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Abstract

The cubature formulas we consider are exact for spaces of Haar polynomials in one or two variables.
Among all cubature formulas, being exact for the same class of Haar polynomials, those with a minimal
number of nodes are of special interest. We outline here the research and construction of such cubature
formulas.
c© 2010 Published by Elsevier Inc.
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0. Introduction

The problem of constructing and analyzing cubature formulas, which integrate exactly a given
collection of functions, has been mainly considered before in the cases when these functions are
algebraic or trigonometric polynomials (see, for instance, [11,12]). The approximate integration
formulas, exact for finite Haar sums, can be found in the monograph [13] and articles [1,2].
Nevertheless, in these works the authors did not consider the question of minimizing the number
of nodes while preserving exactness of the formula on such sums. We will use a notion of
the Haar polynomials [9,5] and the corresponding definition of the exactness of approximate
integration formulas on the mentioned polynomials. It allows us to introduce a notion of a
minimal approximate integration formula, exact for the Haar polynomials. The research and
construction of such quadrature and cubature formulas was established in [9,10]. In the present
article we will outline the main results of these works. Let us mention that in this article we only
consider the one- and two-dimensional cases.
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1. The Haar polynomials

We recall the definition of the functions χm, j (x), introduced by A. Haar [3].
By binary intervals lm, j we denote the intervals with the ends at ( j − 1)/2m−1, j/2m−1, m =

1, 2, . . . , j = 1, 2, . . . , 2m−1. If the left end of a binary interval coincides with 0, then we will
consider this interval as closed from the left. If the right end of a binary interval coincides with 1,
then we will consider this interval as closed from the right. The remaining intervals we consider
as open ones. The left (right) half lm, j (taking out the midpoint of) we will denote by l−m, j (l+m, j )
so that

l−m,1 =

[
0,

1
2m

)
, l−m, j =

(
j − 1

2m−1 ,
2 j − 1

2m

)
, j = 2, . . . , 2m−1,

l+m, j =

(
2 j − 1

2m ,
j

2m−1

)
, j = 1, . . . , 2m−1

− 1, l+
m,2m−1 =

(
1−

1
2m , 1

]
.

It is convenient to construct the Haar system of functions by classes: the m-th class contains
2m−1 functions χm, j (x), where m = 1, 2, . . . , j = 1, 2, . . . , 2m−1. The Haar functions χm, j (x)
are defined by:

χm, j (x) =


2

m−1
2 , if x ∈ l−m, j ,

−2
m−1

2 , if x ∈ l+m, j ,
0, if x ∈ [0, 1] \ lm, j ,
χm, j (x − 0)+ χm, j (x + 0)

2
, if x is an interior break point

(1.1)

with lm, j = [
j−1

2m−1 ,
j

2m−1 ], m = 1, 2, . . . , j = 1, 2, . . . , 2m−1. The Haar system of functions
contains the function χ1(x) ≡ 1, too, which does not belong to any class.

The following properties of the Haar functions pointed out in [13] will be important for us.

1. The system {χm, j (x)} is orthogonal w.r.t. the inner product 〈 f, g〉 :=
∫ 1

0 f (x)g(x)dx .
2. Any function, continuous on [0, 1], can be expanded into a series that converges uniformly

with respect to functions of the system {χm, j (x)}.

The second property implies that approximate integration formulas, exact for all Haar
polynomials with degrees not greater than some sufficiently large number d , have a relatively
small error [13].

In the one-dimensional case, the Haar polynomials of degree d are by definition the functions

Pd(x) = a0χ1(x)+
d∑

m=1

2m−1∑
j=1

a( j)
m χm, j (x),

where d = 1, 2, . . ., a0, a( j)
m ∈ R, m = 1, . . . , d, j = 1, . . . , 2m−1, and

2d−1∑
j=1

(
a( j)

d

)2
6= 0.

By 0-degree Haar polynomials we will consider real constants.
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In the two-dimensional case, the Haar polynomials of degree d are the functions

Pd(x1, x2) = a0 +

d∑
l=1

2l−1∑
i=1

a(i)l χl,i (x1)+

d∑
m=1

2m−1∑
j=1

b( j)
m χm, j (x2)

+

∑
26l+m6d

2l−1∑
i=1

2m−1∑
j=1

c(i, j)
l,m χl,i (x1)χm, j (x2),

where d = 2, 3, a0, a(i)l , b( j)
m , c(i, j)

l,m ∈ R, and

2d−1∑
i=1

[(
a(i)d

)2
+

(
b(i)d

)2
]
+

∑
l+m=d

2l−1∑
i=1

2m−1∑
j=1

(
c(i, j)

l,m

)2
6= 0.

