled by y iff t2 = fr(y, t1) for some r ∈ Rel, and iv) every variable of sort ι labels

only one arc.

Definition 3.3 [Prefix stability] We say a formula γ is prefix-stable if, given the

set Tγ of all the terms occurring in γ, it holds that for every variable y of sort ι in

Tϕ, there exist a term t and a function symbol f such that if y occurs in a term in

Tϕ, then every occurrence of y is of the form f(y, t). We will call f(y, t) the context

of y in ϕ.

As an example, consider the variable y that occurs in the functional translation

of (5): all its occurrences have the same context, namely, f(y, x). It is straightfor-

ward to see that this property follows from the way functional terms are built in

the translation.

This syntactic property has a semantic counterpart. Suppose, again, that all

occurrences of a variable y of sort ι are in the context f(y, t) for fixed t and f .

Then, for any functional model, the function “indexed” by y will be relevant only

to determine successors of (the interpretation of) t. This is formally expressed in

the following lemma.

Lemma 3.4 Let γ be a prefix-stable formula in the functional correspondence lan-

guage and let y be a free variable in γ that occurs in context fr(y, t), with all the

variables in t free in γ. Furthermore, let I = 〈W, I, ·I〉 be a functional model, g a

(sorted) assignment and a, b ∈ I such that fI
r (a, g(t)) = fI

r (b, g(t)), where g(t) is

the interpretation of term t using I and g. Then we have:

I |=FO γ[gya] ⇐⇒ I |=FO γ[gyb]

Proof. The proof is by induction on γ. We look only at the base case. Assume

γ is of the form p(t′), with fr(y, t) a subterm of t′. Let us define ga = gya and

gb = gyb . The first thing to observe is that because y does not occur in t, we have

ga(t) = gb(t) = g(t). Therefore, we also have ga(fr(y, t)) = gb(fr(y, t)). Finally,

again because of prefix-stability, we know there is no other occurrence of y in t′

and, therefore, ga(t
′) = gb(t

′), from which the expected result follows. An analogous

reasoning can be used to handle the case where ϕ is an equality of the form t1 = t2.

The inductive cases follow simply by inductive hypothesis. �

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–16 9

This lemma is a corrected version of Lemma 4.6 in [14]. Indeed, in [14] variables

in t are explicitly allowed to occur bound in γ, but in that case whether I |=FO γ[gya]

holds need not depend on the value of fI
r (a, g(t)).

3 In any case, using Lemma 3.4

one can prove the following result (cf. [14, Theorem 4.7]).

Theorem 3.5 Let γ be a prefix-stable formula in the functional correspondence

language and let y be a free variable in γ that occurs in context fr(y, t), with all the

variables in t free in ϕ. Finally, let I = 〈W, I, ·I〉 be a maximal functional model.

Then, for every assignment g we have:

I |=FO ∀x1 . . . xk:ι∃y:ι.γ[g] ⇐⇒ I |=FO ∃y:ι∀x1 . . . xk:ι.γ[g].

Proof. The right-to-left implication is already valid in the general case, so we

only have to consider the left-to-right one. Suppose, then, that the antecedent

holds. This means there must exist some function α : Ik → I such that,

I |=FO γ[gx1
a1 . . .

xk
ak

y
α(a1...ak)

] holds, for every a1 . . . ak ∈ I. Now, let b ∈ I be

such that, fI
r (b, g

′(t)) = α(a1 . . . ak) for g′ = gx1
a1 . . .

xk
ak
. Such a b must exist

since I is a maximal model. Therefore, using Lemma 3.4 we may conclude that

I |=FO γ[g′yb] must hold. But since b is independent of a1 . . . ak, we finally obtain

that I |=FO ∃y:ι∀x1 . . . xk:ι.γ[g]. �

Theorem 3.6 Let ϕ be an H(@, ↓)-formula and let i be a nominal not occurring

in ϕ. Then the following hold:

(i) |= ϕ iff |=FO ∀i:ω.OFT j(ϕ).

