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Abstract

Recall that the outer automorphism group of a group G, denoted Out G, is the quotient group
Aut G/Inn G. If M is any group, then there exists a torsion-free, metabelian group G with trivial
center such that Out G = M. This answers a problem in the Kourovka Notebook (Mazurov,
Khukhro, Unsolved problems in group theory; the Kourovka Notebook, Russian Academy of
Science, Novosibirsk, 1992). (© 2000 Elsevier Science B.V. All rights reserved.

MSC: Primary 08A35; 20C07; 20F29; secondary 04A20; 20K20

1. Introduction

The automorphism groups of metabelian groups have long been the object of study
of several authors. In particular, the papers [1-4,23] describe the automorphism groups
of finite rank, free metabelian groups.

Let F(n) denote the free group of rank n and B(n)=F(n)/F(n)" the free metabelian
group of rank n. If G is a group, define IA(G) to be the normal subgroup of AutG
which consists of automorphisms inducing the identity on the abelian quotient G/G’.
Any g € G induces an inner automorphism g* € Aut G with xg* =x9 =g~ 'xg. Clearly
g* € IA(G) and the normal subgroup Inn G={g*: g € G} of Aut G becomes a subgroup
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of I4(G). Bachmuth used the Magnus representation of free metabelian groups to yield
a faithful representation

IA(B(n)) — GLy(Z[F(n)/F(n)']) (1)

in [1]. Through this representation, he showed that /4(B(2)) < Inn B(2) and any auto-
morphism of B(2) is induced by an automorphism of F(2). In [2,4], it was shown that
there exists ¢ € I4(B(3)) such that ¢ is not induced by an automorphism of F(3),
and AutB(3) is not finitely generated. This culminated in [3], where it was shown,
using the above identification (1) and results on matrix groups over integral Laurent
polynomial rings, that for all n > 4

IA(F(n)) — IA(B(n)) — 1

is a canonical epimorphism. Thus proving that for all n > 4, every automorphism of
B(n) is induced by one of F(n) and, hence, Aut B(n) is finitely generated.

Another approach to the problem has been undertaken in [8,10,13,14,24], wherein
the question of which groups can be realized as the automorphism groups of metabelian
groups is considered.

In [8], it is shown that any group H can be realized as

Aut G/Stab G =~ H

for some torsion-free, nilpotent group G of class 2 (hence metabelian with nontrivial
center Z(G)), where

Stab (G) = {o € Aut(G): o induces the identity on Z(G) and G/Z(G)}.

Zalesskii’s example, using upper triangular matrices over a ring, of a torsion-free,
nilpotent group of rank 3 and class 2 with no outer automorphisms, was adapted,
and the group H was realized as the automorphism group of a ring. In this set-
ting, Inn(G) < Stab(G) and Stab(G) is abelian. A similar result was arrived at in
[10] using the Baer—Lazard theorem, which provides a correspondence between nilpo-
tent groups of class 2 and alternating bilinear maps. This was refined to show that
Stab (G)/Inn (G) is isomorphic to a direct sum of |G|-copies of the cyclic group Z/27
of order 2.

If a group G has trivial center, then G automatically embeds as Inn G in AutG.
This led the first named author to the question, which can be found in the Kourovka
Notebook [22] (Problem 11.26, 11th ed., 1990),

For which groups H does there exist a metabelian group G with trivial center
such that Out G = H?

A classification of all finite, metabelian groups with Out G = 1 was given in [13].
Robinson considered infinite soluble groups with Out G =1 in [24] using homological
methods. In [14], it was shown that a free metabelian group B of rank 4 (3 < 4 < 2%)
could be embedded in a torsion-free, metabelian group G with OutG = 1, |G'| =
2% and G/G' = B/B'. Moreover, there exist 22 non-isomorphic extensions G for
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a given B. The extension G = H - B involved the construction of a group H such
that B < H < B’ (§’ is the p-adic completion of the free abelian group B'), H is
B-invariant and Aut H < Z[B/B’]. Note that G here is not a semi-direct product. It was
also shown that every abelian group and every unique product group can be realized
as the outer automorphism group of a metabelian group with trivial center and torsion
part isomorphic to Z/27. Recall that a group K is a unique product group if, given
any two non-empty finite subsets 4 and B of K, there exists at least one element x of
K that has a unique representation in the form x =ab with a € 4 and b € B (see [17],
p.- 269). Free groups, and more generally, right ordered groups are examples of unique
product groups, but groups with non-trivial torsion elements are not. This realization
was obtained through a semi-direct product construction applying known facts about
endomorphism rings of torsion-free abelian groups.

In this paper, we proceed differently. Rather than using realization theorems of rings
as endomorphism rings [5-7], we will carry over methods from this area and apply
them directly to non-commutative groups. This way we succeed in proving the follow-
ing main result.

Theorem. Every group can be realized as the outer automorphism group of some
torsion-free, metabelian group with trivial center.

