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Abstract

The exceptional Lie group G2 ⊂ O7(R) acts on the set of real symmetric 7 × 7-matrices by conjugation.
We solve the normal form problem for this group action. In view of the earlier results [G.M. Benkart, D.J.
Britten, J.M. Osborn, Real flexible division algebras, Canad. J. Math. 34 (1982) 550–588; J.A. Cuenca
Mira, R. De Los Santos Villodres, A. Kaidi, A. Rochdi, Real quadratic flexible division algebras, Linear
Algebra Appl. 290 (1999) 1–22; E. Darpö, On the classification of the real flexible division algebras, Colloq.
Math. 105 (1) (2006) 1–17], this gives rise to a classification of all finite-dimensional real flexible division
algebras. By a classification is meant a list of pairwise non-isomorphic algebras, exhausting all isomorphism
classes.

We also give a parametrisation of the set of all real symmetric matrices, based on eigenvalues.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Normal form; Group action; Vector product; Octonion; Automorphism; Real division algebra; Flexible
algebra

1. Introduction

A vector product on a Euclidean space V = (V , 〈 〉) is a linear map π :V ∧ V → V with the
property that the set {u,v,π(u ∧ v)} ⊂ V is orthonormal whenever {u,v} ⊂ V is. A morphism
π → π ′ of vector products π and π ′ on V and V ′ respectively is an algebra morphism (V ,π) →
(V ′,π ′) preserving the scalar product. Vector products can be defined on Euclidean spaces of
dimension 0, 1, 3 and 7 only, and are unique up to isomorphism in each dimension.
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If π is a vector product on a 7-dimensional Euclidean space V , then Aut(π) is isomorphic
to the exceptional Lie group G2. We view this isomorphism as an identification, and write G2 =
Aut(π). Since G2 is a subgroup of O(V ),

Sym(V ) × G2 → Sym(V ), (δ, g) �→ g−1δg (1)

defines an action of G2 on the set Sym(V ) of symmetric linear endomorphisms of V . The present
article is devoted to the solution of the normal form problem for this group action. Our study is
motivated by the classification theory for flexible division algebras, in which this group action
plays an important role (see Proposition 1.1).

A (not necessarily associative) algebra A is said to be a division algebra if A 	= {0} and the
linear endomorphisms La :x �→ ax and Ra :x �→ xa are bijective for all a ∈ A\{0}. It is called
alternative if any subalgebra generated by two elements is associative, power associative if any
subalgebra generated by one element is associative, and flexible if the identity x(yx) = (xy)x

holds for all x, y ∈ A. In this article, our attention is restricted to finite-dimensional real algebras
(henceforth referred to simply as ‘algebras’). In the finite-dimensional case, the division property
is equivalent to xy = 0 ⇒ x = 0 or y = 0 for all x, y ∈ A.

The most well-known division algebras are the real numbers R, the complex numbers C, the
quaternion algebra H (Hamilton 1843) and the octonion algebra O (Graves 1843, Cayley 1845).
Classical theorems assert that {R,C,H} and {R,C,H,O} classify all associative and alternative
division algebras respectively (Frobenius [7], Zorn [12]), and that every division algebra has
dimension either 1, 2, 4 or 8 (Bott and Milnor [2], Kervaire [8]).

An algebra A is said to be quadratic if it has an identity element 1 	= 0, and the set {1, x, x2}
is linearly dependent for all x ∈ A. It is known that a real division algebra is quadratic if and only
if it is power associative (this is a consequence of [5, Lemma 5.3]). Hence, in particular every
alternative division algebra is quadratic.

In any quadratic algebra B , the subset

ImB = {b ∈ B \ R1 | b2 ∈ R1
}∪ {0} ⊂ B

of purely imaginary elements is a linear subspace of B , and B = R1 ⊕ ImB (Frobenius [9]). We
shall write α + v instead of α1 + v when referring to elements in this decomposition.

