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During the last few years, medical research areas of critical importance such as Epilepsy monitoring and
study, increasingly utilize wireless sensor network technologies in order to achieve better understanding
and significant breakthroughs. However, the limited memory and communication bandwidth offered by
WSN platforms comprise a significant shortcoming to such demanding application scenarios. Although,
data compression can mitigate such deficiencies there is a lack of objective and comprehensive evalua-
tion of relative approaches and even more on specialized approaches targeting specific demanding appli-
cations. The research work presented in this paper focuses on implementing and offering an in-depth
experimental study regarding prominent, already existing as well as novel proposed compression
algorithms. All algorithms have been implemented in a commonMatlab framework. A major contribution
of this paper, that differentiates it from similar research efforts, is the employment of real world
Electroencephalography (EEG) and Electrocardiography (ECG) datasets comprising the two most
demanding Epilepsy modalities. Emphasis is put on WSN applications, thus the respective metrics focus
on compression rate and execution latency for the selected datasets. The evaluation results reveal signif-
icant performance and behavioral characteristics of the algorithms related to their complexity and the
relative negative effect on compression latency as opposed to the increased compression rate. It is noted
that the proposed schemes managed to offer considerable advantage especially aiming to achieve the
optimum tradeoff between compression rate-latency. Specifically, proposed algorithm managed to com-
bine highly completive level of compression while ensuring minimum latency thus exhibiting real-time
capabilities. Additionally, one of the proposed schemes is compared against state-of-the-art general-
purpose compression algorithms also exhibiting considerable advantages as far as the compression rate
is concerned.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction Toward gaining a better understanding, advancements of Wire-
Epilepsy comprises a disease of profound social significance
while it represents one of the most important medical challenges,
troubling human kind throughout its history. Although significant
research effort has been devoted for many decades, relatively little
advancements can be reported in understanding, analyzing,
identifying, categorizing and treating it. In this direction [1] offers
a review on the results of the Global Campaign against Epilepsy
aiming to shed light on the challenges and difficulties people with
epilepsy and their families are facing. In addition, in [2] it is clearly
depicted that it is also important to look into issues like stigmati-
zation, social exclusion, medical or psychiatric comorbidities.
Another aspect related to the economical side effects of epilepsy
and respective treatments is discussed in [3–6].
less Sensor Networks (WSN) are attracting increasing interest both
by academia and industry in the area of Epilepsy study. On one
hand this is indicated by the various relative projects using WSN
advancements to study epilepsy [7] and home health care [8]. On
the other hand, increased interest is noticed in lots of research
efforts ranging from study of specific WSN medical applications
[9] to performance study of WSN networks [10,11] and efficient
handling of large volumes of data [12]. In that respect long term,
non-intrusive monitoring of patients, during an extended period
of time, has been used for many years to extract valuable conclu-
sions and indications. In [13] extensive reports on intensive EEG/
video monitoring are presented. Authors [14] EEG monitoring is
used to offer a quantitative review of seizure risk in specific consid-
erations, while [15] focuses on epileptic and non-epileptic disorder
distinction. However, relative studies in diverse environments
through adequate WSN equipment are expected to offer significant
insights and advancements. In that context European Research
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projects are devoted in Epilepsy study and monitoring using ultra
low power wireless platforms [7,16]. Additionally, platforms
specifically designed and implemented to wirelessly aggregate
respective modalities are attracting intruding attention as indi-
cated in efforts [17,18] where a wireless neural interface is the
main objective. Also in respective efforts are presented focusing
on EEG data aggregation [19–21]. Such implementations enable
medical personnel to perform accurate, secure and non-intrusive
monitoring and study of phenomena not possible through conven-
tional approaches.

However, from an engineering point of view respective studies
are based on the capability to acquire large volumes of data
(digitized physiological measurements), for extended periods of
time, which must be either stored locally or transmitted to an
aggregation point. The two data types of paramount importance
in epileptic seizure study, resulting into excessive amount of accu-
mulated data, are Electroencephalography (EEG) and Electrocardiog-
raphy (ECG) measurements. Typical acquisition devices produce
samples represented as 16 bit numbers. Furthermore, a wired
EEG setup is usually comprised of 64 sensors with sampling fre-
quency up to 2.5 kHz, while ECG requires typically 4 sensors with
adequate sampling frequency of a few hundreds of Hertz.

Thus, it can be easily deduced that a setup of 64 EEG sensors
requires bandwidth of more than 2.5 Mbps (not considering packet
headers and control data), thus posing a significant burden to WSN
platforms, which typically offer extremely limited resources. This
has been clearly indicated in [22], where the power consumption
of critical components of a WSN node has been modeled in order
to study its respective effect on the overall performance of the
WSN; in [23] a relative study on the lifetime of a typical WSN node
is evaluated. Relevant efforts include performance evaluation con-
cerning time sensitive applications in specific topologies [24], and
various environments like industrial test cases [25] and road tun-
nels [26]. The net result of all these efforts is the creation of spe-
cialized communication platforms like the ones presented in
[27,28]. The above brief analysis reveals the necessity of effectively
reducing the amount data that must be managed. Aiming at miti-
gating such inefficiencies, effective compression techniques can be
valuable tools able to offer significant reduction of the data wire-
lessly transmitted or/and stored, without compromising informa-
tion accuracy. Performance efficiency, with respect to data size
reduction, is measured by compression rate corresponding to the
reduction percentage achieved against the initial size. Further-
more, considering that sensor data are continuously acquired,
compression must be executed on-the-fly in order to minimize
CPU occupation and assure zero data loss. The latter can be caused
from data overrun, which usually occurs due to the limited buffers
offered by typical WSN platforms.

Another aspect that highlights the significance of this effort is
the potential impact it can have at commercial level considering
the respective state-of-art WSN platforms. Indeed nowadays the
number of WSN platforms being able to acquire mainly ECG [29–
31] and to a lesser degree EEG [31] modalities rapidly increase.
However, although the number of features and algorithms offered
increase (e.g. encryption algorithms is a quite common example) to
the best of our knowledge none of them include efficient and spe-
cialized compression algorithms. Therefore, the respective imple-
mentations, algorithms’ proposals and evaluation conducted in
this paper can indeed be of high value for future development
platforms.

