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In neuroimaging it is now becoming standard practise to fit multiple models to data and compare them using
a model selection criterion. This is especially prevalent in the analysis of brain connectivity. This paper
describes a simulation study which compares the relative merits of three model selection criteria (i) Akaike's
Information Criterion (AIC), (ii) the Bayesian Information Criterion (BIC) and (iii) the variational Free Energy.
Differences in performance are examined in the context of General Linear Models (GLMs) and Dynamic Causal
Models (DCMs). We find that the Free Energy has the best model selection ability and recommend it be used
for comparison of DCMs.
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Introduction

Mathematical models of scientific data can be formally compared
using the Bayesian model evidence (Bernardo and Smith, 2000;
Gelman et al., 1995; Mackay, 2003), an approach that is now widely
used in statistics (Hoeting et al., 1999), signal processing (Penny and
Roberts, 2002), machine learning (Beal and Ghahramani, 2003), and
neuroimaging (Friston et al., 2008; Penny et al., 2003; Trujillo-Barreto
et al., 2004). By comparing the evidence or ‘score’ of one model
relative to another, a decision can be made as to which is the more
veridical. This approach has now been widely adopted for the analysis
of brain connectivity data, especially in the context of Dynamic Causal
Modelling (DCM) (Friston et al., 2003; Penny et al., 2004).

Originally (Penny et al., 2004), it was proposed to score DCMs
using a combination of Akaike's Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) criteria. Specifically, it was
proposed that (Penny et al., 2004) if both AIC and BIC provided a log
Bayes factor (difference in log model evidences) of greater than three
in favour of model one versus two, one could safely conclude that
model one was themore veridical. More recently it has been proposed
(Stephan et al., 2010), on theoretical grounds, to instead score DCMs
using the Free Energy (Friston et al., 2007a). However, until now there
has been no empirical comparison of the model comparison abilities
of the different approaches.

This motivates the work in this paper which describes a simulation
study comparing AIC, BIC and the Free Energy. Differences in
performance are examined in the context of General Linear Models
(GLMs) and Dynamic Causal Models (DCMs). Specifically, for each
class of model we define a ‘full’ and a ‘nested’model, where the nested
model is a special case of the full model with a subset of parameters
set to zero. We examine how model comparison accuracy varies as a
function of number of data points and signal to noise ratio for the
separate cases of data being generated by full or nested models. This
allows us to assess the sensitivity and specificity of the differentmodel
comparison criteria. The paper uses simulated data generated from
models with known parameters but these parameters are derived
from empirical neuroimaging data. We start by briefly reviewing the
relevant theoretical background and then go on to present our results.

Methods

We consider Bayesian inference on data y using model m with
parameters θ. In the analysis of brain connectivity, the data would
comprise, for example, fMRI time series from multiple brain regions,
the model would make specific assumptions about connectivity
structure, and the parameters would correspond to connections
strengths. A generic approach for statistical inference in this context is
Bayesian estimation (Bishop, 2006; Gelman et al., 1995) which
provides estimates of two quantities. The first is the posterior
distribution over model parameters p(θ|m,y) which can be used to
make inferences about model parameters θ. The second is the
probability of the data given the model, otherwise known as the
model evidence. This can be used for model comparison, in that ratios
of model evidences (Bayes factors) allow one to choose between
models (Kass and Raftery, 1995; Raftery, 1995). This paper focusses
on Dynamic Causal Models and on model inference using AIC, BIC or
Free Energy approximations to the model evidence. We first describe
DCM, show how model parameters are estimated, describe Bayesian
inference for General Linear Models and then go on to describe
the different model selection criteria. In what follows N(x ;m,S)
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represents a multivariate Gaussian density over x with mean m and
covariance S, and |S| denotes the determinant of matrix S.

DCM for fMRI

Dynamic Causal Modelling is a framework for fitting differential
equation models of neuronal activity to brain imaging data using
Bayesian inference. There is now a library of DCMs and variants differ
according to their level of biological realism and the data features
which they explain. The DCM approach can be applied to functional
Magnetic Resonance Imaging (fMRI), Electroencephalographic (EEG),
Magnetoencephalographic (MEG), and Local Field Potential (LFP) data
(Daunizeau et al., 2009). The empirical work in this paper uses DCM
for fMRI.

Neurodynamics
This paper uses DCM for fMRI with bilinear neurodynamics and an

extended Balloon model (Friston, 2002) for the hemodynamics. The
neurodynamics are described by the following multivariate differen-
tial equation

żt = A+∑
M

j=1
ut jð ÞB j

 !
zt+Cut ð1Þ

where t indexes continuous time and the dot notation denotes a time
derivative. The ith entry in zt corresponds to neuronal activity in the
ith brain region, and ut(j) is the jth experimental input.

A DCM is characterised by a set of ‘intrinsic connections’, A, that
specify which regions are connected and whether these connections
are unidirectional or bidirectional. We also define a set of input
connections, C, that specify which inputs are connected to which
regions, and a set of modulatory connections, Bj, that specify which
intrinsic connections can be changed by which inputs. Usually, the B
parameters are of greatest interest as these describe how connections
between brain regions are dependent on experimental manipulations.

The overall specification of input, intrinsic and modulatory
connectivity comprise our assumptions about model structure. This
in turn represents a scientific hypothesis about the structure of the
large-scale neuronal network mediating the underlying cognitive
function. These hypotheses, or models are indexed by m.

The simulations in this paper use ‘DCM 8’ (available in SPM8 prior
to revision 4010) with a deterministic, single-state, bilinear neuro-
dynamical model as described above.

