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Summary

Macrophages, dendritic cells, and neutrophils use

phagocytosis to capture and clear off invading patho-
gens. The process is triggered by the interaction

of ligands on the pathogens’ surface with specific
phagocytic receptors, including immunoglobulin

(FcR) and complement C3bi (CR3) receptors (integrin
aMb2, Mac1) [1]. Localized actin-filament assembly

that acts as the driving force for particle engulfment
is controlled by Rho-family small GTPases [2, 3].

RhoA regulates CR3-mediated phagocytosis through
a mechanism that is still unclear [4–6]. Mammalian

Diaphanous-related (mDia) formins participate in the
generation of a diverse set of actin-remodeling events

downstream of RhoA [7], and mDia1 is recruited
around fibronectin-coated beads in a RhoA-dependent

manner in fibroblasts [8]. Here, we set out to examine
whether mDia proteins are involved in CR3-mediated

phagocytosis in macrophages. We show that the
RhoA effector mDia1 is recruited early during CR3-

mediated phagocytosis and colocalizes with polymer-
ized actin in the phagocytic cup. Interfering with mDia

activity inhibits CR3-mediated phagocytosis while
having no effect on FcR-mediated phagocytosis. These

results indicate a new function for mDia proteins in

the regulation of actin polymerization during CR3-
mediated phagocytosis.

Results and Discussion

mDia Proteins Are Required for CR3-Mediated,

but Not FcR-Mediated, Phagocytosis
Formins are evolutionarily conserved proteins that con-
tain conserved formin homology-1 (FH1) and -2 (FH2)
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domains [7, 9, 10]. The FH2 domain is necessary and
sufficient to nucleate and elongate actin filaments at
the barbed end by a novel mechanism that differs from
the branched network initiated by the Arp2/3 complex
[11–14]. In addition to the FH1 and FH2 domains, the
mammalian Diaphanous-related formins mDia1, mDia2,
and mDia3 have additional conserved modules: an
amino-terminal Rho GTPase binding domain (GBD) and
a Diaphanous-autoinhibitory domain (DID) that binds to
the carboxy-terminal Diaphanous autoregulatory do-
main (DAD) as part of an autoregulatory mechanism [7,
15–18]. mDia proteins are thought to be activated by
GTPase’s binding to the GBD, which disrupts—probably
through an allosteric mechanism—the interaction of DID
with DAD [11, 17, 19, 20].

Expression of mDia formins mDia1 and mDia2 was de-
tected in RAW264.7 macrophages and in bone-marrow-
derived mouse macrophages (Figure 1A). We analyzed
by immunofluorescence the distribution of mDia1 during
CR3-mediated phagocytosis. Ten minutes after contact
of RAW264.7 macrophages with C3bi-opsonized sheep
red blood cells (C3bi-SRBCs), the recruitment of endog-
enous mDia1 was clearly visible in 76.5% 6 1.5% (169
F-actin cups examined from three independent experi-
ments) of the phagocytic cups labeled with F-actin
(Figure 1B).

The role of mDia1 and mDia2 during FcR- and CR3-
mediated phagocytosis was first addressed by the ex-
pression of several mDia2-derived constructs (Figure
1C) known to interfere with the function of endogenous
mDia proteins in RAW264.7 cells [21, 22]. As reported
previously [4, 23, 24], the expression of dominant inhib-
itory alleles of Cdc42 (Cdc42T17N) or of RhoA (RhoAT19N)
led to 80% inhibition of FcR- and CR3-mediated phago-
cytosis, respectively (Figures 1D and 1E, hatched bars).
None of the mDia-interfering constructs affected FcR-
mediated phagocytosis (Figure 1D). In contrast, expres-
sion of DGBDDDAD2G(YEKR)-mDia2 (see Figure 1C)
[22, 25] and DGBDDFH1-mDia2 [21] reduced the effi-
ciency of CR3-mediated phagocytosis by 55% and
80%, respectively (Figure 1E). The isolated GTPase
binding domain of mDia2 (GBD-mDia2), which binds to
GTP-RhoA and probably competes with endogenous
downstream effectors, led to 80% inhibition of uptake
(Figure 1E). Importantly, none of these constructs signif-
icantly affected the binding of particles to the macro-
phages (Figures 1D and 1E, black bars).

