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Abstract 

The dissolution of supercritical CO2 in formation water is one of the main trapping mechanisms for CO2 storage in saline aquifers. 

We develop an analytical solution for one-dimensional flow of CO2 in a fracture with dissolution into the surrounding matrix. The 

solute in the matrix is transported perpendicular to the fracture by molecular diffusion. We show that there is a time-scale when the 

mass transfer from dissolution and advection in the fractures is comparable – after this, there is significant dissolution of the 

injected CO2 and the transport through the fracture is slowed down. This time-scale is typically of order 1 day, implying that 

dissolution is significant for CO2 injection into fractured aquifers. This analysis suggests that dissolution may be a significant long-

term trapping mechanism for fractured reservoirs. Although the reservoir volumes into which the CO2 must be injected will be 

huge, the CO2 will rapidly dissolve and hence is stored safely. We conclude by discussing dissolution as a potential permanent 

storage mechanism in fractured aquifers and the design of CO2 injection in such systems. We compare analytical and numerical 

solutions for a single fracture. The numerical solution also accommodates transport of the solute in the fracture plane and confirms 

that the analytical analysis is a very close approximation of the full three-dimensional problem for simple fracture geometries. The 

numerical model allows for two-phase flow and accounts for mutual dissolution of CO2 and water. The solution to this problem is 

mathematically similar to work on single-phase tracer flow [1,2,3] and heat propagation in a fractured environment, but is new in 

its application to CO2 storage in geological formations. 
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1. Introduction and background 

The last decade of intense research and good performance of major pilot injection sites has shown that CCS is a 

very promising technology to reduce human CO2 emissions. Long term storage of CO2 can therefore be an important 

part of future, less CO2 emitting, energy sources. 

The storage part of CCS depends on the successful trapping of injected CO2 in porous rocks in the subsurface. The 

trapping mechanisms have been identified to be structural, capillary, dissolution, chemical, and residual trapping. 

They reflect the mutual influence of geological environment and physical flow processes on the overall storage 

process. All trapping processes happen at the same time and influence each other, but with changing strength, 

depending on many factors such as pressure and temperature gradients, fluid saturations, rock chemistry, and 

structure of the porous rock matrix. For smaller and homogenous systems, the basic characteristics are well 

understood. To a certain level of accuracy they could be repeated in laboratory experiments and numerically 
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simulated. But, the step up to lager models with a heterogeneous description of the geology that simulate coupled 

processes over millenniums is still a major challenge. In this paper we study the dissolution of CO2 in brine in a 

porous rock containing fractures. 

The occurrence of natural fractures in sedimentary rocks as potential storage formations is widespread. At the 

Weyburn, In Salah, Snøhvit and Spraberry CO2 storage sites fractures have already been described [4,5]. It is likely 

that many future storage sites will contain fractures. This is a challenge for both characterizing efforts and CO2 flow 

simulations. Fractures provide conductive preferential pathways for CO2 flow and may therefore reduce the storage 

capacity of the aquifer [6]. Consequently, an operator would need to abandon an otherwise suitable storage site if 

there would be widespread CO2 conducting faults and fracture. However, fractures also allow a large surface area 

between CO2 and water to develop, which fosters dissolution of the CO2 into the water contained in the matrix. In any 

situation, to what extend fractures have an impact on CO2 storage and the long term behavior of such systems has 

been addressed sparsely and only qualitatively so far. 

A number of analytical concepts have been developed to evaluate the mathematically similar problem of 

radioactive tracer flow between single fractures or simple fracture geometries and the bulk matrix. Bodine et al. [7,8] 

give an extensive review of solute transport in fractured aquifers. All models of solute transport in Bodine’s review 

treat transport by molecular diffusion as single phase flow; two-phase flow and the role of capillary entry pressure are 

therefore not accounted for. Tang et al. [1] developed an analytical solution for transport along a plane single fracture 

and accounted for molecular diffusion from the fracture into the matrix. Sudicky and Frind [9] extended the single 

fracture solution for a set of parallel fractures. Graf and Simmons [10] additionally accounted for fluid density 

variations and developed a modified velocity term for flow in a vertical fracture. Tsang [3] extended a particle-

tracking method from Yamashita and Kimura [11] from infinite matrix to finite rock matrix blocks to calculate tracer 

transport in fractures with molecular diffusion into the matrix. However, this work did not consider two separate fluid 

phases with continuous injection of one phase. On the other hand, for multi-phase flow, there is a large body of 

studies that document the role of molecular diffusion as part of oil recovery mechanisms in fractured reservoirs (see 

e.g. [12-15]). 