A linear map η :V ∧ V → V , where V is a finite-dimensional Euclidean space, is called a
dissident map on V if the set {v,w,η(v ∧w)} ⊂ V is linearly independent whenever {v,w} ⊂ V

is. If in addition ξ :V ∧ V → R is a linear form, (V , ξ, η) is called a dissident triple. The class
of dissident maps is given the structure of a category, denoted D, by declaring as morphisms
(V , ξ, η) → (V ′, ξ ′, η′) those linear maps σ :V → V ′ for which ση = η′(σ ∧ σ), ξ = ξ ′(σ ∧
σ) and 〈x, y〉 = 〈σ(x), σ (y)〉 for all x, y ∈ V . The assignment π �→ (V ,0,π) defines a full
embedding of the category of vector products into D.

Each dissident triple (V , ξ, η) ∈ D determines a quadratic division algebra H(V , ξ, η) = R ×
V with multiplication

(α, v)(β,w) = (αβ − 〈v,w〉 + ξ(v ∧ w),αw + βv + η(v ∧ w)
)
.

On defining (Hσ)(α, v) = (α,σ (v)) for morphisms σ : (V , ξ, η) → (V , ξ ′, η′), H becomes a
functor from D to the category Q of quadratic division algebras (morphisms in Q are algebra
morphisms preserving the identity element). This functor turns out to be an equivalence of cat-
egories (Osborn [10], cf. Dieterich [6]). Flexible quadratic division algebras correspond under
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H to triples of the form (V ,0, η) for which 〈v,η(v ∧ w)〉 = 0 for all v,w ∈ V (or, equivalently,
〈η(u ∧ v),w〉 = 〈u,η(v ∧ w)〉 for all u,v,w ∈ V ).

The categories of flexible quadratic division algebras and the corresponding dissident maps
are denoted by Qf l and Df l respectively. We write only η as shorthand for (V ,0, η) ∈ Df l .
Vector products correspond to alternative division algebras under H.

In [1] and [4], the classification problem for the flexible division algebras is reduced to the
classification problem for the subclass consisting of all 8-dimensional quadratic flexible division
algebras. The latter problem is addressed by Cuenca Mira et al. in [3]. Our Proposition 1.1 states
their main theorem in the language of dissident maps. Here Pds(V ) denotes the set of positive
definite symmetric endomorphisms of the Euclidean space V , and ε∗ the adjoint of the linear
endomorphism ε.

Proposition 1.1. (See [3, p. 21].) Let π : R7 ∧ R7 → R7 be a vector product, and η a flexible
dissident map on a Euclidean space V of dimension 7. Then the following holds.

1. For any ε ∈ GL(V ), ε∗η(ε ∧ ε) is a flexible dissident map.
2. η ∼= δ∗π(δ ∧ δ) = δπ(δ ∧ δ) for some δ ∈ Pds(R7).
3. For δ1, δ2 ∈ Pds(R7), δ1π(δ1 ∧ δ1) ∼= δ2π(δ2 ∧ δ2) if and only if δ1 = σ−1δ2σ for some

σ ∈ Aut(π).

This result reduces the problem of classifying the 8-dimensional flexible quadratic division
algebras to the normal form problem for the group action

Pds
(
R

7)× G2 → Pds
(
R

7), (δ, g) �→ δ · g = g−1δg. (2)

This is a subproblem of the normal form problem for the group action (1).
In Section 3, Propositions 3.1–3.14, normal forms for (1) are given separately for each pos-

sible configur ation of eigenvalues. The solution for the positive definite case is obtained simply
by restricting attention to positive eigenvalues. In Section 4 we give parametrisations of the sets
of all symmetric matrices sharing some fixed configuration of eigenvalues, some of which are
needed in Section 3.

We use the following notation and conventions. Given m ∈ N, we set m = {μ ∈ N | 1 � μ �
m}. The identity matrix of size n × n is denoted by In, and the identity map on a set X by IX .

The vector space R
n is viewed as an Euclidean space, equipped with the standard scalar

product. Elements in R
n are considered as column vectors, and linear endomorphisms of R

n are
identified with n × n-matrices in the natural way. The transpose of a matrix (or column vector)
A is denoted by A∗. We write e = (e1, . . . , en) for the standard basis in R

n, i.e., ek = (δkl)l∈n. If
λ is an eigenvalue of a linear endomorphism δ of some vector space V , then Eλ(δ) ⊂ V denotes
the corresponding eigenspace. For u ∈ V \ {0}, where V is a Euclidean space, we define û =
u∧ = 1

