
The Journal of Logic and Algebraic Programming 78 (2009) 74–97

Contents lists available at ScienceDirect

The Journal of Logic and Algebraic Programming

j ourna l homepage: www.e lsev ie r .com/ loca te / j lap

An algebra of hybrid systems�

Peter Höfner, Bernhard Möller *

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany

A R T I C L E I N F O A B S T R A C T

Article history:

Available online 18 October 2008

Keywords:

Hybrid system

Semiring

Quantale

Equational reasoning

Hybrid systems are heterogeneous systems characterised by the interaction of discrete and

continuous dynamics.We present a trajectory-based algebraic model for describing hybrid

systems; the trajectories used are closely related to streams. The algebra is based on left

quantales and left semirings and provides a new application for these algebraic structures.

We show that hybrid automata, which are probably the standard tool for describing hybrid

systems, can conveniently be embedded into our algebra. Moreover we point out some

important advantages of the algebraic approach. In particular, we show how to handle

Zeno effects, which are excluded by most other authors. The development of the theory is

illustrated by a running example and a larger case study.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Hybrid systems are heterogeneous systems characterised by the interaction of discrete and continuous dynamics and

hence a particular kind of reactive systems. Due to their widespread applications there was a rapid growth of interest in such

systems during the last decade. Hybrid systems are an effective tool for modelling, design and analysis of a large number

of technical systems such as traffic controls [46,18,22], automated manufacturing [17] and much more [45]; but they are

also applicable in fields like chemistry and biology [37]. The most elementary and classical kind of hybrid system usually

consists of a controlling subsystem, the controller for short, made up of digital components, e.g., hardware, and a controlled

subsystem. The controller has discrete behaviour and the controlled subsystem shows continuous behaviour. In general, the

behaviour of the controller depends on its current state and the behaviour of the controlled system and cannot be considered

in isolation. Often, more complicated hybrid systems arise by composing smaller systems.

Nearly from the beginning of their formalisation, hybrid systems have been modelled as hybrid automata [23]. These

automata have, next to nodes (corresponding to states) and transition edges, variables and differential equations. These

additional features reflect the behaviour of the environment in each node. In fact, hybrid automata can be seen as a

generalisation of timed automata [5]. The study of hybrid systems in computer science is still largely focused on hybrid

automata (e.g. [3]). There are only few other approaches (e.g. [11]; see also Section 7).

On the other hand, over the last few decades, variants of Kleene algebras have turned out to be fundamental first-order

structures in computer science. They have found widespread applications ranging from program analysis and semantics

(e.g. [21] and its references) to combinatorial optimisation and concurrency control [14]. They offer a concise syntax for

modelling actions, programs or state transitions under non-deterministic choice, sequential composition and iteration. Since

the equational theory of Kleene algebra is that of regular expressions [16] they are strongly connected to finite automata.

Additionally, there exist variants to cover infinite behaviour as described, e.g., with Büchi automata [12]. Moreover it has

recently been shown that Kleene algebras aswell as their variants provide a reasonable base for automated deduction [30,31].

� Significantly extended and revised version of [28].
* Corresponding author.

E-mail addresses: hoefner@informatik.uni-augsburg.de (P. Höfner), bernhard.moeller@informatik.uni-augsburg.de (B. Möller).

1567-8326/$ - see front matter © 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2008.08.005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81148679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/15678326
http://www.elsevier.com/locate/jlap

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 75

Fig. 1. Thermostat automaton.

In this paper we combine the concept of hybrid systems and the concept of Kleene algebra and propose an Algebra of

Hybrid Systems. This algebra, which provides also a calculus of hybrid systems, allows the characterisation and description

of hybrid systems in an abstract way. In particular, the algebra lifts results from real time analysis to equations about hybrid

systemsandprovides equational axioms forhybrid systems that enable equational reasoning.Moreover, theproposedalgebra

yields amore general understanding of hybrid systems. Although the axioms and rules are derived fromamodel, the outcome

is mostly purely algebraic and can therefore be applied to all other areas where such algebras occur.

Our concrete algebraicmodel for hybrid systems uses trajectories as elements, with discrete trajectories being isomorphic

to streams. Each trajectory corresponds to a finite or infinite prefix of one single run of a hybrid automaton. Therefore it is

straightforward to give a faithful mapping from the formalism of hybrid automata into our setting. Furthermore, unlikemost

other approaches, the algebra provides a simple and concise way of modelling Zeno effects.

The paper is structured as follows. In Section 2 we motivate our algebra by a concrete hybrid system that models a

temperature control. This example is used as a running example through the whole paper to illustrate and motivate the

theory. In Section 3 we then develop our concrete algebraic model preparing the abstraction to the setting of idempotent

left semirings. We also show how Zeno effects can be integrated into the algebraic model. In Section 4 we give a constructive

schema to convert hybrid automata into algebraic expressions. Furthermore we present an algebraic definition of several

composition operators for hybrid automata and their algebraic counterparts. In Section 5 we discuss safety and liveness

properties of hybrid systems. In more detail, we show how time restrictions and range assertions can be handled by certain

algebraic versions of temporal operators related to ones defined by von Karger [50] and Sintzoff [48]. These operators enjoy

many useful and new properties. To round off the paper, in Section 6, we apply our algebra of hybrid systems to a more

complicated example. Section 7 presents a comparison with related work which is followed by conclusion and outlook in

Section 8.

2. Introductory example and basic definitions

We motivate our formal definitions by an introductory example. Moreover, we recapitulate the standard definitions of

hybrid automata, transitions, trajectories and runs.

Example 2.1 (Temperature control). The hybrid automaton of Fig. 1, adapted from [23], models a thermostat. The variable

x represents the temperature. Initially, it is equal to 20 degrees and the heater is off (control mode Off). The temperature

falls according to the flow condition ẋ = −0.1x. If the jump condition x < 19 is reached, the heater may start. The invariant

condition x ≥ 18 ensures that the heater will start at the latest when the temperature is equal to 18 degrees. In control mode

On, the temperature rises according to the flow condition ẋ = 5 − 0.1x. If the temperature reaches the second jump condition,

the heater is switched off and the procedure starts again (with the reached temperature as the new initial value).

In general, a hybrid automaton H [4,20,23] consists of the following components.

Variables. A finite set X = {x1, . . . , xn} of real-valued variables. The number n is called the dimension of H. We write Ẋ

for the set {ẋ1, . . . , ẋn} of dotted variables, which represent the timewise first derivatives of the xi during continuous

change.Wewrite X ′ for the set {x′
1
, . . . , x′

n} of primed variables, which represent the values of the xi immediately after

a discrete change.

Control graph. A finite directed multigraph (M, E). The vertices in M are called (control) modes. The edges in E are

called (control) switches.

Invariant and flow conditions. The vertex labelling functions inv and flow. They assign to each control mode v ∈ M

an invariant inv(v), a predicatewith free variables from X , and a flow condition flow(v), a predicatewith free variables

from X ∪ Ẋ .

Initial condition. The vertex labelling function init assigns to at least one control mode v ∈ M an initial condition

init(v), a predicate with free variables from X .

Jump conditions. An edge labelling function jump. It assigns to each control switch e ∈ E a predicate jump(e) with

free variables from X ∪ X ′.
If a control mode does not contain a differential equation for the variable xi then we assume that this variable is constant,

i.e., that themode implicitly contains the equation ẋi = 0. An edge that leads frommode v tomodew is also called a transition

tv,w . The automaton can perform that transition if the end values X of mode v and the starting values X ′ of mode w satisfy

76 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

Fig. 2. A single trajectory of the temperature control.

the predicate jump(tv,w). A transition is called a proper jump if it changes at least one value x ∈ X to a new value x′ ∈ X ′ with

x �= x′. Note that Example 2.1 admits no proper jumps. In Section 3.3 we will extend this example by a proper jump.

With each hybrid automaton one can associate traces, runs and trajectories. Since we will use these concepts to define

our algebra of hybrid systems, we recapitulate them.

A transition trace [51] of a hybrid automaton is a (finite or infinite) sequence of transitions tvk ,vk+1
which the hybrid

automaton can perform as time passes. The (mode) trace of a hybrid system corresponding to a transition trace is the

sequence of modes through which the transition trace passes. Last we define a run or trajectory (cf. e.g. [48]) corresponding

to a trace (and a transition trace) as a function from time to n-tuples of values for all n variables. In the next sectionwe define

trajectories over a generalised time domain in more detail.

Example 2.2 (Thermostat continued). Formally, the hybrid automaton for the temperature control of Fig. 1 is defined by the

set of variables X = {x}, the controlmodesM = {Off ,On}, the control switches E = {(Off ,On), (On,Off)}. The invariant function
inv(v) assigns x ≥ 18 to mode Off and x ≤ 22 to On. The flow condition flow(v) is ẋ = −0.1x inside mode Off and ẋ = 5 − 0.1x

inside On. An initial condition exists only for the mode Off and sets the value x = 20. Finally the jump conditions are defined

by x < 19 for the edge (Off ,On) and x > 21 for (On,Off).

One possible trajectory is illustrated in Fig. 2.

3. Trajectory-based model

3.1. Basic algebra of hybrid systems

As already mentioned, trajectories reflect the variation of the values of the variables over time. Let V be a set of values

and D a set of durations (e.g. N, Q≥0, R≥0, . . .). We assume a cancellative addition + on D and an element 0 ∈ D such that

(D,+, 0) is a commutative monoid. Furthermore, we assume that the relation d1 ≤ d2 ⇔df ∃d . d1 + d = d2 is a linear order

on D. Then 0 is the least element and + is isotone w.r.t. ≤. Moreover, 0 is indivisible, i.e., d1 + d2 = 0 ⇔ d1 = d2 = 0. D may

include the special value ∞. If so, ∞ is required to be an annihilator w.r.t. + and hence is the greatest element of D (and

cancellativity of + is restricted to elements in D − {∞}). For d ∈ D we define the interval intv d of admissible times as

intv d=df

{[0, d] if d �= ∞
[0, d[otherwise.

A trajectory τ is a pair (d, g), where d ∈ D and g : intv d → V . Then d is the duration of the trajectory and the image of intv d
under g is its range ran (d, g).

A special role is played by zero-length trajectories of the form x=df (0, g) with x ∈ V and g(0) =df x; they represent single

values of the system.

We define composition of trajectories (d1, g1) and (d2, g2) as

(d1, g1) · (d2, g2) =df

⎧⎨
⎩

(d1 + d2, g) if d1 �= ∞ ∧ g1(d1) = g2(0)

(d1, g1) if d1 = ∞
undefined otherwise

with g(t) = g1(t) for all t ∈ [0, d1] and g(t + d1) = g2(t) for all t ∈ intv d2. This iswell definedby cancellativity of+ ondurations

other than ∞.

Fig. 3 illustrates the main idea for composing trajectories. Sometimes the condition g1(d1) = g2(0) for composing trajec-

tories is too restrictive. In Section 3.3 we present a possibility to relax the condition and allow jumps at the composition

point for the function describing the timewise behaviour.

For a zero-length trajectory v we have v · (d, g) = (d, g) if v = g(0); otherwise the composition is undefined. Likewise,

(d, g) · v = (d, g) if v = g(d) or d = ∞.

Aprocess is a setof trajectories, consistingofpossiblebehavioursof ahybrid system.Note thatwedonotputany restrictions

(such as prefix-closure) on a process. The set of all processes is denoted by PRO.

The greatest process, namely the set of all trajectories, is denoted by TRA.

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 77

Fig. 3. Composition of two finite trajectories.

