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In this paper, we analyze the contact interaction of axisymmetric particles subject to a subsequent appli-
cation of a constant normal load and a tangential or rotational force. A rigorous solution to the frictional
contact problem is given by the known Jäger theorem that presents a relationship between shear and
normal stress distributions provided the latter is an exact solution to a normal contact problem. However,
in the case of strong loading, when the normal displacement reaches a value of 5–10% of the spheres’
diameter, exact solutions for the normal problem are absent; some model concepts exist instead. For
instance, the rod model describes strong normal loading of spheres as a sort of combination of the Hertz
problem (weak loading of spheres) with a compression of a pair of confined cylinder of the same radius as
the Hertz contact spot. Here we propose a method that is based on considerations similar to the Jäger
theorem but is appropriate for any model (or empirical) normal stress distribution. The resulting integral
representations describe both shearing and torsion of prestressed particles with axisymmetric profiles.
Rolling of particles, as well as plasticity and adhesion of the particles’ material, are not considered. We
also analyze the asymptotic behavior of the integral representations for weak and strong strains. The
obtained general solutions allow us to use the method of memory diagrams in order to calculate the reac-
tion of the system on arbitrarily varying tangential or rotational actions.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

The contact interaction problem for elastic solids is of interest
from the point of various applications and related theories, such
as collision of bodies, soil and rock mechanics, dynamics of pow-
ders and granular materials, etc. (see, for instance books by Mavko
et al. (1998), Duran (1999), Capriz et al. (2008)). When two spheres
are compressed together a round contact spot appears and a repul-
sive force N arises. For a weak compression, when the contact ra-
dius a is much less than the spheres diameter d, the solution to
the normal contact problem was published by Hertz (1881):

N ¼ 1
3

Ed2

1� m2

h
d

� �3=2

ð1aÞ

a ¼ 1
2
ðhdÞ1=2 ð1bÞ
rða;qÞ ¼
� 4E

pdð1�m2Þ ða
2 � q2Þ1=2

; q < a

0; q P a
ð1cÞ
where h is the total normal displacement of the spheres’ centers
(the centers are defined in the unstrained state and are supposed
not to shift during straining), E is the Young modulus, m is the Pois-
son coefficient, rða;qÞ is the radial distribution of the normal stress
on the contact spot.

Application of a tangential force T in a system with friction re-
sults in the appearance of the shear stress s defined on the same
contact spot, in which two zones has to be distinguished: the zone
of stick (q 6 b) where no relative shift between the interfaces is
created, and the zone of slip (b < q 6 a) where the Coulomb friction
law with the friction coefficient l is postulated, s = lr. The shear
stress (traction) distribution was calculated by Cattaneo (1938)
and Mindlin (1949) by using the known Boussinesq and Cerruti
solutions for an elastic half-space deformed by a point force. Jäger
(1995) proposed a different, more compact method based on rigid
punch solutions i.e. on the approximation of a deformed profile by
a series of infinitesimal flat circular punch-like displacements with
a known solution for each of them. The technique allows one to
avoid singular integrals (Jäger, 2002) typical for methods that use
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Rod model Hertz Confined cylinders 

Fig. 1. In the rod model, high deformation of spheres is presented as the sum of the
Hertz solution and the uniaxial confined compression of two cylinders.
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concentrated forces, and, finally, to reduce the tangential problem
to the normal one. Indeed, the resulting traction distribution

sðqÞ ¼ l½rða;qÞ � rðb;qÞ� ð2Þ

is expressed through the normal stress. Eq. (2) can be supplemented
by an analogous expression for the tangential displacements, both
local (q-dependent) and global ones (maximum local). This result
is known as the Jäger theorem or the Jäger elastic principle. In the
derivation, the particular form of the dependency rða;qÞ, such as
the Hertz solution Eq. (1c), is not used. The general form Eq. (2) fol-
lows from the identical representation of Green’s functions for nor-
mal and tangential loading of an elastic half-space (see, for instance,
Barber et al., 2011). Therefore, the result Eq. (2) is valid for any nor-
mal stress distribution on condition that the latter presents a solu-
tion for some elastic loading problem in which the loaded body can
be locally approximated by a half-space.

