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SUMMARY

Persistence refers to the phenomenon in which
isogenic populations of antibiotic-sensitive bacteria
produce rare cells that transiently become multidrug
tolerant. Whether slow growth in a rare subset of
cells underlies the persistence phenotype has not
be examined in wild-type bacteria. Here, we show
that an exponentially growing population of wild-
type Escherichia coli cells produces rare cells that
stochastically switch into slow growth, that the
slow-growing cells are multidrug tolerant, and that
they are able to resuscitate. The persistence pheno-
type depends hierarchically on the signaling nucleo-
tide (p)ppGpp, Lon protease, inorganic polyphos-
phate, and toxin-antitoxins. We show that the level
of (p)ppGpp varies stochastically in a population of
exponentially growing cells and that the high
(p)ppGpp level in rare cells induces slow growth
and persistence. (p)ppGpp triggers slow growth by
activating toxin-antitoxin loci through a regulatory
cascade depending on inorganic polyphosphate
and Lon protease.

INTRODUCTION

Bacteria display remarkably high degrees of individuality or

phenotypic heterogeneity in populations of genetically identical

cells (Dubnau and Losick, 2006; Eldar and Elowitz, 2010; Lid-

strom and Konopka, 2010). This cell-to-cell variation increases

the probability that at least oneoffspringwill survive under a given

situation. In other words, one phenotype may be better adapted

to a given environment, whereas other phenotypes may be pre-

disposed to confer a higher fitness under certain other environ-

mental conditions. An example of this so-called ‘‘bet-hedging’’

strategy is the bacterial persistence phenomenon (Losick and

Desplan, 2008; Veening et al., 2008). Bacterial persistence was

initially discovered by JosephBigger, who explored howbacteria

were killed by penicillin (Bigger, 1944). Typically, when a growing

culture of genetically identical bacteria was exposed to a bacte-

ricidal antibiotic, the bulk of the population was rapidly killed.
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After a few hours of treatment, the killing rate decreased dramat-

ically, revealing the existence of rare cells, called persister

cells, which were less sensitive to the antibiotic (Bigger, 1944).

Descendants of persister cells were as sensitive to the antibiotic

as their ancestors, showing that bacterial persistence is a nonin-

herited, epigenetic trait (Bigger, 1944; Keren et al., 2004a).

Since the original discovery, bacterial persistence has been

observed in almost all bacteria investigated, including the

major pathogens Mycobacterium tuberculosis, Pseudomonas

aeruginosa, and Salmonella enterica. Unsurprisingly, bacterial

persistence has been implicated in many recurrent and chronic

infections (Allison et al., 2011; Lafleur et al., 2010; Lewis, 2007;

Mulcahy et al., 2010). The understanding of the mechanisms

underlying bacterial persistence is a prerequisite for the develop-

ment of new drugs that can reduce persistence. However, the

low frequency of persister cells (typically 10�4 to 10�6 of the bac-

terial population) has delayed the analysis of the phenomenon,

and perhaps because numerous genes have been associated

with the process, the molecular mechanisms leading to bacterial

persistence remain unknown.

That several bactericidal antibiotics were active only against

growing cells originally suggested that persisters might consti-

tute a subpopulation of slow growing cells (Levin and Rozen,

2006). Work in Escherichia coli on high persister mutants (hip)

indicated that persisters constitute a pre-existing subpopulation

of cells that is formed stochastically (Balaban et al., 2004). The

resulting phenotypic variability revealed bimodality of the growth

rate where the slow or nongrowing cells became tolerant to the

lethal action of the antibiotics (Balaban et al., 2004). Most of

the hip mutations mapped to the hipA locus (Moyed and Ber-

trand, 1983). HipA is a ‘‘toxin’’ encoded by the type II hipBA

toxin-antitoxin (TA) locus (Korch et al., 2003). Since then,

numerous research articles have highlighted that persistence

of the model organism E. coli depends on TA loci (Dörr et al.,

2010; Keren et al., 2004b; Maisonneuve et al., 2011; Shah

et al., 2006; Vázquez-Laslop et al., 2006). Generally, prokaryotic

TA loci code for two components, a stable toxin that inhibits cell

growth and a labile antitoxin that counteracts toxin activity. Inter-

estingly, toxin overproduction not only very efficiently inhibits

cell growth but also induces a nongrowing state from which

the cells can be rapidly resuscitated by the induction of

cognate antitoxin genes (Christensen-Dalsgaard and Gerdes,

2006; Christensen-Dalsgaard et al., 2010; Pedersen et al.,
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Figure 1. Bacterial Persistence Depends on PolyP,Lon-Mediated

Degradation of Antitoxins

(A) Exponentially growing cells of MG1655 (WT) and isogenic deletion strains

(D10TA, Dlon D(ppk ppx), and Dppx) were exposed to 1 mg/ml ciprofloxacin

(black bars) or 100 mg/ml ampicillin (gray bars). Percentage of survival after 5 hr

of antibiotic treatment was compared to that of the WT strain (log scale).

(B) Exponentially growing cells of MG1655 (WT), D10TA Dlon, and D(ppk ppx)

overexpressing PPK (by plasmid pCA24N::ppk) were exposed to 1 mg/ml of

ciprofloxacin. Percentage of survival after 5 hr was compared to that of a

control strain carrying the pCA24N vector plasmid (white bars). The bars show

averages of at least three independent experiments; error bars indicate SD.

