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lum  increases  antigen  uptake,  reduces  antigen  degradation  and  sustains  antigen
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Aluminium  adjuvants  (alum)  have  been  the  only  widely  approved  adjuvants  for  use  in  human  vaccines
since  the  1920s,  however,  the  mechanism  of  action  of  these  adjuvants  remains  elusive.  Due  to  increasing
demand  for novel  adjuvants,  a clearer  understanding  of  the mechanisms  that  allow  these  important
agents  to  affect  adaptive  immune  responses  will  make  a  significant  contribution  to  the rational  design  of
future  vaccines.

Using  a novel  approach  to tracking  antigen  and  antigen  presentation,  we  demonstrate  that  alum induces
higher  antigen  accumulation  and increased  antigen  presentation  by  dendritic  cells  (DCs)  in vitro.  Antigen
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accumulation  was  100-fold  higher  and  antigen  presentation  10-fold  higher  following  alum  treatment
when  compared  with  soluble  protein  alone.  We also  observed  that  alum  causes  an  initial  reduction
in  presentation  compared  with  soluble  antigen,  but eventually  increases  the  magnitude  and  duration
of  antigen  presentation.  This  was  associated  with  reduced  protein  degradation  in  DCs  following  alum
treatment.  These  studies  demonstrate  the dynamic  alterations  in  antigen  processing  and  presentation
induced  by  alum  that underlie  enhanced  DC function  in response  to  this  adjuvant.
. Introduction

Despite the tremendous variety of compounds with adju-
ant activity, effective adjuvants for use in vaccines against
ajor diseases such as Human Immunodeficiency Virus/Acquired

mmunodeficiency Syndrome (HIV/AIDS), tuberculosis and malaria
emain elusive [1].  A significant obstacle to the development of
ew and improved adjuvants is our lack of knowledge of their
echanism of action. This is particularly true of the aluminium

djuvants (alum) that have been applied in many vaccines since
he 1920s [2]. It has been proposed that vaccine adjuvants act indi-
ectly via DCs or other antigen presenting cells (APCs) to induce and
nhance the activation of antigen-specific T cells and subsequently
he adaptive immune response. CD4+ T cells play a central role in
ell-mediated immunity and are activated in response to specific
accine-derived, peptide epitopes bound to MHC  class II (MHCII)

olecules, displayed on the surface of APCs [3–5]. DCs possess

ighly controlled antigen processing functions utilising lysosomal
roteases and pH changes optimal for the generation of peptides

Abbreviations: BMDC, bone marrow-derived dendritic cell; E�GFP, Ealpha green
uorescence protein.
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rather than complete protein degradation [6–8]. The duration and
magnitude of antigen presentation are key factors in determining
the degree and quality of T cell activation [9,10].  Although it has
been suggested that an antigen pulse of a few hours is sufficient to
support subsequent T cell division [11], the continued engagement
of the peptide:MHCII:T cell receptor (p:MHCII:TCR) complex is
required for a high degree of T cell expansion [12,13]. Adjuvants
such as alum have been proposed to alter the magnitude and
duration of antigen presentation through mechanisms such as
increased antigen uptake [14,15] and enhanced expression of MHC
class II molecules on the surface of APC [16–18].  While the impact
of these factors on antigen presentation has previously been read
out in terms of T cell expansion [15,19,20],  these studies do not
directly explain whether alum impacts on the magnitude and
duration of antigen presentation that subserves adjuvant function.

To address this limitation, in the current study we have
employed the chimaeric fluorescent protein, Ealpha green flu-
orescent protein (E�GFP), which allows assessment of antigen
uptake/degradation and, in combination with the YAe antibody,
antigen presentation in situ [21–24].  When E�GFP is internalised
by DCs, it is degraded, liberating the E� peptide for presentation

Open access under CC BY license. 
on MHC  class II molecules. This p:MHC complex can be detected
by staining the cells with the monoclonal YAe antibody which
specifically recognises the E�:I:AbMHCII complex [21–24].  Using
the E�GFP/YAe system, we  have demonstrated that formulation of
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ntigen in alum leads to an increase in antigen uptake, a decrease in
ntigen processing with the eventual result being enhanced mag-
itude and duration of antigen presentation by DCs in vitro.