For a discrete infinite set of durations D, e.g. D = N, trajectories are isomorphic to nonempty finite or infinite words

over the value set V . Moreover if V consists of values of computations, then the elements of PRO can be viewed as sets of

computation streams (e.g. [13]).

The purely finite and purely infinite parts of a process A are defined as

infA=df {(d, g) | (d, g) ∈ A, d = ∞}, finA=df A − infA.

Composition is lifted to processes A,B as follows:

A · B=df infA∪ {a · b | a ∈ finA, b ∈ B, a · b defined} (1)

The set I of all zero-length trajectories is theneutral element for this operation. A restricted formof composition, the chopA�B,

yields only trajectories that, after a finite trajectory of A, actually enter the second process. It is defined as A�B=df (finA) · B,
which implies A · B = (infA) ∪A�B.

Sets of zero-length trajectories, corresponding to sets of values, can be used to restrict processes. Let R be such a set and

A be an arbitrary process. Then R · A consists of those trajectories of A whose initial value lies in R, while A · R is the set of

trajectories of Awhose final value, if any, is in R.

Example 3.1 (Thermostat continued). To use trajectories for our thermostat example, we first set V = D = R. Now we define

two processes, one for each control mode:

AOff =df {(d, x) | d ∈ D, ẋ = −0.1x},
AOn =df {(d, x) | d ∈ D, ẋ = 5 − 0.1x}.

AOff models all possible behaviours when the heater is off, whereas AOn describes the thermostat when the heater is on.

The (singleton) set of possible initial values is given by R20 =df {20}. Hence, we can formalise the starting sequence of the

thermostat described above as

R20 · AOff · AOn.

Note that so farwehavenotmodelled jumpand invariant conditions. For thisweuse sets of zero-length trajectoriesdescribing

sets of values and restrict the ranges of trajectories accordingly. Generally, we represent an interval of values as a set of

zero-length trajectories by setting

R[l,u] =df {x | x ∈ [l,u]}.
Then the sequence “Off–jump–On” equals AOff · R[18,19] · AOn. This eliminates from the full composition AOff · AOn all trajec-

tories in which the temperature at the joining point is outside the interval [18,19].

Since we want to describe the whole behaviour of the thermostat, we need the possibility for iteration. Let * and ω be

operators for finite and infinite iteration (we will show their existence in Section 3.4). Then the whole system is described

by

R20 · T*or R20 · Tω ,

where T =df A
Off · R[18,19] · AOn · R[21,22].

In such a way, any hybrid automaton can be replaced by a corresponding regular-like expression. This is shown in Section

4.1. Before that, we provide in Section 3.3 a method for modelling proper jumps by introducing an additional compatibility

relation.

3.2. Algebraic structure

But first let us have a closer look at the algebraic structure of the basic algebra of hybrid systems.

A left semiring is a quintuple (S,+, 0, ·, 1) such that (S,+, 0) is a commutative monoid and (S, ·, 1) is a monoid such that · is
left-distributive over+ and left-strict, i.e., 0 · a = 0. The left semiring is idempotent if+ is idempotent and · is right-isotone, i.e.,
a + a = a and b ≤ c⇒a · b ≤ a · c, where the natural order ≤ on S is given by a ≤ b ⇔df a + b = b. Left-isotony of · follows from

its left-distributivity.Moreover, 0 is the≤-least element. Aweak semiring is a left semiring inwhich · is also right-distributive.

A semiring is a weak semiring in which composition is also right-strict; when we want to emphasise this, we also speak of a

full semiring.

78 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

Fig. 4. Extended thermostat automaton.

The natural order induces an upper semilattice in which a + b is the supremum of a and b and 0 is the least element. A

left semiring is Boolean if this semilattice is even a Boolean algebra with complement a and infimum a � b=df a + b. In this

case we have the shunting rule

a � b ≤ c ⇔ a ≤ b + c. (2)

An idempotent left/weak semiring S is called a left/weak quantale if S is a complete lattice under the natural order and · is
universally disjunctive in its left argument. Following [16], one might also call a left quantale a left standard Kleene algebra.

An important Boolean semiring (that is even a weak quantale with universally right-disjunctive composition) is REL, the

algebra of binary relations over a set under relational composition.

Checking all the axioms for the case of processes, we get

Lemma 3.2

(1) The processes under union as addition and composition as multiplication form a Boolean weak quantale PRO=df (P(TRA),∪,
∅, ·, I).

(2) Additionally, · is positively disjunctive in its right argument, and chop inherits the disjunctivity properties from · and is

associative, too.

3.3. Adding proper jumps

The constraint g1(d1) = g2(0) for composability of trajectories (d1, g1) and (d2, g2) is very restrictive in a number of

situations.

Example 3.3 (Thermostat continued). We extend Example 2.1 by an additional switch sw that activates or deactivates the

whole temperature control. Therefore this example contains proper jumps (in the behaviour of the switch) as well as “non-

proper” jumps (in the change of temperature). The values sw = 1 and sw = 0 represent the situations where the control is

activated and deactivated, respectively. The whole system is illustrated in Fig. 4.

The system can always be deactivated by setting the switch to 0 (independent of the current temperature). When

reactivating the system there is a choice between the modes Off and On. It is a genuine non-deterministic choice if the

temperature is between 19 and 21 degrees. Remember that all modes implicitly contain the equation ˙sw = 0.

To relax the composition of trajectories we introduce a compatibility relation � ⊆ V × V that describes the behaviour at

the point of composition. It allows certain proper jumps at the connection point between two trajectories (d1, g1) and (d2, g2).

This is meaningful, since jumps within trajectories are already allowed by our definition. Note that we do not postulate any

condition for �. But in most cases � will be at least reflexive to accommodate the case of equal values g1(d1) and g2(0). If

one wants to enforce jumps at every composition point, � has to be irreflexive (like in our example).

To model a more liberal form of composition that takes � into account, we extend a finite trajectory (d, g) at the right

end, i.e., at time d, using the compatibility relation. To this end we express that, up to �, we do not care about the exact final

value g(d). Therefore we inflate the original trajectory to a process that before time d agrees with the original trajectory, but

shows all values admitted by � at time d:

(d, g)� =df {(d, ĝ) | ĝ(x) = g(x), x ∈ [0, d[, g(d) � ĝ(d)}.
Since for an infinite trajectory (d, g) a right composition partner does not matter anyway, we set (d, g)� =df {(d, g)} if d = ∞.

The composition of (d1, g1) and (d2, g2) considering the compatibility relation � is then the composition

(d1, g1)� · {(d2, g2)}

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 79

over PRO. The extension operation is lifted pointwise to processes. We have decided not to incorporate the compatibility

relation into the definition of trajectory composition, since it would be technically cumbersome to do so.

Symmetrically, we can also employ the compatibility relation at the left end or even at both ends of a trajectory.

Example 3.4 (Thermostat continued). In our example the set V of values is given by R × {0, 1}, where the first component of

a pair represents the temperature and the second one the value of the switch. We define the compatibility relation as

� =df {((x, 0), (x, 1)) | x ∈ R} ∪ {((x, 1), (x, 0)) | x ∈ R}.
The set of trajectories that start in the mode Off and then go to Inactive is described by

AOff� · AIn,
where AOff and AIn describe the behaviours inside the modes Off and Inactive. In particular, AOff =df {(d, g) | d ∈ D, g(t) =
(x(t), 1), ẋ = −0.1x} and AIn can be constructed in a similar way.

3.4. Finite and infinite iteration

Now we turn to an algebraic characterisation of iteration. A left Kleene algebra [42] is a structure (S, *) consisting of an

idempotent semiring S and an operation * for iterating an element an arbitrary but finite number of times. Such an operation

has to satisfy the left unfold and induction axioms

1 + a · a* ≤ a*, b + a · c ≤ c ⇒ a*· b ≤ c. (3)

To express infinite iterationwe axiomatise an ω operator over a left Kleene algebra. A left omega algebra [15,42] is a pair (S, ω)

such that S is a left Kleene algebra and ω satisfies the unfold and coinduction axioms

aω = a · aω , c ≤ a · c + b ⇒ c ≤ aω + a*· b. (4)

Two consequences of these axioms are that each omega algebra has the greatest element � =df 1
ω and that aω = aω · � (see

[42]).

Concerning the existence of these operationswe canuse the fact that PRO is a left quantale, hence, in particular, a complete

lattice, and the Knaster/Tarski fixpoint theorem (e.g. [19]). We denote by μx . f (x) and νx . f (x) the least and greatest fixpoints

of an isotone function f from a complete lattice to itself.

Lemma 3.5

(1) Every left quantale can be extended to a left Kleene algebra by defining a*=df μx . a · x + 1.

(2) If the left quantale isweak and a completely distributive lattice then it can be extended to a leftω algebra by setting aω =df νx . a ·
x. In this case,

νx . a · x + b = aω + a*· b.

For the proof see the Appendix.

Since, by Lemma 3.2, PRO forms a weak quantale, we have finite iteration * and infinite iteration ω with all their laws

available for processes.

3.5. Purely finite and purely infinite elements

In Section 3.1 we already introduced the purely finite and purely infinite parts of a process. A general algebraic treatment

of these notions can be performed using their behaviour under composition. Definition (1) entails, for process A ∈ PRO, that

A · ∅ = infA. Hence a process is purely infinite, i.e., consists of infinite trajectories only, if A = infA = A · ∅. Dually, a process B

is purely finite, i.e., consists of finite trajectories only, if its purely infinite part is trivial, that is, if inf B = ∅.
Hence, for an idempotent left semiring S, we define the purely infinite part of a ∈ S as inf a=df a · 0 and call a purely infinite

if a · 0 = a. This property is equivalent to a being a left zero, i.e., to ∀b : a · b = a. Often there exists a largest purely infinite

element N characterised by a ≤ N ⇔ a · 0 = a. In PRO, N = {(d, g) : d = ∞} is the set of all trajectories of infinite length. The

definition of N implies, for all a,

N · a ≤ N and a · N ≤ N. (5)

Dually, we call an element a purely finite if inf a = a · 0 = 0, i.e., if its purely infinite part is trivial. In many semirings there

exists a largest purely finite element F characterised by a ≤ F ⇔ a · 0 = 0. In PRO, F = {(d, g) : d < ∞} contains all trajectories
of finite length. The definition of F implies

F · F = F. (6)

80 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

In Boolean left quantales N and F always exist and satisfy

N = � · 0, F = N,

where� =df 0 denotes the greatest element. Moreover, in this case every element can be split into its purely finite and purely

infinite parts: a = fin a + inf a, where fin a = a � F and inf a = a � N. An idempotent left semiring with this property is called

separated; for further details see [42]. The above equations imply

(inf a) � b = inf (a � b), (fin a) � b = fin (a � b). (7)

The purely finite and purely infinite parts of a composition satisfy

a · b = inf a + fin a · b, (8)

inf (a · b) = inf a + fin a · inf b, (9)

fin (a · b) = fin (fin a · b) ≥ fin a · fin b. (10)

If S is weak, the latter inequation strengthens to an equality.

We now state further general laws concerning purely finite and purely infinite parts.

Lemma 3.6. Let S be a Boolean left quantale and a, b, c, d ∈ S.

(1) a ≤ F ⇔ a = fin a ⇔ inf a = 0 and

a ≤ N ⇔ a = inf a ⇔ fin a = 0.

(2) For a, b ≤ F and c, d ≤ N we have a + c ≤ b + d ⇔ a ≤ b ∧ c ≤ d.

(3) aω = (fin a)* · inf a + (fin a)ω ,

(4) inf aω = (fin a)* · inf a + inf ((fin a)ω),

(5) fin aω = (fin a)ω � F ≤ (fin a)ω.