From another perspective, similar approaches have received
high research interest, as it is clearly indicated by the respective
papers published in relative journals and conferences [32–35].
However, such efforts offer quite diverse functional characteristics
and application domain suitability. In this paper, the main axes
characterizing the proposed compression approaches are the
following. On one hand design adequacy with respect to low
resource communication and processing platforms is required,
thus requiring low complexity and high efficiency. On the other
hand, the respective design must be also adequate for epilepsy
monitoring, which effectively means to exhibit high efficiency
regarding compression performance of the respective demanding
modalities i.e. EEG/ECG. Literature research has revealed a lack of
proposals satisfying both these critical requirements’ axes. There-
fore following an elicitation process, which is analyzed in detail
in the following section, a specific group of compression algo-
rithms that adhere better to the aforementioned requirements
has been selected. A significant contribution of this paper relates
to the development of all selected approaches in Matlab environ-
ment and a consequent experimentally evaluation using real
EEG/ECG medical datasets. This effort allows drawing important
conclusions regarding the performance and behavior comparative
analysis under common a common framework. However, the main
contribution of this paper focuses on proposing novel compression
schemes targeting at, on optimal ‘‘compression rate”–”compres-
sion latency” trade-off as well as maximum ‘‘compression rate”.
The evaluation of the proposed algorithms reveals critical advan-
tages against already existing solutions. More specifically, the pro-
posed research work proves to be highly efficient concerning
‘‘compression rate” as well as ‘‘compression latency”. Furthermore,
it exhibits critical advantages with respect to achieving the opti-
mum trade-off between considered metrics, thus advocating the
used of the proposed solutions over the already existing ones on
real scenarios.

Lastly, another critical contribution significantly enhancing the
added value of this paper compared to similar research efforts is
the utilization of a variety of real experimental EEG and ECG data-
sets of high sampling frequency and high resolution, so as to
achieve valid, objective and practical results. Specially [32,33]
although proposing lossless approaches they don’t focus on EEG/
ECG signals characterized by specific attributes. Also in [34,35]
although they offer significant information and background knowl-
edge, respective evaluations are based on general data omitting the
specificities of biomedical signals such as EEG/ECG. The datasets
have been acquired by using actual WSN sensors as well as from
publicly available databases. This aspect offers a critical advantage
of this work over relative ones which to the best of the authors’
knowledge do not base their performance evaluation on real data.
In all cases the performance evaluation focuses on the following
two metrics

� Compression rate = (compressed_data_size � uncompressed_
data_size)/(uncompressed_data_size).

� Compression latency indicating the time interval required to
compressed a specific sample of data.

The rest of the paper is structured as follows: Section 2 presents
the rationale behind the main characteristics of the compression
schemes considered. Section 3 outlines the theoretical background
information focusing on selected compression schemes, while
Section 4 describes the proposed extensions. Section 5 presents
the experimental setup, while Section 6 presents and analyses
the most valuable results and measurements. Section 7 offers a
comprehensive yet concise comparative analysis. Finally, Section 8
discusses the main conclusions extracted from the aforementioned
measurements and provides directions concerning potential future
work.
2. Rationale

A critical categorization of the compression algorithms for the
intended application domain could be lossless or lossy. Lossless
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algorithms guarantee the integrity of data during the compression/
decompression process. In contrast, lossy algorithms may result in
information loss to achieve a higher compression ratio. However,
when the compressed stream is decompressed the result is not
identical to the original data stream as depicted in efforts like
[34,33] analyzing compression algorithm functionality. With
respect to this characteristic, the criticality and accuracy required
by Epilepsy monitoring and study cannot tolerate any datum being
corrupted as a result of the compression process. Hence, only loss-
less compression algorithms suitable for wireless sensors have
been considered in this paper [33].

The fact that the digitized EEG and ECG signals are represented
as time-series also comprised an important criterion for the selec-
tion of the compression schemes. In this context each sample, is, or
can be, correlated with the previous and/or following value or val-
ues. Moreover, periodic measurements’ patterns can be identified,
which for example are typically observed in a healthy ECG signal.
Finally, a specific and a priori range of values exists enabling the
representation of all values through a specific number size (i.e. in
our cases typically through 16 bit long numbers). Consequently,
the algorithms selected are well known for their effectiveness on
time-series datasets which is the cases of datasets encountered
in compression algorithm proposal [32,33,35] or data produced
in specific realistic cases like industrial scenarios [25] or analyzed
in compression reference guide [34].

From the WSN networking point of view, in order to assure on
the fly applicability of the compression scheme, a critical trade-off
is identified between the unavoidable increased processing latency
(due to demanding algorithm execution) and the desired data
reduction percentage (i.e. compression ratio). Consequently, the
communication efficiency offered by the respective compression
approaches pertains to achieving an optimum balance point. Com-
pression algorithms for wireless sensors must be redesigned or
adapted so as to reduce the code size footprint and the dynamic
memory usage [32]. In that respect, the algorithms selected focus
on time series data compression and are characterized by low com-
plexity aiming at minimizing the operation latency overhead.

3. Existing approaches

The goal of this section is to present the main characteristics of
the selected compression schemes and details regarding their
implementation. The main focus is on trying to extract and analyze
the main functionalities and features that affect both the perfor-
mance and efficiency of each particular algorithm.

3.1. Lossless compression of time-series data based on increasing
average of neighboring signals

This algorithm follows a lossless compression approach aiming
at predicting the values in time-series data with significant value
variations, thus relying on similarities with previous data values
[35]. Comparing cumulative distribution features of the current
signal with the same features of the past signal, the algorithm
identifies their similarities. Next, the algorithm outputs the coded
residing signal (the difference between the original signal and the
prediction) using a Golomb–Rice encoding and the average of
neighboring signal [36]. In order to differentiate the specific algo-
rithm from the other algorithms presented in the rest of the paper,
from now on, in the respective measurements, it will be referred to
as Prediction”.

The method consists of four steps as described in [35]:

� Generation of the differential signal.
� Selection of the reference signal based on the cumulative distri-
bution features.
� Generation of the residual signal.
� Golomb–Rice coding.