‖u‖u. Given any subset W ⊂ V , W⊥ denotes its orthogonal complement in V . If W ⊂ V

is a subspace, then PW :V → W denotes the projection onto W along W⊥. For v ∈ V , we write
v⊥ = {v}⊥ and

〈W,v〉 = max
{〈w,v〉 | w ∈ W,‖w‖ = 1

}= ∥∥PW(v)
∥∥.
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2. The vector product in 7-dimensional space

In the following two sections, V denotes a fixed 7-dimensional Euclidean space, equipped
with a vector product π . The map π is considered as a multiplication on V , and we write xy =
π(x ∧y). Accordingly, Lx and Rx denote the maps v �→ π(x ∧v) and v �→ π(v∧x) respectively.

The following lemma provides means to control the multiplication in the algebra (V ,π).

Lemma 2.1. Let u,v ∈ V be orthonormal vectors. The following identities hold:

(1) u(uv) = −v,
(2) v(uv) = u.

In particular, π induces a vector product on span{u,v,uv}.
If in addition z ∈ V is a unit vector orthogonal to u and v, then

(3) u(vz) = −(uv)z = (vu)z.

Proof. If x ∈ u⊥, then ‖ux‖ = ‖x‖. This means that the linear map Lu :u⊥ → u⊥ is an isometry.
Thus,

〈
x,u(uv)

〉= 〈xu,uv〉 = −〈ux,uv〉 = 〈ux,u(−v)
〉= 〈x,−v〉

for all x ∈ V , and hence u(uv) = −v. The second identity follows from the first via anti-com-
mutativity of π .

By 1, we also have u(uz) = −z. Moreover,

−2v = −‖u + z‖2v = (u + z)
(
(u + z)v

)= (u + z)(uv + zv)

= u(uv) + u(zv) + z(uv) + z(zv)

= −v + u(zv) + z(uv) − v = −2v − u(vz) − (uv)z.

Hence u(vz) = −(uv)z. �
Let S ⊂ V be a 3-dimensional oriented subspace. We define m :S → V by m(0) = 0 and

m(v) = ‖v‖ef if v 	= 0, where e, f ∈ S are such that (e, f, v̂) is a positively oriented orthonormal
basis for S. Given v ∈ S \ {0}, for any two equally oriented orthonormal bases (e, f ) and (e′, f ′)
for S ∩ v⊥ we have ef = e′f ′. Therefore, the map m is well defined.

The following lemma is an important tool for the solution of the normal form problem for the
group action (1).

Lemma 2.2.

(1) The map m :S → V is linear and orthogonal.
(2) The functions S → R�0, v �→ 〈S,m(v)〉 and S → R�0, v �→ 〈S⊥,m(v)〉 are constant on the

unit sphere in S.
(3) The map S → V,v �→ v(m(v)) is constant on the unit sphere in S.
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Proof. (1) Let v ∈ S \ {0}, α ∈ R \ {0}. Take e, f ∈ S as in the definition of m. Now

m(αv) = ‖αv‖ef = |α|‖v‖ef = αm(v) if α > 0

and also

m(αv) = ‖αv‖f e = −‖αv‖ef = −|α|‖v‖ef = αm(v) if α < 0

and certainly m(0v) = m(0) = 0 = 0m(v). Given u,v ∈ S \ {0}, we take e ∈ S ∩ u⊥ ∩ v⊥, and
f,f ′ ∈ S such that (e, f, û) and (e, f ′, v̂) are positively oriented orthonormal bases for S. Thus
v̂ = aû+ bf and f ′ = −bû+ af for some a, b ∈ R satisfying a2 + b2 = 1. Now set g = ‖u‖f +
‖v‖f ′. We have

〈u + v,g〉 = ‖v‖〈u,f ′〉 + ‖u‖〈v,f 〉
= ‖u‖‖v‖(〈û, f ′〉 + 〈v̂, f 〉)= ‖u‖‖v‖(−b + b) = 0

and

‖g‖ = ‖u + v‖.

Using this, we calculate

m(u + v) = ‖u + v‖eĝ = eg = ‖u‖ef + ‖v‖ef ′ = m(u) + m(v).

This proves that m is linear. Since m maps unit vectors to unit vectors, it now follows that it is
also orthogonal.