. Materials and methods

.1. Preparation of DCs from murine bone marrow

Six- to eight-week-old C57BL/6 mice (H-2b) were used to pre-
are BMDCs, as described previously [25]. Mice were housed in the
entral Research Facility, University of Glasgow and procedures
ere performed according to U.K. Home Office regulations. Bone
arrow cells (2 × 106/well) were placed in 6-well plates (Corn-

ng Incorporated, Corning, NY, USA) and cultured using 10% GMCSF
63× supernatants) supplemented with RPMI [RPMI 1640 (Sigma,
K), 10% FCS (Gibco, UK), 100 �g/mL penicillin and streptomycin

Invitrogen, UK) and 100 �g/mL l-glutamate (Invitrogen, UK)] at
7 ◦C in 5% CO2. At day 3 and 6, cells were fed with each 2 mL/well
resh complete DC media. DCs were used at day 7 for the experi-

ents.

.2. Antigens and adjuvants

The fluorescent antigen, E�GFP, was prepared in our labora-
ory using methods described previously [24]. Lipopolysaccharide
LPS; Escherichia coli O111.B4) was bought from Sigma and was
sed at 1 �g/mL concentration for positive control of MHC class II
xpression. ALHYDROGEL® was bought from Brenntag Bioscience,
enmark. This adjuvant consists of 3% aluminium hydroxide.

.3. Analysis of antigen uptake and presentation

To assess the role of alum in antigen uptake and presentation, we
ncubated BMDCs with different concentration of E�GFP or E�GFP
dsorbed to different concentrations of alum in a 6-well plate con-
aining 2 × 106 cells/5 mL  media in each well. Control wells were
ncubated with media.

To assess the role of alum in the kinetics of antigen uptake,
egradation and presentation, we performed a pulse chase assay.
MDCs (3 × 106) were pulsed with pre-determined doses of E�GFP
r E�GFP adsorbed to alum for 1 h. Some of the cells were incu-
ated in media for experimental control. Cells were harvested,
ashed in HBSS buffer (GIBCO, Invitrogen) (400 × g, 5 min, 4 ◦C)

nd BMDC separated from alum using sterile histopaque (Sigma
at no. H8889; 400 × g, 25 min, 20 ◦C) followed by washing twice
n HBSS buffer (400 × g, 5 min, 4 ◦C). BMDC (1.5 × 106 cells/5 mL)

ere resuspended in each well of a 6-well plate containing com-
lete DC media and incubated for different chase periods (0 h, 24 h,
8 h and 72 h). After each chase period, cells were analysed by flow
ytometry.

.4. Flow cytometry

The cells were collected in 6 mL  fluorescence-activated cell sort-
ng (FACS) tubes (BD FALCON, BD Biosciences Discovery LabWare,
SA) and washed (400 × g, 5 min, 4 ◦C) in FACS buffer (5% FCS,
.1% sodium azide) and incubated with 100 �L Fc block (2.4G2
ybridoma supernatant) for 30 min. BMDCs were stained with
hycoerythrin (PE) anti-mouse CD11c (eBiosciences, clone: N418,
at no. 12-0114), PE armenian hamster IgG (eBiosciences, clone:
Bio299Arm, cat no. 12-4888-81), biotinalyted anti-mouse E�52-
8 (eBiosciences, clone: eBioYAe, cat no. 13-5741), bio anti-mouse
gG2b (Southern Biotech, clone: A-1, cat. 0104-08), bio Rat IgG2b,
 (BD biosciences, cat no. 553987), allophycocyanin (APC) strepta-
idin (eBiosciences, cat no. 17-4317), peridinin chlorophyll protein
PerCP) anti-mouse I-A/I-E (BioLegends, clone: M5/114.15.2, cat no.
 Letters 147 (2012) 55– 62

107623), PerCP streptavidin (BD Bioscience, cat no. 554064) for
30 min. Cells were washed twice (400 × g, 5 min, 4 ◦C) in FACS buffer
and analysed by flow cytometry (BD Bioscience, FACS calibur). The
results of flow cytometry were analysed by FlowJo software (FlowJo
8.7.1, Stanford University 1995–96). The level of GFP, YAe and MHC
class II molecules present on CD11c positive cells were analysed by
both mean fluorescence intensity (MFI) and percentage positive
cells as determined using isotype controls.