The implementation flow chart is depicted in Fig. 1. As shown
(and will become more clear when comparing it with the other
algorithms) ‘‘Prediction” scheme comprises a computationally
intensive implementation. In order to achieve accurate prediction,
which will assure increased compression rate, multiple demanding
calculations must be made: moving average calculation of past
samples, calculation distribution features, Euclidian Distance and
Golomb–Rice Encoding. As it will be verified in Section 4, the above
calculations result into a scheme, which on one hand poses
considerable processing latency overhead while, on the other hand,
achieves high compression rate efficiency due to its prediction
capabilities.

3.2. An efficient lossless compression algorithm for tiny nodes of
monitoring wireless sensor networks (LEC)

LEC is a low complexity lossless entropy compression algorithm
[33] resulting in a very small code footprint that requires very low
computational power. Its operation is effectively based on a very
small dictionary and exhibits impressive on-the-fly compression
capabilities. Consequently, LEC is quite attractive for being
employed in WSNs. The main steps of the algorithm include:

� Calculation of the differential signal.
� Computing the difference di between the binary representations
ri and ri�1 of the current and previous measurements respec-
tively; encoding is applied upon di resulting in the correspond-
ing bsi sequence.

� The sequence bsi is then concatenated to the aggregate bit
sequence.

Fig. 2a shows the implementation flow chart of the algorithm,
as it was realized and evaluated in the context of this paper. The
main processing effort occurs during the encoding phase of the
compression, which aims at transforming di to bsi bit sequences.
During this process, firstly the number ni bits needed to encode
the value of di is computed. Secondly, the first part of bsi, indicated
as si, is generated by using the table (using ni as index) that con-
tains the dictionary adopted by the entropy compressor. In that
respect, JPEG algorithm is adopted because the coefficients used
in the JPEG have statistical characteristics similar to the measure-
ments acquired by the sensing unit. However, in our implementa-
tion the table is extended so as to cover the necessary 16 bit
resolution of the Analog to Digital Convertor (ADC) of the sensors.
Thirdly, the second part of bsi (indicated as ai) is calculated from
the ni low-order bits of di [33].

Focusing on the implementation features of LEC, it can be
implemented by maintaining in memory only column si of the
aforementioned table. Overall, it can be easily extracted that LEC
avoids any computationally intensive operation, which is of para-
mount importance, for this application. As a result, it exhibits very
low execution latency. However, since its operation is based on a
static lookup table, it cannot dynamically adjust to the characteris-
tics of a specific signal. The latter, is a significant drawback that
impacts negatively on compression rate capabilities.

3.3. An adaptive lossless data compression scheme for wireless sensor
networks (ALEC)

This algorithm is based on an adaptive lossless entropy com-
pression approach focusing on low computational power. It uses
three small dictionaries, the size of which is determined by the
resolution of the analog-to-digital converter (ADC). Adaptive
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compression schemes allow the compression to dynamically adjust
to the data source. The data sequences to be compressed are parti-
tioned into blocks and for each block the optimal compression
scheme is applied. The algorithm is similar to the LEC algorithm
[33]. The main difference is that this algorithm uses three Huffman
coding tables [32] instead of the one table used for the DC
coefficients in JPEG algorithm. ALEC uses adaptively two and three
Huffman tables, respectively. The implementation flow chart of
ALEC algorithm is presented in Fig. 2b. Compared to LEC, ALEC is
quite similar apart from the increased number of lookup tables it
employs. As a result, its compression rate efficiency is also
increased. However, as depicted in Fig. 3, each block is passed
through two lookup tables, which eventually results in an increase
of the algorithm’s processing latency.
4. Proposed compression schemes

Driven by the algorithms described in Section 3, the main objec-
tive of this section is to further enhance compression efficiency. In
the next paragraphs we present two novel compression schemes
based on ideas, which intend to achieve (a) optimum balance
between compression efficiency and processing overhead and (b)
maximum compression rate efficiency. As far as the former objec-
tive is concerned, the proposed algorithms aim at offering opti-
mum balance between the two orthogonal related performance
metrics, i.e. compression rate and the imposed compression process-
ing latency. As depicted in Sections 6 and 7, where the performance
of existing approaches is evaluated, the currently available algo-
rithms offering high compression rates tend to be very slow. On
the contrary, approaches exhibiting low processing latency usually
do not offer a competitive compression rate. In that respect, the
idea introduced through the proposed algorithm aims at exhibiting
competitive performance in both areas. As it will be analyzed in
Sections 6 and 7, the proposed approach manages to offer high
compression rates (similar to the maximum performance of the
already published ones) without, the penalty of increased com-
pression latency (from which high compression rate algorithms
usually suffer). As a result, the proposed approach achieves a
highly competitive trade-off between compression rate and com-
pression latency compared to existing algorithms. Such perfor-
mance is of paramount importance for WSN networks, especially
when considering WSN node operation. This is due to the fact that
in the software running on the WSN node the compression



Fig. 2. Low complexity compression algorithms.

C.P. Antonopoulos, N.S. Voros / Journal of Biomedical Informatics 59 (2016) 1–14 5
algorithms must coexist with a wide range of software related to
data acquisition and data processing.

Regarding the latter objective, the novelty of the approach pre-
sented is solely related to the maximization of the compression rate.
The proposed approach is driven by the fact that, in various scenar-
ios, on-the-fly capability is less important compared to maximum
compression rate. For example, biomedical data may be stored
locally in the WSN provided memory (typically state-of-the-art
WSN platforms offer storing capabilities in the order of a few GBy-
tes). Additionally, processing latency effectively depends highly on
evolving factors such as the processing capabilities of the nodes.
Consequently, in various cases the end user is interested solely in
reducing the space (in bytes) that the acquired biomedical data
require. In order to address this aspect, a novel algorithm is pro-
posed which achieves the highest compression rate percentage in
50% of the signals used as evaluation datasets. It is noted that even
in the cases where the proposed algorithm did not exhibit the best
compression rate it offered the second best performance with mar-
ginal difference from the first.