Model predictions
In DCM, neuronal activity gives rise to fMRI signals via an extended

Balloon model (Buxton et al., 2004) and BOLD signal model (Stephan
et al., 2007) for each region. This specifies how changes in neuronal
activity give rise to changes in blood oxygenation that are measured
with fMRI. The equations for these hemodynamics are provided in the
Appendix A and depend on a set of hemodynamic parameters h.

Overall, the DCM parameters are collectively written as the vector
θ={A,B,C,h}. Numerical integration of the neurodynamic (Eq. 1) and
hemodynamic equations (Appendix A) leads to prediction of fMRI
activity in each brain region. These values are concatenated to
produce a single model prediction vector g(θ).

Priors
The priors factorise over parameter types

p θ jmð Þ = p A jmð Þp B jmð Þp C jmð Þp h jmð Þ ð2Þ

and each parameter prior is Gaussian. The priors used in this paper
correspond to those used in ‘DCM8’. The priors over the intrinsic
connections are chosen to encourage stable dynamics. This results in
prior variances which depend on the number of regions in the model
(Friston et al., 2003), and in this paper we model activity in three
regions. For the intrinsic self-connections we have

p Aii jmð Þ = N Aii;−1;σ 2
self

� �
ð3Þ

with σself=0.177. The time constant associatedwith a self-connection
is τi=−1/Aii, and the time at which activity decays to half its initial
value (half-life) is (1/Aii)log0.5 (Friston et al., 2003). The prior over
self-connections corresponds to a prior over half-life's that can be
determined by sampling from p(Aii|m) and transforming variables to
τi=−1/Aii. This produces a mean half life of approximately 720 ms
with 90% of the distribution between 500 and 1000 ms.

For those intrinsic cross connections which are not fixed at zero by
model assumptions m we have

p Aik jmð Þ = N Aik; 1=64;σ
2
cross

� �
ð4Þ

where σcross=0.5. Elements of the modulatory and input connectivity
matrices (which are not fixed at zero by model assumptions) have
shrinkage priors

p B j
ik jm

� �
= N B j

ik;0;σ
2
s

� �
ð5Þ

p Cij jm
� �

= N Cij;0;σ
2
s

� �
ð6Þ

and σs=2. In the above, i and k index brain regions and j indexes
experimental input.

The prior variance parameters σself
2 , σcross

2 and σs
2 along with the

prior variances on hemodynamic parameters (see Appendix A)
determine the overall prior covariance on model parameters, Cθ (see
next section). In the free energy model comparison criterion (see
below) these variances contribute to the penalty paid for each
parameter.

Optimisation

The standard algorithm used to optimise DCMs is the Variational
Laplace (VL) method described in (Friston et al., 2007a). The VL
algorithm can be used for Bayesian estimation of any nonlinear model
of the form

y = g θð Þ+e ð7Þ

where g(θ) is some nonlinear function, and e is zero mean additive
Gaussian noise with covariance Cy. This covariance depends on
hyperparameters λ as shown below. The likelihood of the data is
therefore

p y jθ;λ;mð Þ = N y; g θ;mð Þ;Cy

� �
ð8Þ

The framework allows for Gaussian priors over model parameters

p θ jmð Þ = N θ; μθ;Cθð Þ ð9Þ

where the prior mean and covariance are assumed known. The error
covariances are assumed to decompose into terms of the form

C−1
y = ∑

i
exp λið ÞQi ð10Þ

where Qi are known precision basis functions. The hyperparameters
that govern these error precisions are collectively written as the
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vector λ. These will be estimated. Additionally, the hyperparameters
are constrained by the prior

p λ jmð Þ = N λ; μλ;Cλð Þ ð11Þ

The above distributions allow one to write down an expression for
the joint log likelihood of the data, parameters and hyperparameters

p y; θ;λ jmð Þ = p y jθ;λ;mð Þp θ jmð Þp λ jmð Þ ð12Þ

The VL algorithm then assumes an approximate posterior density
of the following factorised form

q θ;λ jy;mð Þ = q θ jy;mð Þq λ jy;mð Þ
q θ jy;mð Þ = N θ;mθ; Sθð Þ
q λ jy;mð Þ = N λ;mλ; Sλð Þ

ð13Þ

The parameters of these approximate posteriors are then iteratively
updated so as to minimise the Kullback–Liebler (KL)-divergence
between the true and approximate posteriors. This algorithm is
described fully in (Friston et al., 2007a).

We emphasise here that the Variational Laplace framework
assumes that the prior means and covariances (μθ,Cθ,μλ,Cλ) are
known. They are not estimated from data, as is the case for Empirical
Bayesmethods (Carlin and Louis, 2000). Wewill return to this issue in
the discussion.

Hyperparameters in DCM for fMRI
In DCM for fMRI the precision basis functions Qi, defined in Eq. (10),

are set toQi= I for each brain region. The quantityγi=exp(λi) therefore
corresponds to the noise precision in region i.

The overall error covariance matrix Cy has a block structure
corresponding to the assumption that observation noise is indepen-
dent and identically distributed in each region. This is valid as time
series data are usually pre-whitened before entering into a DCM
analysis (Friston et al., 2003). The prior mean and covariance of the
associated latent variables are set to

μλ = 0
Cλ = 1 ð14Þ

This corresponds to the assumption that the mean prior noise
precision, γi = 1:7. These values, along with the priors on the
neurodynamic parameters, have been set so as to produce data sets
with typical signal to noise ratios encountered in fMRI.