Haar polynomials of degree 1 are the functions

P1(x1, x2) = a0 + a1χ1,1(x1)+ b1χ1,1(x2),

where a0, a1, b1 ∈ R, a2
1 + b2

1 6= 0. The same way as in the one-dimensional case, by 0-degree
Haar polynomials we will consider real constants.

2. Minimal quadrature formulas of Haar degree d

2.1. The construction of minimal quadrature formulas

We consider the following quadrature formulas

I [ f ] =
∫ 1

0
g(x) f (x)dx ≈

N∑
i=1

Ci f (x (i)) = Q[ f ], (2.1)

where the nodes x (i) ∈ [0, 1], the coefficients Ci on the nodes are real, i = 1, . . . , N , the
functions g(x), f (x) are defined and summable on [0, 1], and the so called weight function
g(x) 6= 0 is almost everywhere on [0, 1].

We say that such a formula is a formula of Haar degree d , if it is exact for every Haar
polynomial P(x) of degree at most d, but not exact for at least one Haar polynomial Pd+1(x) of
degree d + 1, i.e. Q[P] = I [P], but Q[Pd+1] 6= I [Pd+1]. If a formula among all formulas (2.1)
of Haar degree d has the least possible number of nodes, then we call such a formula a minimal
formula of Haar degree d .

We recall how to characterize quadrature formulas (2.1) of Haar degree d by the location of
the nodes of such a formula [9].

Theorem 1. 1. If a quadrature formula (2.1) has a Haar degree d then it satisfies the condition:
(a) each of the binary intervals

ld+1,1 =

[
0,

1
2d

]
, ld+1,2 =

[ 1
2d ,

2
2d

]
, . . . ,

ld+1,2d−1 =

[2d
− 2

2d ,
2d
− 1

2d

]
, ld+1,2d =

[2d
− 1

2d , 1
]

contains at least one node of (2.1).
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2. If the quadrature formula (2.1) is a minimal formula of Haar degree d then it satisfies the
condition:

(b) each of the binary intervals

ld+1,1 =

[
0,

1
2d

)
, ld+1,2 =

( 1
2d ,

2
2d

)
, . . . , ld+1,2d−1 =

(2d
− 2

2d ,
2d
− 1

2d

)
,

ld+1,2d =

(2d
− 1

2d , 1
]

contains at most one node of the formula.

Let k be a fixed positive integer. The interval
[

p−1
2d ,

p+k
2d

]
is called a d-singular set if

k∑
j=0

[
(−1) j

∫ (p+ j)/2d

(p+ j−1)/2d
g(x)dx

]
= 0,

and ∫ (p+ j)/2d

(p+ j−1)/2d
g(x)dx 6= 0, j = 0, . . . , k.

The size of a d-singular set is (k + 1)2−d , from which k can be reconstructed, if necessary.

Example 2.1. Let g(x) = sin 2πx and k = 1. Then there exist two 3-singular sets:[
1
8
,

3
8

]
,

[
5
8
,

7
8

]
.

Example 2.2. Let g(x) ≡ 1 and k = 1. Then there exist four 3-singular sets:[
0,

1
4

]
,

[
1
4
,

1
2

]
,

[
1
2
,

3
4

]
,

[
3
4
, 1
]
.

The following estimates hold for the number of nodes of the quadrature formula (2.1) of Haar
degree d [9].

Theorem 2. Let the weight function g(x) be such that it is possible to assign (not more than)
m pairwise disjoint d-singular sets. Then the number of nodes of a quadrature formula (2.1) of
Haar degree d satisfies the inequality:

N > 2d
− m.

If it is impossible to assign any d-singular set, then the number of nodes of a quadrature
formula (2.1) of Haar degree d satisfies the inequality:

N > 2d .

