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Abstract

Recall that the outer automorphism group of a group G, denoted OutG, is the quotient group
AutG=InnG. If M is any group, then there exists a torsion-free, metabelian group G with trivial
center such that OutG ∼= M . This answers a problem in the Kourovka Notebook (Mazurov,
Khukhro, Unsolved problems in group theory; the Kourovka Notebook, Russian Academy of
Science, Novosibirsk, 1992). c© 2000 Elsevier Science B.V. All rights reserved.

MSC: Primary 08A35; 20C07; 20F29; secondary 04A20; 20K20

1. Introduction

The automorphism groups of metabelian groups have long been the object of study
of several authors. In particular, the papers [1–4,23] describe the automorphism groups
of �nite rank, free metabelian groups.
Let F(n) denote the free group of rank n and B(n)=F(n)=F(n)′′ the free metabelian

group of rank n. If G is a group, de�ne IA(G) to be the normal subgroup of AutG
which consists of automorphisms inducing the identity on the abelian quotient G=G′.
Any g ∈ G induces an inner automorphism g∗ ∈ AutG with xg∗= xg= g−1xg. Clearly
g∗ ∈ IA(G) and the normal subgroup InnG={g∗: g ∈ G} of AutG becomes a subgroup
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of IA(G). Bachmuth used the Magnus representation of free metabelian groups to yield
a faithful representation

IA(B(n)) ,→ GLn(Z[F(n)=F(n)′]) (1)

in [1]. Through this representation, he showed that IA(B(2)) ≤ Inn B(2) and any auto-
morphism of B(2) is induced by an automorphism of F(2). In [2,4], it was shown that
there exists � ∈ IA(B(3)) such that � is not induced by an automorphism of F(3),
and Aut B(3) is not �nitely generated. This culminated in [3], where it was shown,
using the above identi�cation (1) and results on matrix groups over integral Laurent
polynomial rings, that for all n ≥ 4

IA(F(n))→ IA(B(n))→ 1

is a canonical epimorphism. Thus proving that for all n ≥ 4, every automorphism of
B(n) is induced by one of F(n) and, hence, Aut B(n) is �nitely generated.
Another approach to the problem has been undertaken in [8,10,13,14,24], wherein

the question of which groups can be realized as the automorphism groups of metabelian
groups is considered.
In [8], it is shown that any group H can be realized as

AutG=StabG ∼= H

for some torsion-free, nilpotent group G of class 2 (hence metabelian with nontrivial
center Z(G)), where

Stab (G) = {� ∈ Aut (G): � induces the identity on Z(G) and G=Z(G)}:
Zalesskii’s example, using upper triangular matrices over a ring, of a torsion-free,
nilpotent group of rank 3 and class 2 with no outer automorphisms, was adapted,
and the group H was realized as the automorphism group of a ring. In this set-
ting, Inn (G) ≤ Stab (G) and Stab (G) is abelian. A similar result was arrived at in
[10] using the Baer–Lazard theorem, which provides a correspondence between nilpo-
tent groups of class 2 and alternating bilinear maps. This was re�ned to show that
Stab (G)=Inn (G) is isomorphic to a direct sum of |G|-copies of the cyclic group Z=2Z
of order 2.
If a group G has trivial center, then G automatically embeds as InnG in AutG.

This led the �rst named author to the question, which can be found in the Kourovka
Notebook [22] (Problem 11.26, 11th ed., 1990),

For which groups H does there exist a metabelian group G with trivial center
such that OutG = H?

A classi�cation of all �nite, metabelian groups with OutG = 1 was given in [13].
Robinson considered in�nite soluble groups with OutG = 1 in [24] using homological
methods. In [14], it was shown that a free metabelian group B of rank � (3 ≤ �¡ 2ℵ0 )
could be embedded in a torsion-free, metabelian group G with OutG = 1; |G′| =
2ℵ0 and G=G′ ∼= B=B′. Moreover, there exist 22

ℵ0 non-isomorphic extensions G for



R. G�obel, A.T. Paras / Journal of Pure and Applied Algebra 149 (2000) 251–266 253

a given B. The extension G = H · B involved the construction of a group H such
that B′ ¡H ¡B̂′ (B̂′ is the p-adic completion of the free abelian group B′); H is
B-invariant and AutH ≤ Z[B=B′]. Note that G here is not a semi-direct product. It was
also shown that every abelian group and every unique product group can be realized
as the outer automorphism group of a metabelian group with trivial center and torsion
part isomorphic to Z=2Z. Recall that a group K is a unique product group if, given
any two non-empty �nite subsets A and B of K , there exists at least one element x of
K that has a unique representation in the form x= ab with a ∈ A and b ∈ B (see [17],
p. 269). Free groups, and more generally, right ordered groups are examples of unique
product groups, but groups with non-trivial torsion elements are not. This realization
was obtained through a semi-direct product construction applying known facts about
endomorphism rings of torsion-free abelian groups.
In this paper, we proceed di�erently. Rather than using realization theorems of rings

as endomorphism rings [5–7], we will carry over methods from this area and apply
them directly to non-commutative groups. This way we succeed in proving the follow-
ing main result.

Theorem. Every group can be realized as the outer automorphism group of some
torsion-free; metabelian group with trivial center.

