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The vascular endothelium plays a crucial role in the

regulation of vascular homeostasis and in preventing the

initiation and progress of cardiovascular disease by

controlling mechanical functions of the underlying vascular

smooth muscle. Three vasodilators: nitric oxide (NO),

prostacyclin, and endothelium-derived hyperpolarizing

factor, produced by the endothelium, underlie this activity.

These substances act in a co-ordinated interactive manner to

maintain normal endothelial function and operate as support

mechanisms when one pathway malfunctions. In this review,

we discuss recent advances in our understanding of how

gender influences the interaction of these factors resulting in

the vascular protective effects seen in pre-menopausal

women. We also discuss how endothelial NO synthase (NOS)

can act in both a pro- and anti-inflammatory action and

therefore is likely to be pivotal in the initiation and time

course of an inflammatory response, particularly with

respect to inflammatory cardiovascular disorders. Finally, we

review recent evidence demonstrating that it is not solely

NOS-derived NO that mediates many of the beneficial effects

of the endothelium, in particular, nitrite acts as a store of

NO released during pathological episodes associated with

NOS inactivity (ischemia/hypoxia). Each of these more

recent findings has emphasized new pathways involved in

endothelial biology, and following further research and

understanding of the significance and mechanisms of these

systems, it is likely that new and improved treatments for

cardiovascular disease will result.
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The endothelium is as a highly specialized, metabolically
active organ lining the luminal side of all blood vessels that
plays an integral role in the maintenance of vascular
homeostasis, mediated by a number of endothelium-derived
factors. The endothelium releases an array of vasoactive
mediators that not only alter the tone and growth of the
underlying smooth muscle but also regulate the reactivity of
circulating white cells, erythrocytes, and platelets, and govern
vascular permeability. Moreover, it appears that alterations in
the capacity of the endothelium to release these mediators
may be a major precipitating factor in many cardiovascular
disease states.

ENDOTHELIUM-DERIVED VASODILATORS

Of the vasodilator factors that the endothelium can release,
prostacyclin (PGI2),1 nitric oxide (NO),2–4 and endothelium-
derived hyperpolarizing factor (EDHF)5–7 are the most
significant.

PGI2 is synthesized by cyclooxygenase (COX) isozymes, of
which, essentially, two have been identified. COX-1 is a
constitutive enzyme expressed in the vascular endothelium
and thought to contribute to the maintenance of vascular
homeostasis (a splice variant of COX-1, sometimes referred
to as COX-3, has also been reported8). COX-2 is an inducible
isozyme that is thought to be expressed in the cardiovascular
system (and immune cells) only during pathogenic episodes,
although there is some evidence to suggest that this isoform
is constitutively present in human endothelial cells.9 PGI2

elicits smooth muscle relaxation by activating specific cell-
surface receptors (IP) that are G-protein-coupled to adenylyl
cyclase and thereby elevate cyclic adenosine monphosphate
levels.10

NO is synthesized from L-arginine by NO synthases (NOS)
and causes vasodilatation via activation of soluble guanylyl
cyclase generating cyclic guanosine monophosphate.11 Under
physiological conditions, two ‘constitutive’ forms of NOS
play a role in NO production, predominantly endothelial
NOS (eNOS) and to a lesser extent neuronal NOS.12 A third
isoform, inducible NOS (iNOS), is expressed in a number
of inflammatory cell types and has an essential role in
vascular inflammation.13 The constitutive enzymes produce
low-level NO, important for maintaining vascular home-
ostasis, whereas iNOS activity results in ‘high-output’ NO

r e v i e w http://www.kidney-international.org

& 2006 International Society of Nephrology

Received 13 April 2006; accepted 16 May 2006; published online 12 July

2006

Correspondence: A Ahluwalia, Clinical Pharmacology, William Harvey

Research Institute, Barts & The London Medical School, Charterhouse Square,

London EC1M 6BQ, UK. E-mail: a.ahluwalia@qmul.ac.uk

840 Kidney International (2006) 70, 840–853



production and this is thought to underlie its activity in
inflammation.

The identity of EDHF remains uncertain, although several
candidates have been proposed including Kþ ions, cyclic
adenosine monphosphate, cytochrome P450 2C products,
H2O2, spread of electrotonic current and, most recently,
C-type natriuretic peptide (CNP).7 However, it is universally
accepted that EDHF release/transmission from the endo-
thelial cell occurs following opening of endothelial SKCa and
IKCa.

14 Moreover, hyperpolarization of vascular smooth
muscle associated with EDHF activity, in the main, involves
activation of the Naþ /Kþ -ATPase and Kir.

There is considerable evidence to support the concept that
these substances not only act as vasodilators but they play a
multi-faceted role in vascular homeostasis, including inhibi-
tion of mitogenesis, platelet aggregation, and the extravasa-
tion of leukocytes.7,11,15–17

PHYSIOLOGICAL INTERACTION OF ENDOTHELIUM-DERIVED
MEDIATORS

In addition to their own distinct profile of activity, there is
clear evidence that these three endothelial mediators work
co-operatively in a complex but integrated manner to
maintain the health of the vasculature. Most notably, it
appears that each individual mediator possesses the capacity
to interact with components of the synthesis/activation
pathways for the other mediators and thereby manipulate
their activity. These relationships have been best character-
ized in terms of maintenance of vascular tone and occur at
two levels: first, in the physiological regulation of vessel
diameter, and second, as a compensatory mechanism
activated when the expression or activity of an alternate
mediator is deficient. For instance, endothelial regulation of
vascular tone is not uniformly consistent in terms of the
contribution of the three main vasodilators, NO, PGI2, and
EDHF. Although NO is the predominant endothelium-
derived vasodilator in conduit arteries, as one descends the
vascular tree the role of NO diminishes, whereas the
influence of EDHF increases.18 In this way, the absolute vaso-
dilator capacity of the arterial system is maintained. Studies
investigating the relationship between NO and EDHF have
indicated that basal NO tonically inhibits EDHF re-
sponses.19,20 Indeed, in many blood vessels EDHF responses
are only evident once NO production has been inhibited.19

The exact mechanisms involved in this interaction between
NO and EDHF remain unknown.