We outline the statement that establishes the necessary and sufficient conditions for a
quadrature formula (2.1) to be minimal of Haar degree d [9].
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Theorem 3. Let the weight function g(x) be such that it is possible to assign (not more than)
m pairwise disjoint d-singular sets. The quadrature formula (2.1) is a minimal formula of Haar
degree d if and only if the following four conditions are satisfied:

(1) the number of nodes of the formula is N = 2d
− m,

(2) there exists a family of d-singular sets[ p1 − 1
2d ,

p1 + k1

2d

]
,
[ p2 − 1

2d ,
p2 + k2

2d

]
, . . . ,

[ pm − 1
2d ,

pm + km

2d

]
(0 6 p1 − 1 < p1 + k1 < p2 − 1 < p2 + k2 < · · · < pm − 1 < pm + km 6 1),

such that the nodes that belong to every one of the sets
[ p j−1

2d ,
p j+k j

2d

]
, are located at the

points
p j

2d ,
p j+1

2d , . . . ,
p j+k j−1

2d , j = 1, . . . ,m,
(3) in any set[

0,
p1 − 1

2d

]
,
[ p1 + k1

2d ,
p2 − 1

2d

]
, . . . ,

[ pm−1 + km−1

2d ,
pm − 1

2d

]
,
[ pm + km

2d , 1
]

(p1 > 1, pm + km < 1)

there are p1 − 1, p2 − p1 − k1 − 1, . . . , pm − pm−1 − km−1 − 1, 2d
− pm − km nodes

(resp.), located according to the conditions (a) and (b) of Theorem 1,
(4) the coefficients of the nodes are defined by the system:

y1 +
1
2

y′1 =
∫ 1/2d

0
g(x)dx,

1
2

y′1 + y2 +
1
2

y′2 =
∫ 2/2d

1/2d
g(x)dx,

1
2

y′2 + y3 +
1
2

y′3 =
∫ 3/2d

2/2d
g(x)dx,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
2

y′2d−2 + y2d−1 +
1
2

y′2d−1 =

∫ (2d
−1)/2d

(2d−2)/2d
g(x)dx,

1
2

y′2d−1 + y2d =

∫ 1

(2d−1)/2d
g(x)dx,

(2.2)

where

y j =

{
0, if there is no node in ld+1, j ,
Ci j , if there is a node x (i j ) ∈ ld+1, j ,

j = 1, . . . , 2d ,

y′j =


0, if there is no node at

j

2d ,

Ci j , if there is a node x (i j ) =
j

2d ,
j = 1, . . . , 2d−1.

Theorem 3 implies an algorithm for the construction of minimal quadrature formulas of Haar
degree d.

Step 1. Find the maximal number of pairwise disjoint d-singular sets. Let this number be
equal to m and let the sets be:[ p1 − 1

2d ,
p1 + k1

2d

]
,
[ p2 − 1

2d ,
p2 + k2

2d

]
, . . . ,

[ pm − 1
2d ,

pm + km

2d

]
.
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Step 2. On the j-th d-singular set (numbering from left to right)[ p j − 1

2d ,
p j + k j

2d

]
we select nodes according to the following rule:

x (i j ) =
p j

2d , x (i j+1)
=

p j + 1

2d , . . . , x (i j+k j−1)
=

p j + k j − 1

2d , j = 1, . . . ,m,

the coefficients of these nodes can be computed using the formula:

Ci j+s−1 = 2
s−1∑
l=0

[
(−1)s−l−1

∫ (p j+l)/2d

(p j+l−1)/2d
g(x)dx

]
,

where x (i j+s−1) is the s-th node on the set
[

p j−1
2d ,

p j+k j

2d

]
(numbering from left to right), j =

1, . . . ,m, s = 1, . . . , k j .
Step 3. On every binary interval ld+1, j which is not a subset of any of the sets[ p1 − 1

2d ,
p1 + k1

2d

]
,
[ p2 − 1

2d ,
p2 + k2

2d

]
, . . . ,

[ pm − 1
2d ,

pm + km

2d

]
,

we arbitrarily select exactly one point as a node i.e. x (i j ) ∈ ld+1, j . We compute the coefficient
Ci j of this node using the formula:

Ci j =

∫ j/2d

( j−1)/2d
g(x)dx .