Model evidence

The model evidence, also known as the marginal likelihood, is not
straightforward to compute, since its computation involves integrat-
ing out the dependence on model parameters

p y jmð Þ = ∫∫ p y jθ;λ;mð Þp θ jmð Þp λ jmð Þdθdλ: ð15Þ

The following sections describe Free Energy, AIC and BIC
approximations to the (log) model evidence. Once the evidence has
been computed models m1 and m2 can be compared using the Bayes
factor

B12 =
p y jm1ð Þ
p y jm2ð Þ ð16Þ

with a value of 20 corresponding to a posterior probability of greater
than 0.95 in favour of model m1. The corresponding log Bayes factor
is 3. The use of Bayes factors for model comparison is described more
fully elsewhere (Kass and Raftery, 1995; Penny et al., 2004).
Comparison of a large number of models is best implemented using
the full posterior density, p(m|y), as described in (Penny et al., 2010).

Free energy

It is possible to place a lower bound on the log model evidence of
the following form (Beal, 2003)

logp y jmð Þ = F mð Þ + KL q θ;λ jmð Þ j jp θ;λ jy;mð Þ½ � ð17Þ

where F(m) is known as the negative variational free energy
(henceforth ‘Free Energy’) and the last term is the Kullback–Liebler
distance between the true posterior density, p(θ,λ|y,m) and an
approximate posterior q(θ,λ|m). Because KL is always positive
(Mackay, 2003), F(m) provides a lower bound on the model evidence.

The Free Energy is defined as

F mð Þ = ∫∫ q θ;λ jy;mð Þ log p y; θ;λ jmð Þ
q θ;λ jy;mð Þ
� �

dθdλ ð18Þ

and can be estimated using a Laplace approximation (Friston et al.,
2007a), FL(m), as derived in Appendix B. As noted in (Wipf and
Nagarajan, 2009), because the Laplace approximation is not exactly
equal to the Free Energy, the above lower bound property no longer
holds. That is, the Laplace approximation does not lower bound the
logmodel evidence. As we shall see, however, it nevertheless provides
a very useful model comparison criterion. The Laplace approximation
to the Free Energy is given in Eq. (57) and can be expressed as a sum of
accuracy and complexity terms (Beal, 2003)

FL mð Þ = Accuracy mð Þ−Complexity mð Þ ð19Þ

Accuracy mð Þ = −1
2
eTyC

−1
y ey−

1
2
log jCy j−

N
2
log2π ð20Þ

Complexity mð Þ = 1
2
eTθC

−1
θ eθ +

1
2
log jCθ j−

1
2
log jSθ j

+
1
2
eTλC

−1
λ eλ +

1
2
log jCλ j−

1
2
log jSλ j

ð21Þ

where N is the number of data points and the ‘error terms’ are

ey = y−g mθð Þ
eθ = mθ−μθ
eλ = mλ−μλ

ð22Þ

The first row of Eq. (21) is the complexity term for the parameters
and the second row the complexity term for the hyperparameters. If
the hyperparameters are known then the last row of Eq. (21)
disappears. In this case we can write the complexity as

Complexity mð Þ = 1
2
eTθC

−1
θ eθ +

1
2
log

jCθ j
jSθ j

ð23Þ

In the limit that the posterior equals the prior (eθ=0,Cθ=Sθ), the
complexity term equals zero. The last term in Eq. (23), 12 log

jCθ j
jSθ j , is also

referred to as an Occam factor (see page 349 in (Mackay, 2003)).
Because the determinant of a matrix corresponds to the volume
spanned by its eigenvectors, this Occam factor gets larger and the
model evidence smaller as the posterior volume, |Sθ|, reduces in
proportion to the prior volume, |Cθ|. Models for which parameters
have to be specified precisely (small posterior volume) are brittle.
They are not good models (complexity is high).

The above considerations also apply to cases where hyperpara-
meters are estimated. There is an additional complexity term (last line
of Eq. 21) and therefore an additional Occam factor.
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Correlated parameters
Other factors being equal, models with strong correlation in the

posterior are not good models. For example, given a model with just
two parameters the determinant of the posterior covariance is given
by

jSθ j = 1−r2
� �

σ2
θ1σ

2
θ2 ð24Þ

where r is the posterior correlation, σθ1 and σθ2 are the posterior
standard deviations of the two parameters. For the case of two
parameters having a similar effect on model predictions the posterior
correlation will be high, therefore implying a large complexity penalty.

However, there is another factor at play. This is that neither
parameter will be estimated accurately (the posterior variances will
be high). This second factor can offset the higher complexity due to
correlation and can lead to a situation in which additional extraneous
parameters will not lead to a significant drop in free energy. One
would then appeal to a further Occam's Razor principle (Mackay,
2003), namely, that in the absence of significant free energy
differences one should prefer the simpler model (see Discussion).

When fitting DCMs to fMRI data it is likely that some parameters
will be correlated with each other. This correlation can be examined
by looking at the posterior covariance matrix Sθ. A good example of
this is provided in Fig. 6 of Stephan et al. (2007) who describe
posterior correlations among hemodynamic and connectivity param-
eters. Importantly, these correlations are accomodated in the Free
Energy model comparison criterion (see Eq. 23 and above). This is
possible because Variational Laplace does not assume that parameters
are a posteriori independent among themselves, rather it is assumed
that the parameters are a posteriori independent of the hyperpara-
meters (see Eq. 13).

Decompositions
It is instructive to decompose approximations to the model

evidence into contributions from specific sets of parameters or
predictions. In the context of DCM, one can decompose the accuracy
terms into contributions from different brain regions, as described
previously (Penny et al., 2004). This enables insight to be gained into
why onemodel is better than another. It may be, for example, that one
model predicts activity more accurately in a particular brain region.