(C) YefM and RelB were expressed from pEJM10 (pMG25::yefM) and

pCA24N::relB, respectively in WT, Dlon, and D(ppk ppx) strains. Strains were

grown in LB medium at 37�C, and at an OD600 of 0.3, 1 mM IPTG was added.

After 30min induction, aminoacidstarvationwas inducedby theadditionofSHX

(1 mg/ml), and samples for western blots were removed at the indicated times.

See also Figure S1 and Table S1.
2002). We previously reported that progressive deletion of the

ten type II TA loci encoding messenger RNA (mRNA) endonucle-

ases (mRNases) of E. coli was associated with a cumulative

reduction of persistence (Maisonneuve et al., 2011). Consistent

with the observation that Lon degrades all known type II anti-

toxins of E. coli, we found that the deletion of lon dramatically

reduced persistence. Based on these observations, we pro-

posed a model explaining the RNase-based persistence

phenomenon: the RNases encoded by TA loci are activated

stochastically by Lon-mediated degradation of the antitoxins

in a small subpopulation of growing cells (Maisonneuve et al.,

2011). This view was also supported by the observation that

Lon overproduction dramatically increased the persistence level

of wild-type (WT) cells, but not of cells lacking the ten mRNases.

Here, we show that WT E. coli cells stochastically switch into
slow growth, that the slow-growing cells exhibit antibiotic toler-

ance, and that they are able to switch back to rapid growth. We

also unravel the regulatory mechanism behind the persistence

phenomenon. We present evidence that (p)ppGpp triggers

persistence by activation of toxin-antitoxin loci through a regula-

tory cascade involving inorganic polyphosphate (PolyP) and

Lon. Remarkably, the stochastic induction of slow growth is

caused by fluctuations of the level of (p)ppGpp in single cells.

RESULTS

Bacterial Persistence Is Correlated with the Cellular
Level of Inorganic Polyphosphate
We previously described that type II TA loci and Lon protease

were both required for persistence of E. coli (Maisonneuve

et al., 2011). Indeed, strains lacking ten TA loci (D10TA) or Lon

exhibited highly reduced levels of persistence toward ciprofloxin

(105- and 280-fold, respectively; Figure 1A and Table S1 avail-

able online). Because Lon is responsible for degradation of

SulA, a cell-division inhibitor activated in response to DNA dam-

age (i.e., ciprofloxacin treatment), we first evaluated the involve-

ment of SulA in the observed phenotype by deleting sulA of

the Dlon strain. The Dlon DsulA strain still showed a massive

65-fold reduction of persistence toward ciprofloxacin, indicating

that, indeed, Lon is required for persistence (Figure S1A and

Table S1). Altogether, the contributions of Lon and the ten TA

loci in persistence were very similar (Table S1), supporting our

model that persistence depends on Lon-mediated degradation

of antitoxins (Maisonneuve et al., 2011).

That Lon protease controls bacterial persistence raised the

possibility that Lon is stochastically turnedONat a low frequency

(Maisonneuve et al., 2011). A straightforward explanation for

such switching could be that the number of Lon molecules fluc-

tuated in single cells. However, we did not observe significant

fluorescence variation of cells carrying a functional Lon-GFP

translational fusion inserted at the native lon gene serving as

the sole form of active Lon (see Supplemental Information and

Figures S1B and S1C).

The only known activator of Lon is inorganic polyphosphate

(PolyP), a linear polymer of many hundreds orthophosphate res-

idue (Kuroda et al., 2001). PolyP acts as a signalingmolecule that

binds to and directs Lon to degrade idling ribosomal proteins

during amino acid starvation. In E. coli, PolyP is synthesized by

polyphosphate kinase (PPK) and degraded by exopolyphospha-

tase (PPX) (Akiyama et al., 1992, 1993). To test the role of PolyP

in bacterial persistence, we measured the persistence level of a

D(ppk ppx) strain that has a very low level of PolyP (Crooke et al.,

1994; Kuroda et al., 1997). Interestingly, exponentially growing

cells of the D(ppk ppx) strain exhibited a dramatic 45- to 80-

fold reduction of persistence with two bactericidal antibiotics

(ciprofloxacin and ampicillin) that kill bacteria by two entirely

different mechanisms (Figure 1A and Table S1). A similar effect

was observed with the single ppk deletion mutant (Figure S1A).

Cells of the D(ppk ppx) strain also exhibited a significant reduc-

tion in persistence in stationary phase or when grown in a model

biofilm (Figures S1D and S1E).

Conversely, if PolyP programs Lon to degrade antitoxins, then

the persistence level should increase in cells with an increased
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Figure 2. Bacterial Persistence Is Correlated with the (p)ppGpp

Level

(A) Exponentially growing cells of MG1655 (WT), D(relA spoT), or spoT1strains

were exposed to 1 mg/ml ciprofloxacin (black bars) or 100 mg/ml ampicillin

(gray bars). The bars show cell survival after 5 hr of antibiotic treatment (as

percentage in log scale). See also Figure S1 and Table S1.

(B) Persistence toward ciprofloxacin as a function of growth rate. Different

steady-state growth rates in minimal medium were obtained by varying the

aMG/glucose ratio as described in Figures S2A and S2B.