We further addressed the role of mDia in CR3-
mediated phagocytosis by using the siRNA approach
to knockdown its expression in RAW264.7 cells. Despite
several attempts with three different RNA sequences,
reducing the level of mDia2 was unsuccessful. In con-
trast, two independent siRNAs directed against mDia1
led to a substantial decrease in its expression (Figure
2A). The efficiency of particle binding and uptake was
monitored in mDia1-depleted cells identified by immu-
nostaining with anti-mDia1 antibodies. Although associ-
ation was not affected in mDia1-depleted cells, particle
internalization was reduced by 50% (Figure 2B). The
inhibition of phagocytosis in mDia1-depleted cells was
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Figure 1. mDia1 and mDia2 Are Expressed in Macrophages, Colocalize with F-Actin in the Phagocytic Cup, and Are Specifically Required for

Efficient CR3-Mediated Phagocytosis

(A) mDia1 and mDia2 are constitutively expressed in both RAW264.7 cells and in bone marrow-derived macrophages (BMDM). Cell lysates from

RAW264.7 macrophages and from resting (BMDM-LPS) or activated (BMDM+LPS) bone marrow-derived mouse macrophages were analyzed by

Western blotting with specific mDia1 (left panel) and mDia2 (right panel) antibodies.

(B) RAW264.7 cells were incubated at 37ºC with C3bi-SRBCs for 10 min. The cells were then fixed, and external C3bi-SRBCs were detected with

Cy2-anti-rabbit IgG (arrowheads) before permeabilization and staining with mDia1 antibodies followed by Cy3-anti-mouse IgG (left panel) and

Alexa350-phalloidin (right panel). Labeled cells were analyzed by wide-field microscopy with deconvolution (one medial section is shown). En-

dogenous mDia1 was recruited at the site of particle ingestion and colocalized with F-actin in 76.5% of the phagocytic cups (n = 169 phagocytic

cups scored). The scale bar represents 10 mm.

(C) Schematic representation of the GFP-mDia2-derived constructs used for interfering with mDia activity. GGGG indicates the site of G(YEKR)

mutation generated the substitution of Gly for Tyr-713, Glu-714, Lys-715, and Arg-717, with Ile 716 left intact [25].

(D) mDia2-derived constructs have no effect on FcR-mediated phagocytosis. RAW264.7 macrophages transiently expressing the mDia2-derived

constructs or the dominant-negative mutants RhoAT19N and Cdc42T17N were allowed to phagocytose IgG-SRBCs for 60 min at 37ºC. The cells
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Figure 2. mDia1 siRNA Treatment Inhibits

CR3-Mediated Phagocytosis

(A) RAW264.7 macrophages were transfected

with siRNA directed against mDia1 or irrele-

vant siRNA used as a control. After 24 hr, the

cells were fixed, permeabilized, and then

stained with anti-mDia1 antibodies followed

by Cy3-anti-mouse IgG and observed by

wide-field fluorescence microscopy. The

mDia1-depleted cells showed a decreased

mDia1-positive fluorescent signal compared

with the bright non-depleted cells and were

detectable under the microscope (results

with RNA.1 are shown).

(B) Transfected cells were allowed to phago-

cytose C3bi-SRBCs for 60 min at 37ºC. The

cells were then fixed, and external C3bi-

SRBCs were detected with Cy2-anti-rabbit

IgG before permeabilization and staining

with anti-mDia1 antibodies followed by Cy3-

anti-mouse IgG and Alexa350-phalloidin.

The efficiency of association was calcu-

lated on 50 mDia1-depleted and 50 con-

trol cells transfected with an irrelevant

siRNA. Results are expressed as a percentage of control cells. Means 6 S.E.M. of three independent experiments are plotted.