Similarly, it is possible to decompose the complexity term into
contributions from different sets of parameters. If we ignore
correlation among different parameter sets then the complexity is
approximately

Complexity mð Þ≈1
2
∑
j

eTθj C
−1
θj eθj + log

jCθj j
jSθj j

 !
ð25Þ

where j indexes the jth parameter set. In the context of DCM these
could index input connections (j=1), intrinsic connections (j=2),
modulatory connections (j=3) etc. We will see an example of this in
the Results section.

General Linear Models
For General Linear Models (GLMs) model predictions are given by

g θð Þ = Xθ ð26Þ

where X is a design matrix and θ are now regression coefficients. The
posterior distribution is analytic and given by (Bishop, 2006)

S−1
θ = XTC−1

y X+C−1
θ

mθ = Sθ XTC−1
y y+C−1

θ μθ

� � ð27Þ
These parameter values can then be plugged into Eqs. (19) to (22)
to compute the Free Energy. If the hyperparameters are assumed
known then the Free Energy expression in Eq. (19) is exactly equal to
the log model evidence.That is, FL(m)= logp(y|m). We will revisit this
case in the Results section. If the hyperparameters are estimated then
the Free Energy provides a very close approximation, as confirmed by
sampling methods (Friston et al., 2007a).

AIC and BIC

A simple approximation to the log model evidence is given by the
Bayesian Information Criterion (Schwarz, 1978)

BIC = Accuracy mð Þ− p
2
log N ð28Þ

where p is the number of parameters, and N is the number of data
points. The BIC is a special case of the Free Energy approximation that
drops all terms that do not scale with the number of data points (see
e.g. Appendix A2 in (Penny et al., 2004) for a derivation). This is
equivalent to the statement that BIC is equal to the Free Energy under
the infinite data limit, and when the priors over parameters are flat,
and the variational posterior is exact (see section 2.3 in (Attias, 1999)
and page 217 in (Bishop, 2006)). In practise, as we shall see, these
three requirements are almost never met and BIC will produce model
comparisons that are often very different to those from the Free
Energy.

An alternative model selection criterion is Akaike's Information
Criterion (or ‘An Information Criterion’) (Akaike, 1973)

AIC = Accuracy mð Þ−p ð29Þ

AIC is not a formal approximation to the model evidence but derives
from information theoretic considerations. Specifically, AIC model
selection will choose that model in the comparison set with minimal
expected KL divergence to the true model (Akaike, 1973; Burnham
and Anderson, 2002). There are precedents in the literature, however,
for using it as a surrogate for the model evidence, in order to derive a
posterior density over models (Burnham and Anderson, 2004) (Penny
et al., 2004).

The AIC criterion has been reported to perform poorly for small
numbers of data points (Brockwell and Davis, 2009; Burnham and
Anderson, 2004). This hasmotivated the inclusion of a correction term

AICc = AIC−p p+1ð Þ
N−p−1

ð30Þ

known as the ‘corrected’ AIC (AICc) (Hurvich and Tsai, 1989). The AICc
criterion thus penalises parameters more than does AIC. The two
criteria become approximately equal for N>p2 and identical in the
limit of very large sample sizes. We note, however, that for N<p+1
the denominator in the correction term becomes negative and AICc
penalises parameters less than does AIC. In the empirical work in this
paper we therefore avoid this (highly unlikely) regime.

In applications of AIC and BIC to DCMs (Penny et al., 2004), the
estimated parameters are taken to be equal to the posterior meansmθ

andmλ. AIC and BIC are useful approximations because one only needs
to quantify the fit of the model to provide an estimate of the log-
evidence. AIC and BIC are qualitatively different to the free energy
approximation in that the same fixed penalty is paid for each
parameter in the model.
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Results

Linear models

We first compare the different approximations to the model
evidence using Bayesian GLMs. We define these using the following
prior and likelihood

p θð Þ = N θ; μθ;Cθð Þ
p y jθð Þ = N y; Xθ;Cy

� � ð31Þ

where θ is the [p×1] vector of regression coefficients, y is the [N×1]
vector of data points, X is the [N×p] design matrix, and for the prior
mean we have μθ=0. For the work in this paper we assume isotropic
covariance matrices

Cθ = σ2
p Ip

Cy = σ2
e IN

ð32Þ

where σp and σe are the standard deviations of the prior and
observation error. We assume that these parameters are known.

We compare Bayes factors based on AIC, BIC and FL for nested
GLMs derived from an fMRI study. The fMRI data set was collected to
study neuronal responses to images of faces and is available from the
SPM web site (http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/
face_rep_SPM5.html.). Each face was presented twice, and faces
either belonged to familiar or unfamiliar people. This gave rise to four
conditions, each of which was modelled with 3 hemodynamic basis
functions (Friston et al., 2007b). For a full description of this data set
and similar analyses see (Henson et al., 2002).

We first define a ‘nested’model in which only 3 of these conditions
are modelled, resulting in 9 regressors. We then define a ‘full’ model
as containing an extra 3 regressors from the additional condition (first
response to unfamiliar faces). Fig. 1 shows the design matrix for the
full model. The design matrices for the full and nested models are
Fig. 1. Design matrix for the full GLM. The nested GLM uses an identical design matrix
but with the first three columns removed. The full design matrix comprises N=351
rows, one for each fMRI scan, and twelve columns, one for each putative experimental
effect.
therefore different, with the full model design matrix having 12
regressors and the nested model having 9 regressors.

Estimated regression coefficients, θ̂, and noise variance estimates,
σ̂e=0.73 were extracted for a voxel showing a significant overall
response to faces (i.e. over all conditions). The corresponding fMRI
time series comprised N=351 values. We then created simulated
data based on this observed fMRI data as follows.

