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Abstract The stability of earth retaining structures in flood prone areas has become a serious prob-

lem in many countries. The two most basic causes of failure arising from flooding are scouring and

erosion of the foundation of the superstructure. Hence, a number of structures like bridges employ

scour-arresting devices, e.g., gabions to acting on the piers and abutments during flooding.

Research was therefore undertaken to improve gabion resistance against lateral movement by

means of an interlocking configuration instead of the conventional stack-and-pair system. This

involved simulating lateral thrusts against two dimensionally identical retaining wall systems con-

figured according to the rectangular and hexagonal gabion type. The evolution of deformation

observed suggested that the interlocking design exhibits better structural integrity than the conven-

tional box gabion-based wall in resisting lateral movement and therefore warrants consideration for

use as an appropriate scour-arresting device for earth retaining structures.
ª 2013 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

According to the US Federal Highway Administration, up to
60% of bridge failures were caused by natural phenomena,
especially from flooding [1]. It is apparent that since the past
two decades, this ratio has not appreciably changed in many

countries.
(E.T. Dawood).
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The two leading causes of failures from flooding are scour-
ing (which can also occur without flooding) and debris impact

against bridge superstructure. This debris can also reroute
flows, resulting in aggravated scouring and/or increased hori-
zontal pressures acting on bridge piers and abutments.

As known, scouring is the result of the erosive action of
running water, which excavates and transports material away
from the banks of streams and waterways. Different types of
material scour at different rates and conditions, i.e., loose
granular soils would scour more rapidly compared to cohesive
soils. In addition, shifting of the stream may aggravate scour
by eroding the approach roadway or changing the waterway’s
flow angle. Lateral movement of a waterway is affected by
stream geomorphology, diversions, and characteristics of its
bed and bank materials. For this purpose, gabions have long
been used as scour-arresting devices on bridge abutments
and piers. Apart from fortification against flooding, gabion
walls are also suited to the following cases:
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1. Poor orientation of bridge piers with respect to water flows.

2. Large restrictions in flow imposed by the bridge
superstructure.

3. Fine-grained materials, susceptible to move with a small

increase in flow velocity.
4. Unpredictable increases in the water flow, e.g., during

monsoons.

1.1. Gabion wall failures in hostile environments

Despite many apparent advantages of gabion walls in protect-

ing bridges against aggravated scour, failures can occur if the
walls are subjected to high magnitudes of lateral forces. The
sudden increase in lateral thrusts tends to cause side-shifting

of adjacent gabion units configured in a conventional stack-
and-pair arrangement. The end result is usually large-scale lat-
eral movement of the affected abutment or pier.

Conventional bridge designs often initially incorporate

drainage mechanisms behind the backwalls and wingwalls of
their abutments. The mechanism is usually achieved by depos-
iting free-draining backfill material behind the wall, collecting

the seeped-through water and discharging it into an inlet con-
nected to a storm water system. However, clogging of the
drainage system can result in accumulated hydrostatic pressure

behind the wall over time, subjecting the pier and/or abutment
to overstressing, consequently leading to unacceptable lateral
movement. (The damage is usually more severe is cold coun-

tries, owing to repeated freezing and thawing of the accumu-
lated water.)

When gabions are used to fortify bridge abutments and
piers, the integrity of structural fixity remains the core factor

in preserving bridge stability in such hostile environments. In
a conventional stack-and-pair configuration of gabion units,
resistance to the lateral shifting on individual units rests almost

exclusively to the tie wires connecting adjacent units. There is
virtually no contribution of the remaining structural compo-
nents constituting the gabion unit in resisting these aggravated

lateral forces, e.g., the frame, mesh, or stone fill. Since gabions
are essentially gravity structures, which rely on their weight to
achieve stability against lateral forces, any increase in gravity

function would entail increasing their individual masses. This
solution may not only be inefficient from a material perspec-
tive, but also pose settlement problems.

To resolve this problem, a research was undertaken to

examine the feasibility of using an interlocking configuration
of gabion units, instead of the traditional stacked-and-paired
system. The system employs a continuum of hexagonal gab-

ions to interlock with one another by virtue of shape and con-
figuration. The new gabion design is functionally similar to the
conventional box gabion, but modified conceptually in accor-

dance with the York method used in concrete wall facings [2].

1.2. The interlocking gabion design

A simple observation of naturally occurring structures (e.g.

bees’ nets or crystalline arrangement for metals) suggests that
in any structural continuum, interlocking properties and indi-
vidual unit shape determine overall structural performance.