(C) Exponentially growing cells of MG1655 (WT), D10TA, Dlon, and D(ppk ppx)

strains overexpressing RelA0 from plasmid pALS13were exposed to 1 mg/ml of
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level of PolyP. Indeed, a strain that accumulated PolyP because

it carries a deletion of ppx (Zhao et al., 2008) exhibited a dramat-

ically increased persistence level with both antibiotics used (Fig-

ure 1A). Thus, the persistence level correlated positively with the

cellular level of PolyP.

We used controlled overexpression of PPK from a plasmid to

increase the cellular level of PolyP. To minimize artifacts due to

PolyP toxicity, we used a level of inducer that did not significantly

change the cell growth rate. Mild overproduction of PPK in the

WTstrain resulted in a 13-fold increase in persistence (Figure 1B).

Overproduction of PPK in the D(ppk ppx) strain produced a

similar or even a higher level of persistence. These results

showed that increasing the PolyP level induced a high level of

persistence. Strikingly, however, increasing the PPK level in

the Dlon or D10TA strains did not significantly increase persis-

tence (Figure 1B). These results show that PolyP-induced persis-

tence depends on both Lon and TA loci. Therefore, we tested the

hypothesis that PolyP programs Lon to degrade antitoxins.

PolyP Programs Lon to Activate Toxin-Antitoxins
We measured the in vivo rate of degradation of an N-terminally

his-tagged YefM antitoxin (hereafter called YefM) in exponen-

tially growing cells. After 60min of induction, serine hydroxamate

(SHX) was added, and the approximate rate of YefM degradation

was determined (Figure 1C). SHX is a serine analog that causes

amino acid starvation by inhibiting aminoacylation of seryl-trans-

fer RNA (tRNA) (Tosa and Pizer, 1971). SHX therefore triggers the

stringent response and promotes PolyP accumulation (Kuroda

et al., 1997). In the WT strain, YefM had a half-life (t1/2) of �11’

(Figure 1C). YefMwas stabilized in aDlon strain (t1/2 > 30’), which

was consistent with previous observations (Maisonneuve et al.,

2011). Finally, YefM was stabilized in the D(ppk ppx) strain

(t1/2 > to 30’), showing that PolyP was also required for degrada-

tion of YefM (Figure 1C). A similar pattern was obtained with the

degradation of RelB antitoxin, showing that the requirement for

both Lon and PolyP was general (Figure 1C).

To support these in vivo analyses, we tested whether PolyP

stimulated Lon-mediated degradation of YefM in vitro. Indeed,

we found that PolyP was required for degradation of YefM by

Lon in vitro (Figure S1F). These results strongly support the

notion that, in E. coli, PolyP programs Lon to degrade antitoxins.

(p)ppGpp Is Required for Persistence
The PolyP concentration is controlled by (p)ppGpp that compet-

itively inhibits PPX (Kuroda et al., 1997). Consequently, we

measured the level of persistence of exponentially growing cells

of a D(relA spoT) strain. Indeed, this so-called (p)ppGpp0 strain

showed a massive decrease in persistence after ciprofloxacin

treatment (60-fold) and also showed a significant decrease after

ampicillin treatment (30-fold) (Figure 2A and Table S1). Similar

effects were obtained in stationary phase cultures and in a

biofilm model (Figures S1D and S1E).
ciprofloxacin (RelA0 has constitutive (p)ppGpp synthase I activity). Percentage

of survival after 5 hr was compared to that of control strains carrying the

pALS14 plasmid vector expressing an inactive truncated form of RelA (RelA00)
(white bars). The bars show averages of at least three independent experi-

ments; error bars indicate SD.



If indeed (p)ppGpp positively controls persistence, then cells

with a high (p)ppGpp level should exhibit increased levels of

persistence. RelA and SpoT are (p)ppGpp synthetases, whereas

SpoT is also a (p)ppGpp hydrolase (Gentry and Cashel, 1996).

SpoT hydrolase activity is attenuated by the spoT1 allele, while

leaving the synthase activity unaffected. Thus, cells carrying

the spoT1 allele exhibited an elevated steady-state level of

(p)ppGpp (�10-fold compared to WT) (Laffler and Gallant,

1974). Strikingly, the spoT1 strain had 12- and 30-fold increases

in persistence after treatment with ciprofloxacin and ampicillin,

respectively (Figure 2A).

The (p)ppGpp level varies inversely with the growth rate in

E. coli (Ryals et al., 1982). Given the above results, we hypothe-

sized that persistence should be correlated with the growth rate.

To challenge this inference, we measured the persistence level

as a function of growth rate. The growth rate was controlled by

varying the concentration of a-methylglucoside (aMG), a nonme-

tabolizable glucose analog. As expected, the ratio between

glucose and aMG determined the growth rate (Figures S2A

and S2B) (Hansen et al., 1975). Indeed, the persistence level var-

ied inversely with growth rate (Figure 2B). Altogether, our results

convincingly show that the level of persistence is positively

correlated with the (p)ppGpp level.

Increased (p)ppGpp Levels Induce Persistence by
Activating TA Loci via PolyP and Lon
To further investigate the involvement of (p)ppGpp in persister

cell formation, we used controlled overexpression of a constitu-

tively active form of RelA (i.e., RelA0) from a plasmid to artificially

increase the level of (p)ppGpp (Svitil et al., 1993). To minimize

artifacts due to (p)ppGpp toxicity, we used the leakiness of the

promoter to express RelA0; this level of expression did not signif-

icantly change the growth rate of the culture. The resulting mild

overproduction of RelA0 in the WT strain resulted in a 35-fold

increase in the level of persistence (Figure 2C).