First, we estimated the deviation of the fitted regression co-
efficients about zero and set the prior SD to this value, σp=6.05. This
estimation was based on parameter fits from data at a single voxel.
The use of a common σp value for all regression coefficients implies
that the effects are of similar magnitude for all four conditions and all
three temporal basis functions, and is a reasonable assumption. We
then computed <σy>, the average signal standard deviation when
drawing parameters the prior p(θ).

We then produced simulated data sets where the Signal to Noise
ratio

SNR =
<σy>

σe
ð33Þ

was set to a range of values by choosing an appropriate σe. SNR
defined in this manner can be related to the proportion of variance
explained by the model, as shown in Appendix C. The observed fMRI
data have a value of SNR=1.3.

Each simulated data set was then generated by drawing regression
coefficients from their prior densities, producing model predictions
g=Xθ (for both full and nested models) and adding zero mean
Gaussian noise with variance σe

2.
We then fitted both full and nested models to each simulated data

set and estimated Bayes factors using AIC, BIC and FL. These criteria
were computed by substituting X, Cy, Cθ, and μθ as defined in this
section into Eq. (27) for computing the posteriormean and covariance
for linear models. The prediction errors, ey, and parameter errors, eθ,
were then computed from Eqs. (22) and (26). We could then compute
the accuracy and complexity terms using Eqs. (20) and (21) (the
complexity terms for λwere ignored as the observation noise variance
was known for these simulations).

Fig. 2 shows results for data drawn from the full model. The figure
plots the log Bayes factors (differences in log model evidence) at
various values of SNR, where each point in each curve was averaged
over 1000 simulated data sets. At low SNRs, experimental effects
should be impossible to detect. This is reflected in the Free Energy log
Bayes factor which correctly asymptotes to a value of zero, indicating
neither model is preferred. In this regime, however, BIC and to a lesser
extent AIC both incorrectly favour the nestedmodel. The error bars on
the plots (not shown) are extremely tight in this regime, being ±
0.0001, ±0.09 and ±0.35 for SNRs of 0.0025, 0.029 and 0.055
respectively (averaged over the three criteria). This means we can be
highly confident that FL is unbiased but that AIC and BIC are biassed
towards the nested model.

The above procedure was then repeated but this time generating
data from the nested model. The results are shown in Fig. 3 (note the
broader range of SNRs plotted). In the low SNR regime, model
comparison should again be impossible. This is correctly reflected in
the FL criterion with a log Bayes factor approaching zero, but not so in
the AIC or BIC criteria.

Finally, we examined the dependence of model comparison on the
number of data points, N. We varied N over 20 values between 32 and
512 with 1000 replications at each value, using SNR=0.5 (results
were qualitatively similar for other SNRs). The results are shown in
Fig. 4 for data generated from the full model. As expected, Bayes
factors increase with the number of data points. The free energy, AIC
and AICc show very similar performance with FL being slightly better
at low N and AIC/AICc at high N. The BIC criterion is biassed towards
the nested model.

http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_SPM5.html
http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_SPM5.html


Fig. 2. Log Bayes factor of full versus nested model, Log Bf,n, versus the signal to noise ratio, SNR, when the true model is the full GLM for FL (black), AIC (blue) and BIC (red).
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Fig. 5 shows the results for data generated from the nested model.
The Bayes factors from the free energy and BIC increase with the
number of data points, whereas this is not the case for AIC and AICc.
We see that AIC and AICc are equivalent for large sample sizes. For
small sample sizes AICc pays a larger parameter penalty. This is
beneficial when the nested model is true (Fig. 5) but not when the full
model is true (Fig. 4). Overall, we do not see a good reason for
favouring AICc over AIC and so exclude it from subsequent model
comparisons.

Theory (Attias, 1999) tells us that BIC should converge to the Free
Energy for large sample sizes. However, this is only the case for flat
priors over parameters and if the variational posterior is correct. As
Fig. 3. Log Bayes factor of nested versus full model, Log Bn, f, versus the signal to noise ratio
we have linear models, the last requirement is met but the prior over
parameters is Gaussian, rather than flat. A data set comprising 512
points is about the maximum one could hope to get from a single
session of fMRI scanning (approximately 17 min with a TR of 2s). We
therefore conclude that for neuroimaging applications BIC and Free
Energy are likely to give different results.
DCM for fMRI

We now compare the model comparison criteria using DCM for
fMRI. We generate data using synthetic DCMs with known parameter
, SNR, when the true model is the nested GLM for FL (black), AIC (blue) and BIC (red).

image of Fig.�2
image of Fig.�3


Fig. 4. Log Bayes factor of full versus nested model, Log Bf,n, versus the number of data points, N, when the true model is the full GLM for FL (black), AIC (blue), BIC (red) and AICc
(green).
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values. However, to ensure the data are realistic we use parameter
values that were estimated from neuroimaging data.

This data derive from a previously published study on the cortical
dynamics of intelligible speech (Leff et al., 2008). We used data from a
single representative subject. This study applied DCM for fMRI to
investigate activity among three key multimodal brain regions: the
left posterior and anterior superior temporal sulci (subsequently
referred to as regions P and A respectively) and pars orbitalis of the
inferior frontal gyrus (region F). The aim of the study was to see how
connections among regions depended on whether the auditory input
was intelligible speech or time-reversed speech. Full details of the
experimental paradigm and imaging parameters are available in
Fig. 5. Log Bayes factor of nested versus full model, Log Bn, f, versus the number of data points
(green).
(Leff et al., 2008). The time series which were modelled in this study
comprise N=488 data points in each of three brain regions.