(C) Cells were treated as described in (B), and the efficiency of phagocytosis was calculated on 50 mDia1-depleted and 50 control cells transfected

with an irrelevant siRNA. Results are expressed as a percentage of control cells. Means 6 S.E.M. of three independent experiments are plotted.
not as strong as that observed in cells expressing mDia2-
derived constructs (compare Figures 1E and 2C), possi-
bly because the latter were able to interfere with the ac-
tivity of both mDia1 and mDia2 proteins. Together, these
results indicate that mDia1, mDia2, or both are critical for
CR3-mediated phagocytosis in macrophages.

mDia Controls Actin Assembly during
CR3-Mediated Phagocytosis

Inhibition of the RhoA downstream effector ROCK either
with the ROCK inhibitor Y-27632 or with a dominant in-
hibitory kinase-dead ROCK-domain construct inhibits
CR3-mediated phagocytosis, indicating that ROCK
plays an important role in this process [6]. We therefore
tested whether mDia and ROCK could cooperate during
phagocytosis. Simultaneous inhibition of mDia1 (by
RNAi) and ROCK (dominant inhibitory kinase-dead
domain [26]) led to a 64% 6 2.8% inhibition of CR3-
mediated phagocytosis. This effect was significantly
stronger than what was observed after blocking the
mDia and ROCK activities separately (51% 6 3.8% and
43% 6 3.8%, respectively) (Figure 3C), suggesting that
the two RhoA effectors contribute to CR3-mediated
phagocytosis.

Because mDia1 has been shown to control actin poly-
merisation downstream of RhoA [8, 27], we then as-
sessed whether interfering with mDia activity had any
effect on actin assembly during CR3-mediated phago-
cytosis. As reported [5], actin accumulation was inhib-
ited in cells transiently expressing RhoAT19N, whereas
it was similar to controls in cells expressing Cdc42T17N

(Figure 4A). The expression of mDia2-derived constructs
and knockdown of mDia1 similarly decreased F-actin
recruitment around the particles (Figures 4A and 4B),
showing that mDia1 and mDia2 contribute to actin poly-
merization during CR3-mediated phagocytosis.

To further characterize cells depleted for mDia1, we
performed scanning electron microscopy analysis after
60 min of phagocytosis. Although most of the particles
were internalized in control cells (Figure 4C, left panel),
many remained at the surface of depleted cells with no
sign of engulfment (Figure 4C, right panel). These results
indicate that mDia1 controls an early step during CR3-
mediated phagocytosis.

In summary, our results demonstrate for the first time
that mDia formins play a critical role in CR3-mediated
phagocytosis. The dual engagement of both mDia (our
data) and the Arp2/3 complex [6] during CR3-mediated
phagocytosis, in contrast to FcR-mediated phago-
cytosis, which does not require mDia activity, provides
a new molecular basis for explaining differences in the
early events of IgG- or complement-opsonized particle
engulfment [4, 28, 29].

Experimental Procedures

Plasmids and Reagents

pEGFP-mDia2 (JP002) encodes full-length mDia2 (GenBank Acces-

sion AF094519) fused to EGFP. GBD-mDia2, DGBDDFH1-mDia2,

and DGBDDDAD-G(YEKR)-mDia2 fused to EGFP were described

previously [16, 21, 22, 25]. We generated the G(YEKR) mutation by
were then fixed, and external SRBCs were stained with Cy3-anti-rabbit IgG antibodies. The efficiencies of association (black bars) and phago-

cytosis (hatched bars) were scored in 50 transfected and 50 control cells (GFP-negative transfected cells). Results are expressed as a percentage

of control cells. The means 6 S.E.M. of three independent experiments are plotted.

(E) mDia2-derived constructs inhibited CR3-mediated phagocytosis. RAW264.7 macrophages transiently expressing mDia2-derived constructs

or the dominant-negative mutants RhoAT19N and Cdc42T17N were incubated with 150 ng/ml PMA to activate CR3, were then allowed to phago-

cytose C3bi-SRBCs for 60 min at 37ºC, and were processed as in (D). The means 6 S.E.M. of three independent experiments are plotted. Control,

GFP-negative transfected cells.
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Figure 3. Effect of Simultaneous Inhibition

of mDia and ROCK during CR3-Mediated

Phagocytosis

(A) Lysates from RAW264.7 cells expressing

ROCK-KD or those expressing ROCK-KD

and also depleted for mDia1 were analyzed

by Western blotting with mDia1 antibody

(lower panel) and clathrin HC antibody (upper

panel).

