Independent and monochromatic absorbent sets in infinite digraphs

Alejandro Contreras-Balbuenaa,\,*, Hortensia Galeana-Sánchezb, Rocío Rojas-Monroya

a Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario No. 100, Centro, 50000 Toluca, Edo. de México, Mexico
b Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F. 04510, Mexico

Received 18 December 2013; accepted 17 October 2014
Available online 3 December 2015

Abstract

Let D be a digraph, we say that it is an m-coloured digraph if the arcs of D are coloured with at most m-colours. An (u, v) arc is symmetrical if (v, u) is also an arc of D. A directed path (resp. directed cycle) is monochromatic if all of its arcs are coloured with the same colour, and it is quasi-monochromatic if at most one of its arcs is coloured with different colour.

A set $AN \subseteq V(D)$ is an A-kernel if it satisfies the following conditions:

1. For every pair of vertices $x, y \in AN$, there is no arc between them, we say that AN is independent.
2. For every $x \notin AN$, there exists an xy-monochromatic path for some $y \in AN$, it means AN is absorbent by monochromatic paths.

An infinite sequence of different vertices (x_1, x_2, x_3, \ldots) such that $(x_i, x_{i+1}) \in A(D)$ for every $i \in \mathbb{N}$ will be called an infinite outward path.

In this paper we introduce the definitions of A-kernel and A-semikernel, but also we prove the following theorem: Let D be a possibly infinite digraph, if every directed cycle and every infinite outward path has two consecutive vertices, say x_i and x_{i+1}, such that there exists an x_i+1x_{i}-monochromatic path, then D has an A-kernel.

Keywords: Independence; Monochromatic absorbance; Infinite digraph; A-kernel

1. Introduction

Let D be a digraph, denote the vertices of D by $V(D)$ and the arcs of D by $A(D)$. An arc (u, v) in D is called symmetrical if both ordered pairs (u, v) and (v, u) are arcs of D. A set $I \subseteq V(D)$ is independent if no two vertices in I are adjacent.

A digraph D is m-coloured if any arc of D have assigned just one colour from m different colours. A monochromatic path (resp. monochromatic cycle) is a directed path (directed cycle) in an m-coloured digraph such that all of...
its arcs are coloured alike. Also a quasi-monochromatic path (resp. quasi-monochromatic cycle) is a directed path (directed cycle) in which all of its arcs are coloured alike except for at most one arc.

Let D be an m-coloured digraph, $A \subset V(D)$ is absorbent by monochromatic paths if for every $x \in V(D) - A$ there exists an xy-monochromatic path with $y \in A$. And $S \subset V(D)$ is semi-absorbent by monochromatic paths if it satisfies; if there exists an arc $(y, x) y \in S$ and $x \notin S$, then there exists an xw-monochromatic path for some $w \in S$.

Definition 1. A set $AN \subset V(D)$ is A-kernel if it is absorbent by monochromatic paths and independent. In the same way a set $M \subset V(D)$ is A-semikernel if it is semiabsorbent by monochromatic paths and independent.

This definition is obtained by the search of a kernel generalization, in which are considered different conditions of kernels and kernels by monochromatic paths. The idea of mixing different conditions was also analysed in [1], where they considered the vertices of a digraph D to colour the arcs of a digraph G, and use the arcs of D to determine when a sequence of colours is valid (not only monochromatic).

The kernels and the kernels by monochromatic paths have been studied over the years looking for conditions in the digraph that makes certain the existence of both objects, these conditions are very diverse, like the number of colours used for colouring the digraph [2], the number or the sequence of colours in certain cycles or similar structures [3–5], and conditions over the structure of the digraph, for example: transitive digraphs, tournaments, etc. [6–8].

Now, let us remark some relations between kernels, A-kernels and kernels by monochromatic paths:

Remark 2. (1) Every digraph with kernel satisfies that any colouration of D has an A-kernel. But not every digraph with A-kernel has a kernel.

(2) Every m-coloured digraph D that has a kernel by monochromatic paths also has an A-kernel. But not every m-coloured digraph with A-kernel has a kernel by monochromatic paths, see Fig. 2.