(ii) ϕ is satisfiable iff ∃i:ω.OFT i(ϕ) is satisfiable.

Proof. It is enough to prove that FT i(ϕ) is satisfiable iff ϑ(FT i(ϕ)). The right-

to-left implication is valid in general. For the, other direction, suppose then that

I |=FO FT i(ϕ)[g] for some I and g. Without loss of generality, we may assume that

I is maximal. Let ψ be the result of taking OFT i(ϕ) and moving all existential

quantifiers of sort ι after every universal quantifier. Observe that FT i(ϕ) → ψ′

is universally valid, and, therefore, I |=FO ψ[g]. Now, using Theorem 3.5, we can

move every existential quantifier in ψ to the front, one at a time (for there must

always exist one such that its bound variable y occurs in a context fr(y, t) and all

the variables in t are either universally quantified or their existential quantifiers

have been moved to the top already). This process can be repeated only finitely

many times and the resulting formula ψ′ satisfies I |=FO ψ′[g] and is equivalent to

ϑ(FT i(ϕ)). �

The above proof only requires that a maximal model always exists for a sat-

isfiable formula. This means that the optimized functional translation also works

when we are interested in satisfiability with respect to a first-order definable frame

condition.

3 For a counterexample, take I = 〈{u, v}, {a, b}, ·I〉, fI
r (u, a) = fI

r (v, a) = fI
r (u, b) = v, fI

r (v, b) = u,
pI = {v}; g(w) = v, g(z) = b and γ = ∀z:ι.p(fr(y, fr(z, w))), with t = fr(z, w).

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–1610

4 Sort erasure on modally definable classes of models

We are ready to discuss the soundness of the erasing sort annotations from the

functional translations. Intuitively, what we need to see is that every satisfiable,

functionally translated formula is satisfied by a functional model 〈W, I, ·〉 where the
cardinalities of W and I match. Only maximal models pose a problem here, but

we will see that closure under disjoint unions guarantees that one can raise the

cardinality of W when needed.

Let us start by properly formalizing what we mean by sort erasure.

Definition 4.1 The sort erasure transformation (·)− takes a many-sorted first-

order formula and eliminates all sorts as follows:

a− = a, for a a first-order atom (ϕ ∧ ψ)− = ϕ− ∧ ψ−

(¬ϕ)− = ¬(ϕ−) (∃x:α.ϕ)− = ∃x.(ϕ)−.

An unsorted functional model is a model for the resulting signature.

Clearly, ϕ is not equivalent to ϕ− in the general case. But consider again the

model of Figure 1a. In Figures 1b and 1c it is “represented” (cf. Section 2) us-

ing three functions, but we can certainly represent it with any larger number of

functions, since we do not care about duplicated functions.

On the other hand, since one of the nodes of this model has a fan-out of three,

it cannot be represented with less than three functions. Because the maximum

fan-out (via a relation r) of a relational structure with domain W is |W | we arrive

at the following proposition.

Proposition 4.2 For any H(@, ↓)-formula ϕ, the following are equivalent:

(i) ϕ is satisfiable.

(ii) FT (ϕ) is satisfiable.

(iii) FT (ϕ)− is satisfiable.

Proof. From the previous discussion, FT (ϕ) is satisfiable iff it is satisfiable by a

functional model I = 〈W, I, ·I〉 such that |W | = |I|. Using any bijection between

W and I we define an unsorted model that satisfies FT (ϕ)−. �

Because the number of possible functions of W → W is |W ||W |, this cardinality
argument is not compatible with maximal models. However, using classical preser-

vation results we show that one can do with a weaker form of maximality: only

the realizations of functions for nodes that are “reachable” from the initial point of

evaluation are needed.

