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Tissue cryo-sectioning combined with atomic force microscopy imaging reveals that the nanoscale morphology
of dermal collagen fibrils, quantified using the metric of D-periodic spacing, changes under the condition of
estrogen depletion. Specifically, a new subpopulation of fibrils with D-spacings in the region between 56 and
59 nm is present 2 years following ovariectomy in ovine dermal samples. In addition, the overall width of the
distribution, both values above and below the mean, was found to be increased. The change in width due to an
increase in lower values of D-spacings was previously reported for ovine bone; however, this report
demonstrates that the effect is also present in non-mineralized collagen fibrils. A nonparametric
Kolmogorov–Smirnov test of the cumulative density function indicates a statistical difference in the sham and
OVX D-spacing distributions (Po0.01).
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INTRODUCTION
The dermis layer of skin is primarily composed of type I
collagen fibers (85–90%), elastic fibers, and glycosamino-
proteoglycans (Castelo-Branco et al., 1993). Collagen fibrils
account for skin’s tensile strength and resilience, whereas
the elastic fibers contribute to the elasticity and extensibility
of skin (Goldsmith, 1991). Unlike collagen in bone, which is
frequently remodeled to maintain its mechanical strength,
skin collagen has a remarkably long half-life under normal
conditions (Verzijl et al., 2000), and thus suffers long-term
degradation due to skin aging. The severity of skin aging
differs by the anatomical locations: sun-protected skin
suffers from mainly intrinsic aging effects associated with
time, such as fine wrinkles and reduced elasticity, whereas
sun-exposed skin suffers both intrinsic and extrinsic aging
(exposure to external influences such as UV radiation),
where the severity and rate of the pathological changes
including deep wrinkles, pigmentation, and melanoma
formation, are exacerbated (Bolognia, 1995; Gilchrest,
1996; El-Domyati et al., 2002; Naylor et al., 2011). The
process of skin aging leads to decreased skin collagen
content, moisture, and elasticity (Uitto, 1986; Brincat et al.,

1987). A recent study has shown that collagen fibrils are
fragmented in aged human skin. These changes in the
extracellular environment affect fibroblast attachment and
production of matrix metalloproteinases, which in turn
accelerates extracellular matrix degradation (Fisher et al.,
2009). This work underscores the importance of character-
izing collagen in order to better understand the effects of
aging on skin.

Estrogen has many beneficial and protective effects on skin
physiology and functions, including maintenance of hydration
and skin thickness, wound healing, and reduction of skin
cancer risk (Brincat, 2000). At the molecular level, estrogen
exerts its effect by interacting with surface or intracellular
estrogen receptors. Intracellular estrogen receptors, ER-a and
ER-b, have been identified in dermal fibroblasts (Haczynski
et al., 2002). The cellular responses triggered by the level of
estrogen involve gene transcription/expression, as well as
cytoplasmic signaling pathways. At the macroscopic level,
aging, and especially the onset of menopause, causes a series
of deteriorations in skin tissue physiology as a consequence of
compositional and structural alterations in the extracellular
matrix proteins. Postmenopausal women suffer from loss
of dermal collagen content at an average rate of 2% per
postmenopausal year over a period of 15 years (Brincat et al.,
1983, 1985, 1987, 2005). Decreased amounts of elastic fibers
and glycosaminoproteoglycans in postmenopausal years lead
to compromised skin elasticity and less binding with water,
respectively (Uitto, 1986; Waller and Maibach, 2006; Sherratt,
2009). The thinning of the dermal layer and loss of water
gradually result in wrinkle formation. At the microscopic level,
little is known about the ultrastructural changes of dermal
proteins that accompany aging and menopause. In this study,
we examined the effect of estrogen depletion on the nanoscale
morphology of collagen fibrils in ovine dermis. We used the
metric of fibril D-spacing, which captures a number of
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structural features, including the molecular structure of the
collagen, the three-dimensional fibril formation, and the
associated post-translational modifications.