2. High contact stresses and rod model

In that way, the Jäger theorem allows one to obtain solutions to
the friction problem for various contact geometries. However, the
method required the knowledge of the exact normal stress distri-
bution that, in practice, leads to a restriction on weakness of defor-
mation. At the same time, it has been confirmed (Jefferson et al.,
2002; Dintwa et al., 2008)1 that the Hertz solution considerably
underestimates the elastic repulsion force in the case of finite strains
h=d > 0:01. The limited applicability of the Hertz solution becomes a
serious problem in granular dynamics simulations for compaction of
nano-powders with typical deformations h=d of about 5–10% (see
Boltachev et al., 2011; Boltachev and Volkov, 2012). At such high
strains, deformation of a particle due to its contact with one selected
neighbor affect considerably its global shape and thus influences
contacts with all remaining neighbors (Jefferson et al., 2002). An ana-
lytical solution to that problem is hardly possible. Even the normal
problem of two diametrically opposite contacts has not been rigor-
ously solved yet. In this situation, approximate but physically correct
models extrapolating the Hertz solution are particularly important. A
possible extrapolation is presented by the rod model (Boltachev and
Volkov, 2012; Boltachev et al., 2012) that results in
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The rod model is based on the idea that, for high strains, the
deformation of spheres occurs not only in vicinity of contact, as
in the Hertz mechanics, but involves deeper layers of the material.
1 Unfortunately, a detailed comparison with the results by Dintwa et al. (2008) is
problematic since the principal ‘‘calibration curve’’ (Eq. (8) and Fig. 13 in that paper
describing the deflection between the Hertz model and the Finite Element Analysis
(FEA) contains a dimension error. Therefore, we could compare only some particular
results, such as values in Fig. 11. For instance, the normal force N(h) at point h = 0.01d
calculated via FEA is 6% higher that the Hertz value, while the rod model presents an
overestimation of 16%. Comparison for higher deformations can provide FEA values
closer to the rod model, if a sudden increase in Fig. 11 is not a numerical artifact
Further, the analysis presented by Jefferson et al. (2002) concerns truncated spheres
(consolidated granular material) and thus is suitable for qualitative comparison only
The question of quantitative comparison remains hereby open.
)

.

.

The simplest representation of these deeper layers can be obtained
by replacing them by the uniaxial deformation of cylinders with
the same radius as the radius of contact (see Fig. 1). The cylinders
are supposed to be confined so that they cannot expand in the lat-
eral direction. The latter agrees to the fact that the virtually cut cyl-
inders with the axis connecting the spheres’ centers are
surrounded by the bulk material of spheres. It is supposed that
the relation Eq. (3b) between the contact radius and normal dis-
placement is the same as Eq. (1b) for Herzian spheres. The rod
model has two major advantages: the model dependency N(h)
agrees well with the FEM simulations by Dintwa et al. (2008)
and behaves correctly for both small and high strains. Indeed,
h=d� 1 the solution (3a), (3b), (3c) tends to the Hertz solution
(1a), (1b), (1c), while for h=d! 1 the loading-displacement curve
N(h) has a singularity that guarantees, in contrast to the Hertz
law, the impossibility of overlapping particles centers.

An important limitation of the rod model is related to the
Poisson coefficient that should not be too close to 0.5. Indeed, a
virtual addition of confined cylinders mean that their lateral
deformation is prohibited or at least hampered by the remaining
ring-like parts of the spheres. This is not the case when m = 0.5
and the lateral expansion of the cylinders is essential; moreover,
assuming m = 0.5 results in singularities in Eqs. (3a) and (3c). A
more precise analysis would require a more sophisticated depen-
dence between the contact radius and cylinders’ radius than a
simple equality and, finally, the account for deformation of the
remaining ring-like parts. Without pretending to provide a strict
description, we just stress that the rod model provides a better
approximation than the Hertz solution for finite values of h/d
and for materials having behavior different from the ‘‘incom-
pressible’’ limit m = 0.5.