The size of the torsion-free, metabelian group can be any cardinal � with � = �ℵ0

dominating the cardinality of the prescribed group. Hence there is a proper class of
such metabelian groups.
The main result of this paper has predecessors for several classes of groups. Proving

that a prescribed group M is the outer automorphism group of a group G from a
particular class C of groups depends strongly on C. Generally it can be said that such
a proof becomes much more complicated if C is very restricted. This can be seen
in the case when C is the class of metabelian groups, whereas it is easier to allow
arbitrary groups. The reader may want to compare our theorem with [9,11,18,21]. In
answering a problem of P. Hall, it was proved in [11] that any countable group is the
outer automorphism group of some locally �nite p-group. In [9], it was shown that any
group is the outer automorphism group of some torsion-free, locally solvable group.
Hence our result, using metabelian groups, strengthens [9] substantially. Our theorem
can also be viewed as a measure of the complexity of the class of metabelian groups.
Transferring the term ‘endo-wild’ from the representation theory of modules to this
setting, it shows that metabelian groups are ‘outer-wild’.
As indicated, the construction here must bear similarities to that in [14] in the sense

that ideas from abelian group theory, properties of group rings and the Magnus rep-
resentation of a free metabelian group are applied. But the reader will note that the
new construction is based on a combinatorial idea due to Shelah [25], hence the free
metabelian groups considered have cardinality at least 2ℵ0 . This so-called Shelah’s
Black Box has proved very useful in the investigation of endomorphism rings of
torsion-free, abelian groups. It is interesting to note that this prediction principle applies
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in the context of outer automorphisms of metabelian groups as well as in various other
contexts of algebra.

2. Representation of free metabelian groups

We include, for convenience, a special case of the Magnus representation and a
corollary in [14].
Suppose F is a non-cyclic free group with basis A= {xi: i ∈ I}. If g= xi ∈ A, let

sg = si = gF ′; ag = ai = gF ′′ and tg = ti:

Let {si = xiF ′: i ∈ I} and {ai = xiF ′′: i ∈ I} be generators of F=F ′ and F=F ′′, respec-
tively. Let

⊕
i∈I Z[F=F ′]ti be a free Z[F=F ′]-module of rank |I |. The set of matrices[

F=F ′ 0⊕
i∈I
Z[F=F ′]ti 1

]
=


 g 0∑

i∈I

riti 1

 : g ∈ F=F ′;
∑
i∈I

riti ∈
⊕
i∈I
Z[F=F ′]ti


forms a group under formal matrix multiplication.

Lemma 2.1 (Fox [12], Magnus [19]). The map

aj →
[
sj 0
tj 1

]
(j ∈ I) (2)

extends to an injective homomorphism

 :F=F ′′ →
[

F=F ′ 0⊕
i∈I
Z[F=F ′]ti 1

]
: (3)

If B is a metabelian group, then �B = B=B′ acts on B′ via conjugation. Hence there
exists a homomorphism ’: �B → Aut (B′). This extends to a ring homomorphism

’ :Z[B]→ End (B′); (4)

and so B′ can be viewed as a Z[B]-module. When B is free metabelian, the Magnus
representation enables us to see that each nonzero element of ’(Z[B])¡End (B′) is a
monomorphism. We express this in terms of modules as

Corollary 2.2 (G�obel and Paras [14]). Let F be a free group and B = F=F ′′ a free
metabelian group. Then (4) makes B′ a torsion-free Z[B]-module.

Proof. Using the Magnus representation (3), we identify B with  (B) and notice that
B′ embeds in

C =

[
1 0⊕

i∈I
Z[F=F ′]ti 1

]
:
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If a = ( x 0
y 1 ) ∈ B and Z = (1 0

z 1 ) ∈ B′, then conjugation of Z by a is Za = ( 1 0
zx 1 ).

Moreover, if

b=
∑
j∈I

nj

(
uj 0
vj 1

)
∈ Z[B];

then Zb = ( 1 0
z·
∑

njuj 1 ), where nj ∈ Z; uj ∈ F=F ′ and −: B → B=B′ is the canonical

epimorphism. Let z =
∑

i∈I biti, where bi ∈ Z[F=F ′]. Since Z[F=F ′] is an integral
domain (see [16], p. 41),(∑

biti
)
·
(∑

njuj

)
= 0 i� for each i; bi = 0 or

∑
njuj = 0:

Hence Zb = 1 implies Z = 1 or b acts as the identity on all of B′. If Z 6= 1; b is
1 ∈ Z[B] by Lemma 2.1. Thus B′ is a torsion-free Z[B]-module.

Identifying B′ with a subgroup of
⊕

i∈I Z[B]ti, we consider the general form of the
elements bi ∈ Z[B] for

∑
biti ∈ B′. A characterization of the bi’s is given in [1], but

for our purposes it is enough to know, for each bi =
∑

ngg ∈ Z[B], that ∑ ng = 0.
In order to prove the latter statement, we �rst recall from the preceding proof that the

action of b ∈ Z[B] on z=
∑

biti ∈ B′ is de�ned by zb=
∑

bbiti. Since the commutator
equality

[uv; w] = [u; w]v[v; w] (5)

holds for elements of any group, it su�ces to verify that the free generators a; x of
B (a; x ∈ {xiF ′′: i ∈ I}) satisfy the last claim. Now

[x; a] = (sa − 1)tx + (1− sx)ta: (6)

In this case the desired coe�cients are 1 and −1, and their sum is 0.
We now set up the algebraic preliminaries for constructing metabelian groups with

prescribed outer automorphism group M . Let M be a group and T be a set with at
least two elements, which we will de�ne to be a tree in the next section. Consider the
free metabelian group BM with free generating set

{m�: (m; �) ∈ M × T}:
The group M acts naturally on BM via right regular representation, i.e.,

mx
� = (m · x)�; where (m; �) ∈ M × T and x ∈ M:

Hence M ⊆Aut BM and each B� = 〈m�: m ∈ M 〉 is M -invariant. Since Inn BM is a
normal subgroup of Aut BM and M ∩ Inn BM is trivial, we have a semi-direct product
Inn BM oM ⊆Aut BM . Since BM acts on B′

M and B′
M is an M -invariant abelian group,

then B′
M is a Z[BM oM ]-module, where BM = BM=B′

M .
From now on, we adopt the following notation.