Studies indicating that the D-spacing in collagen exists as
a distribution of values ranging from about 64 to 73 nm were
recently reported for murine bone, dentin, and tendon tissue
(Wallace et al., 2010a). The importance of using a technique
that measures the fibril D-spacing on a fibril-by-fibril basis, as
opposed to X-ray or optical methods, which average over
micron to millimeter scales when obtaining D-spacing data,
was highlighted by studies examining the effect of genetic
changes, Osteogenesis Imperfecta, or estrogen depletion
upon the D-spacing distribution in bone tissue (Wallace
et al., 2010b, 2011). In both cases, the average D-spacing
values did not change significantly, but the distributions of
D-spacings were significantly different.

Long-term ovariectomy (OVX) in ovine leads to compro-
mised compact bone viscoelastic properties, which are
similar to the conditions in postmenopausal women (Les
et al., 2005). Mineralization, architecture, and remodeling
parameters of OVX ovine bones have been characterized,
and intriguingly only poor correlation between viscoelastic
mechanical properties and these parameters were found (Les
et al., 2004). Additional quality factors that come from non-
mineral components of bone are speculated to have a crucial
role in decreasing bone viscoelastic properties. Similar
biochemical and biomechanical effects have been noted
between estrogen-deprived skin and bone (Pierard et al.,
1995, 2001; Ozyazgan et al., 2002). We are interested in
characterizing the fibrillar collagen D-spacing in hope of
better understanding the mechanisms of mechanical failure in
ovariectomized tissue. D-spacing has been demonstrated as
an effective evaluation of fibril strain in bone and tendon
previously. Mechanical stretching at the tissue level can lead
to increased fibril level strain, and therefore increased
D-spacings (Gupta and Zioupos, 2008; Gupta et al., 2010).
Atomic force microscopy (AFM) imaging of the ultrastructure
of type I collagen provides a means to probe the integrity of
the matrix protein and its association with macroscopic
pathologies. Previously, we have found a marked difference
in the D-spacing population distribution between sham
control and OVX ovine cortical bone, suggesting that
long-term estrogen deprivation leads to a decrease in fibril
D-spacing (Wallace et al., 2010b).

In this study, we quantified the D-spacing distribution
present in ovine skin and examined the effect of estrogen
depletion upon the distribution. It was shown that collagen in
skin also exhibits a distribution of D-spacing values, as
opposed to the singular value of B67 nm for tendon and
bone or 65 nm for skin, typically discussed in textbooks and
reviews, and that this distribution changes upon estrogen
depletion. This study demonstrates that the distribution of
D-spacings is independent of the degree of tissue mineraliza-
tion. It is particularly interesting to note that estrogen
depletion causes similar changes in the nanoscale morphol-
ogy of fibrils in both skin and bone.

RESULTS
The combination of cryostat sectioning and AFM imaging has
been recently highlighted by Graham et al. (2010) as an
advantageous tool for morphological studies of collagen
matrix protein structures in soft tissues. Although histological
data reveal the orientation and organization of collagen fibril
bundles in the dermis, the resolution is limited in resolving
fibril organizations within a bundle. AFM imaging can
overcome this issue, and representative images of fibril
bundles from ovine dermis are illustrated in Figure 1.
Qualitatively, on the 50-micron scale and above, the fibril
bundles were randomly oriented in a wavy pattern; within a
fibril bundle, on the order of 10-micron scale, collagen fibrils
were bundled in a parallel longitudinal direction and
individual fibrils crossing the bundle domains were frequently
observed (see the arrowheads in Figure 1b and e). The
function of these crossing fibrils is unclear.
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Figure 1. Atomic force microscopy deflection images of ovine dermis