Since the resulting expressions of the rod model do not corre-
spond exactly to any rigorous solution for a contact problem, the
Jäger theorem does not apply in that case. The problem of the tan-
gential shift for particles that support the stress distribution (3c) in
the contact zone is solved by Boltachev et al. (2012) by means of
Mindlin’s methodology, i.e. by using known solutions for a point
force applied to an elastic half-space. The final expression for trac-
tion s is quite cumbersome; the tangential load–displacement rela-
tion T(d) i.e. the dependency of the total tangential force T on the
tangential shift d of each particle relative to their contact spot is gi-
ven by

d
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where
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It is of interest to note that the solution of the tangential prob-
lem uses the half-space approximation while the normal solution
does not. Indeed, stress distribution Eq. (3c) applied to an elastic
half-space produces displacement different from Hertzian form
Eq. (3b). This disparity can be attributed to the fact that for increas-
ing normal force the normal deformation experiences an unlimited
growth that eventually violates the frameworks of the Hertz
approximation, while the increase of tangential force and deforma-
tion is limited by the total sliding of particles. Therefore, with small
but realistic values l � 0.1 particles strongly deformed in the nor-
mal direction but relatively weakly deformed in the tangential
direction can be observed. This fact provides some grounds for
using the half-space approximation for the tangential problem.

The rod model is one of the possible high-strain approximations
for normal contact between spheres. The objective of this paper is
to develop a method for automatically solving tangential problems
in such approximations. It is interesting to note that the analytical
technique utilized in the Jäger theorem is perfectly suited here
even though theorem itself is not applicable for model/empirical
normal stress distributions. In addition, the derivations here are
much simpler than those which are needed to obtain Eqs. (4a),
(4b) in the framework of Mindlin’s methodology.

3. Shift and torsion contact problems

3.1. Tangential shift for a model normal stress distribution

The starting point of the technique (Jäger, 1995) is the solution
to the problem of a tangential shift by distance d0 of a plat circular
punch firmly adhered to an elastic half-space:

s0 ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � q2
p ; d0 ¼

pð2� mÞð1þ mÞ
2E

q ð5Þ

Then, the solution for a shift of the contact zone at point q < a is ex-
pressed as a superposition of infinitesimal components Eq. (5) with
a weight qðsÞds for a punch of radius s, b 6 s 6 a. The choice of the s-
range automatically guarantees that all points within the stick zone
q < b have equal displacements. So, the integration of Eq. (5) pro-
vides the following result for the traction distribution s(q) and
the tangential displacement d of the stick zone (see Eq. (29) by
Jäger, 1995):

sðqÞ ¼

R a
q

qðsÞdsffiffiffiffiffiffiffiffiffiffi
s2�q2
p ; q P b;R a

b
qðsÞdsffiffiffiffiffiffiffiffiffiffi

s2�q2
p ; q 6 b;

8><
>: ð6Þ

d ¼ pð2� mÞð1þ mÞ
2E

Z a

b
qðsÞds; q 6 b: ð7Þ

The boundary condition in the stick zone q < b has already been
taken into account. The boundary condition in the slip zone
b 6 q 6 a is given by the Coulomb friction law s ¼ lr that results
in the integral equation for the weight function qðsÞ:

lrða;qÞ ¼
Z a

q

qðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � q2

p : ð8Þ

Further, Jäger (1995) considers the analogous expression for the
normal stress rða;qÞ, and, because of the identity of the corre-
sponding integrals derive the result Eq. (2).
In the case of a model stress distribution rða;qÞ that does not
present an exact solution to any normal problem, the relationship
Eq. (2) is not applicable. However, Eq. (8) is the integral Abel equa-
tion that can be inverted (see, for instance, a handbook by Korn and
Korn, 1961) for any model distribution rða;qÞ (in fact, only the
continuous derivability of rða;qÞ is required):

qðsÞ ¼ �l 2
p

d
ds

Z a

s

qrða;qÞdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � s2

p : ð9Þ

It is easy to obtain by substituting Eq. (9) into Eq. (7) that

d ¼ �l ð2� mÞð1þ mÞ
E

Z a

b

qrða;qÞdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � b2

q : ð10Þ

The last expression, by inserting the normal stress Eq. (3c) for
the rod model, coincides with the result Eq. (4a) obtained with
the help of the traditional approach by Mindlin and Cattaneo that
requires quite tedious calculations.