In a similar manner, the contribution of PGI2 (and other
COX products) to endothelium-dependent relaxation is often
evident only after inhibition of NOS,21 and accordingly, this
is thought to be owing to a tonic inhibitory effect of NO.
There is evidence to suggest that NO can both enhance and
inhibit COX activity and expression. These disparate effects
of NO are likely to reflect the specific nitrogen oxide species
involved and its concentration.22,23

There are several reports demonstrating upregulation of
PGI2 or EDHF in an environment where NO production has

been suppressed. For example, in gracilis muscle arterioles of
male eNOS knockout (KO) mice, endothelium-dependent
dilatation is maintained despite the absence of NO; this
compensation was shown to be PGI2-dependent as the
response was markedly attenuated by the COX inhibitor
indomethacin.24 Evidence supports the concept that this
provision of PGI2 originates from the upregulation of COX
enzyme expression or activity.25,26 However, evidence also
supports the thesis that EDHF is upregulated in eNOS KO
mice.27,28 Our own studies have demonstrated that, whilst
endothelial NO tonically antagonizes myogenic constriction
in resistance arteries of wild-type (WT) mice, in eNOS KO
animals rather than an exaggerated myogenic reactivity, these
responses remain normal as EDHF is upregulated to replace
the moderating influence of NO.27 This upregulation of
EDHF activity is thought to be linked to NO-mediated
inhibition of EDHF.19,20 Exactly how this is brought about is
uncertain, but studies using NO donors in rabbit carotid and
porcine coronary arteries demonstrate an NO-mediated
suppression of EDHF-mediated dilatation associated with
an interference with the synthesis and/or release of EDHF
rather than its mechanism of action.19,20 Indeed, patch-clamp
recordings in vascular smooth muscle cells revealed that NO
donors, which did not directly affect resting membrane
potential or EDHF-induced hyperpolarization, markedly
attenuated EDHF release from a donor segment.20 Similarly,
chronic inhibition of NO synthesis causes a change in the
factors mediating endothelium-dependent relaxation; several
studies have demonstrated a compensatory increase of PGI2

production and upregulation of COX expression.24,29,30 This
compensatory upregulation of PGI2 and/or EDHF following
suppression of NO production is also observed in models of
cardiovascular disease and in humans with cardiovascular
disease.21,26,29,31

There have been a number of excellent recent reviews
that have described in detail the roles of each of the
three vasodilators and their interactions,32–34 and the
impact of cardiovascular disease on their expression
and function,35,36 and therefore these areas will not be
dealt with in this review. Here, we focus on some areas
of endothelial biology that have come to the fore recently,
in particular, the impact of gender on endothelial
responses, the role of the endothelium in determining
inflammatory iNOS expression, and evidence demonstrat-
ing alternative endothelium-dependent sources of endo-
genous NO.

GENDER DIFFERENCES IN ENDOTHELIUM-DEPENDENT
RESPONSES

Several lines of evidence support the existence of gender
differences in endothelium-dependent vasodilator responses
in animals37–39 and humans.40,41 In sum, the data support the
concept that endothelium-dependent vasodilatation is en-
hanced in pre-menopausal females. Functionally, this differ-
ence in endothelial reactivity42,43 is thought to contribute to
the apparent protection of pre-menopausal women against
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cardiovascular disease.44 Many inflammatory cardiovascular
diseases are associated with a prevalence of ‘endothelial
dysfunction’, a phenomenon often attributed to the loss or
suppression of NO biological activity.35,45 Indeed, in many
cases, endothelial dysfunction precedes the onset of disease
and therefore this phenomenon may play an important role
in pathogenesis.46–48

ESTROGENS AND VASCULAR FUNCTION

The mechanisms involved in enhanced endothelial function
in females seem (intuitively) to be linked to female sex
hormones. For example, flow-mediated dilatation (FMD) of
the brachial artery is increased in females compared to males,
a difference temporally associated with the increase in serum
estradiol concentration that occurs during the menstrual
cycle. Indeed, the difference in FMD disappeared during the
M phase when serum levels of both estrogen and progester-
one were similar to those in male subjects.49 Similarly,
vasodilator responses to bradykinin are increased mid-cycle
in healthy women, when estrogen levels are at their highest.50

Further, young women with premature ovarian failure (or
premature menopause) have impaired endothelial function
that has been directly linked to sex steroid deficiency, as
treatment of these individuals for 6 months with estradiol
restored endothelial function.51 Ovariectomy also creates an
estrogen deficient state and in such patients endothelium-
dependent vasodilatation in the forearm is also attenuated.52

Together, these findings provide strong support for the thesis
that endogenous sex hormones, particularly estrogen, play an
important role in maintaining endothelial function in healthy
females.