The size of the torsion-free, metabelian group can be any cardinal A with 4= A%
dominating the cardinality of the prescribed group. Hence there is a proper class of
such metabelian groups.

The main result of this paper has predecessors for several classes of groups. Proving
that a prescribed group M is the outer automorphism group of a group G from a
particular class & of groups depends strongly on €. Generally it can be said that such
a proof becomes much more complicated if 4 is very restricted. This can be seen
in the case when % is the class of metabelian groups, whereas it is easier to allow
arbitrary groups. The reader may want to compare our theorem with [9,11,18,21]. In
answering a problem of P. Hall, it was proved in [11] that any countable group is the
outer automorphism group of some locally finite p-group. In [9], it was shown that any
group is the outer automorphism group of some torsion-free, locally solvable group.
Hence our result, using metabelian groups, strengthens [9] substantially. Our theorem
can also be viewed as a measure of the complexity of the class of metabelian groups.
Transferring the term ‘endo-wild’ from the representation theory of modules to this
setting, it shows that metabelian groups are ‘outer-wild’.

As indicated, the construction here must bear similarities to that in [14] in the sense
that ideas from abelian group theory, properties of group rings and the Magnus rep-
resentation of a free metabelian group are applied. But the reader will note that the
new construction is based on a combinatorial idea due to Shelah [25], hence the free
metabelian groups considered have cardinality at least 2™, This so-called Shelah’s
Black Box has proved very useful in the investigation of endomorphism rings of
torsion-free, abelian groups. It is interesting to note that this prediction principle applies
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in the context of outer automorphisms of metabelian groups as well as in various other
contexts of algebra.

2. Representation of free metabelian groups

We include, for convenience, a special case of the Magnus representation and a
corollary in [14].
Suppose F is a non-cyclic free group with basis o/ = {x;:i € [}. If g=x; € o/, let

sg=1s;=gF', a;=a;=gF" and 1,=t.

Let {s; =x;F":i €I} and {a; =x;F": i € I} be generators of F/F' and F/F", respec-
tively. Let @,.; Z[F/F']t; be a free Z[F/F']-module of rank |/|. The set of matrices

F/F’ 0 g 0 / )
©ziEFYy 1= S 1| g€ FIF > it € DZIF/F'1
i€l icl icl iel
forms a group under formal matrix multiplication.
Lemma 2.1 (Fox [12], Magnus [19]). The map
;0
o= |7 %] ven @
’ tj 1
extends to an injective homomorphism
; F/F’ 0
VFIFT = | ZIF/F': 1 )
icl

If B is a metabelian group, then B = B/B’ acts on B’ via conjugation. Hence there
exists a homomorphism ¢: B — Aut(B’). This extends to a ring homomorphism

¢:Z[B] — End (B)), “4)

and so B’ can be viewed as a Z[B]-module. When B is free metabelian, the Magnus
representation enables us to see that each nonzero element of ¢(Z[B]) < End (B’) is a
monomorphism. We express this in terms of modules as

Corollary 2.2 (Gobel and Paras [14]). Let F be a free group and B = F/F" a free
metabelian group. Then (4) makes B' a torsion-free Z[Bl-module.

Proof. Using the Magnus representation (3), we identify B with /(B) and notice that
B’ embeds in

1 0
C= l@Z[F/F’]ti 1] :

iel
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Ifa:(; (1)) € B and Z:(i ?) € B’, then conjugation of Z by a is Z° :(le 01).
Moreover, if

b:an(Zj (1)) € 7[B],

then Z! = (z-zl:nu ?), where n; € Z, u; € F/F' and ~: B — B/B’ is the canonical
epimorphism. Let z = )., b;t;, where b; € Z[F/F']. Since Z[F/F'] is an integral
domain (see [16], p. 41),

(Z b,‘l‘,‘) . (Z njuj-) = 0 iff for each i, b,‘ =0 or anuj =0.
Hence Z” =1 implies Z =1 or b acts as the identity on all of B. If Z # 1, b is
1 € Z[B] by Lemma 2.1. Thus B’ is a torsion-free Z[B]-module. [J

Identifying B’ with a subgroup of &, ; Z[B]t;, we consider the general form of the
elements b; € Z[B] for > b;t; € B'. A characterization of the b;’s is given in [1], but
for our purposes it is enough to know, for each b; =3 n,g € Z[B], that > n, =0.

In order to prove the latter statement, we first recall from the preceding proof that the
action of b € Z[B] on z=Y_ b;t; € B is defined by z® =" bb;t;. Since the commutator
equality

[uv, w] = [u, w]"[v, W] (5)
holds for elements of any group, it suffices to verify that the free generators a, x of
B (a,x € {x;F": i € I'}) satisfy the last claim. Now

[x: a] = (Sa - l)tx + (1 - Sx)ta- (6)

In this case the desired coefficients are 1 and —1, and their sum is 0.