Definition 4.3 [Generated submodels] Let I = 〈W, ·I〉 and I ′ = 〈W ′, ·I′〉 be two

relational models, and let g : Nom → W be a valuation. We say that I ′ is submodel

of I generated by g whenever:

(i) range g ⊆ W ′ ⊆ W ,

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–16 11

(ii) if w ∈ W ′ then either w ∈ range g or it can be reached from v ∈ range g in a

finite number of steps through the relations in the model,

(iii) if w ∈ W ′ and (w, v) ∈ rI for some r ∈ Rel, then v ∈ W ′,

(iv) pI′
= pI ∩W ′ for each p ∈ Prop,

(v) rI′
= rI ∩ (W ′ ×W ′) for each r ∈ Rel.

Definition 4.4 [g-maximal models] Consider an unsorted functional model I =

〈W, ·I〉, and let rI ⊆ W × W be the relation induced by I for each r ∈ Rel. Let

g : Nom → W be an assignment and Ig = 〈Wg, ·Ig〉 be the generated submodel of

I by g. We say that I is g-maximal if for each function α : Wg → Wg such that

(v, α(v)) ∈ rI for all v ∈ Wg, there exists an i ∈ W for which fI
r (i, v) = α(v), for

all v ∈ Wg.

Theorem 4.5 Let γ be a prefix-stable formula in the unsorted functional corre-

spondence language with a free variable y that occurs in context fr(y, t), with all the

variables in t free in γ. Then, for every g-maximal model I we have:

I |=FO ∀x1 . . . xk∃y.γ[g] iff I |=FO ∃y∀x1 . . . xk.γ[g].

The proof is analogous to the one for Theorem 3.5. Proposition 2.5, which states

that in the many-sorted case we can assume every satisfiable formula to be satisfied

by a maximal model, is a key ingredient in the proof of correctness of the optimized

functional translation. For the basic case we have an analogous for g-maximal

models:

Proposition 4.6 A formula ϕ of H(@, ↓) is satisfiable iff there exists an unsorted

functional model I such that;

(i) I induces a model that satisfies ϕ at some world w,

(ii) I is gw-maximal, where gw is the constant assignment gw(x) = w.

Proof. We only need to prove the left-to-right direction. Assume, then, that

I, g, w |= ϕ for some I = 〈W, ·I〉, w ∈ W and g : Nom → W , and pick any

unsorted functional model If = 〈W, ·If 〉 that induces I. For each r ∈ Rel let

Γr = {α : W → W | ∀v . v �∈ de
If
r ⇒ (v, α(v)) ∈ rIf } and define the set Γ =

⋃
Γr.

We then construct an unsorted functional model I ′ = 〈W ∪ Γ, ·I′〉 such that

deI
′

r = de
If
r ∪ Γ, pI′

= pIf for all p ∈ Prop, and, for every r ∈ Rel, fI′
r is an

arbitrary function that satisfies fI′
r (α, v) = α(v) for all α ∈ Γr and all v ∈ W . It

is straightforward to verify that I ′ is gw-maximal. Moreover, the identity on W is

partial isomorphism between I and the relational model induced by I ′, so the latter

must also satisfy ϕ at w. �

Using Proposition 4.6 it is simple to reproduce the proof of Theorem 3.6.

Theorem 4.7 Let ϕ be a formula of H(@, ↓). The following are equivalent:

(i) ϕ is satisfiable.

(ii) ∃i:ω.OFT i(ϕ) is satisfiable.

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–1612

(iii) ∃i.OFT i(ϕ)
− is satisfiable.

Now, the proof of Proposition 4.6 does not generally work if we are interested

in satisfiability for a restricted class of models. For example, it clearly breaks for

the class of models defined by the modal axiom [r]p → 〈r〉p, since the gw-maximal

model obtained in the proof does not satisfy the seriality condition ∀x∃y.r(x, y).
We will see next that it is possible to obtain a gw-maximal model that preserves

any frame condition that is invariant under disjoint unions. The seriality condition

above falls in this category. In fact, by a well-known result due to Goldblatt and

Thomason, every class of models that is both first-order and modally definable (that

is, definable by a basic modal formula) must be closed under disjoint unions [7].