Note that if the function g(x) is such that it is possible to select (not more than) m pairwise
disjoint d-singular sets, then nodes of the minimal formula (2.1) of Haar degree d that belong to
the sets[

0,
p1 − 1

2d

]
,
[ p1 + k1

2d ,
p2 − 1

2d

]
, . . . ,

[ pm−1 + km−1

2d ,
pm − 1

2d

]
,
[ pm + km

2d , 1
]

can be defined in different ways. If it is impossible to select any d-singular set, then all nodes
of the minimal formula can be defined in different ways. In this algorithm we specified the most
simple way of selection of such nodes.

Now some examples of minimal quadrature formulas of Haar degree d.

Example 2.3. Let g(x) ≡ 1. Then N = 2d−1,

x ( j)
=

2 j − 1
2d , C j =

1

2d−1 , j = 1, . . . , 2d−1.

It is interesting to compare the constructed quadrature formula with those considered in [13].
We recall the definition of the Π0-nets [13] in the one-dimensional case. A Π0-net is a net which
consists of N = 2d nodes such that each of the binary intervals of length 2−d contains one node.
In the one-dimensional case the formulas with 2d nodes, generating the Π0-net have the greatest
Haar degree equal to d among the formulas from [13]. Comparing the number of nodes of these
formulas and of the quadrature formulas in Example 2.3 with same Haar degree d , we see that
the number of nodes in Example 2.3 is half as much.
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Example 2.4. Let the weight function g(x) be such that

I [χd, j ] = 0, i.e.
∫ (2 j−1)/2d

(2 j−2)/2d
g(x)dx =

∫ 2 j/2d

(2 j−1)/2d
g(x)dx, j = 1, . . . , 2d−1.

As in Example 2.3, N = 2d−1,

x ( j)
=

2 j − 1
2d , C j =

∫ j/2d−1

( j−1)/2d−1
g(x)dx, j = 1, . . . , 2d−1.

The function

g(x) = | sin 2d−1πx |

may serve as an example of such a weight function.

Example 2.5. Let the weight function g(x) be such that on the interval [0, 1] there is no
d-singular set. Then N = 2d ,

x ( j) is any point of the interval ld+1, j , C j =

∫ j/2d

( j−1)/2d
g(x)dx, j = 1, . . . , 2d .

Example 2.6. Let g(x) = sin 2πx , d = 3. Then there exist two d-singular sets, namely the
intervals [1/8, 3/8] and [5/8, 7/8] (see Example 2.1), consequently, N = 6. In this case

x (1) ∈ [0, 1/8), x (3) ∈ (3/8, 1/2), x (4) ∈ (1/2, 5/8), x (6) ∈ (7/8, 1],

x (2) = 1/4, x (5) = 3/4,

C1 = C3 = (2−
√

2)/4π,C4 = C6 = (
√

2− 2)/4π,C2 =
√

2/2π,C5 = −
√

2/2π.

2.2. The norm of the error functional of minimal quadrature formulas of Haar degree d on the
spaces Sp

Let p be a fixed number with 1 < p < ∞. For arbitrary positive A one can define a
class Sp(A) as the set of the functions f (x), defined on [0, 1] that can be represented as the
Fourier–Haar series

f (x) = c1 +

∞∑
m=1

2m−1∑
j=1

c( j)
m χm, j (x)

with real coefficients c1, c( j)
m (m = 1, 2, . . . , j = 1, 2, . . . , 2m−1), satisfying the condition

Ap( f ) :=
∞∑

m=1

2
m−1

2

[2m−1∑
j=1

|c( j)
m |

p
] 1

p
6 A.

In [13] it is proved that
⋃

A>0 Sp(A) with the norm

‖ f ‖Sp = Ap( f )

forms a linear normed space denoted by Sp.
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To establish an estimate for the norm of the error functional of the quadrature formula (2.1)

δN := I [ f ] − Q[ f ],

we need to recall the definition of the space L∞ [4]. It consists of all measurable almost
everywhere finite functions g(x), for each of which there exists a number Cg , such that |g(x)| 6
Cg almost everywhere. We call such functions essentially bounded (on the interval in question).
We will consider the functions, essentially bounded on [0, 1]. For a function g ∈ L∞ one defines
the proper (essential) supremum of its absolute value

ess sup
x∈[0,1]

|g(x)|

as an infimum of the set of numbers α ∈ R such that the measure of the set

{x ∈ [0, 1] : |g(x)| > α}

is zero. L∞ is a linear subset in the set of measurable almost everywhere finite functions. The
norm on L∞ can be introduced using the formula

‖g‖L∞ = ess sup
x∈[0,1]

|g(x)| .