The proof is given in the Appendix.

Part (1) gives equivalent characterisations of purely finite and purely infinite elements which are calculationally useful in

various circumstances. Part (2)means that a sumof a purely finite and a purely infinite element can uniquely be decomposed

again. If a is a process, Part (3) says that infinite iteration of trajectories from a can take two forms: it may proceed a while

with finite trajectories, but then add an infinite trajectory which prohibits further iteration — or it keeps iterating finite

trajectories forever.

Parts (4) and (5) follow from that using Part (2). Part (5) fits well with intuition, since in PRO it means that Zeno effects

(infinite iterations that take finite duration) can only occur when some trajectories in a process a are finite. Part (4) says that

infinite behaviour results from entering an infinite part after a finite iteration of finite parts of the iterated process or by

iterating finite parts of that process that all have long enough durations that their infinite iteration takes infinite duration.

In the next section we will look at Zeno effects in detail.

3.6. Zeno effects

Zeno of Elea’s famous paradox of Achilles and the tortoise is well known. However, with few exceptions (e.g. [7,34])

authors do not treat Zeno effects within hybrid systems in detail, even if they appear in their theoretical models. In this

section we present a possible way of handling Zeno effects in PRO and characterise the Zeno and Zeno-free parts of hybrid

systems.

Roughly spoken, a Zeno effect occurs if an infinite iteration does not take infinite duration.

To speak about such phenomena we can use the purely finite and purely infinite parts of processes defined in Section 3.5.

Furthermore, it is useful to determine Aω for a process A ∈ PRO.

For a purely infinite process A it is easy to see that Aω = A. For an arbitrary process infinite iteration can be determined

by the general decomposition law aω = (fin a)* · inf a + (fin a)ω (see Lemma 3.6 (3)). Therefore it suffices to determine Aω for

purely finite processes A.

We define the prefix relation � between trajectories τ1 = (d1, g1) and τ2 = (d2, g2) by

τ1 � τ2 ⇔df d1 ≤ d2 ∧ g2|intv d1 = g1.

The first conjunct on the right hand side is equivalent to intv d1 ⊆ intv d2; the stroke |X means function restriction to subset

X . It is easy to see that � is a partial order with τ1 � τ2 ⇔ ∃τ3 : τ1 · τ3 = τ2. Moreover, if τ1 � τ2 then τ3 · τ1 � τ3 · τ2. Infinite

trajectories are maximal w.r.t. this order.

To describe infinite concatenations of trajectories fromapurely finite processA, let ISEQ (A) be the set of infinite sequences

T = (τn)n∈N of trajectories τn ∈ A such that all iterated compositionsπn =df

∏
m<n τm(n ∈ N)aredefined. By theabove remarks

these satisfy πn � πn+1 and hence form an ascending chain w.r.t. � , a set of longer and longer trajectories that agree in their

initial parts. Infinite iteration then results by passing to some sort of limit for such a chain. We reflect this idea by writing

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 81

∏
T � τ , for arbitrary trajectory τ ∈ TRA and sequence T ∈ ISEQ (A), if for all n ∈ N we have πn � τ with πn defined as above.

This means that τ has the “infinite composition” of the τn as a prefix.

Theorem 3.7. Let A be a purely finite process and define the function H : PRO → PRO by H(X) =df A · X.

(1) Let X be expanded by H, i.e., assume X ⊆ H(X). Then for every ξ ∈ X there is sequence T ∈ ISEQ (A) with
∏

T � ξ.

(2) Aω = {τ ∈ TRA | ∃T ∈ ISEQ (A) : ∏
T � τ }.

The proof can be found in the Appendix.

The fact that Aω contains arbitrary extensions of infinite A-iterations also explains why the property Aω = Aω · � (see

Section3.4) is not completelyunnatural: for arbitraryB ∈ PRO theprocessB · � is the extension closureofB. HenceAω = Aω · �
reflects the fact that, operationally, after a Zeno gap the behaviour doesn’t matter, since the gap cannot be “crossed” anyway.

Now, generalising from PRO to a weak omega algebra S, we call an element a ∈ S divergent or Zeno-free, if aω ≤ N. An

element a is called Zeno if it is not Zeno-free and it is called convergent if aω ≤ F. The least element 0 is the only element

which is convergent, divergent and Zeno-free, since 0ω = 0. It is straightforward to see that in full semirings (where 0 is also

a right annihilator) every element is convergent.

However,Aω isnot completelyadequate for reasoningaboutandexclusionofZenoeffects. Formanypurposes its extension-

closedness gets in the way, since it yields a too loose description of infinite iteration. For that reason we introduce another

iteration operator † which narrows down the set of possible behaviours. However, in contrast to ω, its definition works only

for special time domains.

Let again A be purely finite and assume that the time domain D is complete, i.e., contains suprema for all its subsets. For

a sequence T ∈ ISEQ (A) with iterated compositions πn = (dn, gn) as above set dT =df sup{dn |n ∈ N}.
By a construction similar to the one used in Section 3.3 for the treatment of proper jumps, we define the process PT by

(dT, g) ∈ PT ⇔df g : intv dT → V ,

g(t) = gn(t) if t ≤ dn,

g(dT) ∈ V arbitrary if dT > dn for all n ∈ N and dT �= ∞.

For dT = ∞ the iteration does not show a Zeno effect and PT is a singleton process consisting just of one infinite trajectory.

For dT �= ∞, two cases arise. First, we may have dT = max{dn |n ∈ N}. This can only happen when the sequence T becomes

stationary with infinitely many trajectories of length zero and identical value v at the end (if there were differing ones not all

iterated compositions πn would be defined). This means a special kind of Zeno behaviour, viz. “stepping on the spot” forever.

Therefore in this case the value g(dT) agrees with v and PT is again a singleton process. This entails the property

I† = I (11)

for the multiplicative identity I of PRO, whereas Iω = � = TRA, so that the operator † indeed omits trailing behaviour. The

second case, where dτ �= max{dn |n ∈ N}, i.e., dT > dn for all n ∈ N, means “proper” Zeno behaviour where the trajectories in

T become shorter and shorter while their iterated compositions become longer and longer without ever reaching the “limit

time” dT. To form proper trajectories out of the iterated compositions we add arbitrary values at dT but nothing at times

properly later than dT. Now we set

A† =df

⋃
T∈ISEQ (A)

PT.

With this construct, Zeno effects can be excluded by considering only the properly infinite trajectories in infA† = A† � N. This

could not be achieved reasonably with Aω , since that includes trajectories which are infinite because they add an arbitrary

infinite behaviour to a Zeno initial part. This is made precise by Part (1) of the following result.

Theorem 3.8. Let H be as in Theorem 3.7.

(1) A† is a fixpoint of H.

(2) Let X be expanded by H, i.e., assume X ⊆ H(X). Then every ξ ∈ X has a prefix in A†.

(3) Aω = A† · �.

Again, the proof can be found in the Appendix.

An immediate consequence of Part (3) and Eq. (10) is that A† and Aω coincide iff A is Zeno-free.

Example 3.9 (Thermostat continued). We can now describe all non-Zeno behaviours as

R20 · T† � N,

where T equals again AOff · R[18,19] · AOn · R[21,22].

Example 3.10. To give another example, we define a scaling function scn : TRA → TRAwith scn(d, f) =df (dn , g), where n ∈ N
and g(x) = f (x · n). Then, given a trajectory T1 = (d1, f1) with f1(0) = f1(d), we define a process

82 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

P = {scn(T1) |n ∈ N}.
It is easy to see, that Pω and P† contain an infinite number of finite trajectories as well as an infinite number of infinite

trajectories. Therefore, P is neither convergent nor divergent, but Zeno. P† � F (the Zeno-part of P†) is closely related to the

paradox of Achilles and the tortoise, because P contains trajectories with arbitrarily short durations.

4. Embedding hybrid automata

4.1. The basic construction

We now show, in a generic way, how to model hybrid automata (see Section 2) using these concepts. Consider a hybrid

automaton of dimension nwith control graph (M, E). Then as value set we choose V =df M × Rn
.

In a given mode v ∈ M the behaviour of the automaton in the interval [0, d] coincides with a trajectory (d, g) such that

g(t) = (v, f (t)) for some function f : [0, d] → Rn
that satisfies the invariant and flow conditions of v. This corresponds to

Henzinger’s relation (v, f (0))
d→ (v, f (d)) [23].

The compatibility relation is given by

(v, x) � (w, y) ⇔ (v = w∧ x = y) ∨ ((v,w) ∈ E∧ jump(v,w)(x, y)),

where the first part (v = w∧ x = y) deals with compositions that do not leave a control mode and the second part models

the event belonging to the edge (v,w) (if the edge is present).

The generic construction of an algebraic expression from a given automaton now proceeds by the following steps:

• For each control mode v of the automaton we define a process

Pv =df {(d, g) | d ∈ D, ∀t ∈ intv d : g(t) = (v, f (t)),

f : intv d → Rn
, ∀t ∈ intv d : flow(v)(f (t), ḟ (t)),

∀x ∈ ran f : inv(v)(x)}.
• For each Pv determine Pv� with � as above.

• In [35] Kleene has shown how to construct a regular expression from a given automaton. Similarly, this construction

can be carried out with hybrid automata using the above processes Pv�. While in the original construction the star

for finite iteration is used, here one has to decide, whenever iteration occurs, whether it should be finite or infinite

iteration (*or ω).

• Note, that hybrid automata can include Zeno effects. Therefore such effects might also occur in the corresponding

algebraic expressions. To avoid such behaviour one can replace ω by † and apply a meet operation with the set of all

infinite trajectories at the outermost level as in Example 3.9.

Often, it is not necessary to store the controlmode in the value set, i.e., V can be chosen asRn
instead ofM × Rn

. Examples

of this are given in Example 3.4 and Section 6.

4.2. Composition of hybrid automata

More complicated hybrid systems arise often by composing smaller systems. The product of two finite automata as

well as the parallel composition are well known. Similar to these constructions Henzinger defines a product and a parallel

composition for hybrid automata [23]. In this section we discuss their algebraic counterparts.

Product. Following Section 4.1 and the definition of product of hybrid automata [23] we define for two hybrid automata

H1,H2 (with disjoint sets of modes M1 andM2) the following edge labelling functions (for jumps and events)

(v1, v2)
a→ (w1,w2) ⇔df ∃a1 ∈ H1, a2 ∈ H2 : v1 a1→ w1, v2

a2→ w2.

To translate this behaviour to our algebraic model we just look at the product semiring.

For two (left) semirings (A,+A, 0A, ·A, 1A) and (B,+B, 0B, ·B, 1B) the product (semiring) is defined as

(A × B,+×, 0A × 0B, ·×, 1A × 1B),

where +× and ·× are componentwise operators. By standard results from universal algebra the product structure indeed

forms a (left) semiring again. Furthermore the construction is equivalent to the product construction for hybrid automata.

Parallel composition. Parallel composition of hybrid systems can also be used for specifying larger systems. An algebraic

expression or a hybrid automaton is given for each part of the system. Communication between the components may occur

via shared variables and synchronisation labels. At first glance, the parallel composition seems to be more complicated than

the product. But as we will see, it is easily handled in the algebraic model. It again uses a Cartesian product, like the product

semiring (only in a different place). We consider again Henzinger’s definition that only looks at synchronisation at transition

points.

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 83

Two hybrid automata H1 and H2 with the same set D of durations are assumed to interact via common events.