(2) Here it suffices to show that v �→ 〈S,m(v)〉 is constant, since for all v ∈ S we have ‖v‖2 =
‖m(v)‖2 = 〈S,m(v)〉2 + 〈S⊥,m(v)〉2. Let b = (b1, b2, b3) be a positively oriented orthonormal
basis for S. Now m(b1) = b2b3 ∈ {b2, b3}⊥, from which follows that PSm(b1) = 〈b1, b2b3〉b1.
Similarly, PSm(b2) = 〈b2, b3b1〉b2 and PSm(b3) = 〈b3, b1b2〉b3. Since

〈b1, b2b3〉 = 〈b3, b1b2〉 = 〈b2, b3b1〉,

for an arbitrary unit vector v = v1b1 + v2b2 + v3b3 we have

〈S, v〉 = ∥∥PSm(v)
∥∥= ∥∥v1PSm(b1) + v2PSm(b2) + v3PSm(b3)

∥∥
= ∣∣〈b1, b2b3〉

∣∣‖v1b1 + v2b2 + v3b3‖ = ∣∣〈b1, b2b3〉
∣∣‖v‖ = ∣∣〈b1, b2b3〉

∣∣.
So the map v �→ 〈S, v〉 is constant on the unit sphere of S.

(3) If S is closed under the multiplication map π , then m(v) = ±v and vm(v) = 0 for all
v ∈ V , so our assertion holds true. Suppose S is not closed under π . Then 〈S⊥,m(x)〉 	= 0
for all x ∈ S \ {0}. For any unit vector u ∈ S, add v and w such that (u, v,w) becomes pos-
itively oriented and orthonormal in S. Now 〈v,um(u)〉 = 〈v,u(vw)〉 = 〈vu, vw〉 = 〈u,w〉 = 0
and 〈m(v),um(u)〉 = 〈wu,u(vw)〉 = 〈(wu)u, vw〉 = 〈−w,vw〉 = 0. Analogously, we get
〈w,um(u)〉 = 0 and 〈m(w),um(u)〉 = 0. Since also 〈u,um(u)〉 = 〈m(u),um(u)〉 = 0, this
shows that um(u) ∈ {u,v,w,m(u),m(v),m(w)}⊥ = (S + m(S))⊥.
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From (1) and (2) follows that m(S) ⊂ V is a 3-dimensional subspace, and S ∩ m(S) = {0}.
Hence dim (S + m(S))⊥ = 1. We also have ‖um(u)‖ = 〈S⊥,m(u)〉. Therefore, since u �→
〈S⊥,m(u)〉 is constant, there exists z ∈ V , with ‖z‖ = 〈S⊥,m(u)〉 	= 0, such that um(u) = ±z

for all unit vectors u ∈ S. As the map u �→ um(u) is continuous, it cannot attain both values on
the unit sphere, and hence it is constant thereon. �

The orientation of S is merely a technicality, the role of which only is to give an unambigu-
ous definition of the map m. In our applications of Lemma 2.2 we implicitly assume that an
orientation of S has been chosen, an use it without reference.

Our approach to the normal form problem is based on a handy description of the group G2.
A triple (u, v, z) ∈ V 3 is called a Cayley triple in V if {u,v,uv, z} is an orthonormal set. The set
of all Cayley triples in V is denoted by C.

Given (u, v, z) ∈ C, let U = span{u,v,uv}. For any x, y ∈ U , we have 〈x, yz〉 = 〈xy, z〉 = 0,
as well as 〈z, xz〉 = 0. Hence the vector space V decomposes into an orthogonal direct sum
V = U ⊕ span{z} ⊕ Uz. Since Rz is an isometry on z⊥, (uz, vz, (uv)z) will be an orthonormal
basis for Uz. To summarise, this means that every Cayley triple c = (u, v, z) determines an
orthonormal basis bc = (u, v,uv, z,uz, vz, (uv)z) for V . Given a linear endomorphism δ of V ,
we denote by [δ]c the matrix of δ with respect to bc.

A group action is said to be simply transitive if it is transitive and all stabiliser subgroups are
trivial.

Proposition 2.3. (See also [11, 11.16].) The group G2 acts simply transitively on C by
g · (u, v, z) = (g(u), g(v), g(z)).