In a similar way, the (p)ppGpp level was artificially elevated in

the D10TA, Dlon, and D(ppk ppx) strains, and their persistence

levels were measured. Interestingly, only modest increases

were observed (3-, 1.5-, and 2-fold, respectively) (Figure 2C).

These results showed that the (p)ppGpp-induced increase in

persistence depended on PolyP, Lon, and TAs.

Moreover, WT E. coli cells from carbon-starved biofilms

(a condition known to induce (p)ppGpp synthesis) exhibited a

strong, 50-fold increase of persistence toward ciprofloxacin (Fig-

ure S2C). Most importantly, this increase was not seen with the

isogenic D(relA spoT), D(ppk ppx), Dlon, or D10TA strains (Fig-

ure S2C). Finally, as also shown by other groups, we observed

that production of persisters was strongly dependent of the

growth stage (Figures S2D and S2E) (Keren et al., 2004a).

Together, these results supported that (p)ppGpp increased

persistence via PolyP-mediated activation of Lon to specifically

degrade antitoxins.

Stochastic Activation of Toxin-Antitoxin Transcription Is
Correlated with Persistence
Next, we investigated whether transcription of TA loci in single

cells correlated with cessation of growth and, hence, persis-

tence. For that purpose, we constructed transcriptional fusions
between two TA operons (yefM yoeB and relBE) and a gene

(gfp) encoding GFP (Figure 3A) and determined fluorescence

levels of individual cells during steady-state growth. As seen

from Figures 3B and S3A, only very few cells exhibited a

threshold fluorescence level higher than that of the majority of

the population. Statistical analysis of more than 150,000 cells

revealed that 2.67 3 10�4 (SD ± 7.29 3 10�5) of the population

had elevated TA transcriptional levels (Figure S3B). These results

showed that TA transcription was stochastically switched ON at

a low frequency in the population.

As ectopic induction of toxins is known to induce reversible

growth inhibition (i.e., dormancy), we next followed how TA

expression affected the growth rates of the individual cells. For

that purpose, cells from an exponential culture were introduced

in a microfluidic device and subjected to growth in rich medium

injected over a period of 80 min. Strikingly, high TA expression

was correlated with an almost complete cessation of cell growth

(Figure 3C and Movie S1).

We next directly observed the behavior of the cells having acti-

vated TA operon transcription toward a high dose of ampicillin

antibiotic using our microfluidic device. Interestingly, cells with

the highest levels of TA transcription did not lyse, even after

60 min of a high dose of ampicillin (500 mg/ml) (Figure 3D and

Movie S2). A statistical analysis of this scenario revealed

that 16 cells of 1,542 were fluorescent, and 15 (94%) of these

did not lyse after 120 min of a high dose of drug treatment

(Movie S3).

We then tested whether nongrowing cells could resume

growth after antibiotic treatment has ended. To do this, ampi-

cillin-treated cells were observed after the removal of ampicillin

by the injection of fresh medium. Remarkably, after a latency

period of 1.5 hr, the cell shown in Figure 3D (Movie S2) began

to elongate and finally divided to produce a microcolony. These

results showed that TA locus transcription was stochastically

switched ON at a low frequency and thereby triggered a slow-

growing, drug-tolerant state from which the cells could regrow.

Stochastic Variation of the (p)ppGpp Levels in Single
Cells
To directly test the possibility that persistence is controlled by

stochastic variation of (p)ppGpp levels, we aimed to develop a

single-cell fluorescent reporter protein fusion as a proxy of

(p)ppGpp. Testing of a number of (p)ppGpp-activated pro-

moters fused transcriptionally to GFP was not successful

(data not shown). We then constructed an rpoS-mcherry

translational fusion because of the dual effect of (p)ppGpp

on RpoS expression level: (1) (p)ppGpp stimulates rpoS tran-

scription and (2) (p)ppGpp inhibits proteolytic degradation of

RpoS (Battesti et al., 2011). Thus, (p)ppGpp simultaneously in-

duces rpoS transcription and accumulation of RpoS (Fig-

ure 4A). We engineered an E. coli strain in which rpoS-mcherry

translation fusion served as the sole form of active RpoS.

Analysis of exponentially growing cells harboring this fusion

revealed that a few cells had a fluorescence level higher

than that of the bulk of the population (Figure 4B). As judged

by statistical analysis of more than 150,000 cells, these rare

cells occurred at a frequency of 4.86 3 10�4 (SD ± 6.46 3

10�5) (Figure S4A).
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Figure 3. Toxin-Antitoxin Gene Transcription in Single Cells Is Correlated with Persistence

(A) Genetic setup of the fluorescent reporter used to monitor TA transcription using yefM yoeB as the model.

(B) Microscopic snapshot of MG1655 yefM yoeB:: gfp cells taken from an exponentially growing flask culture. (i) phase contrast; (ii) yefM yoeB::gfp fluorescence;

(iii) membrane stained with the fluorescent FM-959 dye; (iv) merged view of (ii) and (iii).