4.1. A proposed scheme for the prediction of the most suitable Huffman
Code table for lossless data compression in time-series data (Real-Time
Huffman)

In this section a lossless entropy compression algorithm is pre-
sented focusing on low computational requirements. It also
exploits the frequencies of the observed data in the time series in
order to offer an efficient dynamically adaptive Huffman table for
the encoding. The main novelty (as will be analyzed in the next
paragraphs) here is the extension of the approaches derived from
LEC and ALEC algorithms (i.e. low complexity, low code footprint,
low compression latency). Furthermore, it significantly enhances
the achieved compression rate by increasing the adaptability to
the data characteristics. As it will be detailed in Section 6, the goal
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is achieved since the compression rate exhibited by the proposed
extension is only marginally lower than the best achieved rate
while significantly higher than LEC’s and ALEC’s.
4.1.1. Proposed algorithm rationale
LEC algorithm compresses data in its entropy encoder with the

use of a fixed table leading to a very rapid execution. This table is
an extension of the table used in the JPEG algorithm to reach the
size necessary for the resolution of the ADC in use. Additionally,
it is based on the fact that the closer the absolute of a value is to
zero the more frequent it is observed in the differential signal.
However, it is noticed that although this frequency distribution
may be valid for a file or stream of data, it is not always accurate
when considering fractions of the file or the data stream. Based
on this observation ALEC algorithm uses a small amount of fixed
Huffman Codes tables that can be alternatively used to produce
smaller code for a packet of data [32]. Furthermore, the specific
table is not optimal for the specific data under test at each partic-
ular experiment.

Therefore, in the proposed scheme a novel approach is
introduced, where the Huffman Codes lookup tables used are
continuously adjusted to the specific data used. Moreover, the
degree that the tables are adjusted is also configurable, offering
fine tuning capabilities that enhance the added value of the respec-
tive novel approach.
4.1.2. Utilization of data statistical knowledge
Usually no statistical knowledge is available when time-series

data are measured and transmitted through wireless sensors. A
method can be used based on earlier observations, but since data
are changing over time this knowledge can be of questionable
value as far as the compression effectiveness is concerned. There-
fore, in the proposed scheme, the previously observed values’ fre-
quency, are used to update Huffman Code tables for the values to
follow. Initially, the differential signal is produced, as it is highly
possible to have values that can be compressed more effectively.
Next, the differential signal is separated in fixed size packets. In
the first packet, since there is no statistical knowledge of the data,
the method is using the table from the LEC algorithm. In the sub-
sequent packets the previous data statistical knowledge is used
to create on-the-fly an adaptive Huffman Code table. The alphabet
of numbers is divided into groups, the sizes of which increase
exponentially. Every new differential signal value observed, results
in increasing the frequency of the appropriate group. When the
processing of a packet of data ends, the frequencies of each group
are used to extract the probabilities of a value that belongs to that
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group. The blocks are sorted in descending order by their probabil-
ities and a binary tree is created, following the procedure repre-
sented in [37].

After creating of the Huffman Code table for the subsequent
packets, the current frequency table is multiplied element-wise
by with a factor varying between 1 and 0. Therefore, as this param-
eter is approaching 0 the degree by which history (i.e. frequencies
observed in previous packets) is taken into account in the next
Huffman Code table diminishes. Therefore, if 0 is selected only
the frequencies of the current packet are used; if 1 is selected
the frequencies of every previous packet are equally used in the
encoding of the next packets.

4.1.3. Analysis of the configuration features of the proposed algorithm
The method just described offers two configuration parameters.

The one is the factor that regulates the degree that history frequen-
cies are taken into account. When the respective configuration
parameter is set to 1, the frequencies of all packets from the begin-
ning of the stream are equally considered and thus the significance
of the latest tendencies is reduced. In contrast, when the coefficient
is set to 0 only the latest packet is considered and the older data
behavior is ignored. Therefore, in the latter case the algorithm is
more responsive to abrupt (or possible random) changes in the sig-
nal; the former configuration is more adequate when the overall
characteristics of the signals should be considered.

The second variable requiring optimal configuration is the
packet size. This parameter can also affect the performance of com-
pression, since the increase of the packet size leads to focus on
more general frequency behaviors, thus not adapting to the latest
trends. However, by adopting a very small packet size the algo-
rithm may focus too much on specific or incidental patterns of
the signal ignoring general behavior tendencies, thus reducing
the algorithm’s effectiveness. Such parameters can be useful when
fine-tuning is required in the context of the datasets (and thus
application scenarios considered) or randomly compressing chang-
ing data. Regarding, the medical datasets employed in the evalua-
tion presented in this paper, the exhibited effect on compression
rate is less than 1%, which is rather negligible as far as processing
latency is concerned; so they are not evaluated in more detail.

Probably the most important aspect to analyze is the imple-
mentation flow chart depicted in Fig. 3a. Compared to the LEC
implementation flow chart, it can be observed that the main differ-
ence concerns the segmentation of data into packets (i.e. blocks of
data). Moreover, when the process is finalized two more low com-
plexity calculations are added so as to update the lookup table that
will be used for the next packet. A counter is also maintained dur-
ing the processing of each block. Although these additions slightly
increase the processing latency, they also increase drastically the
compression rate performance.

4.2. A proposed enhancement of the lossless compression of time-series
data, based on increasing average of neighboring signals (Variable
Length Golomb-Rise)

This novel proposal concerns a lossless compression scheme
based on the algorithm presented previously in Section 3.1. This
implementation does not predict differential signal values and
encodes the residual signal as done in the original algorithm.
Instead, it encodes the differential signal with the same encoding
but with variable length (m) for the Golomb–Rice encoding. The
implementation flow chart this scheme is presented in Fig. 3b.

4.2.1. Proposed modifications
The method commences by producing the differential signal.

Then the average value of the neighboring differential signals is
calculated. The first enhancement compared to the original design
(Section 3.1) is that instead of estimating the differential signal and
then encoding the residual (difference between estimation and dif-
ferential), the differential signal itself is encoded. In this way, the
method avoids the highly computationally intensive prediction
procedure. Then the encoding is similar to the original method.