Almost all of the historical conditions for kernels and kernels by monochromatic paths are for finite digraphs, in the case of infinite digraphs the main concern is the possible existence of certain structures like the infinite outward paths, that is, an infinite sequence of different vertices (x_1, x_2, x_3, \ldots) such that $(x_i, x_{i+1}) \in A(D)$ for every $i \in \mathbb{N}$.

In this paper we consider digraphs without arcs of the form (x, x), actually these do not generate any problem and the results still work for digraphs with these kind of arcs. We just avoid them for the concept of independence used for different authors.

We prove that if D is an m-coloured digraph, such that every cycle in D and every infinite outward path have two consecutive vertices x_i, x_{i+1} such that there exists an $x_{i+1}x_i$-monochromatic path, then D has an A-kernel.

We will need the following lemma, which is a classic result in the Digraph Theory.

Lemma 3. Every closed directed walk contains a directed cycle.

2. The main result

With these remarks now we can start with the main theorem.

Theorem 4. Let D be an m-coloured digraph, such that every cycle in D and every infinite outward path has two consecutive vertices x_i, x_{i+1} such that there exists an $x_{i+1}x_i$-monochromatic path, then D has an A-kernel.

Proof. First we will see that D always has an A-semikernel, even more, it has an A-semikernel consisting of just one vertex.

Suppose this is not true, it means, for any $x \in V(D)$, $\{x\}$ is not an A-semikernel. Since any set with just one vertex is always independent, then it follows that for any $x \in V(D)$ there exists $y \in V(D)$ such that $(x, y) \in A(D)$ and there is no yx-monochromatic path.

Take $x_1 \in V(D)$, then there exists $x_2 \in V(D)$ such that $(x_1, x_2) \in A(D)$ and there is no x_2x_1-monochromatic path, also there exists $x_3 \in V(D)$ such that $(x_2, x_3) \in A(D)$ and there is no x_3x_2-monochromatic path, and subsequently in this way there exists a sequence of vertices $x_1, x_2, x_3, x_4, \ldots$ which satisfies that $(x_i, x_{i+1}) \in A(D)$ and there is no x_ix_{i+1}-monochromatic path, even more this sequence generate an infinite directed walk, $(x_1, x_2, x_3, x_4, \ldots)$ in D.

Case (1) If in this infinite directed walk all of the vertices are different, then this will be an infinite outward path, which by hypothesis has two consecutive vertices x_i, x_{i+1} such that there exists an $x_{i+1}x_i$-monochromatic path, but this is a contradiction with the election of the vertices of the sequence.
Case (II) If in this infinite directed walk there exist two or more vertices alike, then it contains a closed directed walk, which also contains a directed cycle, say $C = (x_i, x_{i+1}, \ldots, x_j, x_{j-1}, x_j)$, in which by construction there is no $x_{i+1}x_j$-monochromatic path for any $1 \leq i \leq j - 1$. But this is a contradiction to the conditions of the digraph.

Both cases raise a contradiction. Therefore D has an A-semikernel which has one element.

Now, let $P(A)$ be the set of A-semikernels of D, give to $P(A)$ an order with the contention relation, it means, $X, Y \in P(A)$ then $X \leq Y$ if and only if $X \subseteq Y$.

With this relation $P(A)$ is a partially ordered set, and every non-empty chain has an upper bound, actually the union of the elements of the chain is an upper bound. Therefore by Zorn’s Lemma, $(P(A), \leq)$ has a maximal element, let AN be a maximal element.

Let us prove that AN is an A-kernel of D.

First note that AN is an A-semikernel, therefore AN is independent, then we just need to prove that AN is absorbent by monochromatic paths.

Suppose that AN is not absorbent by monochromatic paths, then, there exists $x_1 \in V(D)$ such that AN does not absorb it by monochromatic paths.

Note that $AN \cup \{x_1\}$ is an independent set of vertices. That is because AN is an A-semikernel, and if there exists an (AN, x_1) arc then there must exist an x_1AN-monochromatic path, which results in a contradiction with the choice of x_1, also there is no monochromatic path from x_1 to AN, particularly no (x_1, AN) arc exists, therefore $AN \cup \{x_1\}$ is independent.