We now establish a two-sided estimate for the norm of the error functional of the quadrature
formulas considered in Example 2.5. We assume that in the formulas mentioned the function
f (x) belongs to the space Sp, the weight function g(x) is nonnegative and essentially bounded
on [0, 1], the nodes of the formula are not binary rational points, i.e. cannot be represented as

x (i j ) =
j

2n , n = 1, 2, . . . , j = 0, 1, . . . , 2n .

For the formulas from Example 2.5 the norm of the error functional can be estimated as
follows

G N−1/p 6 ‖δN‖S∗p 6 (2G)1−
1
p (‖g‖L∞)

1
p N−

1
p , (2.3)

where G =
∫ 1

0 g(x)dx [8].
For formulas of the type (2.1) with an arbitrary summable weight function g(x) and a function

f (x), that belongs to Sp under the assumption that all nodes of the formula are pairwise different
and all coefficients on the nodes are positive and satisfy the relationship

N∑
i=1

Ci = G,

the norm of the functional δN ( f ) has the lower estimate

‖δN‖S∗p > G N−1/p, see [14].

In the case when g(x) > 0 in [14] the formula for which

‖δN‖S∗p 6 2G N−1/p (2.4)

is constructed.
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Therefore for the formulas (2.1), considered in [8], the value ‖δN‖S∗p has the same order

N−
1
p (that is the best one) as for the formulas studied by I.M. Sobol. At the same time the

quadrature formulas, studied in [8], being minimal formulas of approximate integration, provide
the best pointwise convergence δN ( f ) to zero. Obviously for weight functions, satisfying the

inequality G 6 ‖g‖L∞ < 2G, the constant (2G)1−
1
p (‖g‖L∞)

1
p in the estimate (2.3) is less than

the constant 2G in the estimate (2.4).

3. Minimal cubature formulas of Haar degree d in the two-dimensional case

3.1. The construction of minimal cubature formulas

Consider cubature formulas

I [ f ] =
∫ 1

0

∫ 1

0
f (x1, x2)dx1dx2 ≈

N∑
i=1

Ci f (x (i)1 , x (i)2 ) = Q[ f ], (3.1)

with nodes (x (i)1 , x (i)2 ) ∈ [0, 1]2 and corresponding coefficients Ci ∈ R, i = 1, . . . , N , f (x1, x2)

is a function defined and summable on [0, 1]2.
We say that such a formula is a formula of Haar degree d , if it is exact for every Haar

polynomial P(x1, x2) of degree at most d , but not exact for at least one Haar polynomial
Pd+1(x1, x2) of degree d + 1, i.e. Q[P] = I [P], but Q[Pd+1] 6= I [Pd+1]. If a formula among
all formulas (3.1) of Haar degree d has the least possible number of nodes, then we call such
formula a minimal formula of Haar degree d.

In [6] the following property of cubature formulas of Haar degree d is proved, which
characterizes the location of nodes of these formulas.

Theorem 4. If the cubature formula (3.1) is a formula of Haar degree d then any of the binary
rectangles with area of 2−d

lm1, j1 × lm2, j2 , m1 + m2 = d + 2, jk = 1, . . . , 2mk−1, k = 1, 2,

contains at least one node of (3.1).

A lower estimate of the number of nodes of the cubature formula (3.1) of Haar degree d is
established in the following theorem.

Theorem 5 ([5]). If the cubature formula (3.1) is a formula of Haar degree d, then the number
N of its nodes satisfies the inequality:

N > 2d−1
+ 1, d > 2. (3.2)

This estimate can be adjusted in the following way [6].

Theorem 6. If the cubature formula (3.1) is a formula of Haar degree d, then the number N of
its nodes satisfies the inequality:

N > 2d
− λ(d), (3.3)
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where

λ(d) =

{
2

d
2+1
− 2 for d = 2k,

3× 2
d−1

2 − 2 for d = 2k + 1,
k = 1, 2, . . .

Example 3.1. The formula (3.1) with the only node (x (1)1 , x (1)2 ) = (1/2, 1/2) and the coefficient
C1 = 1 on this node is a Haar degree 1 formula. Obviously, this formula is minimal.