With respect to CO2 storage, the contribution of molecular diffusion to CO2 transport has been evaluated mainly 

for convection due to density differences between the fluid phases. CO2 dissolves in brine and changes the bulk brine 

density over time in such a way that CO2 saturated brine becomes heavier than the untainted brine. The heavier CO2-

brine solution triggers a downwards directed movement leading to the onset of convection. These analyses assume 

unfractured homogeneous media [16,17]. 

To summarize we can say that existing analytical solutions for single-phase solute tracer flow cannot be simply 

applied to our problem. We consider in our investigation advective two-phase flow of water and CO2 through a single 

fractures, accounting simultaneously for molecular diffusion of CO2 from the fracture to the matrix where it dissolves. 

To evaluate the impact of this process on solubility trapping of supercritical CO2 we formulate an analytical solution 

for a case with an infinite matrix. To support our concept we performed conceptual numerical simulations with a 

finite difference simulator using a fine gridded mesh that is populated with reservoir parameters qualitatively similar 

to properties from the In Salah CO2 storage site in Algeria. Finally we discuss further implications of our work and 

how we plan to extend our conceptual model to more complicated systems. 

 

2. Model geometry 

In this work, we study the injection of incompressible CO2 into a porous matrix that contains a single horizontal 

fracture. The problem is sketched in Figure 1. Injected CO2 flows through a single horizontal fracture. The 

supercritical CO2 flows in its own phase and fully saturates the initially brine-saturated fracture. Where CO2 is present 

in the fracture, we assume a constant saturation of Sg=1 for the CO2 phase. The high capillary entry pressure prevents 

CO2 from entering the matrix in its own phase. It is only the concentration gradient that allows CO2 to move from the 

fracture into the matrix by the process of molecular diffusion. CO2 dissolves instantaneously in the brine saturated 

matrix. For our analytical solution we consider molecular diffusion acting perpendicular to the fracture only. To 

address this problem, we present in chapter 3 an analytical solution for an assumed infinite matrix block. 
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Figure 1: Sketch of CO2 flowing through a single horizontal fracture that is embedded in an infinite matrix. The 

molecular diffusion of CO2 takes place perpendicular to the horizontal fracture plane. 

3. The analytical solution 

We present a shortened mathematical derivation of the analytical solution. First, we invoke conservation of mass 

in and express the volumetric flow rate Q [m
3
s

-1
] for the flowing CO2 at the inlet of the fracture as sum of advective 

flow through the fracture space and molecular diffusive flow from the fracture into the matrix, 
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t’ is the time at which CO2 first arrives and a is another auxiliary variable. We will derive the auxiliary variables a 

and b later in this section. The second term on the right hand side of Equation 2 describes the total molecular 

diffusive flux from start of the injection at time 0 to the location of the CO2 front after time t. As next step, we 

evaluate the location of the front at early time when the front speed corresponds to the volumetric flux q and late time 

when the front speed is approaching a value of zero. To achieve this, we perform a Laplace transformation, use the 

convolution theorem, the complementary error function (details will be published in an upcoming publication), and 

solve for v(t). 

For the early time situation with v(t) � q, the front speed of CO2 can be estimated to be similar to the injection rate. 

The late time behaviour with v(t) � 0 can be expressed: 
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Next, we will derive the auxiliary variables a and b. We calculate the change in CO2 concentration by molecular 

diffusive mass transport with Fick’s First Law, 
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c [mol m
-3

] is the concentration of CO2, D [m
2
s

-1
] is the molecular diffusion coefficient in the matrix and y the 

position of the CO2 front. The flux per unit length of fracture then yields to, 
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w is the fracture width. After a series of algebraic transformations and introducing boundary conditions (7a,b) we 

obtain for the concentration c: 
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The initial boundary conditions for this solution are, 
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where c0 is the source concentration. Next, we insert Equation (6) in (5) and get the flux F per unit length y, 
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With the contact area A between the fracture and matrix domain area, A = �w (aperture x width), we find: 
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Now we are in the position to look at a first estimate of implications from the above derived solution in Equation 

(12). Let us therefore consider molecular diffusion that is significant for a time 

1≈πtb
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To do this, we insert equation (12) and obtain the expression, 
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As the final expression in this chapter and estimate for the time t, we derive Equation (15) after rearranging, 
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This expression for time is independent of rate. This in itself is a rather interesting derivation. 