We focus on just two of the models considered by Leff et al. (Leff
et al., 2008). These are a ‘nested’ model, which has full intrinsic
connectivity with auditory input, uaud, entering region P, and a
modulatory connection from region P to F (this allows region F to be
differentially responsive to intelligible versus time-reversed speech).
We also define a ‘full’ model which is identical but has an additional
modulatory connection from region P to A (bAP — see below). The two
networks are shown in Fig. 6. The two models differ in only a single
connection and we chose these very similar models to make model
comparison as challenging as possible.
, N, when the true model is the nested GLM for FL (black), AIC (blue), BIC (red) and AICc
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Fig. 6. A nested (left) and full (right) DCM. The full DCM is identical to the nested DCM
except for having an additional modulatory forward connection from region P to region
A. Intrinsic connections are indicated by dotted arrows, modulatory connections by
overlaid solid arrows and inputs by solid squares with an arrow.
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Mathematically, neurodynamics evolve according to
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ð34Þ

where uaud is a train of auditory input spikes, uint indicates whether
the input is intelligible (Leff et al., 2008), aAF denotes the value of the
intrinsic connection from region F to A, bFP and bAP are the strengths
of the two modulatory connections, and cP is the strength of the input
connection. For the nested DCM we have bAP=0.

We first generated data sets from the full model over a range of
SNRs as follows. To best reflect the empirical fMRI data all parameters
other than the modulatory parameters were held constant. For each
simulated data set the modulatory parameters were first drawn from
their prior densities (see Eq. 5). Additionally, the modulatory
parameters were then constrained to be positive (by taking the
absolute value) so that modulatory effects would be facilitating.

Synthetic fMRI data was then generated by integrating the
neurodynamic and hemodynamic equations and adding observation
noise to obtain the target SNR. The SNR was defined in the same way
as for the linearmodels, but with the signal standard deviation, <σy>,
averaged over the three predicted time series (one for each brain
region). The observed fMRI data have a value of SNR=0.2. We then
Fig. 7. Log Bayes factor of full versus nested model, Log Bf,n, versus the signal to noise rat
fitted both full and nested models to each simulated data set and
estimated Bayes factors using AIC, BIC and FL.

Fig. 7 shows results for data drawn from the full model. The figure
plots the log Bayes factors (differences in log model evidence) at
various values of SNR, where each point in each curve was averaged
over 50 simulated data sets. For these DCM simulations, the averaging
was implemented using the median operator (rather than the mean)
as the results were more variable than for the GLM case. The curves in
Fig. 7 show that only the Free Energy criterion is able to correctly
identify the full model.

The above procedure was then repeated but this time generating
data from the nested model. Again, each point in each curve is the
median value over 50 simulated data sets. The results are shown in
Fig. 8 (note the broader range of SNRs plotted).

The results on data from the nestedmodel are very similar to those
for the GLM case (compare Figs. 3 and 8). The results for data from the
full model, however, are not (compare Figs. 2 and 7), as AIC and BIC
are unable to correctly identify the full model even at high SNR. In
order to find out why this is the case we examined DCMs fitted to data
at SNR=2, and examined the relative contributions to the model
evidence, as described in Decompositions section.

For this high SNR scenario we found, slightly to our surprise, that
the full DCMs were only slightly more accurate than the nested DCMs.
Unsurprisingly, this increase in accuracy was realised in region A,
which receives modulatory input in the full but not in the nested
model (see Fig. 6). However, the main quantity driving the difference
in Free Energy between full and nested DCMs was not the accuracy
but rather the complexity.

It turns out that the nested DCMs are able to produce a reasonable
data fit by using a very large value for the intrinsic connection, aAF
(from region F to A). This connection value (typically 1.5) was about 5
times bigger than the value for a full DCM (typically 0.3). This makes
sense because, in the nested model, the connection from P to F is
modulated by intelligibility, and by facilitating the intrinsic connec-
tion from F to A this ‘modulatory signal’ is passed on to region A. Since
this modulation is of an additive nature, this therefore crudely mimics
a direct modulation of the P to A connection. However, such a strong
intrinsic connection from F to A is a-priori unlikely (the prior is a zero-
mean Gaussian, with standard deviation σcross=0.5). The nested
io, SNR, when the true model is the full DCM for FL (black), AIC (blue) and BIC (red).
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Fig. 8. Log Bayes factor of nested versus full model, Log Bn, f, versus the signal to noise ratio, SNR, when the true model is the nested DCM for FL (black), AIC (blue) and BIC (red).
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models are therefore heavily penalised for having such unlikely
parameter values (being three standard deviations away from their
prior means). Only the Free Energy criterion is sensitive to such
subtleties because AIC and BIC pay the same penalty for each
parameter, regardless of magnitude.

As mentioned above, the empirical SNR for this data is SNR=0.2
which is very low. Fitting the full and nested DCMs to this data yielded
a Free Energy difference of only 0.11 (in favour of the full DCM). This
difference is negligible, and points to the difficulty of model inference
for very similar models and at low SNR (as exemplified by Figs. 7
and 8). In this regime it may be a better idea to make inferences over
families of models (Penny et al., 2010) and to look for consistent
differences over a group of subjects (Stephan et al., 2009).
Discussion

We have described a simulation study which compared the
relative merits of AIC, BIC and Free Energy model selection criteria.
Differences in performance were examined in the context of GLMs
and DCMs and we found that the Free Energy has the best model
selection ability and recommended it be used for comparison of
DCMs. Similar conclusions have been reached in earlier work
comparing Free Energy with BIC in the context of non-Gaussian
autoregressive modelling (Roberts and Penny, 2002) and Hidden
Markov Modelling (Valente and Wellekens, 2004).