An extrapolation of this hypothetical principal in cellular-
based retaining structures, e.g., gabion walls suggest the fol-
lowing two possibilities:
1. A hexagonal-shaped gabion displays better strength capa-

bilities as opposed to the conventional rectangular-shaped
gabion.

2. A retaining wall composed of an interlocking system of

individual gabion units display better overall structural
integrity compared to a system of conventional stacked-
and-paired gabions units.

These questions effectively reflect the principle that form
influences function. To this end, the results of individual and
cumulative experimentation investigating the hexagonal

gabion’s responses to external load vis-à-vis the traditional de-
sign would be examined. The findings intend to promote a new
and useful contribution to the field of design and construction

of such structures by disseminating the research results to the
attention of engineers and offering alternate design solutions.

1.3. Technical and functional characteristics

Gabion walls are cellular structures, i.e., rectangular cages
made of zinc-coated steel wire mesh and filled with stone of
appropriate size and necessary mechanical characteristics.

Individual units are stacked, paired, and tied to each other
with zinc-coated wire (or fasteners) to form the continuum.
The choice of the materials to be used is fundamental for

obtaining a functionally effective structure. In particular, the
mesh must satisfy the requirements of high mechanical and
corrosive resistance, good deformability and lack of suscepti-

bility to unravel. The conventional gabion possesses some pe-
culiar technical and functional advantages as follows:

1. They are reinforced structures, capable of resisting most

types of stress, particularly tension and shear. The mesh
not only acts to contain the stone fill but also provides a
comprehensive reinforcement throughout to structure.

2. They are deformable structures, which (contrary to popular
opinion) does not diminish the structure but increases it by
drawing into action all resisting elements as a complex rein-

forced structure, facilitating load redistribution.

They are permeable structures, capable of collecting and

transporting groundwater and therefore, able to attenuate a
principal cause of soil instability. The drainage function is fur-
ther augmented by evaporation generated by the natural circu-
lation on air through the voids in the fill.

They are permanent (and therefore durable) structures,
with a virtually maintenance-free regime from effects no more
severe than the natural aging of any other structure (with the

exception of highly corrosive environments). Furthermore,
their characteristics over time tend to gravitate toward estab-
lishing a natural state of equilibrium.

They are easily installed, i.e. that deployment is possible
without the aid of special equipment of highly trained person-
nel. This aspect is notably important in river and marine recla-
mation, where rapid intervention to retain soil is often necessary

and/or when post-deployment modifications are necessary.
2. Theory

Although retaining walls imply resistance to movement, some
forms of horizontal and vertical wall yield are still anticipated.
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This horizontal (i.e. sliding) and vertical movement (i.e. settle-
ment) is essentially a manifestation of the resultant pressures
acting behind the wall surface [3,4]. The resultant pressure,

P, is always thought to act upon an inclined plane at a third
of the wall’s height from its toe [5,6]. Although its computed
angle of inclination and height is specific computed figures, it

is clear that determination is based on a series of assumptions,
depending on which classical theory was subscribed to during
analysis (i.e., Rankine vs. Coulomb). The fact that the total

resultant pressure, P, acts along an inclined plane suggests that
P may be derived into its horizontal and vertical components.
Therefore, different walls would invariably withstand different
magnitudes of each force component.

This argument sets the premise that the shape and orienta-
tion of distinct gabion designs (i.e., rectangular vs. hexagonal)
will likewise result in distinct capabilities to absorb one (or

both) of the force components constituting the resultant lateral
pressure, P. As a basis for comparison, both types of gabions
must conform to similar dimensions, so that shape and orien-

tation remain the determining variables in evaluating various
structural properties associated with each gabion type. The
research therefore compares the rectangular gabion (also

referred to as the box gabion) with the hexagonal gabion to
investigate the mechanical responses of either type of structure
to external load, both individually and in a cumulative setting.