There is an immense body of evidence demonstrating the
beneficial effects of estrogen on endothelial and vascular
function. Studies of post-menopausal women and ovariecto-
mized (OVX) animals52–58 have demonstrated that estrogen
administration improves endothelium-dependent vasodilata-
tion induced by vasodilators or flow.49–61 Similarly, the
endothelial dysfunction in women who suffer menopause in
the earlier stages of life, owing to surgical intervention, is
considerably improved following estrogen treatment;62 this
intimates that estrogen treatment in post-menopausal
women does not simply reverse age-related endothelial
dysfunction63 but rather that it reverses dysfunction owing
to a loss of female sex hormones. In the vasculature, estrogen
has been demonstrated to act in both a genomic and non-
genomic manner to influence endothelial function (for
review see 42,64,65). Relatively high micromolar concentra-
tions of estrogen (i.e., 100–1000 greater than physiological
levels) have direct acute vasodilator effects66 and this action
has been ascribed, in part, to endothelium-dependent
vascular relaxation.54,67 Alternatively, chronic exposure of
vascular cells and tissues to physiological concentrations of
estrogens alters the expression of a number of proteins
involved in the synthesis and activity of NO, PGI2, and
EDHF.65 Thus, the vasodilator effects of estrogens are
believed to play a major role in exerting a hypotensive and

anti-inflammatory phenotype in pre-menopausal women
that suppresses the development of atherosclerosis.

HORMONE REPLACEMENT THERAPY AND VASCULAR
FUNCTION

Despite the considerable body of evidence supporting a
cardioprotective role of estrogens, some studies have reported
that estrogen-induced improvement in FMD only occurs in
younger post-menopausal women68,69 and that estrogen
treatment does not augment endothelial function.70 As a
result, if and how any effect of estrogens on vascular
reactivity might translate to cardioprotection is a highly
controversial issue. This debate was fuelled by the failure of
hormone replacement therapy (HRT) in large-scale clinical
trials to confer protection from cardiovascular diseases in
post-menopausal women.71,72 It is thought that the dis-
appointing, and clearly unexpected, results of these trials may
have been owing to the timing of HRT administration with
respect to the onset of menopause;43 treatment should be
initiated at the start of menopause before the onset of
significant changes in cardiovascular function. This is an
issue that is being investigated by the recently set up Kronos
early estrogen prevention study.

Studies exploring the direct effects of HRT on the vascular
endothelium have also contributed to the controversy. Several
investigations show an improvement in endothelial function
in post-menopausal women on HRT.73–75 However, HRT is
commonly composed of both estrogens and progestins (the
latter to reduce risk of endometrial cancer induced by long-
term estrogen use76,77) and there is evidence that progestins
also alter endothelial function. For instance, progesterone
attenuates the favorable effects of estradiol on endothelium-
dependent dilatation in coronary arteries of OVX dogs78 and
in healthy post-menopausal women.79–81 In contrast, pro-
gesterone has also been shown to cause vasodilatation in
coronary and mesenteric resistance arteries.82–85

TESTOSTERONE AND VASCULAR FUNCTION

An alternative perspective to gender-dependent protection is
that an increase in male sex hormones, principally testoster-
one, is detrimental to vascular function. For example, young
women with polycystic ovary syndrome have associated high
levels of androgens and impaired brachial artery FMD
responses.86 In addition, hypogonadal men display exagger-
ated FMD responses that are reduced in matched controls
following treatment with testosterone.87 In contrast, femoral
arteries from male testicular feminized mice, which have
reduced levels of circulating testosterone, exhibited reduced
endothelial-dependent vasodilatation to acetylcholine
(ACh),88 and testosterone implant therapy improves, rather
than depresses, brachial artery FMD in post-menopausal
women using HRT.89 Moreover, trials of testosterone in heart
failure demonstrate an improvement of functional capacity
in men.90 The beneficial effects of testosterone in the latter
studies may in part be owing to local aromatization of
testosterone to estradiol within the vascular wall. This
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possibility is supported by the observation by Lew et al.91 that
suppression of endogenous estrogen production with an
aromatase inhibitor impairs FMD in young healthy men,
intimating that endogenous estrogens may play a direct
regulatory role in endothelial function in males. In an
analogous manner to estrogen and progesterone, testosterone
can induce vasodilatation through endothelium-dependent
mechanisms in arteries, including male and female canine
coronary conductance and resistance arteries,92 rat aorta, and
mesenteric arteries.93–95

GENDER-RELATED DIFFERENCES IN ENDOTHELIAL
MEDIATORS: NO

Hormonal modulation of endothelial and vascular function
may be via interaction with the NO pathway. Many studies
have shown that NO plays a major role in the beneficial effect
of sex hormones on endothelium-dependent vasodilatation
(for reviews see 65,66). Several animal studies have also
demonstrated clear increases in basal NO levels in the
presence of estrogens.39,96,97 Moreover, ovariectomy reduces
basal NO to levels equivalent in males,98–101 an effect that is
reversed by treatment of OVX animals with estradiol (for
review see 66). Additionally, 17-beta-estradiol (17b-estradiol)
enhances the sensitivity to endothelium-dependent vasodila-
tors in various blood vessels in both males and OVX females,
an effect that often is attributed to elevated endothelial NO
production.102,103 However, some studies report no change,
or even a decrease, in NO bioactivity following ovariectomy
and chronic treatment with 17b-estradiol.99,100,104–106 The
explanation for these conflicting results is difficult to pin-
point but may reflect heterogeneity with respect to the role of
endogenous NO in endothelium-dependent relaxation
throughout the vascular tree. Interestingly, perusal of the
literature demonstrates that basal NO production does
appear to be elevated in both conduit and resistance arteries
in response to estrogens; in general, however, instances in
which augmented NO-mediated responses are thought to
underlie enhanced endothelium-dependent dilatation occur
in larger conduit arteries,103,107–109 whereas in resistance
arteries, changes in NO bioactivity do not appear to play a
role in the altered vascular responsiveness.104,110,111