We now set up the algebraic preliminaries for constructing metabelian groups with
prescribed outer automorphism group M. Let M be a group and 7 be a set with at
least two elements, which we will define to be a tree in the next section. Consider the
free metabelian group B), with free generating set

{m;: (m,7) e M x T}.
The group M acts naturally on By, via right regular representation, i.e.,
m; = (m - x);, where (m,t) € M x T and x € M.

Hence M C AutBy, and each B, = (m,;: m € M) is M-invariant. Since InnB), is a
normal subgroup of Aut B, and M N Inn By, is trivial, we have a semi-direct product
Inn By, > M C Aut By,. Since By, acts on Bj, and Bj, is an M-invariant abelian group,
then B), is a Z[By > M]-module, where B); = By/B),.

From now on, we adopt the following notation.

S =Z[Bu]

S* is the group of multiplicative units of S
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R =Z[By > M]

Rx is the R-submodule generated by the element x
In contrast to Corollary 2.2, B, as an R-module is not torsion-free, e.g., when M
has nontrivial torsion elements. However we have the following property.

Proposition 2.3. B}, is a faithful R-module.

Proof. Let v and pu be distinct elements of 7 and
d:angmg ER (nyy€Z, meM, g€ By)
such that a? =1 for all a € B),. In particular, [er,eﬂ]d =1, where e is the identity

element of M. Applying the Magnus representation (3) and the respective actions of
By and M on Bj,, we obtain

0= ((Se# - l)teT +(1 - Se, )te“ )d = Z nmgg((smu - l)tmr +(1 - Sm, )tm“)

mGM,gGE
= Z Z Mingg(Sm, — Vi, + Z Z Nngg(1 — S, Yo, -
meM ycBy meEM 4cBy

Thus, - 5= Nmgg(sm, — 1) =0 for all m € M. Since By, is torsion-free, Z[By] is an
integral domain (see [16], p. 41). Hence > gcBy 'mgg =0 for all m € M. The definition
of equality in a group ring forces n,,; =0 for all m € M and g € By,. Therefore d =0.

L]

3. Prescribing automorphisms

An abelian group 4 is said to be p-reduced if ¢, p"4=0, for some prime number
p. If an abelian group 4 is p-reduced and torsion-free, we denote its completion relative
to the p-adic topology by A However, we denote the p-adic completion of the group of
integers by J,. Let B be a free metabelian group. Note that conjugation of elements
of B’ by b € B extends uniquely to B'. We also call such an extension to a subgroup
of B/ conjugation by b and do not distinguish these maps. Suppose B’ < H < B’ and
H is B-invariant, i.e., closed under conjugation by elements of B. The set G=H - B
of elements of the form / - b naturally forms a group under the operation

(h-b)g-c)=hg"" -bc where h,g € H, b,c € B.

Note however that representation of elements of G in the form %- b is not unique, i.e.,
G is not a semi-direct product.

Given By, as defined after Corollary 2.2, we set out to construct a group H such that
B), < H < Bj,, H is an R-module, Aut # < R and Out (H -B);) = M. The construction
of a group H with Aut H < R finds its motivation in abelian group theory, where a
given torsion-free ring is realized as the endomorphism ring of a torsion-free abelian
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group (see [5,6]). We apply a combinatorial principle called Shelah’s Black Box to
obtain the described group H. This combinatorial foundation is adapted from [5] to fit
the representation of the derived subgroup of a free metabelian group in Section 2.

From now on, let M be a group and A be a cardinal such that 2% =/ and |M| < /.
It follows from Konig’s Theorem (see [15], p. 45) that cf (1) > w.

Definition 3.1. Define the tree T =~ A to be the set of all functions
Tn—4 (n<wm)

ordered by set-theoretical containment, i.e., ¢ < t if and only if ¢ C 1. The length of
an element t € T is defined to be the natural number /(t) = dom(z). Let By, be the
free metabelian group with free generating set {m,: (m,7) € M x T}.

Let x? denote the image of the element x under the homomorphism ¢, and let
Ay ={x € ég}: x" € A for some non-zero n € 7}

be the pure subgroup of l;ﬁ\,, generated by A, for some A4 < Ej‘;

The group ring S is a unique factorization domain (see [16], p. 106) and canonically
a subring of R. By the mapping (3) in Lemma 2.1, we identify the derived group Bj,
of B, with a submodule of the free S-module

Byy— @ Stn. (7

(mar)eEM XT
As in Section 2, for each t € T, let B; be the free metabelian group with free
generating set {m,: m € M} and (B.)z be the R-submodule generated by B.. Note that
(B, )r is pure, and (B,)r=@D,,c\s Stm. \B), since B} is M-invariant. From the definition
of the p-adic completion, the elements of B}, may be identified with sums

g= Z Im.tm,» (8)