S = Z[BM ]

S∗ is the group of multiplicative units of S
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R= Z[BM oM ]

Rx is the R-submodule generated by the element x

In contrast to Corollary 2.2, B′
M as an R-module is not torsion-free, e.g., when M

has nontrivial torsion elements. However we have the following property.

Proposition 2.3. B′
M is a faithful R-module.

Proof. Let � and � be distinct elements of T and

d=
∑

nmgmg ∈ R (nmg ∈ Z; m ∈ M; g ∈ BM )

such that ad = 1 for all a ∈ B′
M . In particular, [e�; e�]

d = 1, where e is the identity
element of M . Applying the Magnus representation (3) and the respective actions of
BM and M on B′

M , we obtain

0 = ((se� − 1)te� + (1− se�)te�)
d =

∑
m∈M;g∈BM

nmgg((sm� − 1)tm� + (1− sm�)tm�)

=
∑
m∈M

∑
g∈BM

nmgg(sm� − 1)tm� +
∑
m∈M

∑
g∈BM

nmgg(1− sm�)tm� :

Thus,
∑

g∈BM
nmgg(sm� − 1) = 0 for all m ∈ M . Since BM is torsion-free, Z[BM ] is an

integral domain (see [16], p. 41). Hence
∑

g∈BM
nmgg=0 for all m ∈ M . The de�nition

of equality in a group ring forces nmg=0 for all m ∈ M and g ∈ BM . Therefore d=0.

3. Prescribing automorphisms

An abelian group A is said to be p-reduced if
⋂

n∈! pnA=0, for some prime number
p. If an abelian group A is p-reduced and torsion-free, we denote its completion relative
to the p-adic topology by Â. However, we denote the p-adic completion of the group of
integers by Jp. Let B be a free metabelian group. Note that conjugation of elements
of B′ by b ∈ B extends uniquely to B̂′. We also call such an extension to a subgroup
of B̂′ conjugation by b and do not distinguish these maps. Suppose B′ ≤ H ≤ B̂′ and
H is B-invariant, i.e., closed under conjugation by elements of B. The set G = H · B
of elements of the form h · b naturally forms a group under the operation

(h · b)(g · c) = hgb−1 · bc where h; g ∈ H; b; c ∈ B:

Note however that representation of elements of G in the form h · b is not unique, i.e.,
G is not a semi-direct product.
Given BM , as de�ned after Corollary 2.2, we set out to construct a group H such that

B′
M ¡H ¡B̂′

M , H is an R-module, AutH ≤ R and Out (H ·BM ) ∼= M . The construction
of a group H with AutH ≤ R �nds its motivation in abelian group theory, where a
given torsion-free ring is realized as the endomorphism ring of a torsion-free abelian
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group (see [5,6]). We apply a combinatorial principle called Shelah’s Black Box to
obtain the described group H . This combinatorial foundation is adapted from [5] to �t
the representation of the derived subgroup of a free metabelian group in Section 2.
From now on, let M be a group and � be a cardinal such that �ℵ0 = � and |M | ≤ �.

It follows from K�onig’s Theorem (see [15], p. 45) that cf(�)¿!.

De�nition 3.1. De�ne the tree T =!¿ � to be the set of all functions

�: n → � (n¡!)

ordered by set-theoretical containment, i.e., � ≤ � if and only if �⊆ �. The length of
an element � ∈ T is de�ned to be the natural number l(�) = dom(�). Let BM be the
free metabelian group with free generating set {m�: (m; �) ∈ M × T}.

Let x’ denote the image of the element x under the homomorphism ’, and let

〈A〉∗ = {x ∈ B̂′
M : x

n ∈ A for some non-zero n ∈ Z}

be the pure subgroup of B̂′
M generated by A, for some A ≤ B̂′

M .
The group ring S is a unique factorization domain (see [16], p. 106) and canonically

a subring of R. By the mapping (3) in Lemma 2.1, we identify the derived group B′
M

of BM with a submodule of the free S-module

B′
M ,→ ⊕

(m;�)∈M×T
Stm� : (7)

As in Section 2, for each � ∈ T , let B� be the free metabelian group with free
generating set {m�: m ∈ M} and 〈B′

�〉R be the R-submodule generated by B′
�. Note that

〈B′
�〉R is pure, and 〈B′

�〉R=
⊕

m∈M Stm� ∩B′
M since B′

� is M -invariant. From the de�nition

of the p-adic completion, the elements of B̂′
M may be identi�ed with sums

g=
∑

(m;�)∈M×T

gm� tm� ; (8)

where gm� ∈ Ŝ, with the property that, for each n ∈ N, gm� ∈ pnŜ for almost all
(m; �) ∈ M × T .
The T -support, or simply the support of the element g of the form (8) is the set

[g] =

{
� ∈ T :

∑
m∈M

gm� tm� 6= 0
}

;

which is always at most countable; for a subset X of B̂′
M , we write [X ]=

⋃
g∈X [g]. We

de�ne the notion of a norm on B̂′
M , by �xing a continuous, strictly increasing function

� : cf(�) + 1→ �+ 1 such that �(cf(�)) = �. Then norms of elements and subsets of
B̂′
M are de�ned by

||g||=min{�⊆ cf(�): [g]⊆ !¿�(�)}; ||X ||= sup{||g||: g ∈ X }:
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De�nition 3.2. For a subset X of T and an ordinal �¡cf(�), de�ne the part of X
to the right of � to be

�X = {� ∈ X : ||�||¿�}:

This notation will be applied to supports of elements described in the next de�nition.