contain domains of collagen fibril bundles. (a–c) Representative images from

a sham dermis sample; (d–f) images from an ovariectomy (OVX) dermis

sample. Panel a captures potentially two fibril bundles (the rough area at the

bottom of the scan is caused by microtome sectioning). Panel b shows one

fibril bundle on top of another (the boundary is marked by the white dashed

line); note that a few fibrils (see the white arrow) that are underneath one

bundle are on the surface of another bundle. Panel c is the region marked by

the black box in panel b. Panels (e) and (f) capture the only region with

collagen fibrils found in the 50-micron area of OVX dermis (panel d).
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Quantitatively, the characteristic collagen fibril D-spacing
was measured and used as the main morphological metric. For
each biopsy, at least 60 fibrils from a minimum of four and an
average of five randomly selected 50-micron locations were
analyzed. The difference in the number of fibrils obtained for
each biopsy is due to variation in collagen abundance at
the location of AFM tip engagement. Measurements from
each skin biopsy were pooled together to yield the average
D-spacing (Figure 2). The mean values for five sham ovine
were 62.0, 61.6, 62.7, 63.1, and 62.6 nm. The mean values for
the OVX ovine were 61.8, 61.3, 60.7, and 62.5 nm. The means
from sham and OVX were not significantly different (P¼0.249)
when compared with the two-tailed Student’s t-test.

Examination of the population histogram (Figure 3a)
revealed that the sham D-spacing distribution spans between
59 and 66 nm, whereas the OVX population spans between
56 and 67 nm. The major difference between these popula-
tions arises from the percentage of fibrils with D-spacings
from 56 to 59 nm—14.6% in the OVX group and 1.6% in the
sham group. Note that these changes in distribution did not
have a significant impact on the mean D-spacing values,
which were 61.9 nm for the OVX and 62.3 nm for the sham

specimens. The distributions were not strictly Gaussian and
the OVX distribution in particular appeared bimodal, making
the use of the mean value statistically incorrect. We provided
it here so that a rough comparison with previous literature
could be made; however, to correctly analyze the data, a
nonparametric method must be used.

To determine the statistical significance of these distribu-
tions, a cumulative density function was plotted and evaluated
using the nonparametric Kolmogorov–Smirnov test (Figure 3b).
The cumulative density function highlights the cumulative
difference in the 56–62 nm region, and the distributions were
found to be significantly different (Po0.001).

Depending on species and tissue type, mature collagen
fibril diameter varies markedly. In developed ovine dermis,
collagen fibril diameter is about 100 nm (Flint et al., 1984).
To evaluate the effect of estrogen depletion, fibril diameters
were measured by averaging the fibril bundle width. The
results indicated that OVX ovine dermis has a fibril diameter
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Figure 2. Box plot representation of D-periodic spacing from sham and

ovariectomy (OVX) ovine dermis. D-periodic gap/overlap spacings from

(a) individual sham (n¼5) and (b) OVX (n¼5) ovine dermis. The box plot

shows the interquartile (middle 50% of data), the horizontal line inside the

box is the mean, the diamond is the median, and the whiskers denote the

minimum and maximum observations. The numbers in parentheses are

numbers of fibrils measured in each specimen. Two-tailed Student’s t-tests

between the sham and OVX group suggest no differences between the

means (P¼ 0.249).
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Figure 3. Histogram and cumulative distribution function of D-periodic

spacings from the sham and OVX ovine dermis (each contains five animals).

(a) Histogram representation of D-periodic gap/overlap spacings from the

sham and OVX ovine skin (1-nm bin size). (b) The cumulative distribution

function calculated from each group. A Kolmogorov–Smirnov test performed

on the data distributions indicates significant difference (Po0.001).
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similar to that of sham ovine. In the case of sham ovine, fibril
diameter ranges from 80 to 180 nm, with an average
of 130±30 nm. OVX ranges from 80 to 160 nm and has an
average of 120±20 nm. In collective tissues, fibril diam-
eters are typically assessed in the cross-sectional plane;
diameter measurements in the axial plane are limited in
accuracy because fibril overlapping is inevitable in tissue
sections. Averaging from parallel bundles remedies this
problem to a certain degree and ensures ±10 nm accuracy
(for more details see the Supplementary Information online).

To explore the effect of estrogen on collagen content in
ovine dermal skin, we performed Sirius red staining followed
by polarized light-microscopic imaging. Because the birefrin-
gence is highly specific to fibrillar collagen owing to its
uniaxial anisotropy (Cuttle et al., 2005; Junqueira et al.,
1978), the staining serves as a good indication of collagen
fibril abundance. Figure 4 indicates higher abundance of
fibrillar collagen in sham dermis (Po0.05) and a qualitatively
thicker fibril bundle width than in OVX dermis.