For traction in the stick zone q < b Eq. (6) and Eq. (9) yield

sðqÞ ¼ �2l
p

Z a

b

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p d
ds

Z a

s
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p dr
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The tangential force is presented then as a sum of two
components,

T ¼ T1 þ T2; ð12Þ

T1 ¼ 4l
Z b

0
qdq
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T2 ¼ �2pl
Z a

b
rða;qÞqdq: ð14Þ

By changing the order of integration in Eq. (13) we obtain

T1 ¼ 4l
Z a

b
dsðs�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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which, by integrating by parts, is transformed to the expression

T1 ¼ �4lb
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p dr � 4l
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The first integral here coincide with displacement d (Eq. (10)).
After changing of the order of integration in the last two integrals,
Eq. (16) becomes

T1 ¼
4bdE

ð2� mÞð1þ mÞ � 4l
Z a

b
rrða; rÞ p

2
� asin

b
r
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dr

þ 2pl
Z a

b
rrða; rÞdr: ð17Þ

Combination of Eq. (14) and Eq. (17) produces the following re-
sult for the total tangential force:

T ¼ 4Eb
ð2� mÞð1þ mÞ d� 4l

Z a

b
qrða;qÞ p

2
� asin

b
q
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dq: ð18Þ

Expressions (10) and (18) link tangential displacement d and
tangential force T in an implicit manner and represent a solution
to the tangential contact problem for any model normal stress dis-
tribution rða;qÞ.

For a weak tangential action when the slip zone is practically
absent (b ? a), the solutions Eqs. (10), (18) linearize so that the re-
sult does not depend on the normal stress distribution anymore:
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T ¼ 4Ea
ð2� mÞð1þ mÞ d: ð19Þ

If, inversely, the slip zone reaches the contact center, the stick
zone disappears that results in total sliding with the Coulomb fric-
tion law satisfied in the form

T ¼ 2pl
Z a

0
rða;qÞqdq � lN: ð20Þ

In a particular case of the rod model with the normal stress dis-
tribution Eq. (3c), the result Eq. (18) produces the expression

T
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4ðb=dÞ
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 !" #
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that, as it is possible to see, coincides with Eq. (4b).

3.2. Torsion for model normal stress distributions

The analysis discussed in Section 3.1 has been suggested and
implemented by Jäger (1995) for rotational action. For particles
compressed by a normal force N creating the normal stress distri-
bution rða;qÞ, the rotation angle h and the moment of force (tor-
que) M relative to the axis connecting the particles centers are
linked with the following relationships:

h ¼ �l1þ m
E

Z a

b

rða;qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � b2

q dq; ð22Þ

M ¼ 8
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p @rða;qÞ
@q

; ð23Þ

where b is, as previously, the radius of boundary between the stick
and slip zones. The integration in Eq. (23) can be performed analyt-
ically that, after a series of transformations, results in a simpler
form

M ¼ 8Eb3

3ð1þ mÞ h

� 4l
Z a

b
rða;qÞ q2 p

2
� asin

b
q
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q� �
dq: ð24Þ

The above expressions (22) and (24) in the limit of small h pro-
duces the linear relation between M and h
0

0

0

0

0 0.04 0.08 0.12 0.16 0.2

0

0.01

0.02

0.03

0.04 2

T

Edμ

d

δ
μ

rod model 

Hertzian spheres 

(a) 