(C and D) Exponentially growing cells of MG1655 yefM yoeB:: gfp analyzed by microfluidics (see Experimental Procedures).

(C) Time-lapse microscopy images showing a growth-arrested cell (arrow) revealing a high level of TA transcription (fromMovie S1). The first image is the overlay

of phase-contrast and fluorescence image showing the initial level of yefM yoeB expression (separate phase-contrast and fluorescence images are shown in

Figure S3C). The following time points show phase-contrast images.

(D) Resuscitation of a growth-arrested cell with an initial high level of TA transcription. Time-lapse microscopy images showing persistence of a cell with a high

level of yefM yoeB transcription (from Movie S2). The first image is the overlay of a phase-contrast and fluorescence image showing the initial level of yefM

yoeB::gfp expression (separate phase-contrast and fluorescence images are shown in Figure S3D). The antibiotic content (ampicillin; 0.5 mg/ml) of the growth

medium in the microfluidic device is indicated at the bottom of (D). The arrow indicates the bacterium having the highest level of yefM yoeB transcription (scale

bar, 4 mm) (t = time in min).

See also Movie S3.
To obtain independent support that the above fluctuations in

rpoS-mCherry expression indeed reflected variations in the level

of (p)ppGpp, we also employed a promoter that was negatively

regulated by (p)ppGpp. For that purpose, we used an rrnB P1::

gfpunstable construction that expressed an unstable GFP variant

(Shah et al., 2006; Sternberg et al., 1999) (Figure 4A). rrnB P1 is

very active during exponential cell growth but is strongly inhibited

by (p)ppGpp (Barker et al., 2001; Gourse et al., 1986) (Figure 4A).

We confirmed that, in exponentially growing cells harboring rrnB

P1::gfpunstable, most of the bacteria were bright, whereas a few

remained dim (Figure 4C). Finally, the combination of the two

fluorescent reporters revealed a high coincidence of cells exhib-

iting a high RpoS-mCherry level and a low level of GFP (Fig-

ure 4D). This result strongly suggested that the RpoS-mCherry

translational fusion reliably reported the intracellular level of

(p)ppGpp. We conclude that the (p)ppGpp levels varied stochas-

tically in single cells in an exponentially growing E. coli culture.
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Stochastic Variation of (p)ppGpp Levels Triggers Slow
Growth and Persistence
We tested the hypothesis that stochastic variation of the

(p)ppGpp levels in single cells induced the persistent, drug-

tolerant state from which the cells could be resuscitated. Cells

of an exponentially growing culture harboring rpoS-mcherry

were introduced in the microfluidic device and subjected to

growth in rich medium over a period of 80 min. Strikingly, cells

with a high level of RpoS-mCherry neither grew nor divided (Fig-

ure 5A and Movie S4). Next, we managed to directly observe the

response of cells with high RpoS-mCherry toward a high dose of

ampicillin. Remarkably, the cell that had the highest level of

mCherry (indicating high (p)ppGpp) did not lyse, even after

60 min of ampicillin treatment (Figure 5B andMovie S5). A statis-

tical analysis of this strain revealed that 18 cells of 1,868 were

fluorescent, and 16 (88%) of these did not lyse after 120 min of

a high dose of drug treatment (Movie S6).



Figure 4. The (p)ppGpp Level Varies Sto-

chastically in Single Cells

(A) Genetic setup and regulation of the fluorescent

reporters used as a proxy of the level of (p)ppGpp

in single cells (see Results for details).

(B) Snapshot of exponentially growing cells of

MG1655 carrying an rpoS::mcherry translational

fusion (i) phase contrast, (ii) RpoS-mCherry fluo-

rescence, and (iii) overlay of (i) and (ii).

(C) Snapshot of exponentially growing cells of

MG1655-ASV carrying an rrnB P1::gfpunstable

transcriptional fusion. (i) Phase contrast, (ii) rrnB

P1::gfpunstable expressed fluorescence, (iii) mem-

brane stained with FM-959, and (iv) overlay of (ii)

and (iii).

(D) Microscopic analysis of an exponentially

growing cells harboring both transcriptional

rrnBP1::gfpunstable and translational rpoS::mcherry

fusions. (i) Phase contrast, (ii) rrnB P1::gfpunstable,

(iii) rpoS::mcherry, and (iv) overlay of (ii) and (iii).

Scale bar, 4 mm.
We then tested whether this nongrowing cell could resume

growth after removal of Ampicillin. After a latency period of

1 hr, the cell started to elongate and finally gave rise to prog-

eny cells (Figure 5B and Movie S5). Together, these results

showed that the (p)ppGpp levels stochastically fluctuated in

the population, thus triggering cells to enter a reversible

slow-growing and persistent state. See Extended Results for

more information.