The second novelty, compared to the original implementation,
is that instead of using a fixed length for the Golomb–Rice encod-
ing, this method uses two different lengths for a packet of fixed
length. Then it selects the output code that has the smallest length
and adds one bit expressing the selection and the selected length.
After experimenting, it was observed that the best-fixed lengths for
the Golomb–Rice encoding of each sample are 2 and 3, which are
used in our implementation. This difference is critical since
Golomb–Rice encoding is executed twice (aiming at assuring the
maximum compression rate). This increases the imposed latency,
thus counteracting the latency reduction due to the omission of
the prediction functionality (although even surpassing it in certain
cases). Therefore, as it will be depicted during the comparative
analysis, it achieves to surpass (even marginally) the performance
of ‘‘Prediction” algorithm but with a latency penalty.

In the rest of the paper, the measurements regarding this
scheme are entitled ‘‘GolombVariableM”. As it will be explained
in the next sections, it offers useful advantages especially when
focusing at maximum compression rate performance.
5. Experimental setup

In order to offer realistic and valid performance measurements,
adequate selection of evaluation datasets has been made focusing
on highly demanding (in terms of amount of data and thus traffic
produced for a WSN network) cases of actual biomedical data
modalities related to Epilepsy. The selection of data from various
sources, on one hand enhances the objectivity and validity of the
evaluation, while on the other hand it allows the repeatability of
the evaluation study.

Eight signals (four ECG and four EEG) with various characteris-
tics and duration of 10 min each have been used. Each signal is ini-
tially stored in a file considering 16 bits per sample while following
a little-endian storing approach. All samples have a length of 16
bits while the sampling rate is varying from 100 samples/sec
(low ECG sampling rates), up to 2500 samples/sec (high EEG sam-
pling rate scenarios). Thus a wide range of evaluation cases corre-
sponding to respective demanding WSN traffic scenarios is offered.
5.1. PhysioNet database

PhysioNet [38] was established in 1999 as the outreach compo-
nent of the Research Resource for Complex Physiologic Signals
cooperative project [39]. Signals from the following two subcate-
gories were extracted from PhysioNet database and were used as
evaluation testbeds for algorithms implemented.
5.1.1. Apnea-ECG database
This database has been assembled for the PhysioNet/Computers

in Cardiology Challenge 2000 [40]. From this database the
ecgA04apnea and ecgB05apnea datasets have been used in the
evaluation process.
5.1.2. CHB-MIT Scalp EEG database
This database [41], collected at the Children’s Hospital Boston

Massachusetts Institute of Technology (MIT), consists of EEG
recordings from pediatric subjects with intractable seizures [42].
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5.2. University of Patras, EEG and ECG signals

The dataset is provided by the Neurophysiology Unit, Labora-
tory of Physiology School of Medicine, University of Patras (UoP)
[43].

5.3. EkgMove ECG signals

EkgMove [44] is a psycho-physiological measurement system
for research applications. From the various measurement capabili-
ties of the sensor, the ECG signal of a single subject has been used
[45].

5.4. Experiment configuration

Measurements were conducted in a 32-bit IBM compatible
computer equipped with an Intel Pentium Dual CPU T3200 @
2.00 GHz and with sufficient memory to load the signal sample
in the RAM memory. All measurements were executed in Matlab
environment where all algorithms presented were implemented.
It is noted that during the implementation phase of the selected
algorithms, effort has been devoted to ensure that the used soft-
ware functions can be implemented in embedded systems. For
example, instead of using hash tables and hash sets, only normal
lookup tables have been used; hash tables could enhance execu-
tion speed, but their implementation is not frequently encountered
in most embedded systems.

6. Perfomance evaluation

In this section an in depth performance and behavioral analysis
is presented aiming at extracting valuable and important conclu-
sions. To achieve this objective a multi-parametric evaluation is
undertaken considering the characteristics presented in Table 1.

Furthermore, in order to objectively reveal all the behavioral
characteristics of compression, the respective performance graphs
are not only compared to each other but are also studied and ana-
lyzed with respect to the specific dataset’s sample value and espe-
cially the observed variation in them.

6.1. The effect of compression algorithm

As indicated, the evaluation is based on different datasets char-
acterized by diverse attributes. Consequently, the main objective in
this subsection is to identify which technique performs better for
each particular dataset quantitatively but also reveal the specific
characteristics of the datasets affecting the behavior of the com-
pression scheme qualitatively. On one hand it is observed that
the absolute values of the signals considered are completely differ-
ent making it very hard to extract a common way to represent and
compare them. On the other hand, all compression schemes
Table 1
Evaluation scenarios’ configuration.

Configuration
parameter

# of
Values

Details–comments

Compression
algorithms
considered

5 (3 existing and 2 proposed)

Epilepsy modalities
considered

2 EEG, ECG

Sampling
frequencies

3 100 (Apnea datasets), 245 (MIT, EkgMove
datasets), 2500 Hz (UoP datasets)

Sample resolution 2 12, 16 bit
Datasets’ signal

duration
10 min –
considered base their logic on the difference between a particular
value and the previous one. Therefore, in order to have a common
and objective way to evaluate the effect of the actual signal being
compressed, the differential signal is used as the main representa-
tion of the actual signal being compressed.

6.1.1. Electrocardiography (ECG) Apnea A04 dataset
The datasets extracted from the Apnea database concern ECG

signals sampled with the lowest frequency among the datasets
considered. In Fig. 4a the differential signal is presented indicating
the differences between each particular sample and the previous
one. As observed, the variation of the absolute values are within
the range of �300 up to 300 while the density of the graph is quite
homogeneous, except three areas (depicted in Fig. 4a) where the
variation density is higher; as it will be shown this has a clear
effect on the compression behavior.

Comparing Fig. 4a and b it is evident that each area of increased
differential signal density corresponds to a clear drop of compres-
sion rate performance. It is noted that this behavior is common to
all algorithms considered.