2.5. Data analysis

Data were analysed using GraphPad Prism version 5.00 for
Windows, GraphPad Software, San Diego, CA, USA. Results were
expressed as mean ± SEM unless otherwise stated. In the data
with one independent variable, we  used Tukey post test (one way
ANOVA) to test significance between any two different treatment
groups. Similarly, in the data having more than one independent
variable, we used Bonferroni post test (two way ANOVA) to test the
significance between any two different treatment groups either at
specific dose or at specific time. A p-value of < 0.05 was considered
as significant.

3. Results

3.1. The E˛GFP/YAe system can be used to study the impact of
alum on antigen uptake and antigen presentation by bone
marrow DCs (BMDCs)

To determine the suitability of the E�GFP/YAe system to investi-
gate the impact of alum on antigen uptake and presentation, BMDCs
were incubated with protein, alum-adsorbed protein or in the pres-
ence of media or alum alone for 24 h. We  then analysed the level
of GFP and YAe staining within the CD11c positive population (see
Fig. 1A). Detection of GFP or YAe staining was dependent on the
presence of E�GFP; incubating BMDC with alum alone did not pro-
duce any increase in either of these parameters compared with
control cultures (see Fig. 1B and C). Adsorption of E�GFP to alum
produced a significant increase in antigen uptake and presenta-
tion (p < 0.0001), with about 5-fold higher MFI  of GFP and 2-fold
higher MFI  of YAe compared with cells incubated in E�GFP alone
(see Fig. 1C). Similar results were obtained by analysing the pro-
portion of GFP or YAe positive cells (data not shown). The results
suggest that the E�GFP/YAe system is appropriate for the in vitro
study of antigen uptake and presentation by DCs following alum
treatment.

3.2. Alum acts as a delivery vehicle and targets antigen
acquisition by DCs in vitro

Adsorption of E�GFP to alum significantly enhanced antigen
uptake and presentation compared with soluble antigen over a
range (1–100 �g/mL) of antigen doses tested (see Fig. 2A and B).
Comparing the antigen dose response curves demonstrated that
compared with soluble antigen, alum could induce similar antigen
uptake by BMDC at a 100-fold lower dose (see Fig. 2B). Similarly, we
observed the equivalent levels of YAe expression on cells incubated
with 1 �g/mL E�GFP/alum compared with 10 �g/mL E�GFP alone
suggesting that alum causes 10-fold increase in antigen present-
ing efficiency of DCs in vitro (see Fig. 2B). We  next determined if
the enhanced antigen uptake and presentation induced by alum
was dependent on the dose of the adjuvant used. Using a fixed

amount of E�GFP (100 �g/mL), doses of alum between 0.1 and
10 �g/mL produced a small, though significant increase in antigen
uptake compared with soluble antigen (see Fig. 2C and D). This was
reflected in a corresponding significant increase in presentation of
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Fig. 1. Application of the E�GFP/YAe system to reveal the impact of alum adjuvants on antigen uptake and presentation by DCs. BMDCs (2 × 106/5 mL)  were incubated in
media,  alum (100 �g/mL), E�GFP (100 �g/mL) and E�GFP adsorbed to alum (100 �g/mL) for 24 h. (A) A total of 50,000 cells were analysed on the basis of FSC (forward scatter)
and  SSC (side scatter) and DCs identified by CD11c expression. Analysis of GFP and YAe levels was  performed on CD11c positive populations. These histograms represent
the  cells treated with E�GFP adsorbed to alum. (B) The overlay histograms represent the levels of GFP (left) and YAe (right) detected in DCs following different treatments
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s  indicated in legends. (C) The bar graphs show the MFI  of GFP (left) and MFI  of YA
ultures. ***p < 0.0001 after comparing level (mean ± SEM) of GFP or YAe between 

epresentative of five independent experiments.

he E� peptide. Higher doses of alum (100 and 1000 �g/mL) pro-
uced much greater increase in GFP signal in BMDC, however the

mpact on antigen presentation was more modest, with decreased
resentation being observed between 100 and 1000 �g/mL alum
see Fig. 2C and D). The difference in antigen presence and presen-
ation in BMDC implied that the presence of alum may  affect the
ate of antigen degradation.