De�nition 3.3. For n¡!, an n-chain is a sequence (xk)k≥n indexed by the natural
numbers k ≥ n, with the property that there exists an ordinal �¡ ||xn|| such that for
all k ≥ n,

xk ∈ B̂′
M ; xk − pxk+1 ∈ B′

M ; �[xk ]⊆ [xn]:

Lemma 3.4. Every element of B̂′
M extends to an n-chain.

Proof. Since B′
M is free abelian, there exists a set E of free generators of B′

M and
[⊕
d∈E Zd= B̂′

M .

Let g ∈ B̂′
M and g = gn (n¡!). In order to extend gn to an n-chain, it su�ces to

de�ne gn+1. By the preceding observation and the de�nition of the p-adic completion,
we can represent gn as gn=

∑
d∈E �dd, where, �d ∈ Jp and, given k ∈ N, �d ∈ pkJp for

almost all d ∈ E. Let E0={d ∈ E : �d 6∈ pJp}, which is a �nite set. Let E1=E\E0. For
each d ∈ E1, there exists a unique �d ∈ Jp such that �d=p�d. De�ne gn+1=

∑
d∈E1 �dd.

Clearly gn+1 ∈ B̂′
M , g

n − pgn+1 =
∑

d∈E0 �dd ∈ B′
M and [gn+1]⊆ [gn].

A branch v of T is a linearly ordered sequence v= {vn ∈ T : n ∈ !} with l(vn) = n
for all n ∈ !. We also identify v with a map v :! → �. Note that vn = v � n. The set
of all branches of T contained in a subset X of T will be denoted by Br(X ).
The next de�nition provides a sequence of elements from

∏
(m;�)∈M×T Stm� and is

analogous to the one constructed in [5], where the module under consideration is a
full direct sum. In contrast, we consider here B′

M , which is a proper submodule of the
direct sum

⊕
(m;�)∈M×T Stm� since it does not contain any tm� (cf. [5], p. 453). Hence

the components of the proper submodule have no distinguished elements like a ring
identity to be used in the de�nition of a branch element. In order for the sequence of
elements to belong to B̂′

M , we make the following modi�cation.

De�nition 3.5. Given a branch v ∈ Br(T ), k ¡!, de�ne

vk =
∑

vi∈v; i≥k

pi−k [evi ; evi+1 ];

where e is the identity element of M , evi is the corresponding element in Bvi and
[evi ; evi+1 ] = (sevi+1 − 1)tevi + (1− sevi )tevi+1 ∈ B′

M is given by (6).

The next lemma follows easily from De�nition 3.3 and Proposition 2.3.
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Lemma 3.6. The sequence (vk)k≥n in De�nition 3:5 is an n-chain and each vk is
R-torsion-free.

Proof. Suppose (vk)d = 0, for some d=
∑

m∈M smm ∈ S[M ] = R. By de�nition, vk =∑
i≥k bitevi , where each bi ∈ S is non-zero, and (vk)d =

∑
i≥k

∑
m∈M smbm

i tmvi
. This

means smbm
i tmvi

= 0, and hence smbm
i = 0 for each i ≥ k and m ∈ M . Since sm; bm

i ∈ S,
bm
i 6= 0 and S is an integral domain, it is clear that d= 0.

We shall now apply the Black Box, which we include here for completeness. Let
BM be as in De�nition 3.1 and identify each � ∈ T with an arbitrary non-zero element
of B′

�.

De�nition 3.7. (i) A canonical submodule of B′
M is an R-module of the form 〈B′

T0〉R,
where BT0 = 〈B�: � ∈ T0〉 for some countable subset T0 of T .
(ii) A trap is a triple (f; P; ’), where f : !¿! → !¿�= T is a tree embedding, P

is a canonical submodule of B′
M and ’ ∈ End P̂ such that the following four conditions

are satis�ed:
(a) Imf⊆P;
(b) [P]⊆P, and [P] is a subtree of T , i.e., � ≤ �; � ∈ [P] implies � ∈ [P];
(c) cf(||P||) = !;
(d) ||v||= ||P|| whenever v ∈ Br(Imf).

Let �¡� be an ordinal. A branch w = w(�) is said to be a constant branch if,
w :! → {�}. The norm of the constant branch w(�) is a discrete or isolated ordinal.
From parts (c) and (d) of the de�nition of a trap, the norm of each v ∈ Br(Imf) is
a limit ordinal. Hence Br(Imf) contains no constant branches.

Theorem 3.8 (The Black Box). For some ordinal �∗; there exists a trans�nite se-
quence of traps (f�; P�; ’�) (�¡�∗) such that; for �; �¡�∗;(i) �¡� ⇒ ||P�|| ≤
||P�||;
(ii) � 6= � ⇒ Br(Imf�) ∩ Br(Imf�) = ∅;
(iii) � + 2ℵ0 ≤ � ⇒ Br(Imf�) ∩ Br([P�]) = ∅;
(iv) for any subset X ⊂ B̂′

M with |X | ≤ ℵ0; and for any ’ ∈ End B̂′
M ; there exists

�¡�∗ such that

X ⊆ P̂�; ||X ||¡ ||P�||; ’ � P� = ’�:

A proof of Theorem 3.8 is given in the appendix of [5], which goes back to [25]. The
Black Box replaces Jensen’s ♦-prediction principle, which follows from V=L (the con-
structible universe), whereas Theorem 3.8 holds in ordinary set theory ZFC. The follow-
ing application is patterned after [5]. However we consider here a proper S-submodule
B′
M instead of the free S-module