DISCUSSION

Our work shows that exponentially growing WT E. coli cells

become persistent by stochastic switching into a slow-growing

state from which they can regrow. Previously, a persistence

mechanism involving stochastic switching into dormancy was

inferred from the analysis of an E. coli strain carrying a mutation

in the hipA toxin gene that increased persistence �100-fold

(Black et al., 1991; Moyed and Bertrand, 1983), thereby facili-

tating the microscopic analysis of the persistence phenotype

at the single-cell level (Balaban et al., 2004; Gefen et al.,

2008; Rotem et al., 2010). Thus, the general inference that

persistence is caused by a small fraction of cells that grow

slowly has hereby gained experimental support. Slow growth

readily explains bacterial multidrug tolerance because the

cellular targets corrupted by lethal antibiotics are much less

vulnerable in slow-growing than in fast-growing cells (Lewis,

2010; Tuomanen et al., 1986).
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It was previously suggested that bacte-

rial persistence is a ‘‘bet-hedging’’ strat-

egy by which a bacterial culture prepares

itself for future but unknown insults. Our

observations show that persistence

emerges from stochastic events that

render bacterial cells transiently multi-

drug tolerant. Mathematical modeling

suggested that stochastic switching

compared to sensing mechanisms yields
a superior survival rate when the environment changes infre-

quently (Kussell and Leibler, 2005). As such, persistence may

be a trait that has been selected for during evolution. We believe

that the mechanism that we have unraveled here is consistent

with a model stating that persistence is an evolved trait.

Regulatory Cascade Underlying Bacterial Persistence
Previously, we established that TA loci and Lon were required

to maintain a WT level of persistence in E. coli (Maisonneuve

et al., 2011). Here, we extended these ensemble level measure-

ments of persistence to include PolyP (Figure 1) and (p)ppGpp

(Figure 2). Overproduction of PolyP or (p)ppGpp led to dramatic

increases in persistence of exponentially growing cells and

cells growing in a biofilm. Persistence depended hierarchically

on (p)ppGpp, PolyP, Lon, and toxin-antitoxins and allowed us

to generate a model that we tested at the single-cell level (Fig-

ure 6). It should be noted that (p)ppGpp has multiple direct tar-

gets (Kanjee et al., 2012), and we do not exclude that (p)ppGpp

may be involved in persister cell formation by mechanisms that

do not involve the PolyP, Lon, and TA-dependent regulatory

pathway.

The finding that high (p)ppGpp levels can mediate drug toler-

ance has been noted before. Thus, controlled induction of the

relA gene led to inhibition of phospholipid and peptidoglycan

synthesis and a simultaneous dramatic increase in penicillin

tolerance (Rodionov and Ishiguro, 1995). Korch et al. (2003)

observed that the high persistence level induced by a hipA
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Figure 5. (p)ppGpp Triggers a Nongrowing and Persistence State

Exponentially growing cells of MG1655 rpoS::mcherry were introduced into a microfluidic device and were subjected to growth medium.

(A) Time-lapse images showing cells carrying rpoS::mcherry; the arrow indicates a growth-arrested cell with a high level of RpoS-mCherry (from Movie S4). The

first image was generated by overlay of phase-contrast and fluorescence images (separate phase-contrast and fluorescence images are shown in Figure S4B).

(B) Time-lapse images showing persistence of cells of MG1655 rpoS::mcherry expressing a high level of RpoS-mCherry (from Movie S5). The first image is the

overlay of phase-contrast and fluorescence images showing the initial level of RpoS-mCherry (separate phase contrast and fluorescence images are shown in

Figure S4C). Cells were grown upon given growth medium at the indicated time. The arrow indicates a cell with a high level of RpoS-mCherry (scale bar, 4 mm.)

(t = time in min).

See also Movie S6.
allele (hipA7) depended on both relA and spoT and suggested

that HipA7 increased persistence by stimulation of (p)ppGpp

synthesis. Both of these observations are consistent with our

findings (Figure 2C) but did not offer an explanation of the

underlying molecular mechanism of how persistence was

generated.

Interestingly, ectopic induction of WT hipA increased persis-

tence, and the period of growth arrest increased with increased

levels of HipA (Rotem et al., 2010). Moreover, the level of HipA

had to exceed a threshold before persistence became domi-

nant. Close to the threshold value, HipA induced a condition

at which persisters and growing cells coexisted (Rotem et al.,

2010).

Bacterial Persistence Caused by Phenotypic Switching
The model presented in Figure 6 predicts that TA transcription

and (p)ppGpp levels should be high in single cells at a frequency

comparable to that of persister cells (i.e., �1/10,000 cells) and,

importantly, correlate with slow growth and drug tolerance of

the single cells. Indeed, transcriptional fusions between two

representative TA loci and gfp revealed that the ON rate of TA

locus transcription was similar to that of persister cell frequency

(Figure 1A and S3B). Moreover, TA locus ‘‘ON’’ cells grew slowly

or not at all (Figure 3C), and these cells were drug tolerant and

able to resume growth after removal of the drug (Figure 3D). As

with TA operon transcription, the ON rate of the rpoS::mcherry

fusion [(p)ppGpp reporter] (�5 3 10�4) was comparable to
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that of the persistence frequency (�1 3 10�4) and correlated

with slow growth and drug tolerance of single cells (Figures

5A and 5B). This result strongly supports that the (p)ppGpp

level controls persistence by peaking at a low frequency in

single cells.

The level of persisters is strongly dependent on the growth

phase (Figures S2D and S2E), being very low in early exponential

phase and peaking at the midexponential growth phase (Figures

S2D and S2E). It is thus possible that the very few persisters de-

tected in early exponential phase were formed in the stationary

phase, which is consistent with the observation that keeping

the cells in early exponential phase leads to a gradual dilution

of the persisters (Keren et al., 2004a). Therefore, we tested

whether this was also the case under our experimental condi-

tions. We found that keeping the cells in midexponential phase

did not lead to dilution of the persistence level, showing that,

under these conditions, persister cells indeed form de novo

(Figure S2F).