.3. Alum adjuvants increase antigen uptake, reduce degradation
nd sustain antigen presentation by DCs

To understand the role of alum in the kinetics of antigen
ptake, processing and presentation by DCs we performed a pulse-

hase experiment. We  exposed BMDC to a 60 min  pulse of antigen
nd examined antigen degradation and presentation over time.
e found a greater proportion of cells were GFP positive (see

ig. 3A and B) and had a greater GFP signal, as determined by
t) in different treatment groups. Results are expressed as mean ± SEM of triplicate
- and E�GFP + alum-treated groups as analysed by Tukey post test. Data shown is

assessment of MFI  (data not shown), following treatment with
E�GFP adsorbed to alum compared with exposure to E�GFP at
each chase period tested. Following exposure to soluble anti-
gen, both the GFP signal and proportion of cells that were GFP
positive returned to background levels within 24 h. The rate of
GFP decay in cells exposed to antigen formulated in alum, was
slower and the GFP signal was  sustained up to 72 h following
exposure (see Fig. 3B), demonstrating that intact antigen was
degraded more slowly and persisted for longer in the presence of
alum.

This would suggest that alum may  also affect the rate of anti-
gen presentation by BMDC. In keeping with this observation,
formulation of antigen with alum decreased the fraction of YAe-

positive BMDC at 0 h compared with soluble antigen (p < 0.01)
which then gradually increased to an equal level as induced by
E�GFP treatment at 24 h (p > 0.05) (see Fig. 3A and C). Alum signifi-
cantly enhanced antigen presentation at 48 h (p < 0.001) which was
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Fig. 2. Alum efficiently targets DCs by enhancing both accumulation and presentation of antigen by DCs in vitro. (A) BMDCs (2 × 106/5 mL)  were incubated with E� (E�GFP)
(0,  1, 10, 100 �g/mL) and E�GFP adsorbed to alum (100 �g/mL) for 24 h and using the gating strategy in Fig. 1A, levels of GFP and or YAe on CD11c positive populations were
analysed. (B) The levels of GFP (left) and YAe (right) on CD11c positive populations were analysed and the line graphs were made by the scatter dot plots and joining the mean
values. Bonferronni post tests (two way ANOVA) were used to compare the level (mean ± SEM of triplicate cultures) of GFP or YAe between E�GFP- or E�GFP + alum-treated
groups at particular dose of E�GFP. ***p < 0.001. Data shown is representative of three independent experiments. (C) BMDCs (2 × 106/5 mL)  were incubated with E�GFP (0
and  100 �g/mL) and E�GFP adsorbed to alum (0.0, 0.1, 1.0, 10.0, 100.0 and 1000.0 �g/mL) for 24 h and using the gating strategy in Fig. 1A, levels of GFP and/or YAe on CD11c
positive populations were analysed. (D) The levels of GFP (left) and YAe (right) on CD11c positive populations were analysed and the line graphs were made by the scatter dot
plots  and joining the mean values. Tukey post test (one way ANOVA) was used to compare the level (mean ± SEM of triplicate cultures) of GFP or YAe between control (alum;
0.0  �g/mL or E�GFP; 100 �g/mL)-treated group and increasing concentrations of alum. ***p < 0.0001, **p < 0.001, *p < 0.01, ns = not significant. Data shown is representative
of  three independent experiments. E�: E�GFP; A: alum.
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Fig. 3. Alum enhances antigen uptake, reduces antigen degradation and maintains antigen presentation by DCs in vitro. (A) BMDCs (3 × 106/5 mL)  were pulsed with E�GFP
(100  �g/mL) or E�GFP adsorbed to alum (100 �g/mL) for 1 h, then incubated for different chase periods (0, 24, 48 and 72 h). Using the gating strategy in Fig. 1A, levels of GFP
and  or YAe on CD11c positive populations were analysed. The line graphs show the % of GFP (B), % of YAe (C), % of GFP + YAe+ positive cells (D) and % of GFP + YAe− (E) in
different treatment groups. Data have been presented as the mean ± SEM of quadruplicate samples. Bonferronni post test (two way ANOVA) was used to evaluate p-value by
c  betwe
n
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omparing the proportion (mean ± SEM) of cells positive for either GFP and/or YAe
s:  not significant. Data shown is representative of two  independent experiments.