DISCUSSION
AFM is a nondestructive alternative for imaging biological
tissues under aqueous conditions; however, imaging bulk skin
tissue using AFM can be challenging because collagen fibril
bundles are surrounded by a sol–gel of hydrophilic glycosami-
noproteoglycans and subcutaneous adipose fat. Recently,
Graham et al. (2010) reported a combined tissue cryo-
sectioning and AFM imaging method that provided excellent
resolution of the ECM components in skin, cartilage, aorta, and
lung. The sample preparation greatly facilitates AFM imaging
and characterization of biological tissues while avoiding
fixation, chemical staining, and high vacuum.

To evaluate the nanomorphology of collagen fibrils
present in the dermis, we selected the D-spacing as a reliable

quantitative marker. We have previously demonstrated that
the application of two-dimensional fast Fourier Transforms
allows an accurate evaluation of this prominent fibril feature.
The D-spacing arises from a parallel staggered packing of
collagen monomers, which lead to alternating gap and
overlap zones along the longitudinal axis of a fibril, as
illustrated by the two-dimensional Hodge–Petruska model
(Hodge and Petruska, 1963). A recent X-ray crystallographic
work by Orgel et al., (2001) provides additional three-
dimensional insight, which supports a supertwist microfibril
model. These structural models indicate that quantitative
analysis of the D-spacing should be sensitive to changes in
the collagen molecule triple helix, the molecular packing,
and intermolecular cross-linking effects. For example, the
single amino-acid substitution of a cysteine residue for
glycine-349 results in nanoscale morphology changes ob-
served in the collagen fibril D-spacing distribution. More-
over, the free-energy changes induced by amino acid
substitution correlate with clinical severity of Osteogenis
Imperfecta (Lee et al., 2011).

Quantitative analysis of ovine dermis collagen D-spacings
indicates a distribution of values is present ranging from 56 to
67 nm with a mean value of 62 nm. Although AFM has an
excellent ability to differentiate differences in the D-spacing
within tissue, the absolute value is limited by the calibration
process. The average value of the distribution of 62 nm was
close to previous literature values obtained by X-ray
scattering. Purslow et al. (1998) reported 67-nm D-spacing
in rat skin; others reported lower values of about 65 nm for
skin (Brodsky et al., 1980; Stinson and Sweeny, 1980;
Gathercole et al., 1987). These techniques have spot sizes
of microns, and thus average over too large an area of the skin
structure for observation of a D-spacing distribution. The
observation of this distribution in dermal collagen provides
further evidence that distribution of values is an intrinsic
aspect of collagen fibrillar structure. A similar distribution has
previously been observed for another non-mineralized type 1
collagen tissue, murine tail tendon, as well as for the
mineralized collagen tissues murine dentin and bone and
ovine bone (Wallace et al., 2010a, b, 2011). The observation
of the distribution was possible because of the fibril-by-fibril
analysis using the AFM data.

The influence of bulk tissue stress on collagen fibril
D-spacings has been the subject of numerous studies. Gupta
and Zioupos (2008) demonstrated a connection between
fibril stain and D-spacing. They noted a 0.3-nm increase in
D-spacing in bone as measured by small-angle X-ray
scattering under mechanical stretching. For bone, fibril strain
accounts for only a fraction of the total tissue strain,
suggesting that interfibrillar sliding and shear of the proteo-
glycan-rich matrix takes up the remainder of the tissue strain.
With regard to tendon, Puxkandl et al. (2002) demonstrated
up to a 1-nm change when a 3% macroscopic strain was used
and a 0.2-nm change at a 1% strain. D-spacing changes
varied between 0.2 and 2 nm at tendon fracture. The most
general conclusion from the comparison of these data with
the distribution of D-spacings that we report, which has a
width of 12 nm, was that materials’ strain effects on
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Figure 4. Sirius red staining reveals the abundance of fibrillar collagen

content in sham and ovariectomy (OVX) dermis. (a, b) Polarized light-

microscopic images of sham and OVX dermis, respectively. Orginal

magnification� 10. Dashed lines represent the epidermis. (c) Collagen

abundance measured from the staining intensity (*Po0.05).
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D-spacing are not large enough to explain the D-spacing
distribution observed in either mineralized or non-miner-
alized biological tissues. The strain effects tend to be about an
order of magnitude too small.

