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Abstract

We realize the CFT with target a lens spaceSU(2)/Zl as a simple current construction. This allows us to compute
boundary states and the annuli coefficients, and in particular to study the B-type branes, in purely algebraic terms
issues, like the appearance of fractional branes and symmetry breaking boundary conditions, can be addressed more
this approach than in a more geometric treatment.
 2003 Published by Elsevier B.V.

1. Introduction

Boundary conditions in rational conformal field theories have been the focus of intense study over the p
years. For a very large class of theories, those with partition function ofsimple current type, the boundary condition
are known explicitly [1]. The best-known examples of these are WZW models on non-simply connected
where there is a target space interpretation of both the bulk model and of its boundary conditions.

Recently, there has been interest in theories whose target spaces are quotients of Lie groups by
subgroups [2–4]. The simplest non-trivial example of such theories are those with the target being a len
Lk1 = SU(2)/Zk1. Geometrically, this space is obtained by quotienting the group manifoldSU(2) by the left action
of the subgroupZk1 of one of its maximal tori, so that the elementsg and e(2π i/k1)H g of SU(2) are identified,
for k1 integer andH the generator of a maximal torus. ThisZk1-action has no fixed points, so the lens spaces
smooth manifolds; they inherit a metric and volume form from the translation invariant metric and volume f
the covering spaceSU(2). The quotienting is therefore easily implemented in the sigma-model description o
SU(2)k WZW model. However, in order that integrality of the Wess–Zumino term is preserved, and sinceZk1 is
acting freely, the levelk of theSU(2) WZW model must be a multiple of the order ofZk1 [5], i.e., k = k1k2. We
denote the resulting lens space CFT byLk,k1. Performing a T-duality transformation along the maximal torus
hasZk1 as a subgroup on the CFTLk,k1 gives the theoryLk,k2 [2]. Lens spaces have, for example, been use
backgrounds for string propagation, and in particular they appeared in the bosonization of the near horizon
a four-dimensional black hole [5].
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Boundary conditions in lens spaces were studied in [2] from a geometric perspective, different from
turns out that the CFT can be regarded as an asymmetric orbifold with phenomena such as fractional b
was known [6] for the special caseSO(3)= SU(2)/Z2 (in which the orbifold is not asymmetric) which is describ
by the CFTLk,2. Furthermore, via T-duality one obtains a different kind of branes, called B-branes [2].

In this Letter we show that the CFTLk,k1 can be described as a simple current construction from the
PF⊗ U(1) at levelk, with non-trivial discrete torsion. HerePF denotes the parafermions andU(1) is a rational
free boson. The formalism is in particular adapted to describing the fractional branes, thus allowing us to
and generalize some results of [2] regarding boundary states for A- and B-branes and annulus amplitu
to resolve some issues which in the CFT description involves fixed points of the simple current action,
hard to understand with purely geometric methods. Our approach yields all boundary conditions that p
the PF⊗ U(1) chiral algebra on the same footing. In the case ofSU(2) this includes both theSU(2)-symmetric
boundary conditions that were studied in [2] and theSU(2)-breaking ones that preserveSU(2) only up to an
automorphism and in the largek limit correspond [6] to certain twisted conjugacy classes.

One can think of two natural extensions of the problems approached in this Letter; both directions re
an interesting challenge. The first is to construct more general boundary states inSU(2) using more genera
U(1) boundary states; this requires a better understanding ofU(1) boundary states, which is a problem
independent interest. The second direction is to study theories obtained by modding out non-abelian su
of SU(2), including their fixed point structures. The inverse operation to forming such a non-abelian orbi
an extension that generalizes simple current extensions; methods for performing such constructions explic
been introduced only recently [7]. In the case at hand, one should in particular perform such constructions
from the theoryPF⊗U(1)/Z2 instead ofPF⊗U(1), with U(1)/Z2 denoting theZ2 orbifold of the free boson
This would in particular allow one to describe the A- and B-type boundary conditions on the same footing.

