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Abstract 

Cellular Automata (CA) has shown to be a valuable approach in ecological modeling, in particular when dealing 
with local interactions between species and their environment. A stochastic cellular automata model, which 
included two competitors (the inferior species which is immune to a disease and the superior one which is sensitive 
to the disease), is constructed. Through time series analysis and spatial pattern analysis, the influence of 
competition effect upon the behavior of epidemic diseases has been investigated to know whether the competition 
effect is in favor of epidemics control. Then, some strategies for introducing competitors to the infectious system 
are explored. The result shows that introducing some right competitors into the infection region may be a 
considerable policy. The population with high colonization rate, low extinction rate and long colonization radius is 
introduced preferably. The result may give us some suggestions for epidemic control in conservation of wild 
populations. 
 
© 2011 Published by Elsevier Ltd. 
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1. Introduction 

Eco-epidemiology is a new branch in mathematical biology which considers both ecological and 
epidemiological issues simultaneously [1,2]. Both theoretical and empirical researches on eco-
epidemiology had multiplied recently, resulting in the prosperity of the important topic [3-9]. In general, 

 

* Corresponding author. Tel.: +86-015193177810; fax: +86-931-8912481. 
E-mail address: weideli@lzu.edu.cn 

© 2011 Published by Elsevier B.V. Selection and/or peer-review under responsibility of School of Environment,  
Beijing Normal University. Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81148273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


1011W.D. Li and X.H. Guo / Procedia Environmental Sciences 13 (2012) 1010 – 10181038 W.D. Li et al./ Procedia Environmental Sciences 8 (2011) 1037–1045 

 

the classical approach for modeling the spread of disease is based on the ordinary differential equation, 
which is dependent on the mean-field assumption that ignores space completely [10].  

While theoretical and field experiments have suggested that the outcome of eco-epidemiology is 
significantly affected by spatial factors [11], the spatial-temporal dynamics and pattern of eco-
epidemiological systems have hardly been considered. Fortunately, they have begun to be considered by 
many ecologists owing to the utilization of new techniques and the availability of more powerful 
computers [12]. Malchow et al. [13] and Su et al. [14] have considered the spatial dynamics of epidemic 
in predator-prey system, but literatures with regard to spatial competition model with disease are rare. 
Most realistic models focusing on the spatial aspects of epidemic dynamics are based on following two 
basic frameworks [15]: one based on reaction-diffusion models [13,16], which can imply the temporal 
heterogeneity and spatial heterogeneity simultaneously, and the other based on Cellular Automata [17], 
which is appropriate for studying spatial dynamics and patterns [18]. 

Cellular Automata (CA) is characterized by a regular lattice, an interaction neighborhood template, a 
set of elementary states, and a local space- and time-independent transition rule which is applied to each 
cell (or patch) in the lattice. It has been proved to be not only a fascinating topic by itself, but a valuable 
tool in various branches of science. CA models have been proposed for a large number of biological 
applications [14,19-23,]. The advantage of CA lies in that it can reflect temporal dynamic and spatial 
dynamic simultaneously [15,19,24-26]. Cellular Automata for simulating infectious diseases has been 
used to discover the spread of the disease or to work out remedial plans, and specialized models for 
different diseases have been presented in the past [27-29]. 

An explicit competition model based on CA framework is set up and an infectious disease is 
introduced to the superior competitor population. We focus on two questions: Can the competition 
effect be in favor of epidemics control? If it is so, what kind of competitor should better be chosen? 
These will be discussed by time series analysis and spatial pattern analysis. 

2. Model Construction  

The constructed model contains two populations, S1 and S2. S1 is the inferior population which is 
the loser in local competition; S2 is the superior population in local competition. In addition, we assume 
the superior is susceptible to some diseases for some reasons. Therefore, a cell of the CA model 
includes four states: empty patches, patches occupied by the inferior S1, patches occupied by the 
infected superior IS2 and patches occupied by the healthy superior S2, denoted by figures '0', '-1', '1', '2' 
respectively. Then the transitional rules of these patch states will be: First, these populations can 
colonize empty patches. Second, only healthy superior S2 can invade a patch containing S1; when it 
does so, S1 is excluded immediately. Third, population S2 and IS2 can prevent invasion by the inferior 
S1, and S1 only can prevent invasion by IS2. Besides, each local population has a risk to extinction in a 
patch. The transition structure can be implied by the transition rules [30], thus the corresponding 
transition matrix is 
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Where Cx and Ex are the colonization probability and the extinction probability of the population S1. Cy 
and Ey represent the colonization probability and the extinction probability of the healthy population S2. 
CI (CICy) and EI (EI Ey) are the colonization probability and the extinction probability of the infected 
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superior IS2. Parameters a and R denote the infection probability of disease and the recovery rate of the 
superior population infected by disease respectively. 