Proof. Clearly, the above expression defines a group action. If c ∈ C, g ∈ G2 and g · c = c then
g(b) = b for all b ∈ bc, and hence g = IV . So the stabiliser of c ∈ C is trivial.

For transitivity, one must show that the bases given by any two Cayley triples have the same
multiplication table. Note that any permutation of a Cayley triple c = (u, v, z) ∈ C is again a
Cayley triple, and that (x, y, z), (xz, y, z) ∈ C for all orthonormal pairs x, y ∈ U . Therefore,
(xz)z = −x and (xz)(yz) = (y(xz))z = ((xy)z)z = −xy. Using this, and Lemma 2.1, one read-
ily verifies that the multiplication in V in the basis bc is given by Table 1.

The structure constants of (V ,π) with respect to bc are independent of the choice of c ∈ C,
and hence for any c, c′ ∈ C there exists an automorphism g ∈ G2 such that g · c = c′. Therefore
the group action is transitive. �

Table 1
Multiplication in (V ,π)

· u v uv z uz vz (uv)z

u 0 uv −v uz −z −(uv)z vz

v −uv 0 u vz (uv)z −z −uz

uv v −u 0 (uv)z −vz uz −z

z −uz −vz −(uv)z 0 u v uv

uz z −(uv)z vz −u 0 −uv v

vz (uv)z z −uz −v uv 0 −u

(uv)z −vz uz z −uv −v u 0
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Note that Proposition 2.3 implies that G2 acts transitively on the set of orthonormal pairs in V ,
and that the stabiliser of an orthonormal pair (u, v) acts simply transitively on the unit sphere in
{u,v,uv}⊥ ⊂ V .

Fixing some Cayley triple s ∈ C, we obtain a bijection t :G2 → C, g �→ g ·s. If gc = t−1(c),
then [g−1

c δgc]s = [δ]gc·s = [δ]c . The normal form problem for (1) can now be rephrased as to
find a map N : Sym(V ) → Sym(V ) with the following properties:

(i) [N(δ)]s = [δ]c for some c ∈ C.
(ii) N(δ) = N(δ′) whenever there exists a g ∈ G2 such that δ = g−1δ′g.

Then N(Sym(V )) will be a cross-section for Sym(V )/G2, and N(δ) the normal form of δ.
In other words, for every δ ∈ Sym(V ), one wants to construct a non-empty set Γ (δ) ⊂ C of
Cayley triples such that [δ]c = [δ]c′ for all c, c′ ∈ Γ (δ). The set Γ (δ) must be chosen only using
properties of δ which are invariant under conjugation with G2. A normal form map then is defined
by [N(δ)]s = [δ]c where c ∈ Γ (δ). This construction is carried out (in a somewhat informal way)
in the next section, Section 3.

As G2 ⊂ O(V ), all properties of δ as a linear operator on a Euclidean space is pre-
served under conjugation with elements in G2. In particular, the set p(δ) = {(λ,dimEλ(δ)) |
λ is an eigenvalue of δ} of eigenpairs of δ is an invariant for its orbit under G2. Hence the normal
form problem may be solved separately for each possible set of eigenpairs. We distinguish 15
essentially distinct types of sets, determined by the number of eigenspaces, and their dimensions:

1: (7).
2: (1,6), (2,5), (3,4).
3: (1,1,5), (1,2,4), (1,3,3), (2,2,3).
4: (1,1,1,4), (1,1,2,3), (1,2,2,2).
5: (1,1,1,1,3), (1,1,1,2,2).
6: (1,1,1,1,1,2).
7: (1,1,1,1,1,1,1).

The different types are treated separately in Section 3.

3. Normal forms

The map ∫ : Sym(V ) → Sym(R7), δ �→ [δ]s is a bijection. The G2-action on Sym(V ) defines
a G2-action on Sym(R7) by ∫(δ) · g = ∫(δ · g). A subset N ⊂ Sym(R7) is a cross-section for
Sym(R7)/G2 if and only if ∫−1(N ) is a cross-section for Sym(V )/G2. For sets p of suitable
form we define Symp = Symp(R7) = {δ ∈ Sym(R7) | p(δ) = p}. In Propositions 3.1–3.14, cross-
sections for Symp/G2 are given for all possible p. The preimage of their union under ∫ gives the
desired cross-section for Sym(V )/G2.