The molecular basis of the apparent stochastic variation of the

(p)ppGpp level in single cells can only be speculated upon. How-

ever, a parsimonious and therefore attractive model is that rare

cells in the population encounter starvation (‘‘microstarvation’’)

that triggers (p)ppGpp synthesis and thus persistence. This sug-

gestion is consistent with the strong growth-phase dependency

of the persistence level discussed above (Figures S2D and S2E).

Interestingly, single-molecule tracking experiments showed

that RelA is on the ribosome under nonstarved conditions but



Figure 6. Molecular Model Explaining Bacterial Persistence

RelA or SpoT synthesize (p)ppGpp that inhibits exopolyphosphatase (PPX),

the cellular enzyme that degrades PolyP. PolyP is constitutively synthesized by

polyphosphate kinase (PPK). PolyP combines with and stimulates Lon to

degrade the 11 antitoxins of E. coli K-12, thereby activating the toxins that

inhibit translation, and inhibits cell growth. The arrow from the toxin to the TA

promoter (indicated by an arrow pointing right) indicates that excess toxin

([toxin] > [antitoxin]) derepresses the TA promoter that, in turn, may lead to

rapid quenching of toxin activity as a prerequisite for resuscitation of persister

cells (Cataudella et al., 2012) (see the Discussion for further details).
stays off the ribosome for an extended period of time after acti-

vation by amino acid starvation (English et al., 2011). Thus, a

molecular mechanism may keep RelA active by preventing it

from reuniting with the ribosome once it has come off and thus

may contribute to an increased level of (p)ppGpp in single cells.

Remarkably, RelA is positively stimulated by (p)ppGpp, thereby

invoking a positive feedback loop in the synthesis of (p)ppGpp

(Shyp et al., 2012). Such feedback enables fast amplification of

a small input signal and thus could generate the molecular basis

of the heterogeneity of the (p)ppGpp levels in single cells (Fig-

ure 6). According to our model, such fast amplification of

(p)ppGpp would in turn amplify both intrinsic (i.e., decrease tran-

scription and translation rates) and extrinsic noise (fluctuation of

PolyP resulting in Lon activity) that may contribute to activation

of toxins and thereby cessation of growth and persistence.

Interestingly, RelMtb ((p)ppGpp synthetase I) is required for the

long-term survival and persistence of M. tuberculosis in mice

(Dahl et al., 2003; Primm et al., 2000). Moreover, a positive feed-

back loop generates bistable induction of Rel, the main protein

responsible for stringent response inM. smegmatis, thus offering

a possible explanation for the heterogeneity of growth rates and

the high persistence levels seen with mycobacterial populations

(Ghosh et al., 2011; Sureka et al., 2008).

Recently, Amato et al. (2013) proposed a model explaining

how the ‘‘(p)ppGpp network’’ may lead to fluoroquinolone

persistence. Their model was based on observations obtained
during diauxie—that is, during growth on a mixture of two

different carbon sources (often two sugars). In the transition

phase between the utilization of the two carbon sources, the

cells encountered carbon starvation stress and therefore elicited

the stringent response (i.e., (p)ppGpp synthesis) (Harshman and

Yamazaki, 1971).Therefore, the cells transiently entered slow

growth and, hence, became tolerant to ciprofloxacin (Amato

et al., 2013).

Even if we assume that both models seeking to explain persis-

tence were valid (i.e., microstarvation and glucose starvation

during diauxie), the regulatory cascade suggested by Amato

et al. (2013) was conceptually different from our model, which

was based on the observation that (p)ppGpp stochastically

switched ON in unstressed cells. In contrast, Amato et al.

(2013) suggested that diauxie-induced persistence depended

not only on (p)ppGpp but also on the transcription factor DksA

and nucleoid-associated proteins that contribute to DNA

supercoiling.

We believe that the two models are not mutually exclusive

because they emerged from observations obtained in two

entirely different environments (unstressed and stressed cells).

Finally, we find it attractive to propose that stochastic activation

of chromosomally encoded toxin-antitoxins triggered by

(p)ppGpp may also actively contribute to the stress-induced,

(p)ppGpp-dependent persistence observed by Amato et al.

(2013) during diauxie.

Persistence, Virulence, and the Stringent Response
In general, virulence of bacterial pathogens depends on

(p)ppGpp (Dalebroux et al., 2010). During pathogenesis, bacteria

often form biofilms that increase their survival during harsh con-

ditions as in a host organism, for example. Deep within biofilms,

bacteria have limited access to nutrients and therefore increase

their levels of (p)ppGpp. Consistently, multidrug tolerance of

P. aeruginosa and E. coli grown in biofilms depended on

(p)ppGpp (Bernier et al., 2013; Nguyen et al., 2011).We observed

here that amino acid starvation failed to induce persistence in

biofilms of E. coli unable to synthesize (p)ppGpp—lacking PolyP,

Lon, or ten TA loci (Figure S2C)—supporting the conjecture that

our model is valid also in more realistic settings.