We begin by defining an operation Ψκ on models. Intuitively, Ψκ(I) is the model

obtained by taking κ isomorphic copies of I (in particular, Ψ0(I) = I).
Definition 4.8 Let I = 〈W, ·I〉 be a relational model and let κ be an ordinal

number; then Ψκ(I) = 〈W ∗, ·∗〉 is the model such that W ∗ = W ∪ (κ ×W), r∗ =

rI ∪ {((a,w), (a, v)) | a ∈ κ and (w, v) ∈ rI} and p∗ = pI ∪ (κ× pI).

Clearly, for basic modal formulas, I, g, w |= ϕ if and only if Ψκ(I), g, w |= ϕ.

Moreover, since Ψκ(I) is the disjoint union of κ+1 copies of I, every class of models

C that is modally definable, is closed by Ψκ.

Proposition 4.9 Let C be a class of relational models that is closed by Ψκ and

let ϕ be a formula of H(@, ↓). Then, ϕ is C-satisfiable iff there exists an unsorted

functional model I∗ such that:

(i) I∗ induces a C-model and satisfies ϕ at some world w,

(ii) I∗ is gw-maximal, where gw is the constant assignment gw(x) = w.

Proof. The argument is very similar to that of Proposition 4.6. Given a hybrid

model I = 〈W, ·I〉 such that I, g, w |= ϕ for some g and w, we first build the

model I ′ = Ψκ(I) with κ = |W ||W |. By construction, I ′ is in C and as observed

above, I ′, g, w |= ϕ. It is now easy to turn any functional model inducing I ′ into a

gw-maximal one. �

Corollary 4.10 Let C be a class of modally definable models and let ϕ be a formula

of H(@, ↓). The following are equivalent:

(i) ϕ is C-satisfiable.
(ii) ∃i:ω.OFT i(ϕ) is C-satisfiable.
(iii) ∃i.OFT i(ϕ)

− is C-satisfiable.

5 General unsoundness of sort erasure for OFT i

One may wonder if performing sort erasure on the optimized functional translation

is sound in the general case, that is, over classes that are not definable in the basic

modal language. We give a negative answer to this question by exhibiting a class

of models that is definable by a hybrid formula for which sort erasure fails.

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–16 13

i j

k l

r

r
r

r
r

r

Fig. 3. A C-model for ψ (relation s is omitted).

Consider the hybrid axiom 〈s〉i. It is well-known that it defines the class of

models that satisfy the first-order formula ∀xy.s(x, y) 4 . Since in this class s behaves

like a universal modality, we can use the machinery of hybrid logics to impose

cardinality conditions on models. For example, the following formula is satisfiable

only by models with exactly four elements, labelled i, j, k and l:

[s](i ∨ j ∨ k ∨ l) ∧@i¬j ∧@i¬k ∧@i¬l ∧@j¬k ∧@j¬l ∧@k¬l (8)

Now, let ψ be the conjunction of (8) with the following formulas:

@i(〈r〉j ∧ 〈r〉k ∧ 〈r〉l ∧ [r]¬i) @j(〈r〉i ∧ 〈r〉k ∧ 〈r〉l ∧ [r]¬j)
@k(〈r〉i ∧ 〈r〉j ∧ 〈r〉l ∧ [r]¬k) @l(〈r〉i ∧ 〈r〉j ∧ 〈r〉k ∧ [r]¬l)

Clearly, ψ is C-satisfiable. In fact (assuming Prop = ∅) any model for ψ is

isomorphic to the one in Figure 3. Finally, let ϕ be the conjunction of:

[s]〈r〉(i ∨ j) [s]〈r〉(i ∨ k) [s]〈r〉(i ∨ l)

[s]〈r〉(j ∨ k) [s]〈r〉(j ∨ l) [s]〈r〉(k ∨ l)

The model of Figure 3 also satisfies ϕ and, therefore, satisfies ψ ∧ϕ. Now, consider

the formula OFTm(ψ ∧ ϕ), which has to be satisfiable in C as well. We will see

that the minimum number of elements of sort ι that a C-model for OFTm(ψ ∧ ϕ)

requires is six (in fact, it requires exactly six, but we won’t show the upper-bound).