Now consider examples of cubature formulas of 2-nd and 3-rd Haar degree [5]. Their number
of nodes equals 3 or 5 respectively, and therefore (3.2) implies their minimality. The construction
of such formulas is obvious by Theorem 4: The first node (d = 2) or the first three nodes (d = 3)
are selected to belong to two different binary rectangles each. Then the other nodes are selected
to belong to the remaining binary rectangles.

Example 3.2. d = 2 : N = 3, C1 = 1/2, C2 = C3 = 1/4,

(x (1)1 , x (1)2 ) = (1/4, 1/2), (x (2)1 , x (2)2 ) = (5/8, 1/8), (x (3)1 , x (3)2 ) = (7/8, 7/8).

Example 3.3. d = 3 : N = 5, C1 = C2 = C3 = 1/4, C4 = C5 = 1/8,

(x (1)1 , x (1)2 ) = (1/8, 1/2), (x (2)1 , x (2)2 ) = (1/2, 7/8), (x (3)1 , x (3)2 ) = (3/4, 1/4),

(x (4)1 , x (4)2 ) = (5/16, 1/16), (x (5)1 , x (5)2 ) = (15/16, 11/16).

It is convenient to represent the nodes of cubature formulas of Haar degrees d > 4 in the
following way:

(x (i)1 , x (i)2 ) = (2−d−1a(i), 2−d−1b(i)).

Below we write down the coefficients on the nodes and tables of values of parameters a(i), b(i)

of the corresponding cubature formulas of Haar degree d = 4, 5, 6. For d = 5, 6 the number of
nodes of these formulas is N = 2d

− λ(d), and therefore they are minimal because of (3.3). For
d = 4 the number of nodes of the cubature formula is 2d

− λ(d) + 1. The formulas mentioned
were obtained by experiment.

Example 3.4. d = 4 : N = 11, C1 = · · · = C5 = 2−3, C6 = · · · = C11 = 2−4.

i a(i) b(i) i a(i) b(i) i a(i) b(i) i a(i) b(i) i a(i) b(i)

1 2 16 2 8 4 3 12 24 4 20 8 5 24 28
6 5 31 7 15 11 8 17 21 9 27 1 10 29 19

11 31 13

Example 3.5. d = 5 : N = 22,C1 = · · · = C10 = 2−4,C11 = · · · = C22 = 2−5.

i a(i) b(i) i a(i) b(i) i a(i) b(i) i a(i) b(i) i a(i) b(i)

1 2 32 2 8 8 3 16 44 4 20 16 5 24 56
6 32 64 7 40 40 8 48 12 9 52 48 10 56 24

11 5 63 12 63 5 13 11 51 14 13 21 15 27 27
16 29 37 17 35 53 18 37 29 19 43 19 20 45 61
21 59 35 22 61 59
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Example 3.6. d = 6 : N = 50,C1 = · · · = C14 = 2−5,C15 = · · · = C50 = 2−6.

i a(i) b(i) i a(i) b(i) i a(i) b(i) i a(i) b(i) i a(i) b(i)

1 6 64 2 12 32 3 16 88 4 32 116 5 40 16
6 48 56 7 56 80 8 64 6 9 72 48 10 80 72
11 88 112 12 96 12 13 112 40 14 116 96 15 9 109
16 19 9 17 21 43 18 23 99 19 25 51 20 27 75
21 29 23 22 35 37 23 37 93 24 43 107 25 45 69
26 51 103 27 53 27 28 59 45 29 61 123 30 67 121
31 69 83 32 75 101 33 77 25 34 83 59 35 85 21
36 91 35 37 93 91 38 99 105 39 101 53 40 103 77
41 105 29 42 107 85 43 109 119 44 119 19 45 121 61
46 123 67 47 1 3 48 125 1 49 3 127 50 127 125

In [7] the author obtained relations which allow the computation of the coordinates of nodes
of minimal cubature formulas of Haar degree d > 7. The number of nodes of such formulas
is N = 2d

− λ(d). For odd (resp. even) values of d , one uses the λ(d) nodes of a minimal
5-th (or 6-th) degree Haar formula. The coordinates of these nodes are multiples of 2−d , their
coefficients are always equal to 2−d . The coordinates of the remaining 2d

− 2λ(d) nodes are
odd multiples of 2−d−1. The coefficients of such nodes are always 2−d . The relations mentioned
for computing the coordinates of nodes are too bulky to be written down here. We show just an
example of a minimal formula of Haar degree 8, obtained by the minimal formula of Haar degree
5 (Example 3.5).