(mT)eM xT

where g, € §, with the property that, for each n € N, g, € p”§ for almost all
(mt)yeM xT.
The T-support, or simply the support of the element g of the form (8) is the set

[9] = {r €T Y Gmlm, # 0},

meM

which is always at most countable; for a subset X of B, , we write [X]= gex 9] We

define the notion of a norm on gj‘;, by fixing a continuous, strictly increasing function
picf(Z)+1— A+1 such that p(cf(4)) = 4. Then norms of elements and subsets of
By, are defined by

[lgll = min{v C cf(2): [g1€ 7 p(}. [IX]| = sup{][gl|: g € X}.
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Definition 3.2. For a subset X of 7 and an ordinal v < cf(4), define the part of X
to the right of v to be

WX ={reX: ||| > v}
This notation will be applied to supports of elements described in the next definition.

Definition 3.3. For n < w, an n-chain is a sequence (x*);>, indexed by the natural
numbers k > n, with the property that there exists an ordinal v < ||x"|| such that for
all k > n,

*eB, x-ptttes),, [KF1CnK.
Lemma 3.4. Every element of B}, extends to an n-chain.

Proof. Since Bj, is free abelian, there exists a set E of free generators of Bj, and
®deE Zd = /Z\?;W :

Let g € B}, and g =¢" (n < w). In order to extend g” to an n-chain, it suffices to
define g"*'. By the preceding observation and the definition of the p-adic completion,
we can represent g" as g" =), ad, Where, 1y € J, and, given k € N, 4 € kap for
almost all d € E. Let Egy={d € E:n4 ¢ pJ,}, which is a finite set. Let E; =E \ Ey. For
each d € E), there exists a unique &; € J, such that y,= p,. Define g :ZdeEl Ead.

Clearly g""! € B,,, g" — pg"™' = > ack, Nad € B), and [ Clg"]. O

A branch v of T is a linearly ordered sequence v={v, € T: n € w} with I(v,)=n
for all n» € w. We also identify v with a map v:w — A. Note that v, =v | n. The set
of all branches of T contained in a subset X of 7 will be denoted by Br(X).

The next definition provides a sequence of elements from [[,, . cprx7 Stm, and is
analogous to the one constructed in [5], where the module under consideration is a
full direct sum. In contrast, we consider here Bj,, which is a proper submodule of the
direct sum @(m,T)eMxTStmT since it does not contain any ¢z, (cf. [5], p. 453). Hence
the components of the proper submodule have no distinguished elements like a ring
identity to be used in the definition of a branch element. In order for the sequence of
elements to belong to B, , we make the following modification.

Definition 3.5. Given a branch v € Br(7T), k < w, define

k i—k
v = Z pl [evnev,url]a

vi€v,i>k

where e is the identity element of M, e, is the corresponding element in B, and
levs en ] = (Se,,, — Dle, + (1 = ¢, e, € B)y is given by (6).

The next lemma follows easily from Definition 3.3 and Proposition 2.3.
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Lemma 3.6. The sequence (v*);>, in Definition 3.5 is an n-chain and each v* is
R-torsion-free.

Proof. Suppose (v¥)? =0, for some d =3, ., swm € S[M]=R. By definition, v* =
Y sy bite,, where each b; € S is non-zero, and (v*)! =30, > 1/ Sub}"ty, . This
means s,,b]"ty, =0, and hence s,,b]" =0 for each i > k and m € M. Since s,,b]" € S,
b # 0 and S is an integral domain, it is clear that d =0. [

We shall now apply the Black Box, which we include here for completeness. Let
By be as in Definition 3.1 and identify each t € T with an arbitrary non-zero element
of B..

Definition 3.7. (i) A canonical submodule of Bj, is an R-module of the form (B7 )z,
where Br, = (B;: 1 € Ty) for some countable subset 7 of 7.

(ii) A trap is a triple (f,P, ), where f:“w — ®>A=T is a tree embedding, P
is a canonical submodule of Bj, and ¢ € End P such that the following four conditions
are satisfied:

(@) Im f CP;
(b) [P]CP, and [P] is a subtree of T, i.e., 0 < 1, 7 € [P] implies ¢ € [P];
(©) cf(IPI)) = ;

(d) ||v|| = ||P]| whenever v € Br(Im f).

Let n < A be an ordinal. A branch w = w(#) is said to be a constant branch if,
w:® — {n}. The norm of the constant branch w(y) is a discrete or isolated ordinal.
From parts (c) and (d) of the definition of a trap, the norm of each v € Br(Im 1) is
a limit ordinal. Hence Br(Im /) contains no constant branches.