4. Numerical simulations 

We built a 2D model that is discretised into 200 x 1 x 90 blocks, see Figure 2. The matrix grid blocks have a size 

of 0.1m in each direction (x, y, and z) and a porosity of 20%. The horizontal fracture is represented by a single row of 

grid blocks, placed in the middle of the model. The fracture blocks have an aperture of 1mm and a porosity of 100%. 

These properties give the model a surface area of 1.8m
2
 between the fracture and matrix domain. The resulting pore 

volume of the entire model is 3.6m
3
. The matrix grid blocks have a permeability of 10x10

-14 
m

2
 (10mD) while the 

fracture has a permeability of 4x10
-12

 m
2
 (4 Darcy). Initially the simulation model is completely filled with brine. 

Supercritical CO2 is injected through a vertical well located in the twentieth row on the left hand side. For reasons of 
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pressure and mass balance we placed a water producer in the last row on the right hand side. We used a depth of 

1000m for the top layer of the model and an initial pressure of 100 bars to ensure a supercritical pressure- and 

temperature regime for the CO2 throughout the numerical experiment. The CO2-injector is rate controlled and 

operates with a bottom hole pressures limit of 30MPa (300 bar). The water producer is controlled by a reservoir fluid 

volume rate target of maximum 10 m
3
 per day. Both wells are completed over the interval from layer 30 to layer 60. 

The mutual dissolution of CO2 and water is calculated according to Spycher and Pruess [18]. The relative 

permeability curves for water-CO2 and capillary pressure data are taken from experiments with sandstone cores from 

the In Salah storage site in Algeria. From the same experiments we applied capillary pressure data for the matrix 

blocks. The relative permeability curve for the fracture is of X-shape. The molecular diffusion is driven by the 

concentration gradient as expressed in Fick’s law. We used a value of 10
-10

 m
2
s

-1
 which is a common value and 

similar to the value used in the analytical calculation. In our case we deal with cross phase molecular diffusion as CO2 

molecules migrate from the pure CO2 phase into the water phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: 2-dimensional simulation grid of 20 x 9 m
2
 with one CO2 injector and one water producer. The model is 

initially filled with brine. 

5. Results 

When we use the above derived Equation (15) and insert typical values as summarised in Table 1, we are able to 

calculate a time t after which the diffusion and dissolution of CO2 is significant. In this case it is approximately one 

day. It means that dissolution of CO2 in the presence of a fracture takes place rather quickly. 

 

Table 1: Standard CO2 and fracture parameters used to evaluate Equation (15). 

 

CO2 density (own phase) �0 concentration c0 aperture � diffusion coefficient D 

700 kgm
-3

 20 kgm
-3 10

-4
 m (100�m) 10

-10
 m

2
s

-1 

 

To confirm the effect of enhanced dissolution of CO2 in brine in the presence of fractures we ran a number of 

simulations with the above described numerical model. Table 2 gives the simulated percentage of CO2 dissolved in 

water, trapped as immobile gas, and mobile phase for three simulation cases. For the simplest case with no fracture, 

16.9 % of the injected CO2 will be dissolved in water after 20 days. 3.5 % are immobile due to residual trapping and 

79.6 % remain mobile. When we introduce a single fracture the amount of dissolved CO2 is increased to 21.6%. A 

simulation with 4 fractures gives a further enhancement of dissolved CO2 to 26.9%. Immobile gas trapped is slightly 

increased to 4.1% (1 fracture) and 4.8% (4 fractures). The fraction of mobile CO2 gas is reduced accordingly, see 

Table 2. Figure 3 shows the spreading of dissolved CO2 in the matrix for no fracture (left), single fracture (middle) 

and four fractures (right) after 20 days. In figure 4 we show the similar situation, but this time for the free CO2 gas 

saturation. 
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Table 2: The state of injected CO2 after 20 days in numerical simulations models with 0, 1, and 4 fractures. 

 

simulation case dissolved CO2 [%] CO2 trapped gas, immobile [%] CO2 mobile gas [%] 

0 fracture 16.9 3.5 79.6 

single fracture 21.6 4.1 74.3 

4 fractures 26.9 4.8 68.3 

 

 

Figure 3: Concentration of dissolved CO2 for a model with 0 (left),1 (middle), and 4 (right) fracture(s) after 20 days. 

Models containing fractures show enhanced dissolution around the fracture location. 

 

 

 

Figure 4: Concentration of CO2 as free gas phase for a model with 0 (left), 1 (middle), and 4 (right) fracture(s) after 

20 days. The two models containing fractures show some degree of free CO2 gas phase migration around the fracture 

location. 