2. Lens spaces as CFTs of simple current type

Simple current constructionsTo study branes in lens spaces, we start by describing the closed string sp
of the CFTsLk,k1, that is, their torus partition functions. The simple current modular invariants that give r
consistent conformal field theories have been classified ([8], see also [9]) and indeed constitute the vast
of known rational CFTs. Recall that simple currents are primary fields with unit quantum dimension. S
from a chiral RCFT with chiral algebraA and irreducibleA-representations labelled byλ, with charactersχλ,
a modular invariant is of simple current type if all its terms are of the formχλχ̄J∗λ† with J a simple curren
and∗ the fusion product. These theories are characterized (up to exceptional simple current invariants,
instance, [10]) by the choice of a simple current groupG and by a certain matrixX. HereG is a finite abelian
group (with respect to the fusion product); it can be written asG ∼= Zn1 × · · · ×Znq with ni+1|ni . Picking a set of
generatorsJi of G, one defines the off-diagonal part of a symmetricq × q matrixR by the relative monodrom
charges:Rij := QJi (Jj ) := ∆(Ji) + ∆(Jj ) − ∆(Ji ∗ Jj ) mod 1. The diagonal part ofR is required to satisfy
2∆(Jk) = (nk − 1)Rkk mod 2. The symmetric part of theq × q matrixX is then fixed byX + Xt = R mod 1,
while its antisymmetric part, called discrete torsion, is constrained by gcd(ni , nj )Xij ∈ Z. (Note that this is no
necessarily the same concept as the discrete torsion that arises in geometric orbifolds [11].)

We denote the theory constructed fromA with simple current groupG and matrixX by {A ∗X G}. Denoting
an element ofG by J �s = �qi=1J

si
i , the modular invariant torus partition function of the theory{A ∗X G} is the

combination

(2.1)Z =
∑
λ

∑
J �s∈G

(
q∏
i=1

δ1
(
QJi (λ)+

∑
j

Xij sj

))
χλχ̄J �sλ†
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of A-characters [8]. Hereδ1(x)= 1 if x ∈ Z and 0 else. The left and right kernels of the matrixX determine the
extension of the left and right chiral algebras, respectively; thus when they are different, the modular invaria
is left–right asymmetric.

SU(2) The parafermion theoryPFk can be constructed as aSU(2)/U(1) coset model at levelk, as described
e.g., in [12]. The primary fields ofPFk are labelled by pairs of integers(j, n) with 0 � j � k, 0� n < 2k, subject
to the selection rule 2|j+n, i.e.,j andnmust have the same parity. Furthermore, the labels(j, n) and(k−j, n+k)
describe one and the same field. This is known as field identification and will be denoted by(j, n)∼ (k− j,n+ k);
the selection rule as well as the field identification arise naturally in theSU(2)/U(1) coset construction. Th
conformal dimension of a primary field labelled(j, n) is

∆(j,n)=

j (j+2)
4(k+2) − n2

4k for n� k,
j (j+2)
4(k+2) − (n−2k)2

4k for n > k.

Our conventions for the rational free boson CFTU(1)k are that the primary fields are labelled by 0�m< 2k, in
terms of which the conformal dimensions are

∆(m)=

m2

4k form� k,
(m−2k)2

4k form> k.

In the tensor product theoryPFk ⊗ U(1)k we have a simple current groupGk ∼= Zk that is generated by the fie
(0,2,2) which acts as(0,2,2) ∗ (j, n,m)= (j, n+ 2,m+ 2). Using the fact that the discrete torsion of a cyc
group is necessarily trivial, and that

(2.2)
∑
m∈Z2k
2|m+j

χ
PFk
(j,m)χ

U(1)k
(m) = χSU(2)k

j ,

one can check that, when applied to thePF ⊗ U(1) theory with this choice of simple current group, t
prescription (2.1) gives us the charge conjugationSU(2) partition function, hence{(PFk⊗U(1)k) ∗Gk} = SU(2)k.

Lens spaces The torus partition functions for the lens space CFTs have been obtained [2,5] by requirin
matching of the twisted vertex operators on the orbifoldLk1, as well as the rightsu(2)k symmetry to be preserve
as

(2.3)Z(Lk,k1)=
k∑
j=0

 ∑
n−n′=0 mod 2k2
n+n′=0 mod 2k1

χ
PFk
jn χ

U(1)k
n′

 χ̄SU(2)k
j ,

wheren = j mod 2 andn,n′ = 0, . . . ,2k − 1. In view of (2.2), this is a combination of parafermion andU(1)
characters, with the left and right combinations of labels all connected by the action of suitable simple c
Any such partition function is of simple current type (see [8]); thus the lens space CFT can be obtained as
current construction from thePFk × U(1)k theory. Furthermore, since (2.3) is left–right asymmetric, we nee
least a 2× 2 matrixX, and hence a non-cyclic simple current group with at least two factors,Zl1 ×Zl2. And since
we haveSU(2)k-characters on the right, we need in particular all those currents that appear in the constru
theSU(2)k theory, hence we let one of these factors beGk ∼= Zk . One can also check that (2.3) withk1= 2, i.e.,Lk,2
gives theSO(3) = SU(2)/Z2 WZW theory at levelk/2, which is aSU(2) ∗ Z2 simple current construction. It i
therefore natural to try a simple current groupGk,k1 ∼= Zk×Zk1 with k1|k. We take again the generatorJ1= (0,2,2)
for theZk factor, andJ2= (0,0,2k/k1) for theZk1 factor, respectively.
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Imposing the general restrictions on the 2× 2 matrix X, we are left with aZk1 degree of freedom in the discre
torsion. Its value can be determined by requiring that the right-moving characters combine toSU(2)k characters
which means thatGk must be contained in the right kernel ofX. This yields