Furthermore, a clear advantage is offered by the ‘‘Prediction”
and ‘‘Variable Length Golomb-Rise”. On one hand, the ‘‘Pre
diction’s” advantage is attributed to the fact that heart rate
(acquired by the ECG measurements) is a periodic operation thus
prediction comes into play. On the other hand, ‘‘Variable Length
Golomb-Rise” advantages are based on the fact that data are effec-
tively compressed twice and the configuration offering the best
compression rate is selected. Both algorithms exhibit an average
effective data volume reduction (i.e. compression rate) of �64%
while reaching up to �68% in particular segments of the dataset.
However, both approaches are based on intense mathematical pro-
cesses, thus significant latency penalty must be paid, as shown in
Fig. 4c. The proposed Real-Time Huffman also offers a significant
62.5% compression rate; LEC algorithm presents the lowest perfor-
mance of 60%, from which the network can still benefit regarding
performance and robustness.

One last important observation concerns the fact that the sec-
ond proposed scheme ‘‘Real Time Huffman” proves to be the best
next option lacking only �1–1.5% compression rate compared to
the previous ones. It offers significant advantage in terms of
latency as shown in Fig. 4c where the compression latency of all
algorithms considered is depicted. In conjunction with Fig. 4b
and the characteristics of the signal (i.e. the sampling frequency)
valuable observations can be made. It is noted that the dataset
sample duration is 600 sec. Therefore it can be extracted that for
low sampling rate of 100 Hz, the compression for any of the con-
sidered algorithms can be performed on-the-fly since the maxi-
mum latency measured is only �35 sec, i.e. 5.8% of the time
required to acquire the measurements.

Moving on to a comparative analysis, it is proven that the max-
imum compression rate comes with a penalty since both ‘‘Predic-
tion” and ‘‘Variable Length Golomb-Rise” exhibited the highest
latency i.e. �25 and �35 sec respectively. In contrast, the proposed
‘‘Real Time Huffman” scheme is lacking only 1–1.5% of the com-
pression rate performance, while it offers a highly competitive
latency performance of �8 sec representing only 1.3% of the time
required for the sensor to acquire the actual data. Quantifying
the real-time capabilities of the considered algorithms shows that
all algorithms can compress the dataset under evaluation in real-
time. This is because the compressed signal (of all datasets consid-
ered) represents data acquired over a period of 10 min. Therefore,
the data acquired during a process of 600 sec can be compressed in
7 sec (LEC), 8 sec (proposed Real-Time Huffman) or a maximum of
35 sec, which can be easily accommodated using a double buffer
logic (one buffer receiving the uncompressed data and a second
one compressing data received during the previous period). A
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second, yet more important comment, has to do with the fact that a
respective component on a real WSN node will have to accommo-
date multiple similar signals, for example due to the need to con-
currently monitoring multiple such ECG sensors. Therefore a sense
of multiple sensor capacity is extracted where algorithms like the
proposed Real-Time Huffman achieve a metric of 75 (dividing the
600 sec acquisition period by 8 sec compression latency). The per-
formance achieved is more than three times higher compared to
Prediction algorithm that is able to compress 24 analogous signals
due to the exhibited 25 sec latency.

6.1.2. Electrocardiography (ECG) UoP
Datasets from University of Patras, Greece (UoP) comprise the

most demanding cases considered in the context of this paper.
Firstly, the sampling frequency is 2500 Hz representing an
emphatic increase compared to 256 Hz and 100 Hz analyzed so
far. Secondly, and with respect to Fig. 5a, the differential signal is
characterized by high number of areas where the differential
signal’s range is drastically higher than the previous cases.

These characteristics lead to an overall reduced compression
rate performance as indicated in Fig. 5b since they range between
�52% and 58% corresponding to ‘‘LEC” and ‘‘Prediction”–”Golomb
VariableM” exhibited performance respectively. It is interesting
to note that between the 4th and the 5th marked area, where the
differential signal is homogeneous, all compression rate graphs
exhibit increasing tendencies, which are followed by three
decreasing slops corresponding to the incidences in the 5th
marked area of Fig. 5a. What is very important to point out in favor
of the proposed ‘‘RealTimeHuffman” scheme is that in such
demanding dataset cases the advantages of the highly complicated
‘‘Prediction” and ‘‘GolombVariableM” are significantly diminished.
As observed throughout the dataset duration, the performance of
‘‘RealTimeHuffam” is only 1% less than the optimum achieved. Fur-
thermore, and in comparison to the previous cases, the proposed
‘‘RealTimeHuffman” clearly outperforms ‘‘ALEC” which offered
analogous compression rate, in the less challenging datasets.
Overall, the proposed GolombVariableM and Prediction offer the
highest data volume reduction of �58%. However the second
proposed algorithm exhibits an impressive 57% compression rate
the added value of which is even more pronounced when
considered in conjunction with compression latency evaluation
following. Furthermore, LEC performance lacks considerably
marginally exceeding 52% compression rate.

As expected, due to the high sampling frequency, compression
latency becomes a critical metric when on-the-fly compression is
required e.g. real-time monitoring and epilepsy incident identifica-
tion. The two schemes that could effectively fulfill the demands of
an on-line scenario are ‘‘LEC” and ‘‘RealTimeHuffman”, both
imposing a latency compression of �200 sec. Concerning real-
time capabilities critical observations can be made. The first clear
observation is that in contrast to the previous dataset, in this case
two out of the five implemented algorithms are inadequate for on
the fly operation since compression latency requires more time
than the acquisition time period of 600 sec. These are the Predic-
tion algorithms exhibiting a processing latency of 700 sec and
the GolombVariable M requiring up to 900 sec to compress data
aggregated over the 600 sec period. The two algorithms clearly
able to accommodate real time operation are LEC and Real-Time
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Huffman exhibiting 200 and 224 sec latency respectively. Even
more real-time operation based on these algorithms could be sup-
ported for concurrently monitoring respective 3 and 2.5 ECG
sensors.

6.1.3. Electroencephalography (EEG) from MIT 07 dataset
This dataset comprises of EEG signal sampled with a frequency

of 256 Hz. The signal outside the marked areas is quite smooth, as
indicated by the very small range of differentiated values (that
fall within the range between �50 and 50), which can lead to
high compression rate. However, throughout the sample consid-
ered, multiple areas of relatively high differential values are iden-
tified in Fig. 6a, which affect negatively the compression
efficiency.