But AN is a maximal A-semikernel, it means that $AN \cup \{x_1\}$ cannot be an A-semikernel, then there exists $x_2 \in V(D)$ such that there is an $(AN \cup \{x_1\}, x_2)$ arc but does not exist any monochromatic path from x_2 to $AN \cup \{x_1\}$. Note that there is only one arc from $AN \cup \{x_1\}$ to x_2 and that is (x_1, x_2), that is because if there exists an (AN, x_2) arc then also exists a monochromatic path from x_2 to some vertex in AN $(AN$ is an A-semikernel). Then $(x_1, x_2) \in A(D)$, and there is no x_2x_1-monochromatic path also there exists no arc from x_2 to AN, therefore $AN \cup \{x_2\}$ is independent.

Note again that $AN \cup \{x_2\}$ is independent and is not an A-semikernel, once again applying the same procedure, there exists $x_3 \in V(D)$ such that $AN \cup \{x_3\}$ is independent and also $(x_2, x_3) \in A(D)$ but there is no x_3x_2-monochromatic path.

In this way we get a walk $C_1 = (x_1, x_2, x_3, \ldots)$, which is a sequence of vertices from $V(D) - AN$, where there is no $x_{i+1}x_i$-monochromatic path for any $i \geq 1$, and also $AN \cup \{x_i\}$ is independent for every $i \in \mathbb{N}$.

Case (1) If in C_1 all of the vertices are different, then this walk is an infinite outward path, but by hypothesis this infinite outward path has two consecutive vertices such that there exists an $x_{j+1}x_j$-monochromatic path, then $AN \cup x_j$ absorbs to x_{j+1} by monochromatic paths, which is a contradiction with the choice of vertices.

Case (2) If in C_1 there exist vertices alike, then it contains a closed walk, which contains a cycle, $C_2 = (x_1, x_{j+1}, \ldots, x_m - 1, x_m, x_m + 1 = x_j)$, by construction in this cycle there is no $x_{i+1}x_i$-monochromatic path for every $1 \leq i \leq m$.

In both cases we obtain a contradiction with the choice of the sequence of vertices. This contradiction was obtained for supposing that AN is not absorbent by monochromatic paths, therefore we conclude that AN is independent and absorbent by monochromatic paths, it means, AN is an A-kernel. ■

Also, let us remark that this proof in a certain way gives an algorithm to generate an A-kernel in a finite digraph D_1 that satisfies the conditions of the theorem.

First take an A-semikernel of D_1, say A_1. Now generate a new digraph D_2 removing A_1 and the in-neighbourhood of A_1. Note that D_2 also satisfies the conditions of the theorem, and then D_2 has an A-semikernel, say A_2. So we can repeat this until we remove all the vertices of D_1 (this is possible because D_1 is a finite digraph). Then we obtain a sequence of sets $A_1, A_2, A_3, \ldots A_k$, such that $\bigcup_{i=1}^k A_i$ is independent and absorbent by monochromatic paths in D_1 by construction, therefore it is an A-kernel of D_1.

Note that the hypothesis of Theorem 4 over the cycles and the infinite outward paths is not the same as to ask that they all are quasimonochromatic, see Fig. 1.

The following results are not as general as the theorem but these are very helpful, that is because they ask for certain conditions over the structure of the digraph and not over the colouration of this.

Corollary 5. Let D be an m-coloured digraph, such that every cycle in D has a symmetric arc or is quasimonochromatic, and every infinite outward path has a symmetric arc, then D has an A-kernel.
Fig. 1. D_1 is a 3-coloured digraph with non-quasimonochromatic cycles; however it satisfies the conditions of the theorem.

Fig. 2. In the digraphs, every cycle has a symmetric arc, so it satisfies the conditions of Corollary 5, therefore they have an \mathcal{A}-kernel, but they are not semicomplete and they do not have kernel by monochromatic paths.

Corollary 6. Let D be an m-coloured semicomplete digraph such that every cycle in D has a symmetric arc or is quasimonochromatic and every infinite outward path has a symmetric arc, then D has a kernel by monochromatic paths.

References