(2.4)X =
[

0 −2/k1

0 −k/k2
1

]
.

Inserting the simple current groupGk,k1 with choice (2.4) forX into Eq. (2.1), we get indeed the modu
invariant (2.3), withk/k1 = k2. Allowed choices of discrete torsionX different from the one in (2.4) yield othe
simple current constructions, which are again consistent CFTs. One may wonder whether those theories
sensible target space interpretation as well, which would lead to a geometric interpretation of discrete tors

Since theU(1) characters obeyχU(1)n (τ ) = χU(1)−n (τ ) as functions of the modular parameterτ , the partition
function of the lens space CFT is invariant undern′ �→ −n′, that isZ(Lk,k1)(τ )= Z(Lk,k2)(τ ). In CFT terms this
involutive action on the left-movers is just aU(1) charge conjugation; geometrically, it acts in the appropriate
on the radial parameter of the lens space metric and on the string coupling so as to interpret it as a T-dual
has already been observed in [5] that the spectrum described by (2.3) contains winding states. Since the s
orbifold group that is modded out to get the lens space from theSU(2) manifold isk1, it is tempting to interpre
[2] the combination(n − n′)/2, which is defined modk1, as winding number and the combination(n + n′)/2,
defined modk2, as momentum. Then the transformationn′ �→ −n′ amounts to interchanging winding number a
momentum, supporting its interpretation as a T-duality. Note that—as in the case of tori, and unlike in th
of SU(2)—the presence of winding states prevents us from having an interpretation of the space of lowes
states as (a truncation of) the space of functions on the manifoldLk1.

The action by the fusion product of the simple current groupGk,k1 on the primary fields of thePFk × U(1)k
theory may have fixed points. This happens iff

(2.5)K := (k,0,0)∼ (0, k,0)= (0,2,2)k/2(0,0,2k2)
k1/2 ∈ Gk,k1,

which requiresk1, and hencek, to be even. Then(0, k,0) ∗ (k/2, n,m) = (k/2, n + k,m) ∼ (k/2, n,m), where
the last step is the field identification ofPFk . The field(k/2, n,m) appears with multiplicity two in the partitio
function iff bothk1 andk2 are even.

3. The boundary states and annulus amplitudes

The boundary states for CFTs of simple current type have been built in [1]. More precisely, in [1] only th
of trivial discrete torsion was studied, because it allows for discussing also amplitudes on non-orientabl
sheets. However, the relevant results from [1] are also applicable for non-trivial discrete torsion [13].

Boundary blocks We first describe the boundary blocks, or Ishibashi states. They are three-point conforma
with insertions of a primary fieldλ, its charge conjugateλ† and some simple currentF , of whichλ is a fixed point.
We denoteG the simple current group andSλ ⊆ G is the stabilizer ofλ = (j, n,m). The boundary blocks thu
correspond to primaries that are combined with their charge conjugate in the partition function of the ex
theory. Applying the results of [1,13], it follows that in terms of thePF⊗U(1) theory they are labelled by pai
(µ,F ) with F ∈ Sµ that satisfy the requirement

(3.1)QJ (µ)+X(J,F ) ∈ Z, ∀J ∈ G,
with X(J a1

1 J
a2
2 , J

b1
1 J

b2
2 ) :=

∑
ij aiXij bj , whereJi are generators of the simple current group. Note that her

choice of discrete torsion enters explicitly.
In our case, all the stabilizers are trivial, that isSµ = {Ω} ≡ {(0,0,0)}, except whenk1 is even in which case

we haveS(k/2,n,m) = {Ω,K} ∼= Z2, generated byK = (0, k,0) as given in (2.5). We first concentrate on the triv
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elementΩ of the stabilizers. We haveX(J,Ω)= 0 and the requirement (3.1) isQJ (j,n,m)= 0, ∀J ∈ G. This
meansm= 0 modk1 andm= n modk. Thus we have Ishibashi labels of the type