First we look at “unsynchronised” parallel runs of hybrid systems. For trajectories τ1 = (d1, g1) and τ2 = (d2, g2) with

d1, d2 ∈ D we first define τ1‖τ2 for some special cases:

τ1‖τ2 =
⎧⎨
⎩

(d1, g1�g2) if d1 = d2
(d2, constd2 (g1)�g2) if d1 = 0

(d1, g1�constd1 (g2)) if d2 = 0,

where (f�g)(x) = (f (x), g(x)) andconstd(f)(x) = f (0) is the constant functionon [0, d].We see that in the caseof two semirings

of processes with the same set of durations the parallel-composed trajectories form again trajectories. Viz., if the first

process contains only trajectories τ1 with functions g1 : intvD → V and for all trajectories τ2 of the second process we have

g2 : intvD → V ′, then the parallelised process semiring contains trajectories with functions of type intvD → V × V ′. The cross
product avoids the problem of shared variables by duplicating them. Below we show how to synchronise two systems at

transition points.

Often the above definition is sufficient. But, sometimes one also has to consider the cases 0 < d1 < d2 or 0 < d2 < d1. For

those cases there are some choices and decisions to be made. For example: should the trajectories start at a common time

point? Should they end after the same duration?

If d1 < d2, then, by definition of the order on D, there exists d3 ∈ D with d1 + d3 = d3 + d1 = d2. Therefore the trajectory

τ1 = (d1, g1) can be lengthened to duration d2 using constant trajectories as

τ1 · (d3, g3) or (d3, g
′
3) · τ1,

where g3(x) = g1(d1) and g′
3
(x) = g1(0). Using the first of these products in the parallel composition (τ1 · (d3, g3))‖τ2 means

that the trajectories τ1 and τ2 start at a common time point, whereas ((d3, g
′
3
) · τ1)‖τ2 enforces that τ1 and τ2 end together.

Again this operation can be lifted to processes.

Next, we want to synchronise H1 and H2 via reachable events, i.e., events that have to occur after a finite duration. If a is a

common event of H1 and H2, then H1 and H2 must synchronise on a-transitions after a finite duration; if a is an event of H1

but not of H2 then during the transition of H1 the state of H2 has to be kept constant and vice versa.

Following Section 3.3, transitions (and thus events) can be modelled by a compatibility relation � and zero-length

trajectories. Let X be the set of shared variables to be synchronised. Then post-multiplying with the process

{(0, g1�g2) | g1|X = g2|X },
where |X restricts the domains to X , enforces synchronisation.

Synchronisation of infinite trajectories can only be done after a finite initial duration. In the case of hybrid automata the

set of durations is R. Hence each infinite trajectory τ contains prefixes of arbitrary length, i.e., for all trajectories τ and for all

d ∈ R it holds that

∃τ1, τ2 : τ = τ1 · τ2,

where the duration of τ1 is d. Therefore, one can use the synchronisation for finite trajectories also for infinite ones.

Synchronisation after an infinite amount of time does not make sense.

An example for composing hybrid systems is given in Section 6.

5. Safety and liveness

5.1. Modularity and progress in time

In Section 3.6 we restricted processes to their Zeno-free parts. Now, we want to deal with the general case that a process

is restricted by an additional condition. Abstractly, let a stand for the process and c for the condition; then we want to form

the meet a � c. If a is a composite process we want to distribute the condition to its components if possible. If a is a sum this

is easy. However, if a is a product, we need special conditions for c to do this.

We call an element c submodular if ∀a, b ∈ S : c � (a · b) ≤ (c � a) · (c � b) and modular if in that formula always = holds

instead of just≤. We obtain useful characterisations of these properties. Note that by Eq. (10) in aweak semiring the element

F is modular.

The following lemma summarises elementary properties for submodular elements. They will be used in the remainder

to prove useful statements concerning processes.

Lemma 5.1. Assume a Boolean weak quantale S.

(1) The following properties are equivalent.

(a) Element c ∈ S is submodular.

(b) (c � F) · c + c · � ≤ c.

(c) F · c · � ≤ c

In particular, 1 is submodular iff 1 · 1 ≤ 1.

(2) Element c ∈ S is modular iff it is submodular and transitive, i.e., satisfies c · c ≤ c. In particular, 1 is modular iff 1 · 1 ≤ 1.

84 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

(3) If c is modular then for all a we have c � a+ = (c � a)+ and c � a* = (c � a)+ + (c � 1), with b+ =df b · b*.

(4) If c is modular then d ≤ c is submodular iff (c � F) · (c � d) · c ≤ c � d.

The proof is given in the Appendix.

By the shunting Rule (2) the property 1 · 1 ≤ 1 is equivalent to 1 ≤ 1 · 1. The element 1 · 1 has been called step in von

Karger’s work [50]; it represents the elements that cannot be decomposed into non-subidentities. Since we can think of the

identity element 1 as a process that does not proceed in time, this property says that progress in time cannot be undone by

composition. Therefore we call a Boolean semiring with the property 1 · 1 ≤ 1 progressive.

5.2. Time requirements

Often, it is useful to restrict the duration; for example to guarantee that an event happens after a certain time.

One way of asserting this is already given by the chop operator. Every trajectory in A�B guarantees that, unless Zeno

effects occur, a suffix in process B is actually reached. To guarantee that B is reached after a certain time d one has to restrict

A in a different way.

Example 5.2 (Thermostat continued). Returning to Example 3.3 we now want to guarantee that the heater is inactive for

at most 30 time steps. Therefore we have to restrict AIn by the process A=df {(d, g) | d ≤ 30, (d, g) ∈ TRA}, i.e., we have to

calculate AIn � A. This process is the same as

{(d, g) | d ≤ 30, (d, g) ∈ AIn}.
Note that A is not submodular.

This gives a straightforward way to model time assertions.

5.3. Range assertions and tests

Next to that, it may also be necessary to restrict the range of a process A. Here, the range ranA is defined as ranA=df

⋃
t∈A

ran t.

Example 5.3 (thermostat continued). Extending Example 2.1wewant to define a process containing all trajectories that never

leave the range [18,22].

We do this by observing that every subset W of the value set V is isomorphic to the process PW =df {x | x ∈ W}.
With � = TRA and F = fin (TRA) we define

� PW =df F · PW · �, �PW =df � ¬PW .

Hence, � PW is the set of all trajectories that at some (finite) point in their time interval have a value in W , while �PW
describes a safety aspect, viz. the set of all trajectorieswhose range satisfies the “invariant”W , i.e.,�PW = {τ | τ ∈ TRA, ran τ ⊆
W}. Thus, the requested safety condition for the thermostat canbemodelledas�R[18,22]. Dually,� PW canbeused todescribe

certain liveness aspects.

Looking again at the safety requirement of the thermostat we see that by the condition AOff · AOn ≤ �R[18,22] we indeed

restrict the range of AOff · AOn as claimed in the beginning of this section. Using the meet

AOff · AOn � �R[18,22] (th-rest)

is another way to enforce the restriction.

For an algebraic characterisation of processes like PW we use the idea of tests as introduced into semirings by [39] and

into Kleene algebras by Kozen [36]. One defines a test in an idempotent left semiring (quantale) to be an element p ≤ 1 that

has a complement q relative to 1, i.e., p + q = 1 and p · q = 0 = q · p. The set of all tests of S is denoted by test(S). It is not hard
to show that the complement ¬p of a test p is uniquely determined by the definition and that in a weak semiring test(S) is
closed under + and · and forms a Boolean algebra with 0 and 1 as its least and greatest elements. (To establish this in general

left semirings one has to add the assumption p · (q + r) = p · q + p · r of right-distributivity of tests among each other.) In

particular, we have the shunting rule for tests p, q, r:

p · q ≤ r ⇔ p ≤ ¬q + r. (12)

Moreover, all tests are purely finite. If S itself is Boolean, then test(S) coincides with the set of all elements below 1.

With the above definition of tests we deviate slightly from [36], where an arbitrary Boolean algebra of subidentities is

allowed as test(S). The reason is that, as shown in Theorem 4.15 of [21], the axiomatisation of domain to be presented below

forces every complemented subidentity to be in test(S) anyway.

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 85

We will consistently write a, b, . . . for arbitrary semiring elements and p, q, . . . for tests.

An important property of left semirings is distribution of test multiplication over meet [42]: if the meet a � b exists then

so do the meets p · a � b and p · a � p · b and satisfy

p · (a � b) = p · a � b = p · a � p · b. (13)

If S is right-distributive, also the symmetric properties hold.

Furthermore, if S is Boolean, we have the relationships

p · a = ¬p · a + a, in particular, p = ¬p + 1, (14)

and the symmetric ones if S is right-distributive.

Lemma 5.4. Consider the Boolean weak quantale PRO.

(1) test(PRO) = P({x | x ∈ V}).
(2) For P ∈ test(PRO) we have P† = P and consequently Pω = P · �.

(3) Since 0 is indivisible in PRO, the meet with a test distributes over composition, i.e., all tests in PRO are modular:
P ∈ test(PRO) ⇒ P ∩ A · B = (P ∩ A) · (P ∩ B).

We have already used the tests of PRO for modelling restrictions and jump conditions in Section 3.1. Part (2) generalises to

the law pω = p · � for arbitrary tests p in an omega algebra. Finally, it turns out that, even for arbitrary semirings, Part (3) is

equivalent to the progressivity condition introduced at the end of Section 5.1:

Lemma 5.5. All tests of a semiring S are modular iff S is progressive.

Proof. (⇒) follows by Lemma 5.1(1), since 1 is a test.

(⇐) Given test p ≤ 1, by Lemma 5.1(2) the elements c = 1 and d = p satisfy the assumptions in Lemma 5.1(4). Moreover, all

tests are transitive. �

Using the concept of tests we now generalise the operators � and � to an arbitrary Boolean left semiring S. Following

Section 3.6 the greatest element �, the greatest purely finite element F and the greatest purely infinite element N exist.

Let now, for p ∈ test(S),

� p=df F · p · �, �p=df � ¬p.

Thus, �p corresponds to the “always p” operator of von Karger [50], whence the notation. Since � and � do not yield

tests as their results, they cannot be nested. This does no harm, since nested safety requirements do not seem to be useful

anyway. All other algebraic operations, like addition and multiplication, are available for box and diamond. Our goal is now

to derive a number of useful algebraic laws for these operators. First,

� 0 = 0 = �0, � 1 = � = �1. (15)

Another immediate consequence of the definitions is

Lemma 5.6. For Boolean left semiring S and p ∈ test(S) the element �p is submodular.

Proof. By the definition of box we have F · �p · � = F · F · ¬p · � · � = F · ¬p · � = �p and the claim follows from Lemma

5.1(1). �

The box operator shows useful and natural behaviour in the case of progressiveness.

Lemma 5.7. Let p, q ∈ test(S) in a progressive Boolean weak semiring S.

(1) p ≤ �q ⇔ p ≤ q.

(2) p ≤ �p.

By Lemmas 5.4(3) and 3.2(1) PRO is progressive and Properties (1) and (2) hold. In REL, however, subidentities can be

decomposed into non-subidentities (unless the underlying base set is a singleton); so these properties do not hold there.

For the following proofs and properties we introduce shorthands for the purely finite and purely infinite parts of boxes:

�Fp=df fin (�p) = F � �p, �Np=df inf (�p) = N � �p. (16)

Now we can show

Lemma 5.8. Assume a Boolean left semiring S and p ∈ test(S). �p = p · (�p). If S is weak then also �Fp = p ·�Fp as well as

�p = (�p) · p and�Fp = �Fp · p.

86 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

Some of the following properties are satisfied only in a special kind of left semirings. Since elements of the form �p

correspond to safety properties, we call a left semiring (quantale) S safety-closed if (�p) · (�p) ≤ �p.