3. Formulation of test specimens

As tests on full-scale mock-up units are impractical, samples
were scaled down to approximately 40% of commercial gab-

ions. A total of 129 gabion samples were prepared for con-
structing the twin simulation walls, comprising 50 hexagonal
units. All samples were formulated by hand, utilizing two types

of bars for the frame.
The first stage of sample formulation involves forming the

requisite frames defining each gabion shape. These were fabri-

cated from typical plain round, 6 mm mild steel bars, with a
characteristic strength of 250 N m m�2. The second stage in-
volves covering the frame with BRC wire mesh, which was

cut to size with a slight overlap for tension reinforcement.
To minimize lateral movement, the mesh is tied to the R6
frame with zinc-coated steel wire of 1.60 mm thickness. The
third stage involved the filling process, whereby selected

crusher-run stones between 25 and 50 mm are filled by hand
up to each gabion’s full height. Once the gabions are filled,
all samples are sealed and hosed to expel impurities and to

expedite fill readjustment.
A typical design of each type of gabion unit is shown in

Fig. 1. A schematic representation of the each type of gabion

unit is shown in Fig. 2, while technical dimensions of 10%
of the test specimens are presented in Table 1 for types A (hex-
agonal), B (rectangular), and C (semi-hexagonal). X, Y, and Z
denote standard Cartesian planes, whereas void ratio is simply

expressed as percentage disparity between aggregate rock den-
sity (2500 kg m�3) and apparent gabion density.

4. Construction of twin walls

Two sets of retaining walls composed of each gabion type were
constructed for evaluating the mechanical responses of the

conventional gabion wall versus the hexagonal wall to external
load. The walls were of 1.80 m height and 1.75 m width and
spaced 1.80 m from each other as shown in Fig. 3. The
height-to-base ratio of each wall was purposely designed to
be excessive in order to permit large deflections, although over-

turning moments were not tolerated in the interest of safety.
Each wall was built with a stepped front-face and smooth
back-face that reduces the wall thickness by 50% at three-fifths

of the wall height from its base to the top.
The space between both walls was closed-off with plywood

restraining panels to create a boxed area for the subsequent

loading stage. The entire ‘‘box’’ was covered with plastic sheet-
ing as an impervious membrane, purposely oversized to
accommodate large moments expected of both structures.

A maximum soil-hydrostatic head of 1.80 m and average

per unit gabion density of 2000 kg/m3 will be assumed. The
twin wall system employs reduced safety factor, i.e., 1.30
against overturning and 1.10 against sliding using a predeter-

mined soil angle of internal friction, maximum bearing pres-
sure and stone average shear stress.

5. Research issues

Several pertinent issues arise from evaluating the behavior of
both walls under extreme loading:

1. The gabions’ abilities to collectively deform under aggra-
vated loads when combined soil-hydrostatic pressures are

involved. Reversibility (or irreversibility) of deformation
at low stress values was a point of contention.

2. The rate in which deformation occurs from changes in dis-
placement under progressive loads. These conditions repre-

sent the successive increments in soil lateral thrust
occurring at the back of a retaining wall from fluctuations
in the backfill’s water content.

3. The nature of the process of deformation in terms of local-
ized mechanical responses when loaded over an indefinite
period. Assuming that localized response is prevalent, it

would be necessary to evaluate what factors resulted in
the unstable equilibrium.

4. Evaluation of the structural characteristics of both walls at

the point of terminal failure, i.e., when the structures have
been loaded to maximum capacity. Of particular interest
would be if the final load leads to abrupt collapse (or sus-
ceptibility to collapse)

6. Evaluation of deformation

The basis for comparing both walls is visual deformation, i.e.,
changes in horizontal and vertical displacements of an arbi-
trary point (on the walls’ surfaces) vis-à-vis its original position

(Fig. 1). The assumed plane of deformation is represented
along the two-dimensional exterior cross-section of either wall.
A standard cartesian system was adopted to measure the ex-

tent of displacement occurring on both walls under the same
stress magnitudes.

The cartesian reference grid covers the cross-section of both

walls with a matrix of 220 points, based on a specified number
of horizontal and vertical gridlines superimposed on each wall.
Shifting observed of each point was compared with a perma-
nent vertical line to establish deformation under load. Each

point was tagged and measured for horizontal distance from
the fixed benchmark to establish relative initial position. For



Figure 1 (a) Hexagonal, (b) rectangular, and (c) semi rectangular shape of gabions.

Figure 2 Hexagonal (left), semi-hexagonal (center) and rectan-

gular gabion (right).

Table 1 Principal dimensions of gabion test samples.