Clinical investigations are in agreement with the many
animal studies and demonstrate enhanced circulating levels
of NO in pre-menopausal females compared to males,112,113

and in post-menopausal women on estrogen replacement
therapy.114 Additionally, treatment of human endothelial cells
in culture with 17b-estradiol increases both basal and
stimulated NO release.115 Taken together these studies
suggest that estrogens elevate endothelial NO production
and that this may underlie the elevated levels of circulating
NO prevalent in females.

Both genomic and non-genomic mechanisms have been
proposed to account for estrogen-induced augmentation of
NO production. In terms of the genomic effects, activation of
specific estrogen receptors (membrane bound and/or cyto-
solic) causes nuclear translocation (of the hormone-receptor

complex) and activation of estrogen response elements in the
eNOS promoter, increasing enzyme expression and NO
synthesis. This phenomenon has been demonstrated in
cultured endothelial cells and arterial prepara-
tions.43,44,66,116,117 The effects of estrogen on the NO pathway
may also be related to its antioxidant effects.118,119 In human
umbilical vein endothelial cells, 17b-estradiol inhibits
nicotinamide adenine dinucleotide phosphate hydrogenase
oxidase expression and the generation of reactive oxygen
species and peroxynitrite.120 Furthermore, estrogen decreases
the generation of superoxide anions from cultured bovine
aortic endothelial cells and thereby enhance NO bioactiv-
ity.121

The non-genomic effects of estrogens are mediated via an
upregulation of eNOS activity rather than expression. In this
case, interaction of estrogen with estrogen receptors a and b
(both found in human endothelial cells; see for re-
view65,122,123), but primarily the former, results in ‘fast’
eNOS activation.124–127 This is thought to occur via several
pathways.128 The principal mechanism involves phosphor-
ylation of eNOS by protein kinase B/Akt, analogous to shear-
stress-induced increases in eNOS activity.129 However, there
is also evidence suggesting that alterations in the expression
of accessory proteins such as calmodulin, heat shock protein-
90, and caveolin-1 also mediate the estrogenic effects on
eNOS activity.71,103,130 However, this issue is controversial as
some studies report opposing effects of estrogens on
accessory protein expression directly contradicting the latter
hypothesis.131–134

The detrimental effect of progesterone on endothelium-
dependent relaxation appear to be related to decreased eNOS
levels, and increased consumption of NO by superoxide
anions.135 The endothelium-dependent effects of testosterone
are likely to be mediated at least, in part, through NO pro-
duction. Studies in rat aorta and mesenteric arterial bed and
coronary arteries from rabbit and dogs have demonstrated
that testosterone causes acute endothelium-dependent
vasorelaxation that is, in part, mediated by the activation
of eNOS.92,93,95,136 However, Li and Duckles137 showed that
an NOS inhibitor had no effects on vasorelaxation to
testosterone in rabbit coronary artery and aorta.

GENDER-RELATED DIFFERENCES IN ENDOTHELIAL
MEDIATORS: PGI2

The contribution of PGI2 to endothelium-dependent relaxa-
tion is also thought to be modulated by hormonal status. A
number of publications have documented enhanced PGI2

production following estrogen treatment of endothelial cells
and blood vessels of several species, including humans.138–140

Often this elevation in PGI2 is associated with an elevation in
COX expression,141,142 but more specifically it appears this
enhancement is the result of an upregulation of dilator
prostaglandins and downregulation of constrictor prosta-
glandins.139,143,144 For instance, estrogen treatment enhances
prostanoid-mediated vasodilatation in middle cerebral ar-
teries isolated from OVX female rats, whereas in the absence
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of estrogen arachidonic acid was actively converted to a
COX-1-dependent constrictor.139 In ovine arteries, it has
been suggested that this switch is related to an estrogen-
specific elevation of PGI2 synthase expression.142 Estrogen
also suppresses production of a COX-sensitive vasoconstric-
tor143 and together these effects would shift the balance in
favor of vasodilator prostaglandin production. In contrast,
some studies show no role for COX and prostaglandins
on the estrogen-induced enhancement of endothelium-
dependent relaxation.145–147

Upregulation of prostaglandin synthesis in response to an
absence of NO bioactivity has been well-documented.27,30

This cross-talk between the NOS and COX pathways is also
thought to be modulated by estrogens. In mouse cerebral
arteries, from animals treated chronically with an NOS
inhibitor or with transgenic disruption of the eNOS gene,
estrogen treatment in vivo increases levels of vascular COX-1
expression and PGI2 production.148 Moreover, in OVX
animals loss of estrogen is associated with a decrease in the
NO component of endothelium-dependent vasodilatation
and an upregulation of the COX component,148 whereas
estrogen treatment has been shown to produce an apparent
upregulation of the NO component of the endothelium-
dependent relaxation and a concomitant depression of the
COX-product component.149