Since in a safety-closed left Kleene algebra �p is transitive, it coincides with its own transitive closure, i.e., (�p)+ = �p.

Hence

a ≤ �p ⇔ a+ ≤ �p. (17)

Safety-closedness implies, next to other useful properties, that a composition satisfies a safety assertion if that is satisfied

in its first component or in the second component after some finite run of the first component.

Lemma 5.9. Assume a Boolean weak semiring S that is safety-closed.

(1) All boxes are modular.

(2) All boxes are multiplicatively idempotent, i.e., (�p) · (�p) = �p.

(3) �p � a+ = (�p � a)+ and �p � a* = (�p � a)+ + (�p � 1).

(4) � p � a · b = (� p � a) · b + a�(� p � b).

The dual of Part 4, namely that a composition satisfies a safety assertion iff its two components satisfy it (�p � a · b =
(�p � a) · (�p � b)) follows immediately since boxes are modular (Part 1).

Example 5.10. Returning to requirement (th-rest), we can transform the safety requirement R20 · (AOff · AOn)+ � �R[18,22]
into R20 · ((AOff � �R[18,22]) · (AOn � �R[18,22]))+ by (17) and Lemma 5.9(1). Hence, it suffices to guarantee the safety require-

ment for the two component processes AOff and AOn.

Using general theory, we can now also give an algebraic definition of the range operator introduced for PRO in Section

3.1. As a preparation we state the following.

Lemma 5.11. Assume a left quantale in which · is also positively right-distributive. Then � is universally disjunctive and � is

universally conjunctive. In particular, both operators are isotone.

Proof. The property for� follows by deMorgan’s laws from the one for� , so we only show that. For nonempty set L ⊆ P

we get

�
(⊔

L
)

= F ·
(⊔

L
)

· � =
⊔

(F · L) · � =
⊔

(F · L · �)

by positive right-disjunctivity and left-disjunctivity of ·. Moreover, we have

�
(⊔

∅
)

= F · 0 · � = F · 0 = 0 =
⊔

� ∅
by left-strictness of · and F · 0 = 0. �

Therefore we can define a general operator ran : S → test(S) by the Galois connection

ran a ≤ p ⇔df a ≤ �p. (18)

By (18), ran is universally disjunctive. Moreover, we obtain

a ≤ �(ran a), ran (�p) ≤ p, p ≤ �p⇒ ran p ≤ p. (19)

The range operator relates to the others as follows.

Lemma 5.12. If S is positively right-disjunctive then ran p = p.

Proof. By the third property of (19) it remains to show p ≤ ran p. Using the Galois connection (18) and Lemma 5.7 (1), for

arbitrary test q, we have

ran p ≤ q ⇔ p ≤ �q ⇔ p ≤ q.

Now setting q = ran p yields the claim. �

5.4. A sufficient criterion for safety-closedness

For the technical developments of this section we need additional operators. In any left quantale, the left residual a/b

exists and is characterised by the Galois connection

x ≤ a/b ⇔df x · b ≤ a.

In PRO, this operation is characterised pointwise by τ ∈ V/U ⇔ ∀σ ∈ U : τ · σ ∈ V (provided τ · σ is defined). Based on the

left residual, in a left Boolean quantale the right detachment a�b can be defined as

a�b=df a/b.

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 87

Fig. 5. Local linearity.

The pointwise characterisation in PRO reads τ ∈ V�U ⇔ ∃σ ∈ U : τ · σ ∈ V . Informally, this means that V�U consists of

trajectories which result from detaching a U-trajectory at the right from some V-trajectory. By de Morgan’s laws, the Galois

connection for / transforms into the exchange law a�b ≤ x ⇔ x · b ≤ a for � that generalises the Schröder rule of relational

calculus.

Two straightforward consequences are

(�p)�a ≤ �p and �Fp�a ≤ �Fp. (box detachment)

Intuitively, this means that in PRO any prefix of a trajectory that satisfies a safety assertion again satisfies the assertion.

Moreover,�is isotone in both arguments and satisfies a�1 = a.

A left Boolean quantale is said to be locally linear [50] if it satisfies

(a · b)�c = a · (b�c) + a�(c�b).

The law describes the case analysis that appears when c is cut off a · b from the right. We distinguish two cases — c is a

postfix of b or b is a postfix of c. We illustrate this behaviour in Fig. 5, where the elements a, b, c are singleton processes of

which only the time intervals are shown.

Local linearity of PRO can be proved as in the case of the semiring of formal languages, as done in [26]. Hence, by the

following lemma, PRO is safety-closed.

Lemma 5.13. f S is a Boolean weak and locally linear quantale then S is safety-closed.

The proof is given in the Appendix.

Sometimesonehas safetyproperties of the form thatfirst a predicatephas tobe satisfiedandafterwards anotherpredicate

q has to hold. The following laws are useful for checking whether a composition of processes satisfies such a condition.

Lemma 5.14. Assume a Boolean weak and locally linear quantale S. Then for all a, b ∈ S and p, q ∈ test(S) the following properties

hold.

(1) a · b � �Fp · �q = (a ��Fp) · (b � �q) + (a ��Fp) · (b ��Fp · �q) + (a � �Fp · �q) · (b � �q).

(2) a · b � �Np = (a � �Np) + (a � �Fp) · (b ��Np) = (a � �p) · (b ��Np).

(3) a · b � �p · �q = (a � �p) · (b � �q) + (a � �p) · (b � �p · �q) + (a � �p · �q) · (b � �q).

(4) If additionally p ≤ �p holds, the summand (a � �Fp) · (b � �q) can be omitted from the right hand sides of Parts (1) and

(3).

The lengthy proof can be found in the Appendix of [29]. For single, finite trajectories Part (1) is illustrated in Fig. 6. Here,

the change between properties p and q can occur either exactly at the composition point of a and b, inside a or inside b. That

is why the formula on the right hand side of Part (1) consists of three summands.

An application of Lemma 5.14(1) is to combine safety requirements of the shape R[l,u]. Since�Fp · �q = �p��q, a safety

requirement of this form guarantees that the process �q is actually entered.

We conclude by yet another equivalent characterisation of time progress.

Lemma 5.15. Assume a Boolean weak quantale S. Then S is progressive iff

∀a ∈ S : ∀p ∈ test(S) : p�a = a � p.

See again the Appendix for a proof.

5.5. Temporal operators

Specifications are particular processes that express desired patterns. Following Sintzoff [48], we define quantifier-like

operators relating a specification W to a purported implementing process B. If one considers the values in V as states then

the set {t(0) : t ∈ B ∩ W} gives all starting values of the trajectories in B admitted byW aswell. However, it ismore convenient

to represent this set as a test in the left semiring of processes, viz. as

{t(0) | t ∈ B ∩ W}. (20)

88 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

Fig. 6. Composed trajectories satisfying�Fp · �q.

To model this, we introduce into our algebra an abstract domain operator that assigns to a set of computations the test

that describes precisely its initial values. In combination with restriction, domain yields an abstract preimage operation and

codomain an abstract image operation.

A left domain semiring (quantale) is apair (S,�),where S is a left semiring (quantale) and thedomainoperation� : S → test(S)
satisfies

a ≤ �a · a, (d1) �(p · a) ≤ p, (d2) �(a · �b) ≤ �(a · b). (d3)

The axioms are the same as in [21]; their relevant consequences can still be proved over left semirings (quantales) [42].

In particular, � is universally disjunctive and hence �0 = 0. Moreover, the conjunction of (d1) and (d2) is equivalent to each

of

�a ≤ p ⇔ a ≤ p · a, (llp) �a ≤ p ⇔ ¬p · a ≤ 0. (gla)

Property (llp) says that �a is the least left preserver of a; (gla) that ¬�a is the greatest left annihilator of a.

Lemma 5.16. The tuple PRO=df (P(TRA),∪, ∅, ·, I,�) forms a Boolean positively right-disjunctive domain quantale with �A =
{g(0) : (d, g) ∈ A}.

Contrarily to the case of arbitrary semirings [41] with complete sublattice of tests, the domain operation is guaranteed to

exist in left quantales [21].

A useful property is the following.

Lemma 5.17. If the underlying semiring satisfies p ≤ �p then �(�p) = p.

Proof. Axiom (d2) and Lemma 5.8 imply �(�p) ≤ p. The reverse inequation follows from the assumption p ≤ �p, isotony of

domain and �p = p. �
Using the domain operation, Eq. (20) compacts into �(B ∩ W). Therefore, a first algebraic definition of Sintzoff’s quantifiers

reads as follows (the primes indicate that we will use a different definition later on):

E′B .W =df �(B ∩ W), (21)

A′B .W =df ¬E′B .W = ¬�(B ∩ W), (22)

AE′B .W =df A′B .W∩E′B .W . (23)

This definition works in general Boolean left domain semirings. However, as the resulting quantifiers are operators of type

PRO → (PRO → test(PRO)), they cannot easily be composed. Therefore, Sintzoff gives a different semantics to combinations

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 89

of these quantifiers. We want to avoid this by introducing new quantifiers that omit the final projection into test(PRO).

Doing this, we also allow a look into the “future” of trajectories and not only at the starting states. In other words, our new

quantifiers in PRO should model formulas like

t ∈ EB .W ⇔df ∃u ∈ B : t · u ∈ W ,

t ∈ AB .W ⇔df ∀u ∈ B : t · u ∈ W .

Hence, the process EB .W consists of all trajectories that can be completed by a B-trajectory to yield a trajectory inW . Thus,

EB .W is the inverse image ofW under the operation ·B, whileAB .W is the largest processwhose image under ·B is contained

inW .

These quantifiers are operators of type PRO → PRO and their sequential composition simply is function composition. If,

as with E′ and A′, a projection into test(PRO) is desired it can be added at the outermost level by finally applying one of the

three quantifiers above. For their algebraic characterisation we basically want to use Eqs. (21) and (22), but express them

with the help of detachment. Therefore we establish a connection between that and the domain operator.

Lemma 5.18 In a Boolean quantale, one has

�(b � w) = w�b � 1 = b�w � 1.

In the detachment formulas of this lemma, forming the meet with 1 performs the projection into the test algebra, and we

obtain our revised operators by omitting this meet. There is a choice in which of these two formulas to use. We take the first

one, since it results in a more direct translation of the universal quantifier A′. Assume a Boolean quantale S and a, b ∈ S. Then

Eb .w=df w�b, Ab .w=df Eb .w = w/b, AEb .w=df (Ab .w) � (Eb .w).

These quantifiers allow the following modal view: E is a kind of diamond, whereas A is a box operator. Correspondingly,

we have the following properties that are typical of modal operators.

Lemma 5.19

(1) Ea.w is universally disjunctive and Aa.w is universally conjunctive in w.

(2) E(a · b) . c = Ea . (Eb . c) and A(a · b) . c = Aa . (Ab . c).

(3) If · is positively disjunctive in its right argument then Ea is positively disjunctive and Aa is positively antidisjunctive in a.

Sintzoff has used these operators to determine strategies in discrete-decision games [48]. Hehas also shown that game theory

helps in understanding hybrid and reactive systems, since it deals with interaction between dynamics. For example, a hybrid

system can be presented as a gamewhere the controlling and the controlled components are, respectively, the proponent and

the opponent [32]. As the controller has to counteract all possible failures induced by “moves” of the controlled system, it has

to force the opponent into a “losing” position where nothing can go wrong anymore. In PRO, moves correspond to process

transformers of the shapes EB and AB. They describe the possible and guaranteed reachabilities from a game position using

B-trajectories.