⊕
(m;�)∈M×T Stm� ; and we want an S-module H such

that B′
M ¡H ¡B̂′

M , AutH ≤ R, and H is at the same time an R-module. We begin
with the construction of the desired submodule H .
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Choose a trans�nite sequence (f�; P�; ’�)�¡�∗ satisfying the conclusion of the Black
Box. Let ∞ denote a �xed element not in B̂′

M :∞ 6∈ B̂′
M . Recall the notation R =

Z[BM oM ].
Let � ≤ �∗ and assume we have found an ascending chain of R–submodules

H� (�¡�) of B̂M
′ and elements b� (� + 1¡�) of B̂′

M ∪ {∞} such that for �¡�

(I�) b� 6∈ H�(�¡�):

If � = 0, put

(II0) H0 = B′
M :

If � is a limit ordinal, take

(II�) H� =
⋃
�¡�

H�:

When � = �+ 1, we have the following cases.
(i) Suppose it is possible to choose a branch v� ∈ Br(Imf�), an element g� in P̂�,

H�+1 and b� in such a way that (I�+1) and each of the following are satis�ed:

(II�+1) H�+1 = 〈H�; Rg�〉∗

(III�) ||g� − v1�||¡ ||v�||

(IV�) either (strong version) b� = g’�
� ;

or (weak version) b� =∞:

We then make a choice, using the strong version of (IV�), whenever this is possible,
and call � strong. Otherwise call � weak.
(ii) If (i) does not occur, call � useless and take H�+1=H�, g�=0, b�=∞. Theorem

3.9 shows that this case actually does not occur.
In both cases (I�) is clearly satis�ed, and the �th step is completed. Therefore the

recursion proceeds for all � ≤ �∗ and yields a submodule H�∗ satisfying (I�∗). Clearly,

H�∗ = 〈B′
M ; Rg�: �¡�∗〉∗:

Let H = H�∗ .

Theorem 3.9. Let �¡�∗ and �¡ ||P�||. For each v ∈ Br(Imf�); let (gk
v)k≥n be an

n-chain such that �[gk
v − vk ] = ∅. For each �¡�; assume g� ∈ P̂� and the exis-

tence of �� ¡ ||P�|| and v� ∈ Br(Imf�) such that �� [g� − v1�] = ∅. Then there exists
v ∈ Br(Imf�) such that if

b� 6∈ H = 〈B′
M ; Rg�: �¡�〉∗ (�¡�);

then b� 6∈ 〈H; Rgn
v〉∗= : H (v); (�¡�):

Proof. Suppose the conclusion does not hold. Then for each v ∈ Br(Imf�), there
exists � = �(v)¡� such that b� ∈ H (v) \ H for some b� ∈ P̂�. That means there
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exists a non-zero s ∈ Z and a non-zero a= av ∈ R (since b� 6∈ H) with bs
� − ga

v ∈ H
(for simplicity, let gv = gn

v). Since �[gv − vn] = ∅, we have �[gv] =� [vn]. The support
�[vn] must be an in�nite subset of v, since �¡ ||P�|| and ||v||= ||P�||. Now for some
h ∈ B′

M , g�i ∈ P̂�i and r�i ∈ R,

bs
� = h+

n∑
i=1

g
r�i
�i
+ ga

v ;

and by the Black Box, �[vn] ∩ ��i
[g�i ] is at most �nite. By our assumption on the

supports of the g�’s, an in�nite subset of v has to be contained in [b�]⊆ [P�]. Since
[P�] is a subtree of T , v⊆ [P�]. Hence v ∈ Br(Imf�) ∩ Br([P�]), and by the Black
Box, �¡� + 2ℵ0 . Therefore, if v ∈ Br(Imf�), there exists an ordinal �(v), av ∈ R,
s(v) ∈ Z such that �(v)¡�¡�(v) + 2ℵ0 and bs(v)

�(v) − gav
v ∈ H . Let �0 be the least

ordinal with �0¡�¡�0 + 2ℵ0 . Then �0 ≤ �(v)¡�0 + 2ℵ0 and so �(v) assumes
¡ 2ℵ0 = |Br(Imf�)| values. Hence there must exist distinct branches v; w ∈ Br(Imf�)
such that �(v) = �(w) = �. It follows that gavs(w)

v − gaws(v)
w ∈ H . The hypothesis on the

supports of the g�’s and condition (ii) of the Black Box implies that an in�nite subset
of v is contained in w or vice versa. This yields a contradiction since v and w are
almost disjoint branches of Imf�.

Theorem 3.9 shows that no ordinal in the construction of H�∗ is useless. An abelian
group A is said to be cotorsion-free if it does not contain a copy of Q, Z=pZ or
the group of p-adic integers Jp, for any prime p. Equivalently, Hom (Jp; A) = 0 for
any prime p. A ring R is called cotorsion-free if the additive structure (R;+) is
a cotorsion-free group. In particular, all integral group rings are cotorsion-free rings
since their additive groups are free abelian.

Theorem 3.10. Suppose that each g� is de�ned as in Theorem 3:9 (�¡�¡�∗). Then
H� = 〈B′

M ; Rg�: �¡�〉∗ is cotorsion-free.