Theorem 3.8 (The Black Box). For some ordinal 1*, there exists a transfinite se-
quence of traps (fu,Ps, @) (o0 < A*) such that, for o, < A*,(1) p <a = ||Ps]| <

(ii) B # « = Br(Im f,) N Br(Im f5) = 0;

(iii) B+ 2™ <o = Br(Im f,) N Br([Ps]) = 0;

(iv) for any subset X Céj’\; with |X| < Ny, and for any ¢ € Endé’\, there exists
o < A* such that

XCP,, X[ <|IPl, @ ! Py=0s

A proof of Theorem 3.8 is given in the appendix of [5], which goes back to [25]. The
Black Box replaces Jensen’s <{»-prediction principle, which follows from V=L (the con-
structible universe), whereas Theorem 3.8 holds in ordinary set theory ZFC. The follow-
ing application is patterned after [5]. However we consider here a proper S-submodule
Bj, instead of the free S-module @(m,r)e vix7 Stm.; and we want an S-module A such

that B), < H < éj’\\,,, AutH < R, and H is at the same time an R-module. We begin
with the construction of the desired submodule H.
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Choose a transfinite sequence (f, Py, ¢s)z< ;- satisfying the conclusion of the Black
Box. Let oo denote a fixed element not in Bj,:00 ¢ Bj,. Recall the notation R =
Z[By > M].

Let u < A% and assume we have found an ascending chain of R-submodules
H, (< ) of BM’ and elements bg (f+ 1 < u) of Bj, U{oo} such that for o < p

(Ioc) bﬂ ¢ Hoc(ﬂ < OC)
If u=0, put
(Ily)  Ho=By,.
If u is a limit ordinal, take
(L)  H,=J He
o<

When p=o + 1, we have the following cases.
(1) Suppose it is possible to choose a branch v, € Br(Im f,), an element g, in P,,
H,., and b, in such a way that (/,,,) and each of the following are satisfied:

(HotJrl) Hyp = <H17Rgoz>*
(L) lgx = vyl < [[oal]
(IVy) either (strong version) b, = g7*,

or (weak version) b, = cc.

We then make a choice, using the strong version of (IV,), whenever this is possible,
and call o strong. Otherwise call o weak.

(ii) If (i) does not occur, call o useless and take H, | =H,, g,=0, b,=00. Theorem
3.9 shows that this case actually does not occur.

In both cases (/,) is clearly satisfied, and the uth step is completed. Therefore the
recursion proceeds for all 4 < A* and yields a submodule H,- satisfying (/;«). Clearly,

Hy = (B, Rgy: o0 < 1)
Let H=H,-.
Theorem 3.9. Let oo < A* and v < ||P,||. For each v € Br(Im f,), let (g i>n be an
n-chain such that ,[g* — v*] = 0. For each B < a, assume gp € P/; and the exis-

tence of vg < ||Pg|| and vg € Br(Im fp) such that ,[gp — ] (. Then there exists
v € Br(Im f,) such that if

bg ¢ H=(By,Rgp: p<o)u (B <o),
then by & (H,Rg}).=: H(v), (f < o).

Proof. Suppose the conclusion does not hold. Then for each v € Br(Im f,), there
exists f = f(v) < a such that by € H(v) \ H for some by € Pg. That means there
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exists a non-zero s € Z and a non-zero a = a, € R (since by ¢ H) with bfs' —gicH
(for simplicity, let g, = ¢"). Since ,[g, — v"] =), we have ,[g,] =, [v"]. The support
»[v"] must be an infinite subset of v, since v < ||P,|| and ||v|| = ||Px||.- Now for some
he€ By, gp € };g and rp, € R,

n
b S+
i=1

and by the Black Box, ,[v"] My, [gp] is at most finite. By our assumption on the
supports of the gg’s, an infinite subset of v has to be contained in [bg] C [Pg]. Since
[Pp] is a subtree of T, v C[Ps]. Hence v € Br(Im f,) N Br([Pg]), and by the Black
Box, o < f# + 2%, Therefore, if v € Br(Im f,), there exists an ordinal B(v), a, € R,
s(v) € Z such that f(v) < o < B(v) + 2% and bjf(vv)) — g% € H. Let fy be the least
ordinal with By < a < By + 2%, Then By < B(v) < Bo + 2% and so B(v) assumes
< 2% = |Br(Im f,)| values. Hence there must exist distinct branches v, w € Br(Im f)
such that B(v) = f(w) = B. It follows that ¢g*™ — ¢%*) ¢ H. The hypothesis on the
supports of the gp’s and condition (ii) of the Black Box implies that an infinite subset
of v is contained in w or vice versa. This yields a contradiction since v and w are
almost disjoint branches of Im f,. [J

Theorem 3.9 shows that no ordinal in the construction of H;- is useless. An abelian
group A is said to be cotorsion-free if it does not contain a copy of Q, Z/pZ or
the group of p-adic integers J,, for any prime p. Equivalently, Hom (J,,4) = 0 for
any prime p. A ring R is called cotorsion-free if the additive structure (R,+) is
a cotorsion-free group. In particular, all integral group rings are cotorsion-free rings
since their additive groups are free abelian.