6. A case study

To round off the paper, we give a longer case study. It concerns a railroad gate control and was introduced in [23]. For

that, we assume a circular track that is between 2000 and 5000 m long and a railway crossing with a gate. A sketch of the

architecture is given in Fig. 7.

A moving train on the track is modelled by the hybrid automaton of Fig. 8. The variable x represents the distance of the

train from the gate. Initially, the speed of the train is between 40 and 50 m/s. At the distance of 1000 m from the gate, the

train issues an approach event and may slow down to 30 m/s. At the distance of 100 m behind the gate, the train issues an

exit event.

We now want to derive the corresponding algebraic expression for this automaton. For this we follow the schema of

Section 4.1. To simplify matters we skip the control modes, since all control modes have the same structure. Furthermore,

we do not define processes for each mode. Instead we define the following general processes:

T [a,b] =df {(d, x) | d ∈ R≥0, a ≤ ẋ ≤ b},
Pdist =df {dist} = {(0, x) | x = dist},

P≤dist =df {dist} = {(0, x) | x ≤ dist}.

Process T [a,b] restricts the speed of the train to a velocity between a and b; the duration of the trajectories is not restricted

at all. The zero-length process Pdist is used to test whether the train is at a certain distance of dist from the gate or not. For

example P0 tests if the train passes the gate at the moment.

To model the jump condition given in Fig. 8, we use the compatibility relation � =df {(−100, x) | x ∈ [1900, 4900]}. De-
pending on the length of the track it sets the distance after the train has passed the gate.

90 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

Fig. 7. Architecture of the railroad gate controller.

Fig. 8. Train automaton.

Using these elements the following algebraic expression for the train automaton results from our schema:

TR=df P≤5000 ·
(
(T [−50,−40] · P1000 · T [−50,−30] · P0 · T [−50,−30] · P−100)�

)ω

.

The initial test P≤5000 sets the starting point of the train: the distance between the gate and the train has to be smaller

than 5000m. As described in Section 4.1 the compatibility relation is employed at the right end of the repeated process. It is

only needed at the point where we want to enforce a jump in the function describing the distance between the train and the

gate. The other multiplications require the identity relation as compatibility relation, since we want to avoid jumps. Hence

we do not need an explicit compatibility relation for the other products.

Note that in the algebraic expression we can replace ω by †, since the tests Pdist together with the given velocities of the

train enforces that there are no Zeno-effects.

As the second component of the railroad gate control we have a gate automaton (Fig. 9).

The variable y of the gate automaton represents the position of the gate in degrees. Initially, the gate is open (y = 90).

When a lower event is received, the gate starts closing at a rate of 9 degrees per second and when a raise event happens, the

gate starts opening at the same rate. The given schema to convert hybrid automata to algebraic expressions yields

GA =df O · ((Ml·Mr)
* · (C + O))ω ,

where
O =df {(d, const(90)) | d ∈ R≥0} models control mode Opened,
C =df {(d, const(0)) | d ∈ R≥0} models control mode Closed,
Ml =df {(d, y) | ẏ = −9, d ∈ R≥0} models control mode Down,
Mr =df {(d, y) | ẏ = 9, d ∈ R≥0} models control mode Up

and const is again the constant function.Ml · Mr is iterated because the gate can start opening even if it is not totally closed

(y = 0) and it can start closing even if the gate is not absolutely opened (y = 90).

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 91

Fig. 9. Gate automaton.

Fig. 10. Controller automaton.

The simplest way to combine both expressions is

TR ‖GA
where ‖ is the pointwise lifted parallel composition of Section 4.2. But this algebraic expression contains all combinations of

the train trajectories and the gate trajectories, e.g., the gate can be openedwhen the train passes. Hence a simple combination

is not useful.

To combine these two automata and to guarantee safety, one can use a third automaton – a controller automaton – as

done in [23] (cf. Fig. 10).

This controller has a reaction delay of up to u seconds. For example if the train issues an approach event, the automaton

switches to themodeDelayDown. The elapsed time ismeasured by the variable z. At some point before z reaches the reaction

upper bound u the automaton starts the lower event and the gate begins to close (the gate automaton is now inmode Down).

To simplifymatters,we assumea reaction timeof 0 s. (Different delay times are also possible, but the algebraic expressions

become more complicated, although the structure would be the same.) When an approach event is received, the controller

immediately issues a lower event and when an exit event is received, the controller starts immediately a raise event. In sum

we have

92 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

TG = (O‖(P≤5000 · T [−50,−40] · P1000))
· (((Ml · C)‖(T [−50,−30] · P0)) · (C‖(T [−50,−30] · P−100)�)

· ((Mr · O)‖(T [−50,−40] · P1000)))†
(24)

Let us have a look at the single components. The first part (O‖(P≤5000 · T [−50,−40] · P1000)) models the initial behaviour; the

gate has to be open, the train starts somewhere before the gate (not farther than 5000 metres), and moves until it reaches

the point x = 1000. Each of the components in the infinite iteration loop has as right operand of the parallel composition one

control mode of the train automaton together with the attached event and as left operand the corresponding behaviour of

the gate. Since the gate components end up in themodes C and Owhere the gate is opened or closed, respectively, processes

like Ml · C can be lengthened to any duration longer than the shortest duration of Ml . Therefore we do not need a constant

function for the parallel composition (as discussed in Section 4.2). Note that the nested iteration of GA has been removed,

because that behaviour cannot occur. Furthermore, this example might, in contrast to the algebraic expression of the train

automaton, contain Zeno effects; therefore ω and † might behave differently.

Aspects of safety. The algebra of processes not only compacts the description by a parallelised hybrid automaton (which

was not given by Henzinger), but also contains many aspects of safety. E.g., the expression Ml · C itself guarantees that the

gate is closed at the time when the train passes the gate. This guarantee is not given in the original paper. Furthermore, it

is easy to see that if the initial distance between the gate and the train is smaller than 1000, we have for the first factor of

(24)

(P<1000 · T [−50,−40] · P1000) = 0.

Thuswe know that such an initial distance is not safe, since it is not possible that the gate gets closed in time. This problem

is not discussed in [23]. In general, if an algebraic expression or a part of it at a strict position (after a finite run) is equal to

zero, the corresponding system is not safe. Another aspect of safety is the Zeno problem. In our example, Zeno effects can

occur in the hybrid automaton as well as in our algebraic expressions. But those effects can be excluded by taking

TG � N,

as discussed in Section 3.6. Sometimes it is desirable and necessary to introduce range assertions. For instance, we may,

besides the normal conditions of operation, want to guarantee that no train is faster than 40metres per seconds (e.g. if there

is construction work on the track). Then we have to modify Expression (24). Using the range assertions of Section 5.3 the

algebraic expression can be modified to

TG � � T [0,−40].

With this, we have a characterisation of the modified system and can now check safety, etc.

7. Related work

As mentioned before, the research concerning hybrid systems is mostly focused on hybrid automata [23]. Within that

area there are different approaches to safety and liveness properties. But, most of the research covers only a certain class

of hybrid automata, the linear hybrid automata. For example, [3] discusses reachability and verification problems for linear

hybrid systems. In contrast to these papers our approach does not restrict hybrid systems at all.

An algebraic framework dealing with hybrid systems is the process algebra of [11]. It is obtained by extending a combi-

nation of two extensions of ACP [10], namely the process algebra with continuous relative timing from [9] and the process

algebra with propositional signals from [8]. It has, in addition to equational axioms, some rules to derive further equations

with the help of real analysis. However, it does not contain transformation rules for larger systems in our style; moreover, it

does not define operators for the analysis of the purely finite and purely infinite parts of behaviours.

An algebraic theory of general networks is presented in [49].

Besides the theories of hybrid automata and algebras there is further related work. For example in [33] a variant of timed

CSP [47] is introduced that allows limited dealing with continuous behaviour. In [44] the π-calculus [40] is modified such

that it can deal with continuous behaviour.

Further approaches to hybrid systems are Hybrid I/O automata [38], the work on tools like CHARON [6,1] and HyTech [24]

as well as the logics for hybrid systems [20]. But these approaches have not yet been put into algebraic form.

8. Conclusion and outlook

This paper provides a comprehensive algebraic theory of hybrid systems based on left semirings and iteration algebras.

Although one has to take some care, since the basic laws are weaker than those for standard semirings, things work out

reasonably well and many results come for free. We have presented a model of trajectories and processes which then has

been abstracted to admit a general semiring view. We have shown how to embed hybrid automata into that setting. Based

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 93

on an analysis of the purely finite and purely infinite parts of behaviours we have demonstrated how Zeno effects can

conveniently be handled. We have given algebraic definitions of several composition operators for hybrid systems. We have

discussed safety and liveness properties as well as time restrictions and range assertions and certain temporal operators. It

should be noted that nevertheless the whole development is based on few and well-known algebraic concepts.

The aim of further work is to use this framework to give a fully algebraic treatment of the duration calculus based on

the approaches of [50,25]. Another aim is to form a connection with game theory and game algebra to obtain improved

controllers for hybrid systems. Finally, it has to be checked in how far I/O automata can be treated in this style to make the

theory even more useful. It seems that the semantic models used in [20,38] can be made into left quantales, too, so that our

results would carry over to these frameworks. It will also be interesting to apply the approach in further case studies. On the

more theoretical side, an algebraic treatment of time abstraction as well as further analysis of safety via range assertions and

of liveness issues is necessary. The structures of Kleene and omega algebras should allow a convenient algebraic treatment

of reachability questions [21]. The algebraic semantics for CTL*given in [43] prepares the connection to various logics for

hybrid systems [20]. Finally, since the theory of semirings is completely first-order and Horn, it lends itself to mechanisation

using off-the-shelf theorem provers, as has recently been shown in [30,31]. Therefore the field of hybrid systems should be

tractable. In [27] we have already automatically proved some liveness and safety properties for two small hybrid systems.

Acknowledgements

Weare grateful to Kim Solin and Georg Struth aswell as to the anonymous referees for helpful comments and discussions.

Appendix A. Deferred proofs

Proof of 3.5. We give this proof to pinpoint the use of our assumptions; a similar proof for the more restrictive setting of

full quantales appears, e.g., in [2]. It uses the principles of least and greatest fixpoint fusion (see e.g. [19]): Let f , g,h : L → L

be isotone functions on a complete lattice (L,≤) with least element 0 and greatest element � such that g ◦ h = f ◦ g.

• If g is continuous, i.e., preserves suprema of nonempty chains, and strict, i.e., satisfies g(0) = 0, then g(μh) = μf .

• If g is cocontinuous, i.e., preserves infima of nonempty chains, and costrict, i.e., satisfies g(�) = �, then g(νh) = νf .

In both parts of the proof we use f (x) =df a · x + b, whereas g and hwill change.

(1) The star axioms (specialized to the case b = 1) are equivalent to the statement that a* is the least contracted element

of the function h(x) =df a · x + 1; hence by the Knaster/Tarski fixpoint theorem it coincides with the least fixpoint of

that function. Therefore the star unfold axiom holds by construction.

Nowweuse least fixpoint fusionwith g(x) =df x · b to show that a* · b is the least fixpoint andhence the least contracted

element of f , which is the contents of the star induction axiom.

By the definition of a left quantale, g is continuous and strict. Furthermore,

g(h(x)) = (a · x + 1) · b = a · x · b + b = f (g(x)),

and a*· b = μf , as required.

(2) The omega unfold axiom holds by construction.

We set c=df a
* · b and e=df a

ω + c and show that e is the greatest fixpoint and hence the greatest element expanded

by f , which is precisely the contents of the ω coinduction axiom.