ustained up to 72 h (p < 0.001) (see Fig. 3A and C). Similar trends
ere observed while analysing the data on the basis of MFI  of the
Ae (data not shown). We  also examined the BMDC that were GFP
ositive for presence or absence of antigen presentation as detected
y YAe staining. While the GFP + YAe− population became unde-

ectable within 24 h chase when pulsed with soluble E�GFP, these
ells remained detectable for up to 72 h following alum/E�GFP
reatment (see Fig. 3E). Very few cells were GFP + YAe+ following

 24 h chase period, this was more apparent in BMDC treated with
en E�GFP- and E�GFP + alum-treated groups at specific chase period. ***p < 0.001,

soluble antigen than E�GFP adsorbed to alum (see Fig. 3D).  This sug-
gests that BMDC do not appear to transition through a GFP+/YAe+

population when moving from GFP positivity to YAe presentation
and furthermore, that alum slows down antigen processing and
presentation.
In summary, as well as targeting antigens to DC, data from these
pulse chase experiments suggest that alum decreases the rate of
antigen degradation resulting in increased duration and magnitude
of antigen presentation by BMDC.
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Fig. 4. Alum increases level of MHC  class II molecules in dose-dependent manner in vitro. BMDCs (2 × 106/5 mL)  were incubated with media, or with different doses of alum
(0.1,  1, 10, 100 and 1000 �g/mL) and LPS (1 �g/mL) for 24 h. Cells were stained with anti-CD11c, anti-mouse MHC  Class II and analysed by flow cytometry. (A) The overlay
histograms show the % of maximum of cells positive for MHC  class II molecules in BMDCs in different treatment groups. Shadow represents isotype control, which has
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een  gated as negative for MHCII molecules. (B) The line graphs show the proporti
olecules (right) at different concentrations of alum in triplicate cultures. Tukey pos

incubated in media; alum-0.0 �g/mL) and cells treated with various concentration

.4. Alum increases MHC  class II expression in DCs in
ose-dependent manner

While alum may  act to make processed peptides available for
onger, to mediate increased antigen presentation would presum-
bly require increased cell surface MHC  class II expression. We
herefore analysed levels of MHC  class II expression on BMDC incu-
ated with different concentrations of alum (see Fig. 4A and B). We
ound that expression of MHC  class II was dependent on the dose
f alum used, with both the highest proportion of the cells positive
or MHC  class II molecules and the highest expression level of MHC
lass II molecules in the cells treated with 100 �g/mL of alum (see
ig. 4B). BMDC treated with 1000 �g/mL had lower MHC class II
xpression than the cells treated with 100 �g/mL alum, but higher
han other doses used in the experiment indicating alum at high
oses sustain MHC  class II expression on the surface of DCs (see
ig. 4B). A similar dose response was seen for YAe expression in
ig. 2D, suggesting a link between increased antigen presentation
nd increased availability of MHC  class II molecules following alum
reatment in vitro.
. Discussion

In the current study we have applied the previously described
�GFP/YAe system [21,24] to directly track antigen internalisation,
ean ± SEM) of MHCII positive cells (left) and the MFI  (mean ± SEM) of MHC  class II
 (one way  ANOVA) was used to compare the level of MHCII between untreated cells
um. ***p < 0.0001. Data shown is representative of two independent experiments.