Theorem 3.10. Suppose that each g is defined as in Theorem 3.9 (f < o < A*). Then
H, = (B);,Rgp: p < o), is cotorsion-free.

Proof. Suppose that H, is not cotorsion-free, i.c., there exists a non-zero homomor-
phism ¢ : J, — H,. Let 12 =g € H,CB),. By continuity, »* = ¢ and [¢"] C [¢g]
for each r € J,. Since B), is free abelian, it is cotorsion-free. If g € B),, then
¢ € Hom(J,,B),) = 0, since the only elements of H, with finite support are the
elements of B),. This contradicts cotorsion-freeness of Bj,. Hence, g ¢ Bj,. By the
definition of H,, there exists a unique 0 < a < A* such that g € Hs,y \ Hj, where
Hsi 1 = (B),Rgp : p <0+ 1),. For some non-zero s € Z and some non-zero a € R
(since g & H;), ¢° — g5 € Hs. Since ,[g] = ,,[g°]1Cvs for some vs < [|g]|, the set
[g] cannot contain infinitely many elements of any branch vg (f > ). Hence g" €
Hsi 1 \ Hy and g™ — gg" € Hs, for some non-zero sy € Z and non-zero ay € R. Now
g5" — g5 =g "™ € Hy. Its support is contained in some finite union of supports of
elements in H; and so its intersection with the branch v; is finite. Since ,,[gs — vtl;] =0,
ags = arsg € R ﬂ.]p[m >a Msg = Rso. Let aps = aso for some non-zero a; € R.
Then (g — ¢5°)* = (¢ — ¢5' )" € H; and the purity of Hs imply ¢ — g5' € H;. By



262 R. Gobel, A.T. Paras|Journal of Pure and Applied Algebra 149 (2000) 251-266

Lemma 3.6, if s € Z is fixed, then, for each r € J,, the element a; € R satistying
g” — g5 € Hs is uniquely determined. It is easy to check that the map ¥ : J, — R
defined by ¥/(r) = a; is a non-trivial group homomorphism. This contradicts the fact
that R is cotorsion-free. Therefore the defined group H, is cotorsion-free. [J

Theorem 3.11. Let H be a cotorsion-free, pure subgroup of B such that By, <
H < Bz/w and H is an R-submodule. Let ¢ € Aut (Bz/w) \ R. Then there exists a
canonical submodule P such that P*~¢ & H, for all (a,s) € R x (Z\ {0}) such that
s=1orad¢sR.

Proof. Suppose the conclusion is false. Let P be a canonical submodule such that
PNB, and PN B; are non-empty, for some distinct 7, € 7. Then there exist a € R
and non-zero s € Z such that P4 C H. Since H is cotorsion-free, there exists x €
Bj, such that x»~¢ ¢ H. Let Py be a canonical submodule such that P2 (P, Rx) .
By assumptlon there exist a; € R and non-zero s; € Z such that PO“”1 “"CH. Since
P CPO Pasi—ais C i The cotorsion-free property of H and Proposition 2.3 imply as; =
ays. Hence, x#1=" € H implies x(?~%1 € H. The purity of H implies that x*~¢ € H,
which is a contradiction. [J

Theorem 3.12. Suppose ¢ € Aut (B J\R and H= (Bj’w,Rg[; p < )., with each gg
defined as in Theorem 3.9. Then there exists x € B such that x® ¢ (H,Rx)..

Proof. Let P be as in Theorem 3.11. Choose an ordinal # < A such that
max{||P[[,[[P?[[} < [n]l-

Let w = w(n) be a constant branch of norm ||w|| = ||n||. If (w')? & (H,Rw')., then
we are done. Otherwise, suppose (w' )(” " € H for some non-zero s € Z and r € R.
By Theorem 3.11, there exists z € P such that z%~" ¢ H. We claim that (w' +

2)? & (H,R(w' + z)).. Suppose the claim is false. Then (w! +z)#*~"0 € H, for some
non-zero sy € Z and ry € R. Without loss of generality, (w' + z)? " ¢ H, ie.,
(Whesso — (whyo 4-z#0="0 ¢ {. Since (Wwh)?™" € H, (w' Y — (w!)yo 4 z#%0—"0 ¢ .
The norm of (w') is equal to ||5|| and the norm of z?*°~"0 is less than ||5||. The
elements of H do not contain infinite subsets of constant branches in their supports, by
definition of H and condition (d) of Definition 3.7. Hence rso =y and z?*0~"0 ¢ H.
Since H is pure, z?~" € H, which is a contradiction. [J

Theorem 3.13. Let H=H,-=(B),,Rgp : f < A*). as constructed before Theorem 3.9.
If ¢ € AutH, then ¢ € R.