(3.2)(µ,Ω) with µ= (j, rk1, rk1) andΩ = (0,0,0),
with 0 � r < 2k2 and 0� j � k. For a pair(µ,K) with µ= (k/2, n,m) the requirement (3.1) isn=m modk and
m=−k/2 modk1. The corresponding Ishibashi labels are

(3.3)(µ,K) with µ= (k/2, k/2+ rk1, k/2+ rk1) andK = (0, k,0)∼ (k,0,0),
with 0 � r < 2k2. Whenk1 is even we have 2k2 Ishibashi labels of this kind. The total number of Ishibashi lab
is then

(3.4)#I =
{
(k + 4)k2 if 2|k1,

(k + 1)k2 else.

We label the boundary blocks by|A; j, r,F 〉〉 = |A; j, rk1〉〉PFk |A; rk1〉〉U(1)k with F =Ω,K for the boundary
blocks in (3.2) and (3.3), respectively. Following [2], we use the labelA to indicate that they preserve the fu
PF⊗ U(1) symmetry, as opposed to the ones discussed below, labelledB. We normalize the A-type bounda
blocks as

(3.5)〈〈A; j ′, r ′,F ′|qL0⊗1+1⊗L0−c/12|A; j, r,F 〉〉 = δjj ′δrr ′δFF ′χPFk
j,rk1

(
q2)
χ
U(1)k
rk1

(
q2)
.

Boundary states The boundary states are labelled byG-orbits on the set of all chiral labels of the unextend
PF ⊗ U(1) theory, possibly with multiplicities. More concretely, they are labelled by pairs[ρ,ψρ ] with ρ a
representative of aG-orbit andψρ a Cρ -character. HereCρ ⊆ Sρ , the central stabilizer, is a subgroup in t
stabilizer of square index [14]. Since in the case at hand, the stabilizer has at most two elements, it follo
Cρ = Sρ for all ρ. For cyclic groups, the values of the character are|Cρ |th roots of unity, hence they are sig
for our considerations. Orbits whose fields do not appear in the torus partition function correspond to bo
conditions that break at least part of the (maximally extended) bulk symmetry; they cannot be obtained
procedure of averaging Cardy boundary conditions over the orbifold group, which is, e.g., used in [2].

In all cases except 2|k2,2�k1, theρ labels for the orbits can be represented by

(3.6)ρ = (j, n,n+ s) with 0� j � �k/2�,
where�k/2� is the integer part ofk/2. The dummy indexn ∈ {0,1} appearing here is chosen so that 2|j + n,
and 0� s � 2k2 + 1. We will sometimes condense the notation and suppress the dummy indexn, and instead
label boundary states by[j, s,ψ], with the character displayed only when it is nontrivial. AllPF⊗U(1) fields lie
in such an orbit; the only subtlety is that some of the orbits (3.6) can actually be identical. This happens
simple current(0,2,2)k/2(0,0,2k2)

−(k1−1)/2= (0, k, k2) is in G, which due to field identification acts as(0,0, k2)

on the label(k/2, n, s). For this current to appear we need 2�k1 and 2|k. In that case, the orbits are labelled
[j, n,n+ s] with 0 � j < k/2, and 0� s � 2k2− 1, and there is a second kind of orbits labelled by[k/2, n,n+ s]
now with 0� s � k2− 1. One can check that the number of boundary states equals the number of Ishibash
as predicted from the general theory (see, e.g., [14,15]).

For any simple current construction, the boundary coefficients that appear in the expression|A, [ρ,ψρ ]〉 =∑
j,r,F B(µ,F ),[ρ,ψ]|A; j, r,F 〉〉 of the boundary states in terms of Ishibashi blocks are given by [1,13]

(3.7)B(µ,F ),[ρ,ψ] =
√

|G|
|Sρ ||Cρ |

αFS
F
µ,ρ√

SΩ,µ
ψ(F)∗,

where the indicesµ= (jmn),ρ = (j ′m′n′) arePF⊗U(1) indices andαF is a phase, in the present case an eig
root of unity. It can be chosen to beαK = eiπ/4 for F =K and 4�k, andαF = 1 in all other cases.SF is the modular
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transformation matrix for 1-point blocks with insertionF on the torus, in particularSΩ = S. A currentF gives rise
to nontrivial matrix elementsSFµρ only if bothµ andρ are fixed byF [16].