   T is the transition matrix of patch-occupancy (PO) model. A CA model, directly comparable to the 
PO model, can be constructed by applying the same transition matrix to a local neighborhood, not to the 
entire landscape. In order to obtain our CA model, the local interaction is introduced into the transition 
matrix. Generally, the colonization probability of a population on a patch has a positive correlation with 
the number of neighboring patches occupied by the population, and the infection probability of disease 
has a similar relation. But the extinction probability of the population does not have such relation. 
Therefore, we gain: 
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1eEx  , 2eEy  , 3eEI  . 
Where, related parameters and special symbols in (2) are explained together in Table 1. According to 
transition matrix and local interaction, the stochastic CA model is completed finally. The corresponding 
transition probabilities are showed in Table 2. 

Table 1. The meaning of related parameters and special symbols 

parameter range meaning parameter range meaning 

1c  [0, 1] 
the colonization rate of 
the inferior population 

L  N 
the length of square lattice , 
N denotes the set of all 
natural numbers 

2c  [0, 1] 
the colonization rate of 
the healthy superior 1d  [1, L] 

the colonization radius of 
the inferior population 

3c  [0, c2] 
the colonization rate of 
the infected superior 2d  [1, L] 

the colonization radius of 
the healthy superior 

1e  [0, 1] 
the extinction rate of the 
inferior population 3d  [1, d2] 

the colonization radius of 
the infected superior 

2e  [0, 1] 
the extinction rate of the 
healthy superior 

D  [1, L] 
the transmission radius of 
the disease 

3e  [e2, 1] 
the extinction rate of the 
superior population 
infected by disease 

xN  [0,(2d1+1)2-1] 
the number of neighbours 
which are occupied by the 
inferior population 

R [0, 1] 
the recovery rate of the 
superior population 
infected by disease 

yN  [0,(2d2+1)2-1] 
the number of neighbours 
which are occupied by the 
healthy superior 

β [0, 1] 
the infection rate of 
disease IN  [0,(2d3+1)2-1] 

the number of neighbours 
which are occupied by the 
infected superior 

Table 2. The transition probability of our stochastic CA model 

states 
transition transition probability states 

transition transition probability 
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3. Numerical simulation and results 

In the research, x(t), y(t), and I(t) represent the frequencies of the inferior competitor, the healthy 
superior, and the infected superior at time t respectively. The equilibriums of the model cannot be 
obtained directly due to demographic stochasticity (Table 1). Fortunately, we may solve this problem 
from simulations. To get the frequencies of populations when a simulation had reached equilibrium, the 
average frequency of each population in total grids are calculated. The simulations are run 1000 time 
steps on a two-dimensional space of 100×100 patches with fixed boundary condition. 15 simulations are 
run for each initial condition in order to maintain the reality and accuracy of the frequencies. The 
frequencies x(t), y(t) and I(t) are the average values of 15 times. Then the corresponding time series are 
obtained. All equilibrium calculations begin with initial conditions consisting of fixed frequencies of the 
three populations randomly distributed across the landscape. Although these related figures may be 
changed more or less in different values of parameters, results will not vary. The reason for selecting the 
values of parameters is that these situations are representative. 

The influence of competition effect upon the spread of epidemic is illustrated in Fig.1. If the inferior 
is absent in the system, only 620 time steps are needed for the disease to spread across landscape from a 
local region (Fig.1b-Fig.1c). The ratio of the infected superior to the total superior, I(t)/[I(t)+y(t)], is 
about 0.87 when the system has been stable but with some slight fluctuation (red line in time series 
diagram, Fig.1a). To be convenient, the ratio is called the infection ratio. However, when a competitor 
joins in original system, the bad situation will change. It needs longer time to run through the whole 
superior population once the disease breaks out (Fig.1d-Fig.1f). Moreover, the infection ratio is reduced 
from 0.87 to 0.64 (Fig.1a). This can be explained that the inferior may be inclined to compete with the 
infected superior who has lost competitive advantage, while the healthy superior would like to exist in 
the region where the inferior population exists. With time process, a cricoids spatial wave may emerge 
until the disease spreads across the whole landscape. We may say that introducing an inferior 
competitor is in favour of epidemic control. Aside, when a competitor joins in original system, the 
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fluctuation of time dynamic curve may become more obvious (Fig.1a). In other words, the complexity 
of the system may be increased. 

  

 

 

 

 
Fig. 1 Influence of competition effect upon the behaviour of epidemic. The first diagram (a) is about time series. 
The rest of left column (b, c) represents the spatial patterns in which only the superior exist at time 250, 620, 
respectively; the right column (d, e, f) represents the spatial patterns in which the inferior also exist at time 250, 620, 
1000, respectively.  Related parameters: c1=0.5, c2=0.1, c3=0.05, e1= 0.01, e2=0.01, e3=0.02, d1=d2=d3=D=1, 
β=0.2, r=0.01. 