Proof. Suppose ¢ € Aut H\R. From Theorem 3.12, there exists x € l;j; such that x? ¢
(H, Rx) .. By the Black Box, there exists oo < A* such that x,x? € P,, ||P,|| > ||x]],|]x?||
and ¢, = ¢ | 7-’; It suffices to show that o is strong, for then gi = g2* ¢ H. This
contradicts the assumption that ¢ € AutH.
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We now show that o is strong, i.e., there exists g, in i’: and v, € Br(Im f,) such
that

19 = vl < [vall = [1Pulls 957 95" & (HasRga)« (B < ).
[

Let v € Br(Im f,) be distinct from vz (f < o). We claim that there exists ¢ € {0, 1}
such that (v' + &x)? & (H,,R(v' + ex)).. Suppose otherwise, i.e., (v' + x)?~" and
(v")?="0 are both in H, for some r,7y € R and non-zero s,sp € Z. Applying so
on the first and s on the second term, and subtracting the resulting terms, we obtain
(v')rsotrspxesso=rso ¢ [, The norm of v! is equal to ||P,]|, while the norm of x¢"os =7
is less than ||P,||. Since v is distinct from the branches vg (f < «), (v')*™ =0 and so
x(@s=r% ¢ [, By the purity of H,, x?~" € H, < H, which contradicts x? ¢ (H,Rx)..
So g, € {v' +ex : ¢=0,1}, and we clearly have ||g, — v'|| < [|v||. In addition, by
Theorem 3.9, there exists a branch v € Br(Im f,) such that g?g & (Hy Rgy) e (B < ).

0

4. Outer automorphism groups

Using the group H=H,+ constructed in Section 3, and the free metabelian group By,
from Section 2, we define the extension G=H - By, which is a torsion-free, metabelian
group. In this section we show that Out G is indeed M.

Lemma 4.1 (Gobel and Paras [14]). Suppose G = H - B, where B is free metabelian
of rank at least two, B < H < B’ and H is B-invariant. If A is a normal, abelian
subgroup of G, then A < H. Hence H is the largest normal, abelian subgroup of G

and so is characteristic in G.

Proof. We first observe using Corollary 2.2, that if b € B and x € B’ with x* =x,
then either b € B’ or x = 1, i.e., conjugation by elements b € B\ B’ does not leave
non-trivial elements of B’ fixed. By the continuity of homomorphisms on H and the
B-invariance of H, it follows that conjugation by b € B\ B’ does not leave non-trivial
elements of H fixed.

Suppose there exists x € 4 such that x=+h-b, h € H and b € B\ B'. Since 4 is
normal, abelian in G, x° € 4 and x’x ' =x"1x € 4 for all ¢ € B, i.e., [c,x ']=[x,c].
Hence [c,x]fl = [c,x]. Since [¢,x] € H and h € H, [c,x]b71 = [c,x]. Taking ¢ = b,
we get [b, h)° = [b, h]. This implies [b,h] =1, i.e., h® = h. Since b € B\ B/, it follows
that h=1. Sox=b € (B\B')NA and b° € 4 for all ¢ € B. Since bb~' € ANPH,
b-bh~! = bbb =bc. This means (b°)’ =5, and so, by our first observation,
b° =1 for all ¢ € B. But this occurs only if b =1, thus giving us a contradiction. [

Since G/H = B/B’, it follows that G’ < H.
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Lemma 4.2 (Gobel and Paras [14]). Suppose G = H - B, as defined in Lemma 4.1.
Then no automorphism of G induces inversion on H, i.e.,
if o € Aut(G) then ¢ | H # —1-idy.

Proof. Suppose ¢ € Aut(G) and ¢ | H=—1-idy. Let a € H and b € B. Then
b~'a='b=(b"'ab)? = (b~')?a"'b? implies that b*h~' commutes with every element
of H. Hence b?b~' € H. Since b is an arbitrary element of B, this means that ¢
induces the identity on G/H.

Let b,c € B and suppose b? =h-b, ¢? =k - ¢, for some h,k € H. Then b? = he -
b? =h"'h-b=b. Hence ¢> =idg. Now [b,c]® =[h-b,k-c]=T[h,c]’[b,c][b,k]°. Since
[h,cl,[b,k] € [G,H], it follows that [b,c]? = [b,c]mod [G, H]. Hence [b,c]* € [G, H].
By commutator calculus (see [20], p. 293), [b, c)? =[b,c*Imod [G, G']. Since G’ < H,
[b,c]* = [b,c*]mod [G,H]. Thus [b,c*] € [G,H]. This yields a contradiction when b
and ¢ are chosen to be free generators of B. [

Proposition 4.3. Suppose G = H - By, where H = H«.
If o € AutG such that ¢ | H=idy, then ¢ € InnG.

Proof. Suppose ¢ € AutG such that ¢ | H =idy. Then we claim that ¢ induces
idgy. Let b € By and h € H. Now b~'hb=(b"1hb)? =(b~')?hb* implies that HH~!
commutes with every 4 € H. By Lemma 4.1, 5*b~' € H. The claim follows.