The above characteristics have a clear effect on the compres-
sion behavior as presented in the respective graphs in Fig. 6b.
As depicted at the beginning of the process, the relatively small
differential signal leads to a rapid increase of the compression
rate. The latter, is interrupted by the first marked area which con-
cerns a quite extended time period of increased differential sig-
nal; this has a drastic negative effect on all algorithms since the
compression rate drops by 5–6% in the interval between the
75th sec and 225th sec. Following this significant performance
degradation, the compression rate increases, although temporar-
ily obstructed by subsequent areas of increased differential signal.
Overall, the compression rate increase (time duration 225th up to
600th sec) compensates for most of the performance degradation
attributed to the first area depicted in Fig. 6a. This is depicted by
the fact that, in all compression algorithm cases, the final
compression rate (achieved at the 600th sec) is less than 1%
lower than the initial one (indicated at the first 10 sec of the
compression).

Furthermore, the EEG signal is less periodic compared to ECG
and does not favor ‘‘Prediction” and ‘‘GolombVariableM”
approaches. Therefore, from a quantitative aspect although these
two algorithms still offer the highest absolute performance
(70.3% compression rate), it is less than 1% higher than the pro-
posed ‘‘RealTimeHuffman” (69.8%). At the same time, the gap
between the latter and LEC increases since the latter manages
a relatively mediocre 66.2% data volume reduction. Combining
the previous observations with the latency overheads depicted
in Fig. 6c, it can be observed that the ‘‘RealTimeHuffan”
approach, offers less than 1% reduced compression efficiency
compared to ‘‘Prediction” and ‘‘GolombVariableM”, while posing
only 1/3 and 1/4.5 respective latency. Such an advantage can
be of critical importance when on-the-fly compression is
required. Following an approach similar to the previous cases
for quantifying real-time capabilities as in previous cases it has
been observed that all algorithms are able to compress the
received data much faster than actually acquiring them, thus
adequate for on-the-fly scenarios. However, once more the pro-
posed ‘‘Real-Time Huffman” and ‘‘LEC” algorithms exhibit
advanced real-time capabilities which allow compressing
aggregated data acquired from approximately 30 EEG sensors
in the period of 600 sec. Algorithms like ‘‘Prediction” and
‘‘GolombVariableM” can respectively accommodate �10
and �6.5 similar sensors which is a significant disadvantage
regarding the specific performance metric.
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6.1.4. Electroencephalography (EEG) from the F4 sensor UoP dataset
As observed with ECG signals, UoP datasets offered challenging

EEG cases as well. Specifically, as depicted in Fig. 7a, there are mul-
tiple areas of abrupt and emphatic variation increase of the differ-
ential signal posing significant obstacles upon compression
schemes. It is interesting to note that these differences reach and
surpass 500 of absolute differential signal and in several cases go
beyond 1000.

Additionally, between these areas the differential signal varies
within a very limited range of values, which, as observed in the
previous cases, leads to compression graphs exhibiting an increas-
ing gradient. A critical observation is that the advantage offered by
highly complex algorithms like ‘‘Prediction” and ‘‘GolombVari-
ableM” is, in such cases, negligible compared to significantly less
processing demanding algorithms like ‘‘RealTimeHuffman”
(Fig. 7b); thus, all three algorithms exhibiting a �59% compression
rate. Furthermore, as indicated in Fig. 7c, ‘‘RealTimehuffman” pos-
ses a processing latency less than 1/3 of the respective perfor-
mance exhibited by ‘‘Prediction” algorithm. Similarly, the latency
of ‘‘RealTimehuffman” is less than 1/4 of the performance of
‘‘GolombVariableM". Even more, ‘‘Prediction” and ‘‘GolombVari-
ableM” cannot be considered for real time scenarios requiring
on-the-fly compression since the processing latency is significantly
higher compared to the period required to acquire the signal value.
Finally focusing on less efficient data reduction algorithms, LEC
manages to significantly reduce the size of data by �55% while
requiring only a very low processing latency of less than 200 sec.

6.2. The effect of dataset on compression scheme behavior

As observed in the context of this evaluation, the relative effect
of the datasets considered on specific algorithm performance and
behavior is similar for all considered algorithms evaluated. There-
fore only the case of the proposed ‘‘RealTimeHuffman” algorithm
will be analyzed.

Based on Fig. 8 and taking into account the characteristics of the
datasets employed, the variation of the differential signal’s values
is by far the most critical parameter as far compression rate is con-
cerned. Therefore, in all cases EkgMove based dataset offers the
highest compression efficiency (surpassing 70%) while UoP’s data-
sets (regardless of the signal type) proved to be the less
compression-prone cases occupying the last three places (Fig. 8)
with compression rate ranging between 55% and 60%. Additionally,
Apnea ECG and MIT EEG based datasets exhibited a relatively
minor performance variation for different compression schemes.
Furthermore, the modality of the signals (i.e. EEG and ECG) and
the source of the signal (EkgMove sensor, Apnea database, MIT
databased and UoP databased) also did not prove to be significant
factors that favor the use of a specific scheme when a specific
dataset is used.
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Regarding the processing latency, the clearly dominating factor
is the sampling frequency selected. In all compression cases, mov-
ing from Apnea based datasets (characterized by the lowest sam-
pling frequency, i.e. 100 Hz) to EkgMove and MIT based datasets
with 256 Hz sampling frequency, and to UoP datasets having the
highest sampling frequency of 2500 Hz, the respective compres-
sion latency increases proportionally to the sampling frequency.
Once again real-time quantification offers valuable insight, indicat-
ing that only proposed ‘‘Real-Time Huffman” and ‘‘LEC” algorithms
are able to compress data rapidly enough so that multiple sensors



Table 4
Compression rate performance comparison.

EEG 07 MIT (%) Ecg EkgMove (%) Ecg UoP (%)

RealTime Huffman 69.7 71.8 56.9
ZIP 56.2 57.8 28.3
RAR 64.6 72.0 61.3
LZO 34.7 35.9 8.9
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can be monitored (2.5 and 3 respectively). ‘‘ALEC” is able to host data
acquired only from one sensor, ‘‘Prediction” and ‘‘GolombVariableM”
are inadequate for real-time operation since their compression
latency clearly surpasses the upper limit of 600 sec.