ThePF⊗U(1) S matrix reads

(3.8)S
PF⊗U(1)
(jmn),(j ′m′n′) = 2SSU(2)

j,j ′ S
U(1)
n,n′ (S

U(1)
m,m′ )

∗,
with

(3.9)S
U(1)
n,n′ =

1√
2k

e−
iπnn′
k , S

SU(2)
j,j ′ =

√
2

k + 2
sin

(
(j ′ + 1)(j + 1)

k + 2
π

)
.

In casek1 is odd, the stabilizers are all trivial andψ(F)=ψ(Ω)= 1. All boundary states|A,j ′, s′〉 that are related
to trivial characters can be expressed as

(3.10)|A,j ′, s′〉 =
√
k1

∑
j=0,1,...,k

r=0,1,...,2k2−1
2|(j+rk1)

S
SU(2)
j,j ′√
S

SU(2)
0,j

e−
iπrk1s

′
k |A; j, r,Ω〉〉.

In casek1 is even, there are nontrivial stabilizers and we must take into account the characterψρ of Cρ . The
boundary coefficients (3.7) depend on whether the stabilizing currentJ is trivial or not. ForJ =Ω , the boundary
coefficients are just as above, so for 0� j ′ < �k/2�, we can express the boundary state in terms of boundary b
again as in Eq. (3.14). So in casej ′ = k/2 we have also a summation over the Ishibashi states appearing in (

|A,k/2, s,ψ〉 =
√
kk1

2

 ∑
j=0,2,...,k

r=0,1,...,2k2−1

S(j,rk1,rk1),(k/2,n,n+s)√
SΩ,(j,rk1,rk1)

|A; j, r,Ω〉〉

(3.11)+
∑

r=0,1,...,2k2−1

αKψ(K)S
K
(k/2,k/2+rk1,k/2+rk1),(k/2,n,n+s)√
SΩ,(k/2,k/2+rk1,k/2+rk1)

|A,k/2, r,K〉〉

 ,
where we omitted the superscriptPF⊗U(1) on theS-matrices because this can be recognized from the for
the (multi-)labels that appear of the indices. TheSK matrix appearing in (4.5) be factorized in itsSU(2) andU(1)
parts just like the ordinaryS matrix,

(3.12)SK(k/2,n′,m′),(k/2,n,m) =
1

k
S
K,SU(2)
k/2,k/2 e(iπ/k)(n

′n−m′m) = 1

k
D e(iπ/k)(n

′n−m′m)

with [17] D = e−3π ik/8. These branes are called “fractional” branes, reflecting the additional factor of1
2 in (4.5)

(which then also arises in the annulus amplitude (3.21)), as opposed to the ones which involve only a su
over the boundary blocks in (3.2).

B-type branes Recall that from inspection of the lens space partition function (2.3) and the relationχ
U(1)
n =

χ
U(1)
−n , one sees that the T-dual (along the Cartan subalgebraU(1) in SU(2)) of theLk,k2 theory is theLk,k1 theory.

The T-duals of the A-type branes constructed above inLk,k2 give a new type of branes inLk,k1, called B-type brane
[2]. These can be studied by regarding the boundary blocks ofLk,k1 as tensor products of the boundary blocks
the parafermion and free boson theories. Indeed, since T-duality amounts to changing the sign of theU(1) label
n in the left-moving field labelled(j,m,n), leaving thePF labels unchanged, the B-type boundary blocks ca
written as

(3.13)|B; j, rk2, rk2,Ω〉〉Lk,k1 = |A; j, rk2〉〉PFk |B; rk2〉〉U(1)k ,
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where the labelB on the right is to remind us that we have to switch sign on the left-moving momen
|B; rk2〉〉U(1)k := | − rk2, rk2〉〉U(1)k . These will be seen to give nonvanishing contributions only forr = 0 mod k1
in Section 4. The B-type branes in theLk,k1 theory are T-dual to A-type branes inLk,k2. This gives for the
nonfractional branes

(3.14)|B; j ′, s′〉Lk,k1 =√
k2

∑
j=0,1,...,k

r=0,1,...,2k1−1
2|(j+rk2)

S
SU(2)
j,j ′√
S

SU(2)
0,j

e−
iπrk2s

′
k |A; j, rk2〉〉PFk |B; rk2〉〉U(1)k ,

with the range ofs′ as before butk1 interchanged withk2. Likewise, for the fractional branes which arise iff 2|k2,
we get from performing T-duality on (4.5) expressed withk1 interchanged withk2,

|B; k/2, s,ψ〉Lk,k1 =
√
kk2

2

 ∑
j=0,2,...,k

r=0,1,...,2k1−1

S(j,rk2,rk2),(k/2,n,n+s)√
SΩ,(j,rk2,rk2)

|A; j, rk2〉〉PFk |B; rk2〉〉U(1)k

+
∑

r=0,1,...,2k1−1

αKψ(K)S
K
(k/2,k/2+rk2,k/2+rk2),(k/2,n,n+s)√
SΩ,(k/2,k/2+rk2,k/2+rk2)