The influence of other sex hormones on PGI2 bioactivity
remains unclear. For example, progesterone exerts a direct
relaxant effect on rat aorta that involves COX activation and
increased PGI2 production,150 and both progesterone and
medroxyprogesterone acetate increase cultured human um-
bilical vein endothelial cell PGI2 production in a receptor-
dependent manner by enhancing COX-1 and COX-2
expression and activities.151 Yet, the concomitant adminis-
tration of progesterone with estrogen prevents the stimula-
tory effects of estrogen on PGI2 production in cultured
human umbilical vein endothelial cells.152 Akin to progester-
one, testosterone also causes acute vasorelaxation that is
dependent on endothelium-derived prostanoids.94 However,
testosterone treatment decreases PGI2 production in cultured
aortic vascular smooth muscle cells153 and in the aorta of
female rats.154

GENDER-RELATED DIFFERENCES IN ENDOTHELIAL
MEDIATORS: EDHF

A growing body of evidence supports the thesis that EDHF is
upregulated in females compared to males.155 However, as
the chemical identity of EDHF still remains elusive (see 7),
selective antagonists of EDHF are lacking and therefore the
true (patho)physiological role(s) of EDHF remains equivocal.
As a consequence, EDHF activity is regularly defined as the
response that persists in the presence of combined inhibition
of NO and PGI2 synthesis (i.e., by blocking NOS and COX,
respectively). This definition, however, has proved proble-
matic as inhibitors of NOS and COX are not isoform-
selective, do not result in complete inhibition, and often
have complicating inherent hemodynamic effects in vivo.

Moreover, NO and PGI2 can also elicit dilatation via
hyperpolarization of vascular smooth muscle resulting in
difficulties in delineating the actions of these endothelium-
derived vasodilators.156,157 To circumvent these difficulties,
we developed an eNOS/COX-1 double-knockout (dKO)
mouse or ‘EDHF mouse’.104 In these animals, we observed
that whilst males were markedly hypertensive, the female
animals were not. Indeed, this gender effect was duplicated in
mice deficient in either eNOS or COX-1, indicating that
irrespective of genotype females are protected against the
hypertensive consequences of deletion of these genes. More-
over, we reported that administration of bradykinin in female
dKOs caused potent dose-dependent depressor responses
whilst this endothelium-dependent vasodilator had no effect
in the male dKO animals (Figure 1). These findings provided
convincing evidence that the cardioprotective phenotype of
females (at least in terms of blood pressure) are mediated via
upregulation of EDHF rather than NO and/or PGI2

bioactivity, as has been proposed previously. Indeed,
examination of resistance arteries from these animals clearly
demonstrated that whilst NO and PGI2 are the predominant
endothelium-dependent vasodilators in isolated arteries from
males, in female blood vessels this response is due principally
to EDHF.104

Augmentation of the EDHF component of the dilator
response in females to endothelium-dependent stimuli,
including shear stress, ACh, and bradykinin, has also been
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Figure 1 | Bradykinin (BK) reduces blood pressure in female
but not male eNOS/COX-1 dKO mice in vivo. (a) Original trace
depicting typical responses to bolus injections of BK and sodium
nitroprusside (SNP) in (a) female and (b) male dKO mice. (c) Mean
dose-dependent decrease in blood pressure to BK in female (n¼ 4)
and male dKO mice (n¼ 3). Male significantly different (Po0.01) from
female (reproduced with permission by Scotland et al.104)

844 Kidney International (2006) 70, 840–853

r e v i e w IC Villar et al.: Endothelium-dependent regulation of vascular tone



demonstrated in a range of different arteries from various
species.40,104,158,159 This gender effect is thought to be owing
to the activity of estrogen. Indeed, EDHF responses are
reduced during diestrus, a period of comparatively low
estrogen levels,99 and elevated during pregnancy when
estrogen levels are very high.160 In addition, EDHF responses
evoked by ACh,71,99 shear stress,161 ADP,162 and Ca2þ

ionophore163 are all reduced by ovariectomy, an effect that
is reversed by treatment with 17b-estradiol.99,100,162,163 As
EDHF plays a greater role in endothelium-dependent
relaxation of resistance arteries than conduit arteries,19 our
findings in the dKO mice intimate that estrogen-induced
regulation of EDHF may be critical in determining peripheral
resistance in females and hence blood pressure.

Some studies have reported an inhibitory effect of
estrogen on EDHF, although this appears to occur mainly
within cerebral arteries. The EDHF response in isolated rat
middle cerebral arteries is reduced in female rats and
estrogen-treated OVX females as compared with male rats
and vehicle-treated OVX females.164 In vivo studies of pial
arterioles in female rats, OVX rats, and OVX rats with
oestrogen replacement came to the same conclusion that
estrogen downregulates EDHF.165

The mechanism underlying estrogen-mediated upregula-
tion of EDHF bioactivity merits further attention. Recent
findings suggest that treatment of OVX rats with 17b-
estradiol increases the expression of specific connexin
proteins (connexins 40 and 43) that constitute myo-
endothelial gap junctions71,163 and have been suggested to
play a key role in EDHF-mediated smooth muscle hyper-
polarization.166 In addition, estrogen enhances transcription
of CNP in mouse uterus167 and relaxations to CNP in female
porcine coronary artery are greater than in male arteries.168

As our work suggests that CNP acts as an EDHF in the
mesenteric and coronary circulation,169,170 it is possible that
increased CNP release/activity may account for enhanced
EDHF activity in females. Furthermore, EDHF responses are
associated with opening of KCa channels and treatment of
dogs with estrogen improves coronary vasodilatation
mediated by activation of such channels.171