One limitation of the current study was that we used
dorsal skin exposed to UV radiation as opposed to skin
protected from extrinsic UV radiation. Ovine dermis is
considerably thicker than human dermis (Dellmann and
Eurell, 1998); in addition, a layer of wool equivalent to sun
protection factor 30 also makes it difficult to assess how
much photoaging is induced in these dermal tissue samples
as compared with human samples (Forrest and Fleet, 1986;
Fleet, 2006). However, given that the sham and OVX ovine
were provided with the same sheltering condition, the effects
observed in this study signify change in the hormonal level
rather than differential UV radiation exposure.

Estrogen is known to have important roles in mediating
connective tissue physiology and function. Estrogen deple-
tion associated with menopause causes detrimental effects on
the connective tissues. In skin, estrogen depletion is
associated with declining dermal collagen content, skin
thickness, water-holding capacity, and skin elasticity. In
terms of mechanical properties, a steep increase in skin
extensibility was noted in women during perimenopause
(Pierard et al., 1995), and ovariectomized rats exhibit an
increased Young’s Modulus in the skin (Ozyazgan et al.,
2002). Reduced estrogen level also impairs the rate and
quality of wound healing: in postmenopausal women and in
ovariectomized female rodents, a marked delay in wound
healing was reported (Ashcroft et al., 1997; Calvin et al.,
1998). Hormone replacement therapy was found to partially
reverse these effects, and topical application of estrogen on
wounded skin accelerated wound healing (Ashcroft et al.,
1999). In addition, Pierard and co-workers noted a positive
correlation between bone mineral density and skin visco-
elasticity in women (Pierard et al., 2001).

Collagen ultrastructure in ovine bone demonstrated
significant change with estrogen depletion; 28% of fibrils in
OVX ovine have D-spacings lower than 64 nm, whereas
sham-operated ovine contained 7% of such fibrils with low
D-spacings (Wallace et al., 2010b). The results presented
here show that similar changes occur in dermal collagen
nanomorphology upon estrogen depletion. Although the
percentage of low D-spacing fibrils (less than 59 nm) was
lower in the dermis, 14.6% in the OVX group, and 1.6% in
the sham group, the result was persistent in all the five OVX
animals we examined. Bone is a mineralized connective
tissue, whereas dermis is only constituted of macromolecular
proteins. Thus, the results indicate that the changes in
collagen nanomorphology result from changes in the protein
structure, most likely post-translational modifications, and/or
the structural interactions with other tissue proteins such as
decorin (Danielson et al., 1997), and is not a mineralization-
related structural change.

Fibril diameter has been used previously as a key measure
of ultrastructural change. A number of diseases and tissue
malfunctions are associated with changes in collagen fibril
diameter. Decorin and lumican knockout rats and type V

collagen–deficient mice showed 1-fold increase in fibril
diameters (Wenstrup et al., 2004; Yeh et al., 2010).
Ovarectomy has been shown to decrease expression level
of proteoglycans, including decorin (Danielson et al., 1997)
and lumican (Markiewicz et al., 2007). In this study, the
average collagen fibril diameter in sham was about 130±30
and 120±20 nm in OVX; the difference was less than 10%
and considered negligible given the limited accuracy in the
analysis. Thus, estrogen depletion exerts an anisotropic effect
on skin collagen’s ultrastructure. It is unclear whether decorin
and lumican deficiency are associated with collagen fibril D-
spacing changes; this will be the subject of future studies.

In conclusion, estrogen depletion causes a change in the
nanoscale morphology of dermal collagen, quantitatively
demonstrated by change in the D-spacing metric. The
morphology changes are similar to those previously observed
for bone collagen, suggesting that estrogen depletion acts upon
a structural aspect of the collagen molecule and/or associated
proteins and are intrinsic to the fibril formation process.