(3.15)× ∣∣A; k2 + rk2
〉〉PFk

∣∣B; k2 + rk2
〉〉U(1)k

 .
SU(2) Now let k1= 1, k2= k in which case we recover theSU(2)k theory. We see in (4.5) and in (3.14) that w
get more boundary blocks and boundary states than discussed in [2], who found the boundary states wis = 0,
which gives the Cardy formula forSU(2) symmetry preserving boundary states. Note that imposings = 0 amounts
to a restriction to a subspace in the space of boundary blocks. In contrast, when allowing for all boundar
obtained above, we get allPF⊗U(1) preserving boundary states; except fors = 0, they do not preserve the fu
SU(2) symmetry.

Now the B-branes inSU(2)= Lk,1 are T-dual to the A-branes ofLk,k . For the case 2�k, the results of [2] for
B-branes are recovered by settingη := (−1)(s

′+j ′). The most interestingB-branes are the fractional ones, whi
are not discussed in detail in [2]. They correspond to the fixed point arising when 2|k,

|B; k/2; s = 0,1;ψ〉C = k
2

 ∑
j=0,2,...,k
r=0,1

S(j,rk,rk),(k/2,n,n+s)√
SΩ,(j,rk,rk)

|j, r,Ω〉〉

(3.16)+
∑
r=0,1

αψSK(k/2,k/2+rk,k/2+rk),(k/2,n,n+s)√
SΩ,(k/2,k/2+rk,k/2+rk)

|k/2, r,K〉〉

 .
For k1= 2, i.e.,SO(3)k, our results agree with those of [6,18].

Remark We emphasize the fact that the simple current construction yields directly the correct boundary s
particular the appropriate set of boundary blocks and reflection coefficients. In other approaches, like the on
the reflection coefficients are determined by imposing the NIMrep properties of the annulus coefficients. T
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necessary, but not sufficient condition for the CFT to make sense; indeed, many NIMreps are known whic
appear in any consistent CFT (see, e.g., [19]). The simple current construction can be shown to yields N
that are physical, i.e., do belong to a consistent CFT [7]; thus the boundary conditions studied here (and
particular those also discussed in [2]) are indeed physical.

As already mentioned in the introduction, starting fromPF⊗ U(1)/Z2 instead ofPF⊗ U(1), with U(1)/Z2
theZ2 orbifold of the free boson, would allow one to describe theB-type boundary conditions on the same foot
as the A-type conditions. Unfortunately, while both the extension fromPF⊗ U(1)/Z2 to PF⊗ U(1) and the
construction ofLk,k1 from PF⊗U(1) are simple current construction, this is no longer true for the constructi
Lk,k1 directly fromPF⊗ U(1)/Z2, because in terms of the latter theory, the simple currents inGk correspond to
fields of quantum dimension 2. Describing A- and B-type conditions in this manner will therefore require to
the results of [7] on such more general constructions.

Annulus coefficients In the closed string channel the annulus amplitude with boundary conditionsa, b is

(3.17)Aa
b(t)= 〈a|e−(2π/t)(L0⊗1+1⊗L0−c/12)|b〉.

In the open string channel, we can expand the amplitude in terms of characters asAa
b(t)=∑

ν A
ν b
a χν(e

it
2 ). For a

simple current construction, the annulus coefficientsAνa
b appearing in this expansion are given by [13]

(3.18)A
ν [b,ψb]
[a,ψa] =

∑
(µ,J )

B(µ,J )[a,ψa]B∗(µ,J c)[b,ψb]S
ν
µ.

This formula depends on the choice of discrete torsion through the restrictions on the summation over I
labels. In casek1 is odd, the result is

(3.19)A
(j ′,n′,m′) [jb,sb]
[ja,sa] = δ2k2(sa − sb + n′ −m′)Nj

′
jajb
,

whereNj
′
jajb

are theSU(2)k fusion rules.
Now we consider the casek1 is even. If none of the orbitsa, b is a fixed point, we get

(3.20)A
(j ′,n′,m′) [jb,sb]
[ja,sa] = δ2k2(sa − sb + n′ −m′)

(
N
j ′
jajb

+Nk/2−j ′jajb

)
.