Example 3.7. d = 7 : N = 106,C1 = · · · = C22 = 2−6,C23 = · · · = C106 = 2−7.

i a(i) b(i) i a(i) b(i) i a(i) b(i) i a(i) b(i) i a(i) b(i)

1 4 64 2 10 128 3 16 16 4 32 88 5 40 32
6 48 112 7 64 4 8 80 80 9 96 24 10 104 96
11 112 48 12 128 10 13 144 208 14 152 160 15 160 232
16 176 176 17 192 252 18 208 144 19 216 224 20 224 168
21 240 240 22 252 192 23 7 195 24 13 237 25 19 243
26 21 153 27 23 103 28 25 213 29 27 43 30 29 165
31 35 171 32 37 221 33 43 227 34 45 141 35 51 147
36 53 201 37 55 55 38 57 181 39 59 75 40 61 249
41 69 149 42 71 107 43 73 107 44 75 59 45 77 173
46 83 179 47 85 217 48 87 39 49 89 133 50 91 123
51 93 229 52 99 235 53 101 157 54 107 163 55 109 205
56 115 211 57 117 185 58 119 71 59 121 137 60 123 119
61 125 245 62 131 247 63 133 117 64 135 139 65 137 69
66 139 187 67 141 45 68 147 51 69 149 93 70 155 99
71 157 21 72 163 27 73 165 121 74 167 135 75 169 37
76 171 219 77 173 77 78 179 83 79 181 57 80 183 199
81 185 105 82 187 151 83 195 7 84 197 73 85 199 183
86 201 53 87 203 203 88 205 109 89 211 115 90 213 29
91 219 35 92 221 85 93 227 91 94 229 41 95 231 215
96 233 101 97 235 155 98 237 13 99 243 19 100 245 125
101 247 131 102 249 61 103 1 189 104 189 1 105 67 255
106 255 67

Note that the number of nodes of cubature formulas shown in the considered examples is less
than the number of nodes, constructed in [13] of cubature formulas of Haar degree d based on
Π0-nets, i.e., nets which consist of N = 2d nodes such that each of the binary rectangles with
area 2−d contains one node [13].
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3.2. The norm of the error functional of cubature formulas of Haar degree d on the spaces Sp

In [10] the norm of error functionals for cubature formulas (3.1) of Haar degree d on the
spaces Sp (p > 1) is studied. These spaces were introduced in [13] for arbitrary dimensions
n. These spaces can be considered as a generalization of the one-dimensional spaces Sp (see
Section 2.2) to the multidimensional case.

The error functional δN of the mentioned formulas can be estimated as follows [10]:

‖δN‖S∗p 6 2
1
p (2d)

−
1
p .

It is also proved that in the case of N ∼ 2d when d →∞ the following formula holds

‖δN‖S∗p ∼ 2
1
p N−

1
p , N →∞.

In [13] one considered the following cubature formulas∫ 1

0

∫ 1

0
. . .

∫ 1

0
f (x1, x2, . . . , xn)dx1dx2 . . . dxn ≈

1
N

N∑
i=1

f (x (i)1 , x (i)2 , . . . , x (i)n ) (3.4)

with 2d nodes, generating Πτ -nets (0 6 τ < d), i.e., nets that consist of N = 2d nodes such that
each of the binary parallelepipeds of volume 2τ−d contains 2τ nodes [13]. In [13] it is proved
that these formulas are formulas of Haar degree (d − τ) and their error functional δN satisfies
the following inequality:

N−
1
p 6 ‖δN‖S∗p 6 2

n−1+τ
p N−

1
p .

Thus in the case of N ∼ 2d when d → ∞ the cubature formulas (3.1) of Haar degree

d, studied in [10], have the best order of convergence ‖δN‖S∗p , equal to N−
1
p . In particular,

minimal cubature formulas, constructed in [7] satisfy the condition N ∼ 2d when d → ∞. At
the same time these formulas, being minimal formulas of approximate integration, provide the
best pointwise convergence of δN ( f ) to zero.
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