degradation and presentation in BMDC and the impact that alum
adjuvants have on the magnitude and kinetics of these processes.
The fluorescent protein moiety in the chimaeric E�GFP antigen
allowed tracking of antigen uptake and degradation. This approach
confirmed previous in vitro studies demonstrating the ability of
alum to enhance internalisation of antigens by DCs [14,15],  more
importantly; we were also able to demonstrate that alum has a
significant impact on the rate of degradation of antigen within
DCs. While the GFP signal was  completely extinguished within 24 h
of administration of soluble antigen, formulation in alum allowed
intact antigen to persist for up to 72 h. Degradation of antigens by
lysosomal proteases is an essential step in liberating peptide anti-
gens from proteins, and agents that interfere with this process, such
as protease inhibitors or inhibitors of lysosomal acidificaiton have
been shown to reduce antigen presentation [26,27]. This would
suggest that slowing of antigen degradation by alum may result
in poorer peptide loading and antigen presentation on MHC  class
II molecules. However, by virtue of the ability of the YAe anti-
body to directly recognise E�:MHCII complexes, we were able to
show that alum actually enhances the duration of antigen presen-
tation by BMDC from less than 24 h, observed with soluble antigen,

to at least 72 h. In agreement with our data, previous work has
demonstrated that limiting the susceptibility of antigens to lyso-
somal proteolysis actually acts to increase antigen presentation
and immunogenicity [28]. In terms of adjuvant activity in vivo,
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ig. 5. Illustrative conclusion of mechanisms of alum adjuvants in vitro. (A) Alum ac
ncreasing the duration of peptide availability intracellularly. (C) Alum enhances m

lowing down antigen degradation and increasing antigen persis-
ence makes physiological sense. It takes hours for peripheral DCs
o migrate to draining lymph nodes where naive cognate T cells are
esident. Furthermore, functional interactions between DCs and T
ells are thought to occur over the following 48 h or more [21] and
lockade or interruption of this interaction is known to block the
evelopment of effective T cell responses [12,29,30].  The reduction

n the rate of antigen degradation we observed could therefore lead
o a temporal increase in availability of peptide for binding to MHCII
n peptide loading compartments resulting in increased duration
nd magnitude of antigen presentation, as we also observed. How-
ver, it remains unclear at this point, exactly how this mechanism
orks. In the current study we also demonstrated that exposure to

lum/E�GFP induces increased cell surface MHC  class II expres-
ion on BMDC. Similarly, previous studies have shown the high
xpression of MHCII molecules following alum treatment in human
eripheral blood mononuclear cells in vitro [16–18].  Interestingly,

n the current study the dose response of alum induced MHC
lass II expression was similar to that observed when detecting
�:MHCII complexes using the YAe antibody. Previous studies have
emonstrated that inhibition of lysosomal proteases enhances the

tability of p:MHCII complexes and leads to increased accumulation
f MHCII complexes on the DC surface [31]. Therefore, if alum was
o block lysosomal proteolysis, as suggested by the antigen persis-
ence described above, this would explain the increased cell surface
an antigen delivery system. (B) Alum slows down protein degradation, presumably
de and duration of expression of p:MHCII complexes on the DC surface.

MHCII expression, although further studies would be required to
validate this hypothesis. In summary, we  have identified how alum
modulates the following key steps leading to antigen presenta-
tion that could underpin adjuvant function (see Fig. 5). Firstly,
formulation of antigen in alum results in increased antigen inter-
nalisation by BMDC in vitro, consistent with the hypothesis that
alum acts as an antigen delivery system (Fig. 5A). Subsequently, we
have demonstrated that alum slows protein degradation, presum-
ably increasing the duration of peptide availability intracellularly
(Fig. 5B). Finally, we have demonstrated that alum enhances mag-
nitude and duration of expression of p:MHCII complexes on the
DC surface, with an accompanying increase in MHCII expression
(Fig. 5C). These consequences may  underlie the generation of the
long lasting T cell responses in vivo.
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