Proof. Suppose that H� is not cotorsion-free, i.e., there exists a non-zero homomor-
phism ’ : Jp → H�. Let 1’ = g ∈ H� ⊆ B̂′

M . By continuity, r’ = gr and [gr]⊆ [g]
for each r ∈ Jp. Since B′

M is free abelian, it is cotorsion-free. If g ∈ B′
M , then

’ ∈ Hom(Jp; B′
M ) = 0, since the only elements of H� with �nite support are the

elements of B′
M . This contradicts cotorsion-freeness of B′

M . Hence, g 6∈ B′
M . By the

de�nition of H�, there exists a unique �¡�¡�∗ such that g ∈ H�+1 \ H�, where
H�+1 = 〈B′

M ; Rg� : �¡� + 1〉∗. For some non-zero s ∈ Z and some non-zero a ∈ R
(since g 6∈ H�), gs − ga

� ∈ H�. Since �� [g] = �� [g
s]⊆ v� for some �� ¡ ||g||, the set

[g] cannot contain in�nitely many elements of any branch v� (�¿�). Hence gr ∈
H�+1 \ H� and grs0 − ga0

� ∈ H�, for some non-zero s0 ∈ Z and non-zero a0 ∈ R. Now
ga0s
� −gars0

� =ga0s−ars0
� ∈ H�. Its support is contained in some �nite union of supports of

elements in H� and so its intersection with the branch v� is �nite. Since �� [g�−v1�]=∅,
a0s = ars0 ∈ R ∩ Jp[BM o M ]s0 = Rs0. Let a0s = a1s0 for some non-zero a1 ∈ R.
Then (grs0 − ga0

� )
s = (grs − ga1

� )
s0 ∈ H� and the purity of H� imply grs − ga1

� ∈ H�. By
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Lemma 3.6, if s ∈ Z is �xed, then, for each r ∈ Jp, the element a1 ∈ R satisfying
grs − ga1

� ∈ H� is uniquely determined. It is easy to check that the map  : Jp → R
de�ned by  (r) = a1 is a non-trivial group homomorphism. This contradicts the fact
that R is cotorsion-free. Therefore the de�ned group H� is cotorsion-free.

Theorem 3.11. Let H be a cotorsion-free; pure subgroup of B̂′
M such that B′

M ≤
H ¡B̂′

M and H is an R-submodule. Let ’ ∈ Aut (B̂′
M ) \ R. Then there exists a

canonical submodule P such that P̂’s−a * H; for all (a; s) ∈ R× (Z \ {0}) such that
s= 1 or a 6∈ sR.

Proof. Suppose the conclusion is false. Let P be a canonical submodule such that
P ∩ B′

� and P ∩ B′
� are non-empty, for some distinct �; � ∈ T . Then there exist a ∈ R

and non-zero s ∈ Z such that P̂’s−a ⊆H . Since H is cotorsion-free, there exists x ∈
B̂′
M such that x’s−a 6∈ H . Let P0 be a canonical submodule such that P̂0⊇〈P; Rx〉∗.
By assumption, there exist a1 ∈ R and non-zero s1 ∈ Z such that P̂0’s1−a1 ⊆H . Since
P⊆ P̂0, P̂as1−a1s ⊆H . The cotorsion-free property of H and Proposition 2.3 imply as1=
a1s. Hence, x’s1−a1 ∈ H implies x(’s−a)s1 ∈ H . The purity of H implies that x’s−a ∈ H ,
which is a contradiction.

Theorem 3.12. Suppose ’ ∈ Aut (B̂′
M ) \R and H = 〈B′

M ; Rg� : �¡�〉∗; with each g�

de�ned as in Theorem 3:9. Then there exists x ∈ B̂′
M such that x’ 6∈ 〈H; Rx〉∗.

Proof. Let P be as in Theorem 3.11. Choose an ordinal �¡� such that

max{||P||; ||P’||}¡ ||�||:
Let w = w(�) be a constant branch of norm ||w|| = ||�||. If (w1)’ 6∈ 〈H; Rw1〉∗, then
we are done. Otherwise, suppose (w1)’s−r ∈ H for some non-zero s ∈ Z and r ∈ R.
By Theorem 3.11, there exists z ∈ P̂ such that z’s−r 6∈ H . We claim that (w1 +
z)’ 6∈ 〈H; R(w1 + z)〉∗. Suppose the claim is false. Then (w1 + z)’s0−r0 ∈ H , for some
non-zero s0 ∈ Z and r0 ∈ R. Without loss of generality, (w1 + z)’ss0−r0 ∈ H , i.e.,
(w1)’ss0 − (w1)r0 + z’ss0−r0 ∈ H . Since (w1)’s−r ∈ H , (w1)rs0 − (w1)r0 + z’ss0−r0 ∈ H .
The norm of (w1) is equal to ||�|| and the norm of z’ss0−r0 is less than ||�||. The
elements of H do not contain in�nite subsets of constant branches in their supports, by
de�nition of H and condition (d) of De�nition 3.7. Hence rs0 = r0 and z’ss0−rs0 ∈ H .
Since H is pure, z’s−r ∈ H , which is a contradiction.

Theorem 3.13. Let H=H�∗=〈B′
M ; Rg� : �¡�∗〉∗ as constructed before Theorem 3:9.

If ’ ∈ AutH; then ’ ∈ R.