6. Discussion and outlook 

Introducing a single fracture into our simulation model does increase the amount of dissolved CO2 from 16.9% to 

21.6%. Accounting for the relatively short time period we regard this as being substantial and large. For reasons of 

comparison we performed simulations with four fractures. In such a case the amount of dissolved CO2 is even more 

enhanced, but not in proportion to the number of fractures. The process of dissolution gets quickly complex with 

mutual influence of the fractures that rules out a linear interrelation. Injected CO2 dissolves just around the injector 

and does only move slowly into the reservoir in its own phase due to the low permeable matrix. Shortly after start of 

injection the dissolved CO2 develops the typical pattern of funnel shaped areas that are constrained by the position of 
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the fractures. It is the result of the interplay of upward flowing pure CO2 with downward moving dissolved CO2. We 

do observe a similar pattern at Sleipner where shale layers act as interfering barriers [19]. In Figure 3, we clearly can 

observe how dissolved CO2 could enter the matrix space along the fracture planes, migrates into the matrix, and 

ultimately increases the amount of dissolved and trapped CO2. As the mixture of dissolved CO2 and brine is heavier 

as pure brine, we observe in some regions a tendency for the dissolved CO2 to be below the fracture plan. This non 

symmetrical pattern along the fracture plane has an impact of the application of our analytical solution. It suggests 

that our analytical solution does overestimate the rate and volume of dissolution of CO2. Figure 4 shows the typical 

upwards movement of free gas phase CO2. When hitting a fracture layer, the upwards movement is hindered and CO2 

is being feed into the fracture layer and transport away from the well horizontally. The amount of residually trapped 

CO2 was kept low by using a low value for the irreducible gas-saturation (Sgr) of 0.1. To indicate the large effect the 

existence of fractures on the dissolution of CO2 may have, we increased the number of fractures in our simulation 

model to four. We showed for a simplified case analytically and numerically that the existence of fractures does have 

a positive effect on the amount of CO2 trapped by dissolution in formation water. For the 2D case, in which a single 

horizontal fracture is placed in the middle of a matrix, the amount of CO2 trapped by dissolution in brine is enhanced 

by 5.3 percentage points. Both the analytical and the numerical approaches show that the dissolution of CO2 is faster 

than previously assumed.  

Fracture flow of CO2 combined with molecular diffusion into the porous matrix in a heterogeneous geological 

environment is a complex physical process. The numerical simulation of such a situation imposes additional 

uncertainties to the quantitative results as boundary conditions of the model, grid discretisation effects, and the 

heterogeneity of input data need to be accounted for. To what extent our 2D considerations can be extrapolated to 3D 

models needs to be investigated further. Mutual influence of neighbouring fractures may reduce the effect of 

increased dissolution. Another issue is the value of effective diffusion coefficients that should be applied in 

preliminary calculations or more detailed numerical simulations. Here we applied a standard value, but it has been 

shown that effective diffusion coefficients vary with the progress of dissolution process, early versus late stage of 

injection. The number of fractures accessible to the flowing CO2 and consequently the contact area between fracture 

surface and matrix is important data to get. But, somehow similar to the importance of reaction surface area in 

geochemical considerations, it is very difficult to quantify real values for a particular geological storage unit. 

Ideally, we would wish to exploit a potential storage site that contains a large number of conductive fractures 

within a well bounded geological container. Such a container would be needed to be encapsulated by non-faulted and 

non-fractured units, particular in the overlaying layers. Another aspect is the concentration of CO2 in the brine before 

the CO2 injection starts. The larger the amount of background CO2 in the pore water, the more our here discussed 

effect of enhanced CO2 dissolution would be reduced. It is therefore important to have a good knowledge of pre-

injection CO2 concentration in the brine. The onshore CO2 storage site at In Salah, Algeria, is for a number of reasons 

of particular interest here. The fracture field is the best mapped and investigated of all present CCS pilots. At this 

location, fractures occur in the storage formation and the lower part of the cap rock, but there are no major faults 

around the storage container that would the CO2 allow to escape from the target location. A fracture zone is needed to 

explain some key observations, but to what extent the fractures are conductive still remains the objective of ongoing 

research. So indeed, In Salah could maybe represent such a described ‘fracture-container’. It is clear that the here 

proposed concept requires much research to clarify the aspects we mentioned above. 

In summary, we believe that our concept has high potential for enhanced trapping of CO2 in fractured formations. 

It is important to note the uncertainties inherent in this modeling. However, the results of the simulations provide 

some insight into the processes occurring during injection. There are many aspects that deserve to be studied in detail 

as they may have a strong influence on the quantitative evaluation of trapping. 
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