(B) RAW264.7 cells transiently transfected

with an irrelevant siRNA (control), siRNA

against mDia1 (RNAi), pRK5-myc-ROCK-KD

plasmid (ROCK-KD), or both mDia1 siRNA

and pRK5-Myc-ROCK-KD (ROCK-KD+RNAi)

were incubated with C3bi-SRBCs for 60 min

at 37ºC. After fixation and staining of external

C3bi-SRBCs with Cy2-anti-rabbit IgG, cells

were permeabilized and labeled with Dia1 or

Myc antibodies followed by Cy3-anti-mouse

IgG. We checked in an independent experi-

ment that cells cotransfected with Myc-

ROCK-KD plasmid and mDia1 siRNA showed

a diminished expression of mDia1 (not

shown). Fifty transfected and/or depleted

cells and 50 control cells were scored for as-

sociation efficency. Results are expressed as a percentage of control cells. The means 6 S.E.M. of three independent experiments are plotted.

(C) Cells were treated as described in (B), and the efficiency of phagocytosis was calculated on 50 mDia1-depleted and 50 control cells. Results

are expressed as a percentage of control cells. Means 6 S.E.M. of four independent experiments are plotted. The statistical significance of these

data was tested with an unpaired Student’s t test with a goodness-of-fit value of p < 0.05 (*) or p < 0.005 (**).
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Figure 4. Inhibition of mDia Activity Results in

Decreased F-Actin Recruitment and Early

Blockade of Phagocytosis

(A) RAW264.7 macrophages transiently ex-

pressing GFP-tagged-mDia2-derived con-

structs or dominant-negative mutants

RhoAT19N and Cdc42T17N were incubated

with C3bi-SRBCs at 37ºC for 5 min. Cells

were fixed and stained with Cy3-anti-rabbit

IgG to detect the external particles. F-actin

was labeled with Alexa350-phalloidin. Fifty

GFP-positive cells and 50 GFP-negative con-

trol cells were scored for the presence or ab-

sence of F-actin accumulation around bound

particles as described in the Experimental

Procedures section. Results are expressed

as a percentage of control cells. Means 6

S.E.M. of three independent experiments

are plotted except those for DGBDDDAD-

G(YEKR)-mDia2-expressing cells (two ex-

periments are plotted).

(B) RAW264.7 cells were treated with siRNA

against mDia1 or with an irrelevant siRNA

(control) and incubated with C3bi-SRBCs

for 5 min at 37ºC. Cells were fixed, and exter-

nal particles were labeled with Cy5-anti-

rabbit IgG. F-actin was stained with Alexa350-

phalloidin. mDia1 siRNA-treated cells (50)

and control cells (50) were scored for F-actin

accumulation as described in the legend of

panel 4A. The means 6 S.E.M. of three inde-

pendent experiments are plotted.

(C) RAW264.7 macrophages were cotrans-

fected with pEGFP-N1 plasmid and siRNA

specific for mDia1 or an irrelevant siRNA

(control). We verified on a separate coverslip

by immunofluorescence staining with anti-

mDia1 antibody that GFP-positive, siRNA

mDia1-treated cells were indeed depleted for mDia1 (not shown). Transfected cells were grown on CeLLocate coverslips, incubated with

C3bi-SRBCs for 60 min at 37ºC, and fixed. GFP-positive cells were located on coverslips by fluorescence microscopy and were analyzed by

scanning electron microscopy. The scale bars represent 10 mm.
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substituting Gly for Tyr-713, Glu-714, Lys-715, and Arg-717 and

leaving Ile-716 intact [25]. The pEGFPL11-Cdc42T17N and pEGFP-

RhoAT19N plasmids were kind gifts from Dr. P. Fort (UPR 1086, Mont-

pellier, France). The pRK5-Myc-ROCK-KD vector [6, 26], encoding

the ROCK catalytic domain mutated in the ATP binding site (lacking

the Rho binding domain) was kindly provided by Dr. L. Machesky

(University of Birmigham, UK). The pEGFP-N1 plasmid was from

Clontech.