The GLM simulation results showed that, at low SNR, AIC and BIC
incorrectly selected nested models when data were generated by full
models. At higher SNR, however, this bias disappeared and AIC/BIC
showed increased sensitivity. We also investigated a corrected AIC
criterion but this showed no benefit over the standard AIC measure.

The DCM simulation results showed that only the Free Energy was
able to correctly detect that data had been generated from the full
model. By decomposing the Free Energy difference into contributions
from different regions and parameters, we found that this ability was
mainly due to penalising the nestedmodel for having a very large, and
a-priori unlikely, intrinsic connection from brain region F to A.
Because AIC and BIC use the same complexity penalty for every
parameter, and one that is not matched to prior expectations, they
lack the sensitivity that is required, in this case, to infer that data was
drawn from the full model.

We emphasise that this will not always be the case, and AIC/BIC
can in general be sensitive to ‘full model’ effects in DCMs. This is
demonstrated, for example, in our previous work (Penny et al., 2004).
However, if prior information about parameter values is available
then it should be used, and can be used to good effect in the Free
Energy criterion.

It may also be argued that in the application in this paper AIC and
BIC are implicitly using prior information in that the accuracy term is
computed at themaximum posterior value. Being a posterior estimate
this is naturally constrained by the prior. To avoid this onewould have
to implement a separate Maximum Likelihood optimisation. Given
this fact, it therefore seems consistent to also use prior information
when approximating the evidence.

According to conventions in Bayesian statistics (Kass and Raftery,
1995), and as stated above, models can be considered clearly
distinguishable once the log Bayes factor exceeds three. The
simulation results for both GLMs and DCMs show smaller Bayes
factors when the true model is nested rather than full. This is
particularly pronounced for the (challengingly similar) DCMs exam-
ined in this paper for which the Free Energy only achieves a Log Bayes
Factor of three at an SNR of 10. In such a case, modellers and imaging
neuroscientists should appeal to a second Occam principle (Mackay,
2003), not the numerical one embedded in the equation for the Free
Energy, but a conceptual one that when two models cannot be clearly
distinguished one should prefer the simpler one.

In previous work (Penny et al., 2004) we have advocated the
combined use of AIC and BIC criteria for the comparison of DCMs. This
was motivated by a concern about how Free Energy model inference
depends on the chosen values of the prior means and variances (see
earlier section on priors). Specifically, the values σself, σcross and σs

implicitly set the penalty paid for intrinsic, modulatory and input
parameters (as governed by Eq. (21) via the overall prior covariance
matrix Cθ.).

This therefore motivates the future application of an Empirical
Bayes (Carlin and Louis, 2000) approach which would estimate these
variance parameters from data. This would effectively perform a
search in the continuous space of prior variances instead of the
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discrete space (e.g., nested versus full) examined in this paper. Such
an approach can be implemented within the new framework of post-
hoc model selection (Friston and Penny, 2011).
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Appendix A. Hemodynamics

In DCM, neuronal activity gives rise to fMRI activity by a dynamic
process described by an extended Balloon model (Buxton et al., 2004)
and BOLD signal model (Stephan et al., 2007) for each region. This
specifies how changes in neuronal activity give rise to changes in
blood oxygenation that are measured with fMRI.

The hemodynamic model involves a set of hemodynamic state
variables, state equations and hemodynamic parameters. For the ith
region, neuronal activity z(i) causes an increase in vasodilatory signal
si that is subject to autoregulatory feedback. Inflow fi responds in
proportion to this signal with concomitant changes in blood volume vi
and deoxyhemoglobin content qi.

ṡi = z ið Þ−κisi−γ fi−1ð Þ
˙f i = si

τi v̇i = fi−v1=αi

τi q̇i = fi
E fi;ρð Þ

ρ
−v1=αi

qi
vi

ð35Þ

Outflow is related to volume fout=v1/α through Grubb's exponent
α (Friston et al., 2003). The oxygen extraction is a function of flow

E f ;ρð Þ = 1− 1−ρð Þ1= f ð36Þ

where ρ is resting oxygen extraction fraction. The free parameters
of the model are the rate of signal decay in each region, κi, and the
transit time in each region, τi. The other parameters are fixed to
γ=α=ρ=0.32.

A.1. BOLD signal model

The Blood Oxygenation Level Dependent (BOLD) signal is then
taken to be a static nonlinear function of volume and deoxyhemoglo-
bin that comprises a volume-weighted sum of extra- and intra-
vascular signals. This is based on a simplified approach from Stephan
et al. (Stephan et al., 2007) (Eq. 12) that improves upon the earlier
model (Friston et al., 2003)

yi = V0 k1 1−qið Þ + k2 1− qi
vi

� �
+ k3 1−við Þ

� �
k1 = 4:3θ0ρTE

k2 = �r0ρTE

k3 = 1−�

ð37Þ

where V0 is resting blood volume fraction, θ0 is the frequency offset at
the outer surface of the magnetised vessel for fully deoxygenated
blood at 1.5T, TE is the echo time and r0 is the slope of the relation
between the intravascular relaxation rate and oxygen saturation
(Stephan et al., 2007). In this paper we use the standard parameter
values V0=4, r0=25, θ0=40.3 and for our fMRI imaging sequencewe
have TE=0.04.
The only free parameter of the BOLD signal model is �, the ratio of
intra- to extra-vascular signal. Together the above equations describe
a nonlinear hemodynamic process and BOLD signal model that
convert neuronal activity in the ith region, zi, to the fMRI signal, yi.