Persistence Outgrowth
To generate viable offspring, cells in the persistent state must be

able to resume growth. Therefore, cognate antitoxinsmust be re-

plenished in excess of toxin when the signal that generates the

high (p)ppGpp levels vanishes. Interestingly, in all cases tested,

transcription of TA operons is regulated by a mechanism called

conditional cooperativity (Afif et al., 2001; Garcia-Pino et al.,

2010; Overgaard et al., 2008; Winther and Gerdes, 2012). Condi-

tional cooperativity refers to the ability of the toxin to function

both as corepressor and derepressor of its cognate TA operon.

When [antitoxin] > [toxin], the TA complex binds tightly to the

TA promoter and strongly represses the operon. However,

when [antitoxin] < [toxin], the toxin destabilizes the promoter-

bound TA complex and thereby induces strong transcription of

the operon (Overgaard et al., 2008; Winther and Gerdes, 2012).

In rapidly growing, nonstressed cells, [antitoxin] > [toxin], TA

operons are repressed and toxin activity is quenched by the
Cell 154, 1140–1150, August 29, 2013 ª2013 Elsevier Inc. 1147



excess antitoxin. However, during nutritional stress or in

persister cells, the high (p)ppGpp level destabilizes the antitoxin

due to rapid Lon,PolyP-mediated degradation and thereby

derepresses TA operon transcription that, in turn, leads to

increased synthesis rates of both toxin and antitoxin. Obviously,

for a toxin to be active in a persister cell, the antitoxin degrada-

tion rate must be higher than its synthesis rate. Mathematical

modeling argued that conditional cooperativity functions to

rapidly quench toxin activity when the signal (i.e., high levels of

(p)ppGpp) that triggers antitoxin degradation disappears

(Cataudella et al., 2012). Other molecular events required for

resuscitation of persister cells can only be speculated upon.

However, our model raises the possibility that the activity of

the Lon,PolyP complex may be negatively regulated. Alterna-

tively, the Lon,PolyP complex is sufficiently unstable as to allow

for its rapid inactivation when the (p)ppGpp level drops to the

basal level.

This work shows that WT bacteria become persistent by

temporarily switching into slow growth, a switch that allows the

bacteria to evade eradication by multiple antibiotics. We also

reveal the regulatory network behind the switching phenotype

and establish that (p)ppGpp is at the top of the regulatory

cascade that results in the triggering of toxin activity and stasis.

We believe that these results for several reasons are important.

Are similar or related mechanisms operational in pathogenic

bacteria? If so, can we exploit the knowledge to combat persis-

tent infections? We suggest that inhibitors of (p)ppGpp-synthe-

sizing enzymes could have a future as useful drugs, and the

search for such potential antibiotics has already begun (Wexsel-

blatt et al., 2010, 2012).

EXPERIMENTAL PROCEDURES

Bacterial Strains and Plasmids

Bacterial strains and plasmids are described in the Supplemental Information

and are listed in Table S2. DNA oligonucleotides are listed in Table S3.

Persistence Assay

Persistence was measured as described previously (Maisonneuve et al., 2011)

and is described in detail in the Supplemental Information.

PPK Overexpression and Persistence

WT and an isogenic E. coli strain harboring pAC24N::ppk were grown in LB

medium but with the addition of 10 mM isopropyl b-D-1-thiogalactopyranoside

(IPTG) for 2.5 hr. At this level of induction, the growth rate was identical to that

of the same culture without IPTG (data not shown). Aliquots of the culture were

subjected to antibiotic (ciprofloxacin), and persistence was determined. The

value was then compared to that of control strains carrying the empty vector

pCA24N treated in a similar way.

RelA Overexpression and Persistence

WT and derivative E. coli strain harboring pALS13 (Plac::relA
0) were grown in

rich medium for 2.5 hr without inducer. Then, aliquots of cells were subjected

to antibiotic (ciprofloxacin), and persister cell formation was determined as

described in the Supplemental Information. The value was then compared to

that of control strains carrying the pALS14 plasmid vector expressing an inac-

tive truncated form of RelA (RelA00) treated in a similar way.

Microscopy

For phase contrast and fluorescence microscopy, cells were grown in LB to

midexponential phase at 37�C, centrifuged, resuspended in M9 medium con-

taining 103 diluted LB medium, and mounted on prewarmed microscope
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slides covered with a thin film of 1.2% agarose (in a 103 diluted LB in M9

medium). Cell membrane and DNA were visualized by staining with FM-595

and DAPI, respectively. Images were acquired with a Cool-Snap HQ CCD

camera (Roper Scientific) attached to a Nikon Eclipse Ti-U microscope. The

images were acquired and analyzed with Metamorph 6. Final image prepara-

tion was performed in ImageJ.

Microfluidic Assay and Device

Cells were grown in LB to midexponential phase at 37�C, centrifuged, resus-
pended in a 103 diluted LB in M9 medium, and mounted on prewarmed

agarose-based microfludic device (for more information, see Supplemental

Information). The microfluidic device was assembled in a heating chamber

(37�C) attached to the microscope. Medium (M9 medium supplemented

with a 10-fold diluted LB with or without 500 mg/ml of ampicillin) perfusion

was accomplished by gravity at a constant rate of �5–10 ml/s. During medium

transition, medium was injected manually by supplying two times the volume

of the chamber with a 2 ml syringe to minimize the time required for the

drug (i.e., ampicillin) to reach the cells. For details, see the Supplemental

Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, three tables, and six movies and can be found with this article online

at http://dx.doi.org/10.1016/j.cell.2013.07.048.
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