Given α,β, γ ∈ R we write

Rα =
(

cosα − sinα

sinα cosα

)
,

Sα,β =
([ cosα

sinα

]
cosβ

[− sinα

cosα

]
− sinβ

[− sinα

cosα

])

0 sinβ cosβ
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=
( cosα − cosβ sinα sinβ sinα

sinα cosβ cosα − sinβ cosα

0 sinβ cosβ

)
and

Tα,β,γ =

⎛
⎜⎜⎜⎝

cosα 0 − sinα cosβ sinα sinβ cosγ − sinα sinβ sinγ

0 1 0 0 0
sinα 0 cosα cosβ − cosα sinβ cosγ cosα sinβ sinγ

0 0 sinβ cosβ cosγ − cosβ sinγ

0 0 0 sinγ cosγ

⎞
⎟⎟⎟⎠ .

These matrices are used to describe the normal forms, and have certain geometric interpretations.
The matrix Rα is simply the matrix of rotation in R

2 with the angle α. The matrices of the form
Sα,β constitute the subset of SO3(R) defined by the property that the image of the first standard
basis vector e1 is orthogonal to e3. Its significance is mainly due to the fact that the set{

S−1
α,β

(
λ

μI2

)
Sα,β

∣∣∣ (α,β) ∈ (]0,π[×[0,π[)∪ {(0,0)
}}

parametrises Sym{(λ,1),(μ,2)}. As for the matrices Tα,β,γ , they make up the set of SO3(R)-
matrices fixing e2 and mapping e1 into the orthogonal complement of e4 and e5, and e3 into
the orthogonal complement of e5.

For simplicity, we denote the endomorphism

Rα ⊗ IV =
(

cosαIV − sinαIV

sinαIV cosαIV

)

of V 2 briefly by Rα . In this notation,

Rα

(
e

f

)
=
(

cosαe − sinαf

sinαe + cosαf

)
for e, f ∈ V.

Throughout this section, c denotes a Cayley triple (u, v, z) ∈ C.
When solving the normal form problem for (1), we often need to consider the set Symp(Rk) =

{δ ∈ Sym(Rk) | p(δ) = p} of symmetric k × k-matrices sharing the same set p of eigenpairs.
In Section 4, Symp(Rk) is parametrised for arbitrary k and p. This parametrisation is used
without reference throughout the present section. In most cases, the parametrisation is fairly
uncomplicated, and is then written out explicitly. Otherwise, it is given in terms of the function
c ◦ r :K(D) → Symp described in Section 4, where D is a diagonal matrix such that p(D) = p.
We use the notation K′(D) = {τ ∈ K(D) | τ 1

1 	= π
2 }.

3.1. Types (7), (1, 6), (2, 5) and (1, 1, 5)

These four types are trivial. First, if δ is of type (7), then there is only one eigenpair, (λ,7).
Any choice of a Cayley triple c will give the matrix [δ]c = λI7.

If δ is of type (1, 6), then we may choose any c = (u, v, z) ∈ C such that u belongs to
the eigenspace of dimension 1. For the type (2, 5), any orthonormal basis (u, v) for the two-
dimensional eigenspace can be extended to a Cayley triple c = (u, v, z). Finally, if p(δ) =
{(λ,1), (μ,1), (ν,5)} is the set of eigenpairs of δ (this is the type (1, 1, 5)), then c ∈ C may
be chosen such that u ∈ Eλ(δ) and v ∈ Eμ(δ), and hence z ∈ Eν(δ).
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The matrices obtained will be

[δ]c =
(

λ

μI6

)
for (1,6),

[δ]c =
(

λI2
μI5

)
for (2, 5) and

[δ]c =
(

λ

μ

νI5

)
for (1,1,5)

where certainly all the parameters λ, μ and ν are determined by the map δ itself, independent of
the basis bc . Thus we have proved the following proposition:

Proposition 3.1.

1. The set {λI7} is a cross-section for Sym{(λ,7)}/G2.

2. The set
{( λ

μI6

)}
is a cross-section for Sym{(λ,1),(μ,6)}/G2.

3. The set
{(

λI2
μI5

)}
is a cross-section for Sym{(λ,2),(μ,5)}/G2.