MATERIALS AND METHODS
Animals

Six-year-old Columbia-Ramboulliet cross ovine were anesthetized

and ovariectomized (OVX, n¼ 5); the control group was subjected to

a sham surgery (sham, n¼ 5; Colorado State University, ACUC #03-

010A-02) as part of a larger study. Two years after the surgery, the

animals were killed with an intravenous overdose of a barbiturate,

and skin specimens were procured on the dorsal thoracolumbar

region centered at the midline, a region that is subject to both

intrinsic and extrinsic aging. Specimens were wrapped in saline-

soaked towels, placed in a plastic zip-lock bag, and frozen at �20 1C.

Cryostat sectioning

First, 1 cm� 1 cm skin specimens were cut and subcutaneous fat

layer was removed using a scalpel blade. Samples were then

embedded in Tissue-Tek optimal cutting temperature solution

(Sakura Finetek, Torrance, CA) and frozen at �20 1C. Thin sections

(10-mm-thick) of skin were obtained using Mithcrom HM550

Cryostat (Thermo Scientific Walldorf, Germany) and transferred

onto glass slides. The dermal sections were rinsed with ultrapure

water for 5 min and kept at �20 1C before the AFM study on the next

day. The combined cryo-section and AFM imaging was described in

a recent report by Graham et al. (2010).

AFM imaging and analysis

The AFM imaging on OVX and sham dermal sections was carried out

in air using a PicoPlus 5500 AFM (Agilent, Santa Clara, CA), in

contact mode with SNL-10 AFM probes (Bruker AFM probes,

nominal tip radius 2 nm, force constant 0.25 N m�1). The set point

and gains were optimized in each scan to maintain a minimum level

of tip–sample contact and no lateral dragging was observed in the

images. Line-scan rates were set at 2 Hz or lower at 512 lines per

frame. Measurements were recorded and image analysis was

performed using the SPIP software (V 5.0.8, Image Metrology,

Horsholm, Denmark). Collagen fibril D-spacings were measured

using the two-dimensional fast Fourier transform (FFT) toolkit of the

SPIP software; detailed description and validation can be found in

previous studies (and the Supplementary Information online;
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Wallace et al., 2010b). In short, a straight fibril with at least nine D

bands was selected and marked by a rectangular box as the region of

interest; the two-dimensional fast Fourier Transforms were carried

out on the region of interest, and the periodic information (i.e.,

D-spacing) was obtained from the FFT image. This method provides

measurements with an uncertainty of 0.8 nm, therefore the bin size

in the population histogram was set to 1 nm.

Statistical analysis of AFM data

Statistical analyses used PASW (Version 18, SPSS). A P value less than

0.05 was considered significant for all analyses. The mean D-spacing

values for all sham ovine (n¼ 5) and OVX ovine (n¼ 5) were

compared using the two-tailed Student’s t-test. To examine differences

in the population distribution of fibril nanomorphology between sham

and OVX groups, the cumulative distribution function of each group

was calculated and Kolmogorov–Smirnov test was used to test for

statistical significance between distributions. This test is sensitive to

changes in the mean and standard deviation of a distribution.

Picrosirius red staining and image capture

Tissue sections (7mm thick) were thawed for 15 min and fixed in 2%

paraformaldehyde for 20 min. The slides were then incubated in

0.1% Sirius Red in saturated picric acid for 65 min at room

temperature. After washing in water, they were placed in 1% Acetic

Acid for 30 min. The sections were then dehydrated using ethanol

and xylene and mounted in Permount medium (Fisher Scientific,

Pittsburgh, PA). To visualize the birefringent collagen, a polarized

light microscopy (Zeiss Axioskop, Thornwood, NY) with a SPOT 2e

CCD camera was used to capture the images. Exposure time for red

color was 0.1 s. All slides were photographed on the same day. The

relative collagen content was calculated based on the staining

intensity (normalized by the tissue area), and Student’s t-test was

used to compare them statistically.
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