Unit H

(cm)a
Mass

(kg)

Volume

(cm3)

Density

(kg/m3)

V. ratio

(%)

A01 19.9 40.3 21,590 1866.6 25.34

A02 20.0 39.6 21,326 1856.9 25.72

A03 19.5 37.6 20,979 1792.3 28.31

A04 20.5 41.2 21,982 1874.2 25.03

A05 20.2 40.9 22,151 1846.4 26.14

B01 19.8 40.9 24,186 1691.0 32.36

B02 20.6 42.4 26,619 1592.8 36.29

B03 20.5 40.9 27,141 1506.9 39.72

B04 20.4 41.5 26,145 1587.2 36.51

B05 21.6 42.8 27,904 1533.8 38.65

C01 20.6 20.1 10,721 1919.3 23.23

C02 20.5 20.2 10,828 1949.5 22.02

C03 21.0 20.6 10,511 1884.2 24.63

a H refers to average specimen height.
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easy identification, standard Roman alphabets were used to
represent the horizontal grids and Arabic numerals for the ver-

tical grids.
A digital theodolite was used to determine the horizontal

displacements of all principal points as a function of their

viewed angular shift. The instrument was used to ascertain
all readings from two measuring stations, each placed directly
opposite each wall type. The soil load was applied by manually

filling the walls’ expandable ‘‘tank’’ in successive increments.
For obvious reasons, ‘‘unsuitable’’ material was selected to im-
pose higher lateral thrusts against both walls. The imposition
of incremental soil load permits progressive assessments per-

taining to the mechanical responses of each structure at that
particular load level.
The walls were loaded to 0.075H, corresponding to a load
of approximately 1250 kg for the purpose of establishing initial

wall inertia and mobilize active thrust. Following that, the
walls were loaded to 0.375H (6250 kg), 0.5625H (9375 kg),
and 0.75H (12,500 kg). Finally, hydrostatic pressure was ap-
plied gradually up to full wall height, i.e., 0.75H soil + 0.25H

hydrostatic head.

6.1. Test results

Tacheometric measurements of all moving targets under pro-
gressively increasing load enabled conversion into horizontal
and vertical displacement with respect to the fixed vertical line.

From the data generated, it is possible to determine the aver-
age values for deformation at various wall heights for each
loading stage. On plotting these results, the evolution of the

average deflection along the wall as a function of the soil-
hydrostatic load is illustrated.

The evolution of deformation observed on both test struc-
tures necessitates empirical assessment. For this purpose, a ser-

ies of profile-graphs depict the shift in horizontal positions for
each moving target on the reference grid for load conditions
0.075H, 0.1875H, 0.375H, 0.5625H, 0.75H, and the final

0.75H + 0.25H hydrostatic head stage. The evolution of verti-
cal displacements was purposely omitted as they were found to
be both erratic and insignificant (i.e., with average relative dis-

placements of only 0.001%). This was observed for all vertical
gridlines 1, 2, 3, 7, and 9 for the rectangular wall and 4, 5, 6, 8,
and 10 for the hexagonal wall.

The observations present several interesting findings. The

actual linear shifts established along the cartesian X plane
and the percentage change in each corresponding shift relative
to its preceding position describe the stability of both walls.

For practical purposes, six stages of wall deformation were
deemed sufficient for interpretation. Since load conditions
were identical, the limits were simply indicated in terms of

the height of the soil mass as a function of the total wall height.
Movement was designated in terms of X0, X1, X2, X3, X4, and
X5, each corresponding to a soil height of 0.075H, 0.1875H,

0.375H, 0.5625H, 0.75H, and 0.75H + 0.25H hydrostatic
head.

Issues pertaining to the structural integrity of each test wall
system will be assessed upon evaluating the visual deformation

of each principal grid line, i.e., lines 1, 2, and 3 (for the rectan-
gular wall configuration) and 4, 5, and 6 for its hexagonal



Figure 3 Different types of wall gabions constructed for the test

model.
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counterpart. Figs. 3 and 4 show lateral displacements versus

wall height for all loading stages. Upon plotting the results,
the scatter was found to be relatively minor, and after discard-
ing anomalies, the average values obtained for deflection were

deemed dependable. This therefore permits a largely accurate
illustration of the evolution of observed deflection as a func-
tion of load, presented as follows in Figs. 3 and 4.

7. Discussion of results

The results indicate that the hexagonal gabion exhibits better

overall structural integrity than the conventional gabion in
terms of deformation resistance and susceptibility to collapse.
The shear behavior exhibited by each wall illustrates the prin-

cipal link between unit configuration and overall stability when
cellular units are built into a continuum. These assertions
undoubtedly present major implications when considering
practical application in bridge design, where such mechanical

advantages, when magnified, may mean the difference between
success or failure in the performance of piers and/or abutments
fortified with cellular-based retaining structures against scour.