Proof. Suppose ’ ∈ AutH \R. From Theorem 3.12, there exists x ∈ B̂′
M such that x’ 6∈

〈H; Rx〉∗. By the Black Box, there exists �¡�∗ such that x; x’ ∈ P�; ||P�||¿ ||x||; ||x’||
and ’� = ’ � P̂�. It su�ces to show that � is strong, for then g’

� = g’�
� 6∈ H . This

contradicts the assumption that ’ ∈ AutH .
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We now show that � is strong, i.e., there exists g� in P̂� and v� ∈ Br(Imf�) such
that

||g� − v1�||¡ ||v�||= ||P�||; g’�
� ; g’�

� 6∈ 〈H�; Rg�〉∗ (�¡�):

Let v ∈ Br(Imf�) be distinct from v� (�¡�). We claim that there exists � ∈ {0; 1}
such that (v1 + �x)’ 6∈ 〈H�; R(v1 + �x)〉∗. Suppose otherwise, i.e., (v1 + x)’s−r and
(v1)’s0−r0 are both in H� for some r; r0 ∈ R and non-zero s; s0 ∈ Z. Applying s0
on the �rst and s on the second term, and subtracting the resulting terms, we obtain
(v1)−rs0+r0s+x’ss0−rs0 ∈ H�. The norm of v1 is equal to ||P�||, while the norm of x’r0s−rs0

is less than ||P�||. Since v is distinct from the branches v� (�¡�), (v1)ss0−rs0=0 and so
x(’s−r)s0 ∈ H�. By the purity of H�, x’s−r ∈ H� ¡H , which contradicts x’ 6∈ 〈H; Rx〉∗.
So g� ∈ {v1 + �x : � = 0; 1}, and we clearly have ||g� − v1||¡ ||v||. In addition, by
Theorem 3.9, there exists a branch v ∈ Br(Imf�) such that g

’�

� 6∈ 〈H�; Rg�〉∗ (�¡�).

4. Outer automorphism groups

Using the group H=H�∗ constructed in Section 3, and the free metabelian group BM

from Section 2, we de�ne the extension G=H ·BM , which is a torsion-free, metabelian
group. In this section we show that OutG is indeed M .

Lemma 4.1 (G�obel and Paras [14]). Suppose G = H · B; where B is free metabelian
of rank at least two; B′ ≤ H ¡B̂′ and H is B-invariant. If A is a normal; abelian
subgroup of G; then A ≤ H . Hence H is the largest normal; abelian subgroup of G
and so is characteristic in G.

Proof. We �rst observe using Corollary 2.2, that if b ∈ B and x ∈ B′ with xb = x,
then either b ∈ B′ or x = 1, i.e., conjugation by elements b ∈ B \ B′ does not leave
non-trivial elements of B′ �xed. By the continuity of homomorphisms on H and the
B-invariance of H , it follows that conjugation by b ∈ B \ B′ does not leave non-trivial
elements of H �xed.
Suppose there exists x ∈ A such that x = h · b, h ∈ H and b ∈ B \ B′. Since A is

normal, abelian in G, xc ∈ A and xcx−1 = x−1xc ∈ A for all c ∈ B, i.e., [c; x−1]= [x; c].
Hence [c; x]x

−1

= [c; x]. Since [c; x] ∈ H and h ∈ H , [c; x]b
−1

= [c; x]. Taking c = b,
we get [b; h]b = [b; h]. This implies [b; h] = 1, i.e., hb = h. Since b ∈ B \ B′, it follows
that h = 1. So x = b ∈ (B \ B′) ∩ A and bc ∈ A for all c ∈ B. Since bcb−1 ∈ A ∩ B′,
b · bcb−1 = bcb−1 · b = bc. This means (bc)b

−1
= bc, and so, by our �rst observation,

bc = 1 for all c ∈ B. But this occurs only if b= 1, thus giving us a contradiction.

Since G=H ∼= B=B′, it follows that G′ ≤ H .
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Lemma 4.2 (G�obel and Paras [14]). Suppose G = H · B; as de�ned in Lemma 4:1.
Then no automorphism of G induces inversion on H; i.e.;
if ’ ∈ Aut (G) then ’ � H 6= −1 · idH .

Proof. Suppose ’ ∈ Aut (G) and ’ � H = −1 · idH . Let a ∈ H and b ∈ B. Then
b−1a−1b= (b−1ab)’ = (b−1)’a−1b’ implies that b’b−1 commutes with every element
of H . Hence b’b−1 ∈ H . Since b is an arbitrary element of B, this means that ’
induces the identity on G=H .
Let b; c ∈ B and suppose b’ = h · b, c’ = k · c, for some h; k ∈ H . Then b’2 = h’ ·

b’ = h−1h · b= b. Hence ’2 = idG. Now [b; c]’ = [h · b; k · c] = [h; c]b[b; c][b; k]c. Since
[h; c]; [b; k] ∈ [G;H ], it follows that [b; c]’ = [b; c]mod [G;H ]. Hence [b; c]2 ∈ [G;H ].
By commutator calculus (see [20], p. 293), [b; c]2 = [b; c2]mod [G;G′]. Since G′ ≤ H ,
[b; c]2 = [b; c2]mod [G;H ]. Thus [b; c2] ∈ [G;H ]. This yields a contradiction when b
and c are chosen to be free generators of B.

Proposition 4.3. Suppose G = H · BM ; where H = H�∗ .
If ’ ∈ AutG such that ’ � H = idH ; then ’ ∈ InnG.

Proof. Suppose ’ ∈ AutG such that ’ � H = idH . Then we claim that ’ induces
idG=H . Let b ∈ BM and h ∈ H . Now b−1hb=(b−1hb)’=(b−1)’hb’ implies that b’b−1

commutes with every h ∈ H . By Lemma 4.1, b’b−1 ∈ H . The claim follows.
Let b; c ∈ BM , b’= hb and c’= kc for some h; k ∈ H . Then [hb; kc]= [b; c]’=[b; c]

implies that h �b( �c−1) = k �c( �b−1). If �b= �c, then h= k. Without loss of generality, assume
�b 6= �c.
Note that by the action of S on H , the element h has �nite support if and only if k

has �nite support. The construction of H guarantees that an element has �nite support
if and only if it belongs to B′