Then, there is a question: What kind of competitor we choose is better in epidemic control? For 
discussing the question, the colonization rate c1 (or the extinction rate e1, or the colonization radius d1) 
of the inferior population are changed to explore the dynamical behaviours of the system. The influence 
of these parameters for the system dynamics is given in Fig.2. The left panel (a) implies that increase of 
the colonization rate c1 can decrease the infection ratio. With the climb of parameter e1, the infection 
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ratio increases continuously until the inferior dies out (b). Same as c1, the rise of the colonization radius 
d1 is not in favour of the disease spreading, although the variation is slight (c). In addition, the increase 
of c1 and decrease of e1 will strengthen dynamic complexity. The different spatial distributions with 
different related parameters (c1, e1, d1) are illustrated in Fig.3. The two sub-figures with same initial 
distribution are obtained after 1000 runs. All populations (S1, S2 and IS2) are in well distribution in the 
landscape, and there are no large regions occupied by any population. By comparison to Fig.3a, the 
number of patches occupied by the inferior S1 increases clearly with the change of these parameters 
(the rise of parameter c1, the fall of parameter e1 and the going up of parameter d1) in Fig.3b, and the 
number of patches containing the healthy superior S2 has also increased. What is more, the number of 
the infected surrounded by the competitor S1 also increases.  The increase of inferior competitor 
improves the immunity of the system for the epidemic disease, and the infected population may be 
insulated from the healthy population, thus the disease is not easy to infect the healthy individuals. It 
may be the reason why the infection ratio drops as the rise of parameter c1, the fall of parameter e1 or 
the going up of parameter d1.  

  
a                                                               b                                                               c 

Fig. 2 Time series of infection ratio with different parameter values. The left diagram (a) is about the colonization 
rate (c1 =0.1, 0.15, 0.2, 0.3, 1) of the inferior. The middle panel (b) represents time series following different 
extinction rate (e1=0, 0.05, 0.1, 0.15, 0.25). The right panel (c) is about the colonization radius (d1=1, 2, 3). 
Different parameter: e1=0.01, d1=1 in (a), c1=0.1, d1=1 in (b) and c1=0.5, e1=0.01 in (c). Other parameters: c2=0.1, 
c3=0.05, e2=0.01, e3=0.02, d2=d3=D=1, β=0.2, r=0.01.  

 

 
Fig.3 The spatial patterns with different parameter values (c1, e1, d1). Special parameters: (a) c1=0.2, e1=0.03, d1=1; 
(b) c1=1, e1=0, d1=3; other parameters: c2=0.1, c3=0.05, e2=0.01, e3=0.02, d2=d3=D=1, β=0.2, r=0.01. 
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Table 3. Correlations between key parameters and dynamic complexity, epidemic spreading 

Vary of parameters Epidemic spreading Dynamic complexity 

Increasing of c1 Negative Negative 

Decreasing of e1 Negative Negative 

Increasing of d1 Negative Not obvious 

4. Summary 

Although epidemics have been researched on in many different fields by different means, the aim of 
most papers is controlling the disease effectively and developing suitable vaccination policies 
[13,14,31-34]. Three most widespread methods are curing the infected individual, isolating the infected 
and inoculating the susceptible. These methods are useful in the fight against AIDS, SARS, measles, 
rabies and so on [35,36]. However, these ways are not suitable to wildlife species with many difficulties 
in distinguishing between the healthy individuals and the infected, in searching and catching the 
infected.  

This research implies that it may be a considerable policy to introduce an inferior competitor into a 
region with an infected population. The influence of key parameters for dynamical complexity and 
epidemic control is listed in Table 3. Although the increase of c1, d1 and decrease of e1 will strengthen 
dynamic complexity, these variations may not accelerate the disease spreading. Therefore, the result 
suggests that in order to effectively control the spreading of epidemics, the introduced competitor-
inferior species with high colonization rate, low extinction rate and long colonization radius is being 
favored. What is more, the selected population is immune to the epidemic disease. Besides, the more 
complicated dynamic will lead to the more difficult disease spreading (Table 3). In other words, 
increasing dynamic complexity of system may be a practical way of epidemic control. And the ways of 
increasing dynamic complexity of system may include introducing the right predators, competitors and 
the like.  

Competition introduced to infectious system has been discussed in few papers, and one-host-two-
pathogen system was the common thinking of this kind of theoretical research [37-39]. Venturino [40] 
discussed an ODE system which had similar construct as our model. His result was various depending 
on the relation of model parameters. Our research has one common result: the introduction of a 
competitor has the effect of removing the disease, only with the slight difference that he didn’t meet the 
spatial part, although the system was deterministic. We not only touch the spatial-temporal dynamics of 
the system, but also broaden the result to a stochastic system in this research. While research on the 
conditions of dynamical complexity and the elimination of introduced competitor are other interesting 
topics, the corresponding results of our research may imply a novel view to epidemic control and 
conservation of wild life. 
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