Fig. 2. (a) Dependency of tangential force T on tangential displacement d obtained for th
angle h in accordance to Eqs. (22), (24). In both figures: dashed lines correspond to asymp
full sliding. Here a = 0.2d and m = 0.25.
M ¼ 8Ea3

3ð1þ mÞ h ð25Þ

that correspond to result by Reissner and Sagoci (see Mindlin,
1949). The upper limit for the torque (b! 0) is given by the Cou-
lomb friction law

Mmax ¼ 2pl
Z a

0
rða;qÞq2dq: ð26Þ

However, whereas in the tangential shift problem the limiting
force Tmax ¼ lN (Eq. (20)) is achieved with a finite value of d, in
the torsion problem Mmax corresponds to the rotation angle
h!1. This fact is determined by a singular character of the
dependency h(b) in Eq. (22) at b! 0. The analysis of Eq. (22) in that
limit provides the following result:

h
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ln 1� 4a2
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:

Thus, total sliding (b = 0) is unachievable by pivoting; even for very
high h there is always a tiny stick area 0 < q < b. This feature is not
surprising since the central points q = 0 of the particles are always
at rest and can never rotate by definition.

3.3. Numerical examples and discussion

The general solutions to shift (Eqs. (10), (18)) and torsion (Eqs.
(22), (24)) problems are applicable for any normal stress distribu-
tions r(a,q) including those that do not represent any exact solu-
tion to the normal problem but are obtained from physical
considerations. An example of the rod model is illustrated in
Fig. 2. Since the rod model includes a virtual presence of strained
cylinders in additions to Hertzian spheres, the load–displacement
curve is generally stiffer that in the Hertz case. In particular, in
the shift problem, total sliding occurs at higher values of the tan-
gential displacement and force (Fig. 2a), similarly to saturation of
the dependency M(h) for the torsion problem (Fig. 2b).
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An interesting feature can be found in the very structure of the
general solutions obtained. The tangential or rotational properties
of the system depend only on the part of the normal stress distri-
bution located in the slip zone. In other words, the integration in
Eqs. (10), (18), (22), (24) is performed over section [b, a] only. This
is an expected result since the absence of slip is equivalent to the
presence of intact material in the zone [0, b]. In this sense, the sys-
tem of two spheres behaves as a single particle consisting of two
fused spheres, with the only difference that the fusion zone actu-
ally evolves depending on the applied tangential (rotational)
action.
b1 b2 b3 b a
+ - + -

Fig. 3. Typical traction distribution s(q) obtained after a series of slip reversals and
correspondent memory diagram. Points b1–b3 do not move, point b shifts to the left
as slip propagates towards the center.
4. Varying tangential/rotational and constant normal actions

4.1. Memory diagrams

Here we call ‘‘action’’ both force and displacement in the shift
problem, and both torque and rotation angle, in the torsion prob-
lem. The resulting expressions Eqs. (10), (18) and Eqs. (22), (24)
connect actions with the stick–slip boundary b that actually rep-
resents an argument in the solution. For definiteness, we shall
speak of the displacement-driven tangential shift problem i.e. a
situation when displacement d is given and force T is unknown.
It is essential that the results obtained in Section 3 applicable
only for constant normal and tangential actions. Below we shall
consider a situation when the normal compression is fixed and
tangential displacement d varies in an arbitrary way. First al all,
for increasing d the Coulomb friction law in the slip zone has to
be fulfilled in the form sðqÞ ¼ ljrða;qÞj, while for decreasing d
it should read sðqÞ ¼ �ljrða;qÞj. Thus, the initial loading and
subsequent reloadings lead to different situations: in the former
case the contact zone was initially free of traction, whilst in the
latter one it already supported some nonzero traction that should
be compensated for prior to any further application of traction.
This feature was considered in full detail by Aleshin and Van
Den Abeele (2012); an automatic compensation for the residual
traction is provided by the method of memory diagrams that en-
ables us to take into account arbitrary changes in d in a universal
way. A short summary of the method of memory diagrams is gi-
ven by the same authors (Aleshin and Van Den Abeele, 2013). In
the present case, the consideration is much simpler since normal
action is not a function of the tangential one but assumed
constant.