PMA (phorbol 12-myristate 13-acetate) was from Sigma. The

following antibodies were used: anti-mDia1 (BD Transduction Labo-

ratory);anti-mDia2 (C-15, Santa Cruz Biotechnology); anti-Myc

(Roche); anti-clathrin heavy chain (Becton Dickinson); Cy2-, Cy3-,

or Cy5-labeled F(ab0)2 anti-mouse and anti-rabbit IgG (Jackson

Immunoresearch); HRP-labeled anti-mouse IgG (Sigma); and HRP-

labeled anti-goat IgG (Jackson Immunoresearch). Alexa350-coupled

phalloidin was from Molecular Probes.

Cell Culture, Transfection, and siRNA Treatment

RAW264.7 macrophages were grown and transfected as described

[30]. Bone-marrow-derived macrophages were cultivated from

7-week-old mouse femoral and tibial bones as described [31].

RAW264.7 macrophages were transfected with siRNA duplex

(Proligo) specific for mouse Dia1 or for GFP with Lipofectamine

2000 according to the manufacturer’s instructions (Invitrogen [32]).

The mDia1-specific siRNA sequences were (RNA.1) 50-AGCCAG

GCCACAGUACUAU-30 and (RNA.2) 50-GCUGGUCAGAGCCAUGG

AU-30, as described [33]. The SiRNA duplex against GFP used as

a negative control was described [34]. After 24 and 48 hr, cell lysates

were analyzed by Western blotting as described [34]. When indi-

cated, siRNA and expression plasmids were cotransfected in the

cells. In those cases we verified by immunofluorescence with an

mDia1 antibody that cells transiently expressing the indicated con-

struct were depleted for mDia1.

Phagocytosis Assays

Phagocytosis was performed as described [30, 34]. To quantitate

phagocytosis, we counted the number of internalized SRBCs in 50

randomly chosen cells on the coverslips and calculated the phago-

cytic index, i.e., the mean number of phagocytosed SRBCs per cell.

The index obtained for transfected cells was divided by the index

obtained for control transfected non-expressing cells and ex-

pressed as a percentage of control cells. We also counted the num-

ber of cell-associated (bound + internalized) SRBCs, calculated the

association index (mean number of associated SRBCs per cell), and

expressed it as percentage of control cells. To quantitate polymer-

ized actin recruitment, we scored the presence or absence of F-actin

accumulations around particles in 50 randomly chosen cells on the

coverslips and calculated an accumulation index, i.e., the mean

number of accumulations per cell. The index obtained for the siRNA

mDia1-treated cells was divided by the index obtained for control

(siRNA GFP) cells and expressed as a percentage of the latter.

Immunofluorescence Analysis

Cells were fixed in 4% paraformaldehyde/phosphate-buffered sa-

line and labeled [30]. Cells were examined under a motorized upright

wide-field microscope (Leica DMRA2) equipped for image deconvo-

lution. Acquisition was performed with an oil-immersion objective

lens (1003 PL APO HCX, 1.4 NA) and a cooled CCD camera (Roper

CoolSnap HQ). Z positioning was accomplished by a piezo-electric

motor, and deconvolution was performed as described [34]. Acqui-

sitions were also performed with a motorized upright wide-field mi-

croscope (Leica DM RXA2) equipped with an oil-immersion objec-

tive lens (633 PL APO HCX, 1.32 NA) and a cooled CCD camera

(Roper CoolSnap HQ).

Scanning Electron Microscopy Analysis

Macrophages were prepared for scanning electron microscopy as

described [31], except that transiently transfected RAW264.7 cells

were plated onto CeLLocate (Eppendorf) coverslips to allow the lo-

calization of siRNA-treated cells coexpressing GFP under a fluores-

cence microscope and the observation of the same cells by scan-

ning electron microscopy.
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