The lines depicting the evolution of each principal vertical
grid on the external cross-sectional faces of the test walls depict
actual wall profiles for each loading stage. Foremost, it is pos-

sible to assert that the two sets of principal vertical gridlines
are largely consistent in terms of their average deflections at
the various loading stages. All line movements for the first
three loading stages (i.e. 0.075H, 0.1875H, and 0.375H) essen-

tially register common gradients, whereas line movements for
the last three stages (i.e. 0.5625H, 0.75H, and the terminal
Figure 4 Load application on the gabion units and their mode of

failure.
state) correspond to a reduced gradient. Trend lines estab-
lished for each curve suggest a polynomial expression for lat-
eral displacement versus load, and that the rate of

displacement change for the last three load stages is signifi-
cantly higher than the initial three.

A possible explanation is that during the initial loading

stages, the resultant earth pressure is used to increase struc-
tural inertia. Initial sliding on the hexagonal wall experienced
is much lower, i.e., only 7.6% for the first three load stages

(compared to its maximum deflection) and 10.8% for the last
three loading stages. The maximum deflection observed on
both walls clearly indicates that the hexagonal-configured wall
deforms less and under more controlled outcomes than the

rectangular wall. In terms of the vertical lines’ shifts for the last
three load stages, the grid points on the rectangular wall deflect
some 1000%, 350%, and 73%, compared to the same moving

targets positioned on the hexagonal wall, which deflect about
180%, 17%, and 35%, respectively.

This observed erratic behavior of the rectangular-configured

gabion wall has tremendous implications in its inherent resis-
tance to deformation, which consequently reflects upon its stabil-
ity when responding to increasing lateral thrust. This is evident

from its profile itself at the region between 0.35H and 0.55H,
where the zigzagging pattern clearly indicates shear failure.

Despite the polynomial relationship ofwallmovement versus
load from initial to full load, amore linear relationship is evident

if movements are strictly assessed above the walls’ critical 0.33H
height, where the resultant earth pressures are believed to act. In
the case of both walls, the average gradient values obtained for

the first three load stages were �0.135, �0.113, and �0.114 for
lines 1, 2, and 3, respectively. The last three load stages, however,
produced amarked shift in gradient, i.e., 0.052, 0.050, and 0.051

for the same gridlines. This radical change in gradient sign con-
vention demonstrates the high shear stresses imposed on the
rectangularwall at the ‘‘shear zone’’ of 0.35H � 0.55H.The hex-

agonal wall, on the other hand, registers milder curve gradients
of �0.198, �0.248, and �0.263 for lines 4, 5, and 6 (for the first
three load stages) and subsequently �0.051 for all Lines for the
last three load stages. A consistent sign convention indicates

lower shear levels and hence lower susceptibility to shear failure
at the same zone.
8. Conclusions

The technical focus of this research invariably arises from a so-
cial perspective, namely is addressing the alarming trend of

scour-induced bridge failures through innovation and improvi-
sation of a common abutment/pier protection device-the ga-
bion wall. By examining the century old pair-and-stack

method of using ‘‘rock cages’’ to retain earth vis-à-vis an inter-
locking alternative comprising a hexagonal design with inter-
locking properties, the link between shape and structural
function has been addressed.

The study outcome and subsequent interpretation of find-
ings suggest several pertinent conclusions as follows:

1. Comparison of average deflections between both walls sug-
gests that the hexagonal-configured wall deforms under
more controlled outcomes compared to its rectangular

counterpart. This invariably suggests that lateral deforma-
tion exhibited by an interlocked gabion system is more
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stable than a conventional stacked-and-paired system. This

observation undoubtedly presents major implications in the
continued utility of conventional gabions with respect to
deformation resistance under gradually increasing lateral

thrust.
2. An examination of wall profiles at the region between

0.35H and 0.55H clearly reveals severe shear-induced defor-
mation of the rectangular wall compared to the hexagonal

wall. This observation suggests that the hexagonal wall’s
inherent interlocking mechanisms operating at aggravated
loads compensates for the observed excessive strains occur-

ring at the ‘shear zone’.
3. The deformation induced by the various loading stages is

irreversible for both wall systems, which suggests that gab-

ions, regardless of shape or configuration, do not behave as
elastic structures.
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