7. Comparative analysis

In this section, a comparison among the evaluated algorithms is
presented in order to extract useful conclusions and practical
guidelines regarding the efficiency and the degree of on-the-fly
applicability of each algorithm. Respective comparative analysis
commences with Table 2 where the algorithm offering the smallest
compression latency is highlighted and the respective cell indi-
cates the absolute latency value. The rest of the values indicate
the percentile processing latency overhead with respect to the
optimal one. In this way, Table 2 not only presents the algorithm
ranking in terms of speed in a qualitative manner, but provides
also quantitative analysis on how much slower one algorithm is
from another in a particular dataset.

The first observation is that ‘‘LEC” poses the minimum process-
ing demands in all cases, comprising the most suitable solution for
on-the-fly scenarios. A critical observation is that the second ‘‘fas-
ter” algorithm is the proposed ‘‘RealTimeHuffman”. On one hand,
this overhead advocates the use of ‘‘RealTimeHuffman” solution
in real time demanding scenarios as quantified in previous section.
On the other hand, the difference between the second (i.e.
RealTimeHuffman) and the third best performance (i.e. ‘‘ALEC”) is
significantly higher compared to the difference between ‘‘LEC”
and the proposed scheme. Specifically, in Apnea, EkgMove and
MIT datasets the overhead imposed by ‘‘ALEC” compared to the
proposed scheme vary between 7.5% and 20%. When focusing on
UoP datasets is increases in the area of 120%, which as indicated
in previous analysis, invalidates the minimum requirements for
on-the-fly scenarios. This shows that the proposed scheme is
clearly the second best solution that is very close to the algorithms
with the best performance (”LEC”). The other two algorithms exhi-
bit very high latency overheads.

However, the added value of novel ‘‘RealTimeHuffman” algo-
rithm is further enhanced through Table 3, where the comparative
performance of the compression rate is presented. The first inter-
esting observation concerns the fact that the two algorithms pos-
ing the most significant latency overheads (and the most
complex implementations) are the ones offering the highest com-
pression rates. Specifically, in the less compression prone datasets
of UoP, the proposed variation ‘‘GolombVariable” exhibited the
Table 2
Comparative latency performance of compression algorithms.

The gray shaded values are the best values recorded for the specific dataset and also se
algorithms and implementations.

Table 3
Comparative compression rate performance of compression algorithm.

The gray shaded values are the best values recorded for the specific dataset and also se
algorithms and implementations.
best performance as well as in one dataset of Apnea, while in all
the other scenarios, ‘‘Prediction” yielded the optimum perfor-
mance. However, both algorithms exhibited excessive latency
overheads, thus not being recommended for on the fly scenarios,
which are critical when WSN deployment is considered. The most
important observation is that the following best solution, in all
cases, is the proposed ‘‘RealTimeHuffman” scheme exhibiting min-
imum compression rate penalty (between 0.5% and 3.5%).

Overall this performance, in conjunction with the highly com-
petitive latency performance, raises the proposed ‘‘RealTimeHuff-
man” scheme as the most adequate solution when the optimal
trade-off is the main concern.

As a last step, the compression rate of ‘‘RealTimeHuffman” algo-
rithm has been compared against three of the most widely used,
general purpose compression algorithms. ZIP [46] and RAR [47]
as part of WinRAR software, and LZO [48]. Throughout the evalua-
tion, EEG 07 MIT, ECG EkgMove and ECG UoP dataset were used. In
order to allow a fair comparison between the four candidates, the
performance evaluation focuses on the compression rate achieved
rather the processing latency. This is because the proposed
algorithm is executed in Matlab environment (as applied for all
algorithms implemented in the context of this effort) whereas
ZIP, RAR and LZO are commercial applications, thus a compression
latency comparison would have be meaningless due to the
overheads imposed by Matlab environment.

As indicated in Table 4 in almost all cases the proposed
algorithm offers higher compression rate compared to the
state-of-the-art compression algorithms. It is noted that RAR
compression managed to offer higher compression rate in two
cases. However, the complexity and memory requirements of
RAR application comprise negative factors when considering uti-
lization in the context of WSN networks. LZO, on the other hand,
although offered very fast execution and low complexity, leads to
a significantly reduced compression rate performance with respect
to the specific type of data. Finally, ZIP also exhibits reduced
rves as reference point for the rest of the measurements produced by different

rves as reference point for the rest of the measurements produced by different
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compression rate performance, against the proposed algorithms,
while it is also characterized by a relatively high complexity
making it unsuitable choice of WSN networks.

8. Conclusions

The advent of the era for Internet-of-Things, where devices of
any kind and with various resources, usually scarce, are intercon-
nected and exchange critical data, has created new challenges for
WSNs, which appear to be the dominant technology for device
interconnection. Despite the fact that most of the devices are
rather limited CPU power, memory and storage capabilities, the
applications that take advantage of them pose significant pressure
as far their efficiency is concerned. This has led the designers to
develop novel algorithms that will allow efficient use of the limited
device resources in an attempt to deal with critical requirements
such as realtimeness and data transmission efficiency.

In order to deal with the aforementioned challenges, the work
presented here introduced a set of novel compression algorithms
for real time transmission of medical data. The scenarios consid-
ered have been borrowed from one of the most demanding areas
of medical research, the real time monitoring of epileptic patients.
The algorithms presented have been developed and tested using
real world, demanding EEG and ECG datasets acquired from
different sources. The proposed schemes exhibited significant
advantages over the competition including general purpose
compression applications. Specifically ‘‘Real-Time Huffman” pre-
sented algorithm exhibited the best trade-off performance offering
50–70% data volume reduction in combination with minimum
latency overhead. Furthermore, measurements’ analysis high-
lighted sampling rate as the main factors affecting compression
latency and the differential signal variations as the most important
compression rate parameter.

The research work presented intends to pave the way for a new
type of devices that will be part of a world of Internet-of-Things
and that will be able to use their limited resources in a more effi-
cient way. As a next step in this direction, the proposed algorithms
will be implemented, using state-of-the-art hardware platforms, as
embedded devices into the next generation of smart sensors/
devices that will be able to adapt their transmission characteristics
to their communication needs and their available resources.
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