A.2. Priors

The unknown parameters are {κi,τi, �}. These are represented as

κi = 0:64 exp θκi
� �

τi = 2 exp θτi
� �

� = exp θ�ð Þ
ð38Þ

and we have Gaussian priors

p θκi
� �

= = N θκi ;0;0:135
� �

p θτi
� �

= = N θτi ;0;0:135
� �

p �ð Þ = = N �;0;0:135ð Þ
ð39Þ

where h={θκi
, θτi

, �} are the hemodynamic parameters to be
estimated.

Appendix B. Laplace approximation

In what follows we have simplified notation by dropping the
dependence on model m. The negative variational free energy
(henceforth ‘Free Energy’) is defined as

F = ∫∫ q θ jyð Þq λ jyð Þ log p y; θ;λð Þ
q θ jyð Þq λ jyð Þ
� �

dθdλ ð40Þ

where

p y; θ;λð Þ = p y jθ;λð Þp θð Þp λð Þ ð41Þ

We can rewrite this as

F = I + H θð Þ + H λð Þ ð42Þ

where

I = ∫∫ q θ jyð Þq λ jyð ÞU θ;λð Þdθdλ ð43Þ

and H(x) is the (differential) entropy of x and

U θ;λð Þ = logp y; θ;λð Þ ð44Þ

For a Gaussian density p(x)=N(x ;m,S) the entropy is

H xð Þ = 1
2

k log 2πe+ log jS jð Þ ð45Þ

where k=dim(S). Hence

F = I+
1
2

p log 2πe + log jSθ jð Þ

+
1
2

h log 2πe+ log jSλ jð Þ
ð46Þ

where p is the number of parameters and h is the number of
hyperparameters. The Variational Laplace approximation to the Free
Energy is then given by

FL = IL+
1
2

p log 2πe+ log jSθ jð Þ

+
1
2

h log 2πe+ log jSλ jð Þ
ð47Þ
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where the integral I has been replaced by

IL = ∫∫ q θ jyð Þq λ jyð ÞUL θ;λð Þdθdλ ð48Þ

and the function UL(θ,λ) is given by a second order Taylor series
expansion around the approximate (variational) posterior means

UL θ;λð Þ = U mθ;mλð Þ + 1
2

θ−mθð ÞTHθ θ−mθð Þ

+
1
2

λ−mλð ÞTHλ λ−mλð Þ
ð49Þ

where the curvatures

Hθ i; jð Þ = d2U θ;λð Þ
dθidθj

Hλ i; jð Þ = d2U θ;λð Þ
dλidλj

ð50Þ

are evaluated at the approximate (variational) posterior means λ=mλ

and θ=mθ. Note that the first order (gradient) term in Eq. (49) is zero
because we are at a maximum. This gives

IL = U mθ;mλð Þ+ 1
2
Tr SθHθð Þ+ 1

2
Tr SλHλð Þ ð51Þ

During VL optimisation (Friston et al., 2007a) the posterior
covariances are set to the negative inverse curvatures

Sθ = −H−1
θ

Sλ = −H−1
λ

ð52Þ

Hence

IL = U mθ;mλð Þ− p
2
−h

2
ð53Þ

Substituting this into Eq. (47) gives

FL = U mθ;mλð Þ + p
2
log 2π +

1
2
log jSθ j

+
p
2
log 2π +

1
2
log jSλ j

ð54Þ

This corresponds to equation 8 in (Friston et al., 2007a). We note
that

U mθ;mλð Þ = log p y jmθ;mλð Þp mθð Þp mλð Þ

= −1
2
eTyC

−1
y ey−

1
2
log jCy j−

N
2
log2π

−1
2
eTθC

−1
θ eθ−

1
2
log jCθ j−

p
2
log2π

−1
2
eTλC

−1
λ eλ−

1
2
log jCλ j−

h
2
log2π

ð55Þ

where the error terms are

ey = y−g mθð Þ
eθ = mθ−μθ
eλ = mλ−μλ

ð56Þ
Finally, we have

FL = −1
2
eTyC

−1
y ey−

1
2
log jCy j−

N
2
log2π

−1
2
eTθC

−1
θ eθ−

1
2
log jCθ j+

1
2
log jSθ j

−1
2
eTλC

−1
λ eλ−

1
2
log jCλ j+

1
2
log jSλ j

ð57Þ

This corresponds to equation 21 in (Friston et al., 2007a).
The quantity UL(θ,λ) is equal to U(θ,λ) if the latter is a quadratic

function. This is the case for linear Gaussian models. For all other
models, where the quadratic relationship does not hold exactly,UL can
be bigger or smaller than U. For this reason FL can be bigger or smaller
than F, so FL is not a lower bound on the logmodel evidence (Wipf and
Nagarajan, 2009).

Appendix C. Proportion of variance explained

The proportion of variance explained by a model can be written as

R2 =
σ2
y

σ2
y +σ2

e
ð58Þ

where σy
2 is the variance of the signal and σe

2 is the variance of the
noise. The left hand side is written with the symbol R2 because R is
also equal to the correlation coefficient between the model pre-
dictions and data (Kleinbaum et al., 1988). We can divide the
numerator and denominator by σy

2 to give

R2 =
1

1+ σ2
e

σ2
y

ð59Þ

Plugging in our definition for SNR gives

R2 =
1

1+
1

SNR

� �2 ð60Þ

Thus, SNRs of 0.2, 1.3 and 2 correspond to R2's of 0.04, 0.63, and
0.80.
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