INTERACTION BETWEEN ENDOTHELIAL AND INDUCIBLE NOS
IN THE REGULATION OF VASCULAR REACTIVITY

NO production from iNOS is the principal mediator of the
microbicidal and tumoricidal actions of macrophages.172 In
fact, iNOS is expressed by many cell types in response to
inflammatory cytokines (e.g., IL1-b, interleukin-2, interferon
gamma, and tumor necrosis factor-a) and bacterial metabo-
lites (e.g., lipopolysaccharide (LPS))173 and the NO produced
is cytotoxic and cytostatic to a number of pathogens and
tumor cells.174 However, inappropriate production of NO is
also thought to lead to host damage; for instance, ‘high-
output’ NO production from iNOS contributes to the
pathophysiological changes observed in sepsis.175 Thus, a
tight regulation of the expression and activity of iNOS is
vital. Recently, it has become apparent that eNOS-derived

NO plays a key role in the regulation of iNOS expression,
thereby conferring a novel, additional role for the endo-
thelium in an inflammatory response and extending our
understanding of the role of NO in particular.

FEEDBACK REGULATION OF NOS BY NO

Since the early 1990s it has been widely accepted that NO
exerts an autoregulatory feedback on its synthetic enzymes.
Both authentic NO and NO donors inhibit the activity of all
three NOS isozymes.176,177 Moreover, in endothelial cells,
prior exposure to supramaximal concentrations of NO
strongly suppressed NO biosynthesis in response to subse-
quent physiological stimuli.177 As a consequence of these
findings, it was hypothesized that high levels of NO,
produced endogenously by iNOS, would inhibit eNOS
activity. Such a mechanism might underlie the endothelial
dysfunction associated with inflammatory cardiovascular
disorders.

Experimentally, most of the evidence linking iNOS-
derived NO production with eNOS dysfunction has been
conducted using animal models of sepsis, induced primarily
by the administration of the gram-negative bacterial cell wall
component LPS or endotoxin.175 In several species exposed
to endotoxin, endothelial dysfunction occurs that is char-
acterized by loss of NO-dependent responses178,179. More-
over, this phenomenon is associated with vascular iNOS
expression.180,181 The link between iNOS-derived NO and
endothelial dysfunction was confirmed by studies in our
laboratory using iNOS KO animals.182 In WT animals, we
demonstrated that LPS caused vascular iNOS expression
associated with a 10-fold increase in circulating NO levels.
This was accompanied by reduced eNOS expression and
inhibition of endothelial function (demonstrated by suppres-
sion in the endothelium-dependent relaxation to ACh; see
Figure 2). These effects of LPS were absent in iNOS KO
animals proving unequivocally a role for iNOS in mediating
endotoxemia-induced endothelial dysfunction.183 In these
studies, we concluded that iNOS-derived NO inhibits eNOS
activity not only by biochemical means (e.g., negative
feedback regulation at the heme active site as described
above) but also genetic effects, as eNOS expression was
suppressed in WT, but not iNOS KO, animals exposed to
LPS. This work is supported by similar findings using iNOS
inhibitors where LPS-induced suppression of endothelial
responses evoked by eNOS activation is blocked.183–185

ENDOTHELIAL NOS-DERIVED NO AND REGULATION OF iNOS

In addition to the autoinhibitory actions of NO, recent
evidence suggests that NO plays a dual role in the regulation
of iNOS expression such that under certain conditions NO
can act in a proinflammatory manner. This biphasic effect of
NO has been shown to be mediated by changes in the
transcription factor nuclear factor-kappa B (NFkB).186

Inflammatory stimuli, including infectious organisms and
cytokines, result in an elevation of free cytoplasmic NF-kB,
which then translocates to the nucleus where it binds to the
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promoter regions of various inflammatory genes including
iNOS.187,188 We have shown that increasing concentrations of
exogenous NO exert differential effects on LPS-induced iNOS
expression in macrophages and that this is associated with
changes in NF-kB activity. More specifically, at low
concentrations of NO, NF-kB levels are raised and conversely,
and at high NO concentrations, NF-kB levels and DNA-
binding activity are suppressed.186,189 Subsequently, we have
demonstrated that the stimulatory effect of ‘low’ NO levels
on macrophage iNOS expression is not only brought about
by exogenously provided NO but also by endogenous eNOS-
derived NO in a cyclic guanosine monophosphate-dependent
process.190,191 For example, stimulation of macrophages
derived from the bone marrow of eNOS KO mice with LPS
produces a suppressed (B50%) and delayed iNOS expression
in comparison to cells from WT animals.190 Moreover, our
studies have shown that this effect of eNOS-derived NO to
promote iNOS expression also extends to the vasculature
in vitro and in vivo such that maximal expression and activity
of LPS-induced iNOS is dependent on eNOS-derived NO.
Consequently, we hypothesized that LPS causes an acute
increase in eNOS activity (via an effect on heat shock
protein-90 and protein kinase B/Akt) to generate levels of
NO commensurate with its augmentation of NF-kB activity
that then stimulates iNOS protein synthesis.192,193

Taken together, these data highlight a key, biphasic
regulatory role for NO that governs iNOS expression. In
the initial stages of an inflammatory response, eNOS-derived
NO augments NF-kB activity and facilitates iNOS expression
to expedite host defence. Following iNOS expression and

‘high-output’ NO production (e.g., to combat infection), the
elevated levels of NO exert a negative effect on NF-kB activity
and turn off subsequent iNOS transcription and inhibit
eNOS expression and activity. Thus, it appears that although
eNOS acts predominantly as an anti-inflammatory protein,
producing an array of effects including endothelium-
dependent vasodilatation, and inhibition of leukocyte and
platelet activation, under the appropriate circumstances it
fulfils an integral, proinflammatory role in facilitating iNOS
expression (and potentially other proinflammatory proteins
with NF-kB binding sites in their promoter region including
COX-2, interleukin-6).