M . Suppose h has �nite support and h=
∑

�iti, k=
∑

�iti,
for some �i; �i ∈ S and ti ∈ {tm� : (m; �) ∈ M × T}. The action of S on H yields∑ �b( �c−1)�iti=

∑
�c( �b−1)�iti. So �b( �c−1)�i= �c( �b−1)�i for all i. Since S is a unique

factorization domain (see [16], p. 106) and �b 6= �c, then, for each i, �i = �′
i( �b− 1) and

�i = �′
i( �c− 1) for some �′

i ; �
′
i ∈ S. If we let h0 =

∑
�′
i ti, which is clearly in B′

M , then

h= h(
�b−1)
0 and k = h

�b �c−1( �c−1)
0 . Thus ’ is conjugation by the element h−b

0 .
Suppose h has in�nite support and n is a non-zero integer such that hn; kn ∈

〈B′
M ; Rg� : �¡�∗〉. Then hn = h0 +

∑
gai
�i and kn = k0 +

∑
gri
�i , for some ai; ri ∈ R,

h0; k0 ∈ B′
M and g�i ∈ P̂�i chosen such that there exist an ordinal ��i and a branch v�i ∈

Br(Imf�i) with ��i [g�i−v1�i ]=∅ and ||P�i || ≤ ||P�j || for �i ¡�j. Since hn �b( �c−1)=kn �c( �b−1),

it follows that
∑

gri �c( �b−1)−ai �b( �c−1)
�i =h

�b( �c−1)
0 −k �c(

�b−1)
0 ∈ B′

M . By the choice of the supports
of the g�i ’s,

h
�b( �c−1)
0 = k �c(

�b−1)
0 and ri �c( �b− 1) = ai �b( �c − 1) for all i:

As was shown in the �nite support case, h0 = h(
�b−1)
1 and k0 = k( �c−1)1 , for some h1; k1 ∈

B′
M . Let ri=

∑
nmgmg, ai=

∑
smgmg. So

∑
nmgmg �c( �b−1)=∑

smgmg �b( �c−1) implies
(
∑

nmgg) �c( �b − 1) = (
∑

smgg) �b( �c − 1) for each m. Since all the terms in the latter
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equation are elements of S and �b 6= �c, it follows that ri = r′i ( �c− 1) and ai = a′i( �b− 1).
We now have hn = (h1 +

∑
ga′i
�i )

( �b−1) and kn = (k1 +
∑

gr′i
�i )
( �c−1). Let x′ = h1 +

∑
ga′i
�i

and y′ = k1 +
∑

gr′i
�i . Clearly x′ ∈ H , hn = (x′)( �b−1) and kn = (y′) �b �c

−1( �c−1). Since H is
S-torsion-free, the equation ((x′)( �b−1)) �b( �c−1)=((y′)( �c−1)) �c( �b−1) implies that (x′) �b=(y′) �c.
Thus hn = (x′)( �b−1) and kn = (x′) �b �c

−1( �c−1). By the purity of H and the action of S on
H , there exists x ∈ H such that h=x( �b−1) and k=x �b �c

−1( �c−1). Hence b’=x( �b−1)b=bx−b

and c’ = x �b �c
−1( �c−1)c = cx

−b
. It follows that ’ is conjugation by x−b ∈ H .

An easy consequence of Proposition 4.3 is that two automorphisms of G which agree
on H are congruent modulo InnG.

Theorem 4.4. Suppose G =H · BM is de�ned as in Proposition 4:3. Then OutG =M .
More precisely; AutG = InnGoM .

Proof. Let ’ ∈ AutG. By Lemma 4.1, ’ � H is an automorphism of H ; and by
Theorem 3.13, ’ � H ∈ R. Hence the restriction ’ � H = u ∈ R∗. Let h ∈ H
and b ∈ B. Then hu �b’ = (b−1hb)’ = (b−1hb)u = h �bu for all h ∈ H . By Lemma 2:3,
u �b

’
= �bu, when viewed as elements of R∗. Let u=

∑
m �mm ∈ S[M ] =R. Without loss

of generality, assume �e 6= 0, where e is the identity element in M (otherwise, multiply
u by m−1 if �m 6= 0). Now ∑

m �mm · �b’
= �b ·∑m �mm, and by the multiplication in

a semi-direct product,
∑

m �m �b
’m−1

m =
∑

m
�b�mm. This means �m �b

’m−1

= �b�m for all

m ∈ M and �b ∈ BM . Since S is an integral domain, �b
’m−1

= �b for all �b ∈ BM and
for all m such that �m 6= 0. In particular, �e 6= 0 and so �b’

= �b for all �b ∈ BM , i.e.,
’ induces the identity on BM . Suppose �m0 6= 0 for some m0 6= e. Then there must
exist �b0 ∈ BM such that �b

m0
0 6= �b0 (e.g., take �b0 = �e�). Hence ( �b

’
0 )

m−1
0 6= �b0 gives a

contradiction. This shows that the M -support of u as an element of the group ring
S[M ] is a singleton, i.e., u ∈ S∗. Thus, in general, u ∈ BM o M by Lemma 4.2.
Therefore, by Proposition 4.3, ’ ∈ InnGoM and AutG ≤ InnGoM . The reverse
inclusion is clear by construction.

Note added in proof

In a recent paper (R. G�obel, A. Paras, Realizing automorphism groups of metabelian
groups, to appear in Proceedings of the Dublin Conference on abelian groups and
modules 1998, Birkh�auser Verlag, Basel, 1999) we will take care of the countable case
and sharpen our main theorem: if M is any group of cardinality �¡ 2ℵ0 , then there is
a torsion-free metabelian group G of cardinality |G| = max{�;ℵ0} with out G ∼= M .
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