In case precisely one of the boundary labels is a fixed point, the computation is similar, since the appeaSK

matrix elements vanish, andA(j
′,n′,m′) [jb,sb]

[k/2,sa,ψa ] = δ2k2(sa − sb + n′ −m′)Nj
′
k/2,jb

(which does not depend onψa ). In
case both orbitsa, b are fixed points we have to include both types of Ishibashi labels in the summation. We

(3.21)A
(j ′,n′,m′)[k/2,sb,ψb]
[k/2,sa,ψa ] = 1

2
δ2k2(sa − sb + n′ −m′)

(
N
j ′
k/2,k/2+ isa−sb+n′−m′ψaψb sin

(
(j ′ + 1)π2

))
.

Note that this is always a non-negative integer, since the fusion ruleN
j ′
k/2,k/2 is nonvanishing exactly whe

sin(π(j ′ + 1)/2) is, and 2|(sa − sb + n′ −m′) due to the Kronecker delta in the prefactor.
To sum up, the annulus coefficients are

Aν ba =



δ×Nj ′jajb if 2�k1,

δ× (
N
j ′
jajb

+Nk/2−j ′jajb

)
if 2|k1 andja, jb �= k/2,

δ×Nj ′k/2,jb if 2|k1 andjb �= k/2, ja = k/2,
δ× 1

2δ
1(j ′)

(
1+ψaψb(−1)j

′+ 1
2 (sa−sb+n′−m′)) if 2|k1 andja, jb = k/2

with δ ≡ δ2k2(sa − sb +n′ −m′), ν ≡ (j ′, n′,m′), a ≡ [ja, sa,ψa] andb≡ [jb, sb,ψb]. This generalizes the resul
of [2] who considered boundary states withs = 0, and where the details on the last amplitude where not ca
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out explicitly. All amplitudes depend only on the differencesa − sb, which is consistent with the results below th
indicate that the branes withs �= 0 correspond to averaging over theZk1 orbits of twisted [6] conjugacy classes
the covering space.

4. On the geometry of the branes

In this section, we discuss the geometry of the branes following [6]. A brane onSU(2) is a linear combination
of Ishibashi states, or boundary blocksBj . These are linear functionalsBj : Hj ⊗Hj† → C and we can restric

this action to the horizontal submodules�Hj ⊗ �Hj† ⊂Hj ⊗Hj†. In the largek limit, all j are allowed and we ca
identify the boundary blocks with functions̃Bj on the group manifold through the Peter–Weyl isomorphism

(4.1)B̃j ′(g)=
∑

j,mL,mR

√
j + 1

V
Bj ′

(
v
j
mL ⊗ ṽjmR

)〈
v
j
mL

∣∣Rj (g)∣∣ṽjmR 〉
,

with {vjm} a basis of thesu(2) module�Hj with highest weightj , andV the volume of the group manifoldSU(2).
Recall that the lens spaceLk1 is the set of equivalence classes ofSU(2) group elements with the equivalen
relationg ∼ e(2π i/k1)H g. A function onSU(2) is independent of the choice of representative of such a class
therefore a function on the lens space, ifff (vjmL ⊗ ṽjmR ) �= 0 only formL = 0 modk1. For convenience we the
still write a group element, instead of an equivalence class, as argument for such a function. In geometric te
isomorphism will give us the profile of the branes as probed by the tachyons on the target space. Similar exp
result when the graviton, dilaton and Kalb–Ramond fields are used as probes; qualitatively, they all give t
profile [6].

The Ishibashi states for the lens space CFT are expressed asBjmn = BPF
jmB

U(1)
n in terms ofPF andU(1)

Ishibashi states. We decompose the functions onSU(2), and the corresponding states, into functions (states
SU(2)/U(1) andU(1), vjn ⊗ ṽjm =wj(m+n)/2 en,−m, such thatBU(1)q (en,−m)= δq,nδq,m, and

(4.2)BPF
j ′,rk1

(
w
j

(mL+mR)/2
)= δj,j ′δ4k

2rk1,mL+mR + δj,k−j ′δ4k
2rk1−2k,mL+mR ,

where field identification of the boundary blocks is taken into account. (In the special casej = k, we havek + 1
states in theSU(2) representation whereas the range of Ishibashi only allowsk states. Accordingly one linea
combination ofvkk ⊗ ṽk−k andvk−k ⊗ ṽkk is annihilated by all Ishibashi states.) The shape of the regular A-bran

(4.3)B̃j,s(g)=
√
k1

∑
j ′=0,1,...,k

r=−k2,−k2+1,...,k2−1
2|(j ′+rk1)

Ŝj,j ′D
j ′
rk1,rk1

(gs)= B̃j,0(gs),

where we introduce the shorthands

(4.4)Ŝj,j ′ := SSU(2)
j,j ′

√√√√ j ′ + 1

S
SU(2)
0,j ′ V

, gs := e−(iπs/k)Hg, and D
j
m,n(g) :=

〈
v
j
m

∣∣Rj (g)∣∣ṽjn 〉
.