This time we use g(x) =df x + c and h(x) =df a · x. Function g is obviously costrict. It is also cocontinuous, since we

assume the underlying left quantale to be completely distributive. For the commutativity condition we calculate

using, first, that c is a fixpoint of f by the proof of Part (1) and, second, weakness of the underlying quantale,

g(h(x)) = a · x + c = a · x + f (c) = a · x + a · c + b

= a · (x + c) + b = a · g(x) + b = f (g(x)).

This establishes νf = aω + a* · b as required. �
Proof of 3.6

(1) This follows by elementary Boolean algebra.

(2) Since (⇐) is just isotony, it suffices to prove (⇒). We show the first conjunct, the second being symmetric. Using Part

(1) we calculate

a = (a � F) + (c � F) = (a + c) � F ≤ (b + d) � F = (b � F) + (d � F) = b.

(3) This is Lemma 6.8(d) of [42].

(4) By Part (3), distributivity of inf and inf inf x = inf x,
inf aω

= inf ((fin a)*· inf a + (fin a)ω)

= inf ((fin a)*· inf a) + inf ((fin a)ω)

= (fin a)*· inf a + inf ((fin a)ω).

(5) By Part (3), distributivity of fin, fin (b · N) = 0 and fin b ≤ bwe have

94 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

fin aω

= fin ((fin a)*· inf a + (fin a)ω)

= fin ((fin a)*· inf a) + fin (fin a)ω

≤ 0 + (fin a)ω

= fin (fin a)ω

≤ (fin a)ω. �
Proof of 3.7. Let OM(A) =df {τ ∈ TRA | ∃T ∈ ISEQ (A) : ∏

T � τ }.
(1) The claim is equivalent to X ⊆ OM(A). Consider σ ∈ X . We construct a sequence T = (τn)n∈N ∈ ISEQ (A) inductively as

follows. Set σ−1 =df σ . Since X ⊆ A · X , there are τ0 ∈ A and σ0 ∈ X with σ−1 = τ0 · σ0. Now assume that τi and σi have

been constructed. By the same argument as above σi can be decomposed into τi+1 and σi+1. Now, by construction∏
T � σ . Hence σ ∈ OM(A) and we are done.

(2) As a prerequisite, we observe that finite trajectories τ are left cancellative w.r.t. composition, i.e., satisfy

τ · ρ = τ · σ⇒ρ = σ

provided τ · ρ and τ · σ are defined.

Now we show that OM(A) is expanded by H. Consider an arbitrary σ ∈ OM(A). By definition there is a T = (τn)n∈N ∈
ISEQ (A) with

∏
T � σ . Then also τ0 � σ and hence, by finiteness of τ0 and the above cancellation property, there is

a unique ρ with σ = τ0 · ρ. Define
 = (ξn)n∈N ∈ ISEQ (A) by ξn = τn+1 for all n ∈ N. Then
∏

 � ρ, i.e., ρ ∈ OM(A).

Therefore σ = τ0 · ρ ∈ A · Y . Hence OM(A) ⊆ A · OM(A).

Together with Part (1) this means that OM(A) is the greatest expanded element of H and hence its greatest fixpoint.

Now the claim follows by Lemma 3.5(2). �
Proof of 3.8

(1) That A† is expanded by H can be shown as for OM(A) in Part (2) of Theorem 3.7. It remains to show that A† is also

contracted by H, i.e., A · A† ⊆ A†. Assume σ ∈ A and τ ∈ A†, say τ ∈ PT for some T = (τn)n∈N ∈ ISEQ (A). Define
 =
(ξn)n∈N ∈ ISEQ (A) by ξ0 =df σ and ξn+1 = τn for all n > 0. Then σ · τ ∈ P
 ⊆ A†.

(2) Consider σ = (e, f) ∈ X . By Part (1) of Theorem 3.7 there is a sequence T = (dn, gn)n∈N ∈ ISEQ (A) with
∏

T � σ . Let

d=df sup{dn |n ∈ N} anddefine τ =df (d, g) ∈ A† by g(t) = gn(t) if t ≤ dn and g(d) =df f (d) ifd �= ∞. Thenby construction

τ � σ .

(3) We observe that the set of elements expanded by H is closed under extension, i.e., if X ⊆ A · X and Y is arbitrary then

also X · Y ⊆ A · X · Y . Therefore A† · � is expanded byH and hence A† · � ⊆ Aω . For the reverse inclusion consider τ ∈ Aω .

By Part (2) there is a σ ∈ A† with σ � τ . But then τ ∈ A† · �. �
Proof of 5.1

(1) ((a) ⇒ (b)) The claim is equivalent to c � ((c � F) · c + c · �) ≤ 0 by shunting (2). Then by Boolean algebra, submodu-

larity applied twice, Boolean algebra again, left annihilation and c � F ≤ F,

c � ((c � F) · c + c · �)

= (c � (c � F) · c) + (c � c · �)

≤ (c � c � F) · (c � c) + (c � c) · (c � �)

= (c � F) · 0 + 0 · (c � �) = 0

((b)⇒(c)) By Boolean algebra, distributivity, (b) and isotony,

F · c · � = (c � F + c � F) · c · � = (c � F) · c · � + (c � F) · c · � ≤ c · � + c · � ≤ c.

((c)⇒(a)) Consider first a product a · b with purely finite a, i.e., with a ≤ F. By Boolean algebra and distributivity,

a · b = (c � a) · (c � b) + (c � a) · (c � b) + (c � a) · b
By a ≤ F and the assumption about c, we have F · c ≤ c and c · � ≤ c, so that the last two summands are ≤ c by isotony.

Hence,

c � a · b = c � (c � a) · (c � b) ≤ (c � a) · (c � b).

For arbitrary awe calculate, using fin/inf decomposition, Boolean algebra and the claim for fin a ≤ F,
c � a · b

= c � (inf a + fin a · b)

= (c � inf a) + (c � (fin a · b))

≤ (c � inf a) + (c � fin a) · (c � b)

= inf (c � a) + fin (c � a) · (c � b)

= (c � a) · (c � b).

Finally, for c = 1 the left hand side of Formula (b) spells out to (1 � F) · 1 + 1 · � = 1 · 1 + 1 · 1 + 1 · 1 = 1 + 1 · 1, which

shows the claim.

(2) (⇒) We only need to show transitivity of c, which holds by

c � c · c = (c � c) · (c � c) = c · c.

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 95

(⇐) By isotony, (c � a) · (c � b) ≤ a · b and (c � a) · (c � b) ≤ c · c ≤ c, which shows (c � a) · (c � b) ≤ c � a · b. The reverse
inequation holds by submodularity of c.

The assertion about 1 follows, since 1 is transitive.

(3) (≥) Isotony and c · c ≤ c show (c � a)+ ≤ a+ and (c � a)+ ≤ c+ = c.

(≤) By shunting (2), star induction (3), distributivity and join splitting we have

c � a+ ≤ (c � a)+
⇔ a+ ≤ c + (c � a)+
⇐ a + a · (c + (c � a)+) ≤ c + (c � a)+
⇔ c � (a + a · (c + (c � a)+)) ≤ (c � a)+
⇔ c � a ≤ (c � a)+ ∧ c � a · c ≤ (c � a)+ ∧ c � a · (c � a)+ ≤ (c � a)+
The first conjunct holds by neutrality, isotony and 1 ≤ (c � a)*. For the second one we have, by modularity of c,

c � a · c = (c � a) · (c � c) = (c � a) · 0 ≤ c � a ≤ (c � a)+.

The third conjunct is shown, using again modularity, by

c � a · (c � a)+ = (c � a) · (c � (c � a)+) ≤ (c � a) · (c � a)+ ≤ (c � a)+.

The equation for * is immediate from a* = a+ + 1, the equation for + and distributivity of �.
(4) Assume d ≤ c. Then by Boolean algebra d = c + c � d. By this, shunting (2), modularity (twice) and Boolean algebra,

we have

F · d · � ≤ d

⇔ F · d · � ≤ c + c � d

⇔ c � F · d · � ≤ c � d

⇔ (c � F) · (c � d) · (c � �) ≤ c � d

⇔ (c � F) · (c � d) · c ≤ c � d. �
Proof of 5.7

(1) By Lemma 5.5 all tests of S are modular. Hence by definition of �q, shunting (2), modularity (thrice), meet on tests

and Boolean test algebra (twice)

p ≤ �q

⇔ p � F · ¬q · � ≤ 0

⇔ (p � F) · (p � ¬q) · (p � �) ≤ 0

⇔ p · p · ¬q · p ≤ 0

⇔ p · ¬q ≤ 0

⇔ p ≤ q.

(2) Set q = p in Part (1). �
Proof of 5.8. We first show �p = p · (�p).

For that we start with �p = p · (�p) + ¬p · (�p) and show that ¬p · (�p) ≤ 0. By Eq. (13), shunting (2) and the definition of

box we have ¬p · �p = �p � ¬p · � ≤ 0 ⇔ p · � ≤ F · ¬p · �. By Eq. (14) this is equivalent to ¬p · � ≤ F · ¬p · �, which holds

by 1 ≤ F (Eq. (6)).

Assume now that S is weak. Then�Fp = p ·�Fp is immediate from (10) and (6).

Next, we show �p = (�p) · p.
Splitting �p into its purely finite and purely infinite parts and using distributivity, we get the equivalent claim �Fp +�Np ≤
�Fp · p +�Np · p = �Fp · p +�Np. By Lemma 3.6 (2) this reduces to �Fp ≤ �Fp · p. Similar arguments as above yield �Fp · ¬p ≤ 0

and hence�Fp = �Fp · p +�Fp · ¬p = �Fp · p. �
Proof of 5.9

(1) Immediate from Lemma 5.6, Lemma 5.1 2 and safety-closedness, i.e., transitivity of boxes.

(2) This is a consequence of Part (1), since

�p = �p � � = �p � � · � = (�p � �) · (�p � �) = �p · �p.

(3) Immediate from Part (1) and Lemma 5.1(3).

(4) We show the claim for purely finite a. For purely infinite a the proof is straightforward since a · b = a. For general a the

proof proceeds by splitting a into its purely finite and purely infinite part. Set d=df � p and s=df d = �¬p. By Boolean

algebra and distributivity,

d � a · b = d � (d � a) · b + d � (s � a) · (d � b) + d � (s � a) · (s � b).

The first of these summands is below (d � a) · b, the second one is below a · (d � b) and the third one is 0 by Part (1)

and d � s = 0. Hence, the sum is below (d � a) · b + a · (d � b).

The converse inequation holds by d · b ≤ d, a ≤ F, F · d ≤ d and isotony. �
Proof of 5.18. We show only the first equation, �(b � w) = b�w � 1 can be shown in a similar way. Using (gla), Eq. (13),

shunting (2), the exchange rule, Eq. (14) and shunting again, we get

96 P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97

�(b � w) ≤ p

⇔ ¬p · (b � w) ≤ 0

⇔ ¬p · b � w ≤ 0

⇔ ¬p · b ≤ w

⇔ w�b ≤ ¬p

⇔ w�b ≤ p + 1

⇔ w�b � 1 ≤ p + 1 �
Proof of 5.19. We only show the properties for A. The properties for E follow immediately by the relationship Ea.w = Aa.w.

(1) By the principle of indirect inequality, for a set W ⊆ S we have

u ≤ �(Aa .W)

⇔ u · a ≤ �(W/a)

⇔ ∀w ∈ W : u ≤ w/a

⇔ ∀w ∈ W : u · a ≤ w

⇔ u · a ≤ �W
⇔ u ≤ (�W)/a

⇔ u ≤ Aa . (�W)

(2) By definition of A and of residuals we directly get

u ≤ Aa . (Ab . c)

⇔ u ≤ (c/b)/a

⇔ u · a ≤ c/b

⇔ u · a · b ≤ c

⇔ u ≤ c/(a · b)

⇔ u ≤ A(a · b) . c

(3) Similar to Part (1). �

References

[1] Eric Aaron, Harold Sun, Franjo Ivancic, Dimitris Metaxas, A hybrid dynamical systems approach to intelligent low-level navigation, CA ’02: Proceedings
of the Computer Animation, IEEE Press, 2002, pp. 154–163.