The method uses a kind of a general scheme of memory orga-
nization in the contact system (memory diagram) that replaces
in the analysis the actual traction distribution. After passing a
number of extrema in the d-protocol, the traction distribution
becomes a piecewise-smooth function whose nodes correspond
to some previous stick–slip boundaries b. These values called
here memory points are ‘‘memorized’’ at the moments when
an extremum is passed i.e. when the time derivative dd/dt
changes sign I = sgn(dd/dt). Fig. 2 illustrates a typical traction dis-
tribution s(q) after passing a sequence of extrema; the corre-
sponding memory diagram is also plotted. Constant
compression prohibits the appearance of overloading (Aleshin
and Van Den Abeele, 2012) i.e. a situation when the rate of
the contact radius a increase is larger than the rate of slip in-
ward propagation, so that slip does not develop at all. Thus, in
our case, the solution always remains hysteretic since slip is al-
ways present in the outer annulus b < q < a. A chain bm

(m = 1..M) of previous stick–slip boundaries determines the
memory effects in the system. The memory diagram in that case
is defined as a sequence of points bm and the point b, supple-
mented by alternating signs Im (Im = �Im � 1) and the current sign
I (see Fig. 3).
4.2. Initial hysteresis curve

The solution to the problem depends on whether some memory
points are present in the diagram (M > 0) or not (M = 0). In the lat-
ter case corresponding to the initial hysteresis curve, the result has
already been obtained in Section 3; here we rewrite it as

d ¼ �dðbÞ () b ¼ �d�1ðdÞ
T ¼ �TðbÞ

(
; ð27Þ

where �dðbÞ and �TðbÞ are given by Eqs. (10), (18):

�dðbÞ ¼ �l ð2� mÞð1þ mÞ
E

Z a

b

qrða;qÞdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � b2

q ; ð28Þ

�TðbÞ ¼ 4Eb
ð2� mÞð1þ mÞ

�dðbÞ

� 4l
Z a

b
qrða;qÞ p

2
� asin

b
q

� �� �
dq: ð29Þ

The inverse function �d�1ðdÞ in Eq. (27) can be calculated analyt-
ically for some known distributions of the normal stress rða;qÞ,
such as the Hertz case, or numerically for any model rða;qÞ. It is
always possible as the direct function �dðbÞ is monotonous (for an
increasing displacement slip propagates towards the center).

Solution (27) is written for increasing and positive d and can be
easily modified to include decreasing and negative d as well,

b ¼ �d�1ðjdjÞ � �d�1ðIdÞ
T ¼ I�TðjbjÞ � I�TðIbÞ

(
: ð30Þ

Note that for the initial hysteresis curve increasing argument
means positive, and decreasing argument means negative.

4.3. Other hysteresis curves

Leaving the initial hysteresis curve leaves also some residual
traction in the contact zone. It can be taken into account by adding
a factor of two into the solution,

d ¼ dM þ 2I�dðIbÞ () b ¼ �d�1ð12 Iðd� dMÞÞ
T ¼ TM þ 2I�TðIbÞ

(
; ð31Þ
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where the extremum point (dM, TM) is known. The fact that slip in-
ward propagation not only ‘‘writes’’ the traction sðqÞ ¼ ljrða;qÞj
but erases the residual stress is reflected in the memory diagram
(Fig. 3) as grey filling. In a more general case then overloading is
possible, one has to introduce more filling styles in order to repro-
duce various regimes of the system’s evolution.
no 

no 

yes no 

M=M-2 

End of the current step 

Calculate new b, T: 
Eq. (30) for M=0 
Eq. (31) for M>0 

I=-I
M=M+1 

bM, δM, TM = previous b, δ, T

Check if M=1 

yes 
Check if new b<bM

Calculate new b, T: 
Eq. (30) for M=0 
Eq. (31) for M>0 

M=0 

Fig. 4. Algorithm of the method of memory diagrams in a particular case of
constant normal compression.
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Fig. 5. Hysteresis curves T(d) for exemplar d-protocol with one internal loop. Here
a = 0.2d and m = 0.25.
4.4. Evolution of memory diagrams

Thus we have found the solutions corresponding to a given
memory diagram. These expressions Eqs. (30), (31) have to be sup-
plemented by an algorithm controlling the evolution of memory
diagrams. During the evolution two events may happen: (i) passing
an extremum results in the creation of a new memory point, and
(ii) slip inward propagation i.e. decreasing b can erase some of
existing memory points.