Since such a model cannot have more than four elements of sort ω we will conclude

that sorts cannot be safely removed in this case.

The first thing to observe is that there is an upper bound for the number of

elements of sort ι required, given by the number of existentially quantified variables

in OFTm(ψ ∧ϕ). The latter is the number of diamonds in ψ ∧ϕ, namely, eighteen.

We need a function to witness each of these existentially quantified variables, and

the minimum number of elements of sort ι is simply the minimum number of distinct

functions required.

We restrict our attention to diamonds in ϕ. Exactly one diamond occurs in each

conjunct; informally, we say that a function is required to account for each of them.

In the end, we conclude that six distinct functions are needed.

Let I = 〈W, ·I〉 be the model of Figure 3 and assume W = {i, j, k, l}. Moreover,

assume g(w) = w for w ∈ W . Consider the conjunct [s]〈r〉(i ∨ j); since [s] is a

4 We can functionally translate the axiom 〈s〉i as ∀x:ω.¬des(x)∧∀xy:ω.∃j:ι.(x = fs(j, y)). This shows that
we don’t need any special ad-hoc machinery to deal with the universal modality when we use the functional
translation.

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–1614

α1(i) = j α1(j) = i α1(k) ∈ {i, j} α1(l) ∈ {i, j}
α2(i) = k α2(j) ∈ {i, k} α2(k) = i α2(l) ∈ {i, k}
α3(i) = l α3(j) ∈ {i, l} α3(k) ∈ {i, l} α3(l) = i

α4(i) ∈ {j, k} α4(j) = k α4(k) = j α4(l) ∈ {j, k}
α5(i) ∈ {j, l} α5(j) = l α5(k) ∈ {j, l} α5(l) = j

α6(i) ∈ {k, l} α6(j) ∈ {k, l} α6(k) = l α6(l) = k

Table 1
Requirements for the functions that satisfy OFTm(ϕ).

universal modality, we have have I, g, w |= 〈r〉(i ∨ j) for every w ∈ W . Let α1

be the function witnessing the diamond. Then I, g, α1(w) |= (i ∨ j). Since rI is

irreflexive, α1 satisfies α1(i) = j and α1(j) = i. We can do this analysis for all six

conjuncts of ϕ; the constraints are shown in Table 1.

Because α1, α2 and α3 differ in the value for i, they must be all distinct functions.

Similarly, α4 differs from α1 in the value for j, from α2 in the value for k and from

α3 everywhere. From a similar analysis for α5 and α6 we conclude that six distinct

functions are needed to satisfy these six formulas.

6 Conclusions and future work

When dealing with functional translations, many-sorted first-order logic is unde-

niably useful for presentation reasons. In this article we discussed in which cases

many-sorted logic is needed also for technical reasons. We proved that as long as

reasoning is confined to classes of models closed by disjoint unions (e.g., modally

definable classes) sorts can be eliminated.

It was shown in [14] that the optimized functional translation can be used also

to reason over some modally defined classes that are not first-order, like the class

defined by the McKinsey axiom ��p → ��p. It is easily seen that sorts are not

required in that case either.

Of course, the empirical advantages of eliminating sorts need to be assessed.

One could in principle pick an off-the-shelf automated prover and benchmark its

performance on a number of functionally translated formulas (generated at random

or from a given domain), both with and without sort annotations. However, it is

not at all clear if one is warranted to extract meaningful conclusions from this sort

of black-box experiments. E.g., absence of noticeable differences may be due to a

bottleneck in the clausification process, or even a prover implementing an heuristic

that amounts to erasing sorts; better execution times for the unsorted case may be

due to a deficient handling of larger formulas, etc.