[2] Chritiene Aarts, Roland Carl Backhouse, Eerke A. Boiten, Henk Doornbos, Netty van Gasteren, Rik van Geldrop, Paul F. Hoogendijk, Ed Voermans, Jaap
van der Woude, Fixed-point calculus, Inf. Process. Lett. 53 (3) (1995) 131–136.

[3] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, Sergio Yovine,
The algorithmic analysis of hybrid systems, Theoretical Computer Science 138 (1) (1995) 3–34.

[4] Rajeev Alur, Costas Courcoubetis, Thomas Henzinger, Pei-Hsin Ho, Hybrid automata: An algorithmic approach to the specification and verification of
hybrid systems, Hybrid Systems, Springer, 1993, pp. 209–229.

[5] Rajeev Alur, David Dill, A theory of timed automata, Theoretical Computer Science 126 (2) (1994) 183–235.
[6] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, Insup Lee, Modular specification of hybrid systems in charon, Hybrid Systems: Computation and

Control, Lecture Notes in Computer Science, vol. 1790, Springer, 2000, pp. 6–19.
[7] Aaron Ames, Alessandro Abate, Shankar Sastry, Sufficient conditions for the existence of Zeno behavior, in: Proceedings of the 44th IEEE Conference

on Decision and Control and European Control Conference, 2005, pp. 696–701.
[8] Jos Baeten, Jan Bergstra, Process algebra with propositional signals, ACP ’95: Algebra of Communicating Processes, Elsevier, 1997, pp. 381–405.
[9] Jos Baeten, Corneils Middelburg, Process Algebra with Timing, Monographs in Theoretical Computer Science, Springer, 2002

[10] Jos Baeten, Pieter Weijland, Process algebra, Cambridge University Press, 1990
[11] Jan Bergstra, Cornelis Middelburg, Process algebra for hybrid systems, Theoretical Computer Science 335 (2–3) (2005) 215–280.
[12] Claude Bolduc, Jules Desharnais, Static analysis of programs using omega algebra with tests, in: Wendy MacCaull, Michael Winter, Ivo Düntsch (Eds.),

Relational Methods in Computer Science, vol. 3929, Lecture Notes in Computer Science, 2006, pp. 60–72.
[13] Manfred Broy, Ketil Stølen, Specification and development of interactive systems: Focus on streams, interfaces, and refinement, Springer, 2001
[14] Ernie Cohen, Using Kleene algebra to reason about concurrency control. Technical report, Telcordia, Morristown, N.J., 1994.
[15] Ernie Cohen, Separation and reduction, in: Roland Backhouse, José N. Oliveira (Eds.), Mathematics of Program Construction (MPC 2000), Lecture Notes

in Computer Science, vol. 1837, Springer, 2000, pp. 45–59.
[16] John Conway, Regular Algebra and Finite Machines, Chapman & Hall, 1971
[17] Martin Corbett, Designing hybrid automated manufacturing systems: A european perspective, Proceedings of the First International Conference on

Ergonomics of Hybrid Automated Systems I, Elsevier, 1988, pp. 167–172.
[18] Werner Damm, Hardi Hungar, Ernst-Rüdiger Olderog, On the verification of cooperating traffic agents, in: Frank de Boer, Marcello Bonsangue, Graf

Susanne, Willem de Roever (Eds.), Formal Methods for Components and Objects, Lecture Notes in Computer Science, vol. 3188, Springer, 2004, pp.
77–110.

[19] Brian Davey, Hilary Priestley, Introduction to Lattices and Order, second ed., Cambridge University Press, 2002
[20] Jen Davoren, Anil Nerode, Logics for hybrid systems, Proceedings of the IEEE 88 (7) (2000) 985–1010.
[21] Jules Desharnais, Bernhard Möller, Georg Struth, Kleene algebra with domain, ACM Transactions on Computational Logic 7 (4) (2006) 798–833.
[22] Johannes Faber, Roland Meyer, Model checking data-dependent real-time properties of the european train control system, FMCAD ’06: Proceedings

of the Formal Methods in Computer Aided Design, IEEE Press, 2006, pp. 76–77.
[23] Thomas Henzinger, The theory of hybrid automata, in: IEEE Symposium on Logic in Computer Science (LICS ’96), IEEE Press, pp. 278–292, 1996.

Extended Version: in: Kemal Inan and Robert Kurshan, (Eds.), Verification of Digital and Hybrid Systems, vol. 170, NATO ASI Series F: Computer and
Systems Sciences, Springer, pp. 265–292, 2000.

[24] ThomasHenzinger, Pei-HsinHo,Wong-ToiHoward,HYTECH:Amodel checker for hybrid systems, CAV ’97: Conference onComputer AidedVerification,
Lecture Notes in Computer Science, vol. 1254, Springer, 1997, pp. 460–463.

[25] Peter Höfner, An algebraic semantics for duration calculus, in: Judit Gervain (Ed.), Proc. 10th ESSLLI Student Session, Heriot-Watt University Edinburgh,
Scotland, 2005, pp. 99–111.

[26] Peter Höfner, From sequential algebra to Kleene algebra: Interval modalities and duration calculus. Technical Report 2005-5, Institut für Informatik,
Universität Augsburg, 2005.

P. Höfner, B. Möller / Journal of Logic and Algebraic Programming 78 (2009) 74–97 97

[27] Peter Höfner, Automated reasoning for hybrid systems — two case studies, in: Rudolf Berghammer, Bernhard Möller, Georg Struth (Eds.), Relations
and Kleene Algebra in Computer Science, Lecture Notes in Computer Science, vol. 4988, Springer, 2008, pp. 191–205.

[28] Peter Höfner, Bernhard Möller, Towards an algebra of hybrid systems, in: Wendy MacCaull, Michael Winter, Ivo Düntsch (Eds.), Relational Methods in
Computer Science, Lecture Notes in Computer Science, vol. 3929, Springer, 2006, pp. 121–133.

[29] Peter Höfner, Bernhard Möller, An algebra for of hybrid systems. Technical Report 2007-08, Institut für Informatik, Universität Augsburg, 2007.
[30] Peter Höfner, Georg Struth, Automated reasoning in Kleene algebra, in: Frank Pfenning (Ed.), CADE 2007, Lecture Notes in Artificial Intelligence,

Subseries of Lecture Notes in Computer Science, vol. 4603, Springer, 2007, pp. 279–294.
[31] Peter Höfner, Georg Struth, Can refinement be automated? in: Eerke Boiten, John Derrick, Graeme Smith, (Eds.), International Refinement Workshop

– Refine 2007, Electronic Notes in Computer Science, Elsevier, pp. 53–73, 2007, (to appear).
[32] Rufus Isaacs, Differential Games. Wiley, 1965. Republished: Dover, 1999.
[33] Jifeng He, From CSP to Hybrid Systems, in: William Roscoe (Ed.), A Classical Mind: Essays in Honour of C.A.R. Hoare, Prentice Hall, 1994, pp. 171–189.
[34] Karl Henrik Johansson, Magnus Egerstedt, John Lygeros, Sastry Shankar, On the regularization of Zeno hybrid automata, Systems & Control Letters 38

(1999) 141–150.
[35] Stephen Kleene, Representation of events in nerve nets and finite automata, in: Claude Shannon, John McCarthy (Eds.), Automata Studies, Annals of

Mathematics Studies, vol. 34, Princeton University Press, 1956, pp. 3–41.
[36] Dexter Kozen, Kleene algebra with tests, Trans. Programming Languages and Systems 19 (3) (1997) 427–443.
[37] Patrick Lincoln, Ashish Tiwari, Symbolic systems biology: Hybrid modeling and analysis of biological networks, in: Rajeev Alur, George Pappas (Eds.),

Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2993, Springer, 2004, pp. 660–672.
[38] Nancy A. Lynch, Roberto Segala, Frits W. Vaandrager, Hybrid I/O automata, Information and Computation 185 (1) (2003) 105–157.
[39] Ernest Manes, David Benson, The inverse semigroup of a sum-ordered semiring, Semigroup Forum 31 (1985) 129–152.
[40] Robin Milner, Communicating and Mobile Systems: The π-calculus, Cambridge University Press, 1999
[41] Bernhard Möller, Complete tests do not guarantee domain. Technical Report 2005-6, Institut für Informatik, Universität Augsburg, 2005.
[42] Bernhard Möller, Kleene getting lazy, Science of Computer Programming 65 (2007) 195–214.
[43] Bernhard Möller, Peter Höfner, Georg Struth, Quantales and temporal logics, in: Michael Johnson, Varmo Vene (Eds.), Algebraic Methodology and

Software Technology, AMAST 2006, Lecture Notes in Computer Science, vol. 4019, Springer, 2006, pp. 263–277.
[44] William Rounds, Hosung Song, The φ-calculus: A language for distributed control of reconfigurable embedded systems, in: Oded Maler, Amir Pnueli

(Eds.), Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2623, Springer, 2003, pp. 435–449.
[45] Alberto Sangiovanni-Vincentelli, Thomas Henzinger, Bruce Krogh, Oded Maler, Manfred Morari, Costas Pantelides, Goerge Pappas, Tunc Simsec, Janos

Sztipanovits, Stavros Tripakis, Hybrid systems applications: An oxymoron?, Hybrid Systems: Computation and Control, Lecture Notes in Computer
Science, vol. 2034, Springer, 2001, pp. 5–6.

[46] ShankarSastry,GeorgeMeyer,ClaireTomlin, JohnLygeros,DattaGodbole,GeorgePappas,Hybridcontrol inair trafficmanagementsystems,Proceedings
of the Thirty-Fourth IEEE Conference on Decision and Control, IEEE Press, 1995, pp. 1478–1483.

[47] Steve Schneider, Jim Davies, Daniel Jackson, George Reed, Joy Reed, William Roscoe, Timed CSP: Theory and practice, Proceedings of the Real-Time:
Theory in Practice, REX Workshop, Springer, 1992, pp. 640–675.

[48] Michel Sintzoff, Iterative synthesis of control guards ensuring invariance and inevitability in discrete-decision games, in: Olaf Owe, Stein Krogdahl,
Tom Lyche (Eds.), From Object-Orientation to Formal Methods, Essays in Memory of Ole-Johan Dahl, Lecture Notes in Computer Science, vol. 2635,
Springer, 2004, pp. 272–301.

[49] Gheorghe Ştefănescu, Network Algebra, Springer, 2000
[50] Burghard von Karger, Temporal algebra, Mathematical Structures in Computer Science 8 (3) (1998) 277–320.
[51] Martin von Mohrenschildt, Closed form solutions of hybrid systems. CRL Report 371, Faculty of Engineering, McMaster University, 1999.

	Introduction
	Introductory example and basic definitions
	Trajectory-based model
	Basic algebra of hybrid systems
	Algebraic structure
	Adding proper jumps
	Finite and infinite iteration
	Purely finite and purely infinite elements
	Zeno effects

	Embedding hybrid automata
	The basic construction
	Composition of hybrid automata

	Safety and liveness
	Modularity and progress in time
	Time requirements
	Range assertions and tests
	A sufficient criterion for safety-closedness
	Temporal operators

	A case study
	Related work
	Conclusion and outlook
	References