ALTERNATE SOURCES OF ENDOGENOUS NO

In contrast to endothelium-derived NO, which has well-
established and important effects in the regulation of vascular
tone, its oxidative metabolite nitrite was until recently
considered to be physiologically inert. The only interest in
the physiological generation of nitrite was as a stable
metabolite and index of NO production (in combination
with nitrate). However, evidence is now emerging that nitrite
serves as a storage form of NO, which is released
preferentially under acidic and/or hypoxic conditions and
may thereby provide a vital reservoir of NO that supplements
NOS activity during pathological episodes.

It had previously been suggested that NO may be
transported in the blood in the form of a more stable
S-nitrosothiol, by interacting with free cysteine residues in,
for example, albumin194,195 or hemoglobin.196–200 Although
early studies, supporting this thesis, suggested high circulat-
ing levels (mM),194,201 subsequent reports have measured
considerably lower levels. Indeed, using an electron para-
magnetic resonance spectrometry assay for S-nitrosothiols
that we recently developed, we found that plasma
S-nitrosothiols were below the limit of detection of 25 nM in
9 of 12 healthy volunteers.202 Such low levels of S-nitrosothiols
question their potential physiological relevance.203–206 In
contrast, the levels of plasma nitrite we measured were much
higher B420 nM,202 in line with other studies that indicate a
range of 0.1–0.5 mM

207–211 (the majority (460%) is carried by
erythrocytes; Dejam et al.212), although tissue concentrations
of nitrite are even greater than plasma, with levels in the rat
heart of 5–40 mM and aorta in the low mM range.213,214

The main source of nitrite has been considered to be from
the oxidation of NO derived from NOS, with one study
showing that 70% or more of plasma nitrite was derived from
eNOS.210 However, there is also a non-endothelium-depen-
dent source of nitrite derived from the diet, either directly
from dietary nitrite (used to preserve meat and protect
against botulism) or indirectly from the enterosalivary
circulation of dietary nitrate (principally from green leafy
vegetables). In the latter, up to 25% of ingested nitrate is
concentrated in the salivary glands, secreted in the saliva
and then reduced by bacterial nitrate reductases on the
surface of the tongue producing nitrite, which is then
swallowed.207,215–217
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Figure 2 | iNOS underlies sepsis-induced endothelial dysfunction.
Effect of LPS (12.5 mg/kg intravenously, 4 or 15 h pre-treatment) on
relaxation responses of mesenteric resistance arteries. Concentration
response curves to ACh in (a) WT and (b) iNOS KO (n¼ 5–14) and
SPER-NO in (c) WT and (d) KO (n ¼ 7–11) mesenteric resistance
arteries. Values shown are mean7SEM. Statistical analysis using
two-way analysis of variance.
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Although high concentrations of nitrite have long been
known to cause vasodilatation, even until quite recently, it
was thought that nitrite at near-physiological concentrations
lacked vasodilatory activity.211 Evidence for a vasodilatory
action of nitrite per se dates back to 1953 when Furchgott
relaxed rabbit aortic strips with high concentrations of
acidified nitrite;218 however, the mechanism of dilatation was
unknown. More recently, Modin et al.,219 demonstrated that
physiological concentrations of nitrite relaxed rat aortic rings
at acidic pH 6.6, a pH reminiscent of ischemia, via the
generation of NO (through intermediates including nitrous
acid (HNO2)) and the consequent activation of soluble
guanylyl cyclase. However, other studies have demonstrated
vasodilatation under non-ischemic conditions, where acido-
sis is unlikely to account for NO production. For example,
the ingestion of large amounts of oral nitrite reduces blood
pressure in vivo in spontaneously hypertensive rats.220–222 The
mechanism likely to account for the majority of the
vasodilator effects of nitrite under normal physiological
conditions is via the reduction of nitrite to NO by deoxy-
hemoglobin. The oxidation of human deoxyhemoglobin by
nitrites producing methemoglobin and NO was first
described by Doyle et al.223 in 1981. However it was not
until 2003 that the physiological relevance was demonstrated
by Gladwins group who demonstrated vasodilator activity of
near-physiological concentrations of intra-arterial nitrite into
the human forearm224 associated with elevations of iron-
nitrosylated hemoglobin, the product of the reaction between
NO and deoxyhemoglobin. This study followed Gladwin’s
previous work demonstrating circulating arterial–venous
plasma nitrite gradients in the human forearm, which
increased during hand-grip exercise, suggesting that nitrite
was providing a source of NO.204 Tsuchiya et al.,225,226 sub-
sequently, showed that the ingestion of nitrite also produced
nitrosylhemoglobin, and moreover the co-administration
of nitrite with the NOS inhibitor, NG-nitro-L-arginine
methyl ester, over 3 weeks attenuated the development of
hypertension.