This article shows that the functional translation adapts surprisingly well to the

hybrid case (see, for comparison, the case of the layered translation in [8]). Schmidt

established in [16] that, when restricted to the basic modal case, any refinement of

resolution plus the (eagerly applied) condensing rule [11] is terminating for the out-

put of the optimized functional translation. Most first-order theorem provers have

factoring and subsumption deletion rules, and hence condensing is in fact implicit

when the implementation is fair. This means that any standard (complete and fair)

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–16 15

resolution theorem prover used along with the optimized translation constitutes a

decision method for the basic modal language over the class of all models. Termi-

nation conditions for some frame classes were also investigated. As future work, it

would be interesting to see if termination can be achieved in the case of H(@).

References

[1] C. Areces, R. Gennari, J. Heguiabere, and M. de Rijke. Tree-based heuristics in modal theorem proving.
In Proc. of ECAI’2000, pages 199–203, 2000.

[2] C. Areces and B. ten Cate. Hybrid logics. In Handbook of Modal Logics, pages 821–868. Elsevier, 2006.

[3] Y. Auffray and P. Enjalbert. Modal theorem proving: An equational viewpoint. In Proc. of the 11th
IJCAI, pages 441–445. Morgan Kaufmann Pub., 1989.

[4] Y. Auffray and P. Enjalbert. Modal theorem proving: An equational viewpoint. J. of Logic and
Computation, 2(3):247–295, 1992.

[5] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2002.

[6] L. Fariñas del Cerro and A. Herzig. Linear modal deductions. In Proc. of CADE-9, volume 310 of
LNCS, pages 487–499. Springer, 1988.

[7] R. Goldblatt and S. Thomason. Axiomatic classes in propositional modal logic. In Algebra and Logic,
volume 450 of Lecture Notes in Mathematics, pages 163–173. Springer, 1975.

[8] D. Goŕın. Automated reasoning techniques for hybrid logics. PhD thesis, Universidad de Buenos and
Université Henri Poincaré, 2009.

[9] I. Horrocks, U. Hustadt, U. Sattler, and R. Schmidt. Computational modal logic. In Handbook of
Modal Logics, pages 181–245. Elsevier, 2006.

[10] U. Hustadt and R. A. Schmidt. An empirical analysis of modal theorem provers. J. of Applied Non-
Classical Logics, 9(4):479–522, 1999.

[11] W. Joyner, Jr. Resolution strategies as decision procedures. J. of the ACM, 23(3):398–417, 1976.

[12] H. Ohlbach. A Resolution Calculus for Modal Logics. PhD thesis, Universität Kaiserslautern, 1988.

[13] H. Ohlbach. A resolution calculus for modal logics. In Proc. of CADE-9, volume 310 of LNCS, pages
500–516. Springer, 1988.

[14] H. Ohlbach and R. Schmidt. Functional translation and second-order frame properties of modal logics.
J. of Logic and Computation, 7(5):581–603, 1997.

[15] R. Schmidt. Optimised Modal Translation and Resolution. PhD thesis, Universität des Saarlandes,
Saarbrücken, Germany, 1997.

[16] R. Schmidt. Decidability by resolution for propositional modal logics. J. of Automated Reasoning,
22(4):379–396, 1999.

[17] C. Walther. Many-sorted inferences in automated theorem proving. In Sorts and Types in Artificial
Intelligence, volume 418 of LNCS, pages 18–48. Springer, 1989.

[18] C. Weidenbach. Combining superposition, sorts and splitting. In Handbook of Automated Reasoning,
volume 2, chapter 27, pages 1965–2014. Elsevier and MIT Press, 2001.

[19] C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. System description: Spass version
3.0. In Proc. of CADE-21, number 4603 in LNAI, pages 514–520. Springer-Verlag, 2007.

[20] N. Zamov. Modal resolutions. Soviet Math, 33(9):23–29, 1989.

C. Areces, D. Gorín / Electronic Notes in Theoretical Computer Science 278 (2011) 3–1616

	Introduction
	Functional models, functional translation
	Optimized functional translations
	Sort erasure on modally definable classes of models
	General unsoundness of sort erasure for OFT i
	Conclusions and future work
	References