In the latter case, again, two situations are possible. If b reaches
bM with M = 1 (the only memory point in the diagram), this point
b1 is deleted and the solution follows the initial hysteresis curve
(Eq. (30)). But if b reaches bM with M > 1, not one but two memory
points should be deleted. Indeed, consider the solution for the
traction

sðqÞ ¼ sM�2ðqÞ þ 2�sðbM�1;qÞ � 2�sðbM ;qÞ þ 2�sðb;qÞ ð32Þ

obtained analogously to Eq. (31) with

�sðb;qÞ ¼ �2l
p

Z a

b

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � q2

p d
ds

Z a

s

rrða; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � s2
p dr

� �
ð33Þ

according to Eq. (11). Here I = 1 for definiteness. Then, assuming
b = bM cancels two last terms in Eq. (30). The remaining expression

sðqÞ ¼ sM�2ðqÞ þ 2�sðbM�1;qÞ

satisfies the Coulomb friction law in the zone bM-1 < q < a. Conse-
quently, this zone is the actual slip annulus and the actual stick–slip
boundary b equals bM�1. For further increase in d, slip will continue
expanding downwards starting from bM�1. This actually means that
bM�1 is erased, too. The described property is called the s-jump rule
by Aleshin and Van den Abeele, 2012, or b-jump rule from the point
of notations used here.

In Fig. 4 we illustrate the algorithm governing the evolution of
memory diagrams in a particular case of constant compression. For
numerical implementation, some discretization of d-protocol has
to be used. The procedure enables us to make subsequent time
steps and redefines variables d, b, and T at each step. The discreti-
zation step should be small enough in order to locate precisely the
positions of extrema and the moments of time when the previously
memorized extrema are erased. Anyway, the step is d-protocol
should be less than the distance between any memory points
bm�1 and bm, otherwise algorithm in Fig. 4 cannot guarantee the
fulfillment of the conditions b1 < ... < bm < ... < bM.

A numerical example for the rod model is given in Fig. 5. Each of
two curves (one for the rod model and one for Hertzian spheres)
has an internal loop. Such structure results from a protocol in
which an initial curve is followed by a cycle that consists in load-
ing, partial unloading and then reloading, in terms of displacement
d or force T. As previously (Fig. 2) the dependency T(d) generally
has stiffer behavior for the rod model, since it contains a virtual
deformable cylinder in addition to Hertzian spheres. In fact the
d-range in Fig. 5 is selected such that the Hertz system almost
reaches the total sliding threshold, whereas this threshold for the
rod model is 67% higher (with the parameter values a = 0.2d and
m = 0.25).
5. Conclusions

In this paper, we have extended the formalism initially pro-
posed by Jäger (1995) for solving contact shift and torsion prob-
lems to the case of an arbitrary normal stress distribution. An
important feature of the method is its applicability to model nor-
mal stresses which do not satisfy exactly the equations of contact
mechanics but result from physical considerations. The tangential
displacement and force are expressed via integral representations
containing the normal stress distribution. These expressions
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provide an explicit link between force and displacement through a
changing lower limit of integration (boundary between stick and
slip zones). The torsion problem is solved in an analogous way.

Another essential aspect of the solution is in the possibility to
use the method of memory diagrams that accepts an arbitrary pro-
tocol of a drive parameter instead of particular evolution cases,
such as loading–unloading, etc., usually considered in contact
mechanics. On the other hand, the result discussed here is only
applicable at constant normal compression.
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