The latter matrix element vanishes unless|m|, |n|� j . We interprets as parametrizing a rotation of the brane. Sin
0 � s < 2k2 except for the exceptional case, we see that the exponent in e(iπs/k)H has the range 0� iπs

k
H < 2iπ

k1
H ,

where the rightmost expression is the one we are orbifolding.
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For the fractional branes, we also need the fractional Ishibashi states, where the analogue to the sec
in (4.2) gives a nonzero contribution. The shape of the fractional brane is

B̃s,ψ(g)=
√
kk1

2

∑
j ′=0,2,...,k

r=−k2,−k2+1,...,k2−1

Ŝk/2,j ′D
j ′
rk1,rk1

(gs)

(4.5)+
√
k1
V

e−3π i k8

(
k + 2

2

)1/4

ψδ2
k2,0

∑
r=±k/2

D
k/2
r,r (gs),

with gs andŜj,j ′ as in (4.4). The two fractional branes have the same shape unless 2|k2, due toδ2
k2,0

.

For the A-branes onSU(2), i.e., the lens space withk1 = 1, the shape reduces tõBj,s (g) =∑
j ′ Ŝj,j ′χj ′(gs).

For s = 0, these branes are the standard Cardy branes described in [2].1 At finite level, the support of the profile
which one would like to interpret as the world volume of the brane, is in fact the whole target space. B
peaked around a conjugacy class (ifs = 0), respectively, a tilted conjugacy classes (ifs �= 0) of SU(2), so that at
finite level one can think of it as a smeared brane at the (tilted) conjugacy class [6,20–22].

For the B-branes in lens spaces, we have to use the B-typeU(1) Ishibashi states, acting asBBrk2(en,−m) =
δrk2,nδ−rk2,m. The shape of the nonfractional B-branes is given by

(4.6)B̃Bj,s(g)=
√
k2

∑
j ′=0,1,...,k

r=0,k1 2|(j ′+rk2)

Ŝk/2,j ′D
j ′
rk2,rk2

(gs)= B̃Bj,0(gs),

with s = 0, . . . ,2k1− 1, or s = 0, . . . , k1− 1 in the case 2|k1,2�k2. In particular, forSU(2) it is

(4.7)B̃Bj,s(g)=
√
k

∑
j ′=0,2,...,2[k/2]

Ŝk/2,j ′D
j ′
0,0(gs)+

√
k Ŝj,kD

k
k,k(gs).

The fractional B-brane that arises when 2|k2 has the shape

(4.8)B̃Bs,ψ(g)=
√
k2

2

∑
j ′=0,2,...,k
r=0,k1

Ŝk/2,j ′D
j ′
rk2,rk2

(gs)+ δ2
k1,0ψ e(−3π i/8)D

k/2
0,0 (gs)

√
k2

V

(
k + 2

2

)1/4

.

By power-counting ink, we see theψ dependent terms in (4.5) and (4.8) do not contribute to the shape o
fractional branes in the limit of large level.

Flux stabilization of the branesThe flux quantization mechanism for A-branes inSU(2) [23] can be used to
establish similar results for A-branes in lens spaces. A nonfractional A-brane in the lens spaceLk1 = SU(2)/Zk1
is a projection toLk1 of a union of (twined) conjugacy classes inSU(2). In the large level limit, the shape of th
fractional branes can also be seen as such projections and we can do a similar discussion as the one b
SU(2) flux stabilization mechanism applies independently to each of the pre-images of the lens space br
stabilizing fields in general depend on the pre-image just by a multiplicative factor.

The variational problem in the lens space can now be rephrased as a variational problem inSU(2). The Born–
Infeld action for the brane in the lens space is proportional to the sum of the Born–Infeld terms describ
branes in the covering space. Each of the imageSU(2) branes is a stable solution to the Born–Infeld variatio
problem. So, in particular, the value of the action is stable under fluctuations that survive the projection to

1 With one term missing in thej ′ = k character due to problems with matching the space of functions on the lens space to the set of I
labels.
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In the

helpful
space. Hence|A; j, s〉k1 constitutes a solution of the Born–Infeld equations of motion for the lens space.
particular example ofSO(3)= SU(2)/Z2, these results are illustrated in [18].
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