Let b,c € By, b =hb and ¢? =kc for some h,k € H. Then [hb,kc]=[b,c]? =[b,c]
implies that PP = feb=D) If f = ¢, then h = k. Without loss of generality, assume
b +#é.

Note that by the action of S on H, the element /4 has finite support if and only if &
has finite support. The construction of H guarantees that an element has finite support
if and only if it belongs to Bj,. Suppose 4 has finite support and h=>" p;t;, k= o:t;,
for some p;,0; € S and ; € {¢,, : (m,7) € M x T}. The action of S on H yields
S bh(E—1)pit; =3 &b —1)a;t;. So b(é—1)p;=&(b—1)o; for all i. Since S is a unique
factorization domain (see [16], p. 106) and b # &, then, for each i, p; = pf(Z; — 1) and
o;=0(¢c— 1) for some p},a; € S. If we let hy = pit;, which is clearly in Bj,, then
h=h"" and k =" © . Thus ¢ is conjugation by the element ;.

Suppose # has infinite support and » is a non-zero integer such that A", k" €
(ByrsRgp : o < 2*). Then h" =ho+ > g% and k" =ko + 3 g5, for some a;,r; € R,
ho,ko € B}, and g,, € ﬁ; chosen such that there exist an ordinal v,, and a branch v, €
Br(Im f7,) with ,, [¢,, —v),]=0 and [|P,,|| < ||P,,|| for o; < a;. Since A"~ D =}db=D),
it follows that 3 g0~ D= 4HE=D_phe=D _3cb=1) ¢ g By the choice of the supports
of the g,,’s,

P k=D and pé(h— 1) = aib(@— 1) for all i.
As was shown in the finite support case, Ag :h(lbfl) and ky :kf*l), for some A,k €

By, Let r;=" npgmg, ai="3" Sugmg. S0 S npgmgé(h—1)=>3"s5,,,mgh(¢ — 1) implies
Q- nmgg)e(d — 1) = (3 smgg)b(¢ — 1) for each m. Since all the terms in the latter
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equation are elements of S and b # ¢, it follows that r; = ri '(¢—1) and a;, = d}(b — 1)
We now have h" = (h +> o =D and k" = (ky +3 g D Let ¥ = hy —&-Zga,
and y' =k + Zga,. Clearly X' € H, h" = (x')®=1 and k" = (y/)?* '=D_ Since H is
S-torsion-free, the equation ((x")®=1)Xe=D=((3/)@D)=1 implies that (x' )’ =(3')’.
Thus 4" = (x')®=1 and k" = (x')’® @1 By the purity of H and the action of S on
H, there exists x € H such that h=x®~1 and k=x5""1_ Hence b? =xb-Dp=p"
and ¢? = x5 '@ De = " 1t follows that @ is conjugation by x> € H. [

An easy consequence of Proposition 4.3 is that two automorphisms of G which agree
on H are congruent modulo Inn G.

Theorem 4.4. Suppose G = H - By, is defined as in Proposition 4.3. Then Out G = M.
More precisely, AutG =Inn G > M.

Proof. Let ¢ € AutG. By Lemma 4.1, ¢ | H is an automorphism of H; and by
Theorem 3.13, ¢ | H € R. Hence the restriction ¢ | H =u € R*. Let h € H
and b € B. Then h*" = (b~ hb)? = (b~ 'hb)* = W for all h € H. By Lemma 2.3,
ub” = l;u when viewed as elements of R*. Let u—= Z onm € S[M]=R. Without loss
of generahty, assume g, # 0, where e is the identity element in M (otherwise, multiply
u by m~' if 6,, # 0). Now Y T - b"=b- > . Omm, and by the multiplication in

(pm -!

a semi-direct product, > 6,,b m=y, ba,,m. This means c,b°" = ba, for all

m € M and b € By,. Since S is an integral domain, " I =b for all b € By, and
for all m such that g, # 0. In particular, 6, # 0 and so b” =b for all b € By, ie.,
¢ induces the identity on Bjs. Suppose g,,, # 0 for some my # e. Then there must
exist by € By, such that bg’o #+ bo (e. g., take by = &,). Hence (bo )"’0 #+ bo gives a
contradiction. This shows that the M-support of u as an element of the group ring
S[M] is a singleton, i.e., u € S*. Thus, in general, u € By >~ M by Lemma 4.2.
Therefore, by Proposition 4.3, ¢ € InnG > M and AutG < Inn G > M. The reverse
inclusion is clear by construction. [J

Note added in proof

In a recent paper (R. Gobel, A. Paras, Realizing automorphism groups of metabelian
groups, to appear in Proceedings of the Dublin Conference on abelian groups and
modules 1998, Birkhauser Verlag, Basel, 1999) we will take care of the countable case
and sharpen our main theorem: if M is any group of cardinality x < 2%, then there is
a torsion-free metabelian group G of cardinality |G| = max{r, Ny} with out G = M.
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