An additional ‘nitrite reductase’ that may contribute to
nitrite-induced vasodilatation is xanthine oxidoreductase
(XOR). In addition to the hypoxemia and increased
deoxyhemoglobin that develops during ischemia, the acidosis
that develops creates a reducing environment that may favor
the chemical reduction of nitrite to NO, as described above.
Indeed, this was demonstrated by Zweier et al.,214 in 1995 in
the isolated perfused Langendorff heart where NO is
produced from nitrite once the pH drops below 6.0 following
10 min global ischemia. Such a source of NO may be
particularly important, as the normal production of NO
from NOS and L-arginine is dependent on oxygen, which is
rapidly depleted in ischemia. At the time, Zweier considered
it likely that the degree of acidosis per se was sufficient to
account for the nitrite reduction, without the need for
enzymatic activity. We have more recently demonstrated that
this production of NO from nitrite is dependent on
endothelial XOR in both rat and human myocardium (and

this in the absence of any exogenously applied superoxide
dismutase).227 XOR, a complex molybdoflavoprotein, was a
likely candidate as it possesses structural similarity to
bacterial and plant nitrate/nitrite reductases and is an
endothelial enzyme that had previously been shown in its
isolated purified form to reduce nitrite to NO, a process that
is enhanced in acidic conditions and under low oxygen
tensions.228,229 Moreover, the activity of XOR is upregulated
in atherosclerosis (which predisposes to myocardial ischemia/
infarction): in patients with coronary artery disease, en-
dothelium-bound XOR activity was found to be increased by
4200%.230 We found that the application of both low and
high concentrations of nitrite (10 and 100 mM), far from being
inactive or damaging, had marked functional effects in the
Langendorff model of ischemia–reperfusion: nitrite was
highly protective in terms of improving the recovery of left
ventricular function, reducing coronary tone on reperfusion
and reducing infarct size.227 These effects were blocked by the
NO scavenger carboxy-PTIO, suggesting that the protective
effect of nitrite was through its conversion to NO. This
therefore suggests the involvement of XOR in a protective
process. XOR is usually associated with causing damage
through its production of oxygen-free radicals, including
superoxide anion.231 However, as our data suggest, if XOR is
presented with nitrite as an alternative substrate, the resultant
effects of its activity may be protective, via its production of
NO rather than damaging. Also nitrite will compete with
oxygen for electrons across XOR, which may inhibit the
reduction of oxygen to potentially damaging superoxide. The
cytoprotective effects of similar, and even lower, concentra-
tions of nitrite have subsequently been demonstrated in
ischemia–reperfusion experiments in the mouse heart and
liver in vivo.232 Nitrite reduction in these studies was
associated with the formation of iron-nitrosylated hemoglo-
bin, suggesting the same mechanism involving deoxyhemo-
globin previously demonstrated for vasodilatation. These
studies therefore support a role for nitrite as an important
store of protective NO during ischemia–reperfusion. The
cytoprotective effects of nitrite do not appear to be limited to
the heart and the liver: nebulized sodium nitrite was shown
by Hunter et al.,233 to produce a marked reduction in
hypoxia-induced pulmonary hypertension in newborn lambs
by causing a selective pulmonary vasodilatation. Also, the
intravenous infusion of sodium nitrite over 2 weeks caused
complete inhibition of cerebral vasospasm in a model of a
ruptured intracranial aneurysm in primates.234

Other enzymes besides XOR may act as nitrite reductases:
these include the mitochondrial enzymes cytochrome c
oxidase235 and the bc1 complex,236 with the latter demon-
strating significant nitrite-reductase activity. Also, it would
follow that if deoxyhemoglobin has nitrite-reductase activity,
deoxymyoglobin might be expected to possess similar
activity, and indeed myoglobin has been shown to have
nitrite-reductase activity in its deoxy form.235,237

Although most of the evidence to date for the physio-
logical effects of nitrite appears to relate to it acting as a store
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of NO, there is very recent evidence that nitrite also has direct
effects. Bryan et al.213 found that nitrite increases cyclic
guanosine monophosphate levels and heat shock protein-70
expression, and decreases cytochrome P450 activity and
heme oxygenase-1 expression in a variety of tissues, without
conversion to NO, suggesting that it is a signalling molecule
in its own right, such a role remains to be substantiated.

In sum, nitrite appears to represent the most important
storage form of NO, with conversion by nitrite reductases
such as hemoglobin, myoglobin, and XOR resulting in
vasodilatation and cytoprotection. These findings highlight
the importance of the normal physiological actions of nitrite,
but also provide scope for the development of novel
pharmacological and therapeutic uses of nitrite in disease.

CONCLUSION

The endothelium plays a pivotal role in maintaining
cardiovascular homeostasis preventing the initiation and
progress of vascular disease. Endothelium-derived vasodila-
tors including NO, PGI2, and EDHF play a key role in these
processes. Recent reports have further highlighted the
importance of these mediators and mechanisms, which
coordinate their bioactivity to optimize the cytoprotective
effects of the endothelium. This work has also provided
further insight into the gender difference in cardiovascular
disease, with EDHF appearing to play a prominent role in
conferring a cytoprotective phenotype in females. Moreover,
it is becoming clear that eNOS can act in both a pro- and

anti-inflammatory action and therefore is likely to be pivotal
in the initiation and time course of an inflammatory
response, particularly with respect to inflammatory cardio-
vascular disorders. However, it is not solely NOS-derived NO
that mediates many of the beneficial effects of the
endothelium; in recent years, the physiological significance
of nitrite as a store of NO has come to the fore and this
appears to be heightened in pathological episodes associated
with NOS inactivity (e.g., ischemia/hypoxia). Each of these
more recent findings has emphasized new pathways involved
in endothelial biology (Figure 3), and following further
research and understanding of the significance and mechan-
isms of these systems, it is likely that new and improved
treatments for cardiovascular disease will result.
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