4. The set
{( λ

μ

νI5

)}
is a cross-section for Sym{(λ,1),(μ,1),(ν,5)}/G2.

3.2. Types (1, 1, 1, 4), (1, 2, 4) and (3, 4)

The endomorphisms δ ∈ Sym(V ) of these types have the common property of having a
4-dimensional eigenspace, which we denote by U . Suppose that u,v ∈ U⊥ are orthonormal.
Equipping S = U⊥ with some orientation, we have uv = m(x) for some x ∈ S of unit length.
From Lemma 2.2 follows that the number 〈S,uv〉 is independent of the choices of u and v. Tak-
ing z ∈ {u,v,uv}⊥ such that U⊥ ⊂ span{u,v,uv, z} gives a Cayley triple c = (u, v, z) ∈ C for
which uz, vz, (uv)z ∈ U and

(
uv

z

)
= R−1

α

(
e

f

)

where e ∈ U⊥, f ∈ U and α ∈ [0,π[. By choosing the sign of z, it is possible to obtain α ∈ [0, π
2 ]

(replacing z with −z changes α to π − α). Since now cosα = 〈S,uv〉, the angle α does not
depend on the choices we made in the construction of c = (u, v, z).

Note that the unit vectors u and v are chosen freely in U⊥. For simplicity, we want them to
be eigenvectors, and in the case (1, 2, 4) to lie in the eigenspace of dimension 2. Our construction
yields the following results for the different types of endomorphisms.

Proposition 3.2. If p = {(λ1,1), (λ2,1), (λ3,1), (μ,4)}, then the set

⎧⎪⎨
⎪⎩
⎛
⎜⎝

λ1
λ2

D

⎞
⎟⎠
∣∣∣∣D = R−1

α

(
λ3

μ

)
Rα, α ∈

[
0,

π

2

]⎫⎪⎬
⎪⎭
μI3



E. Darpö / Journal of Algebra 312 (2007) 668–688 677
is a cross-section for Symp/G2.

Proposition 3.3. If p = {(λ,1), (μ,2), (ν,4)}, then the set

{(
μI2

D

νI3

)∣∣∣∣D = R−1
α

(
λ

ν

)
Rα, α ∈

[
0,

π

2

]}

is a cross-section for Symp/G2.

Proposition 3.4. If p = {(λ,3), (μ,4)}, then the set

{(
λI2

D

μI3

)∣∣∣∣D = R−1
α

(
λ

μ

)
Rα, α ∈

[
0,

π

2

]}

is a cross-section for Symp/G2.

3.3. Types (1, 3, 3), (2, 2, 3) and (1, 1, 2, 3)

Although these classes of endomorphisms differ from each other in important aspects, the
strategy for dealing with them is roughly the same. Therefore they are treated together.

Lemma 3.5. Let V = X ⊕ Y ⊕ Z be a decomposition of V into pairwise orthogonal non-trivial
subspaces, where dimX = 3 and dimY � 2. There exist c ∈ C and α ∈ R such that u,v ∈ X,( uv

z

)= R−1
α

( e
f

)
for some unit vectors (e, f ) ∈ X × Y , and

uz ∈
{

Y if (dimY,dimZ) = (3,1),

Z if (dimY,dimZ) = (2,2).

Proof. If X is closed under π , let z be any unit vector in Y . Now Rz maps X bijectively onto
(Y ∩z⊥)⊕Z. In the case (dimY,dimZ) = (3,1) we choose u,v ∈ X such that u ∈ R−1

z (Y ∩z⊥),
and in the case (dimY,dimZ) = (2,2) such that u ∈ R−1

z (Z).
Now suppose X is not closed under π . Set S = X. Non-closedness of S implies that the

linear map PY⊕Zm :S → Y ⊕ Z is injective. Thus we have dim(PY⊕Zm(S)) = 3, and hence
Y ∩(PY⊕Zm)(S) is non-empty. Let x ∈ (PY⊕Zm)−1(Y ) be a unit vector. We get m(x) = cosαe−
sinαf for some α ∈ R, (e, f ) ∈ X × Y . Set z = sinαe + cosαf .

The subspace Rz(X ∩ x⊥) ⊂ (Y ∩ m(x)⊥) ⊕ Z is 2-dimensional. If dimY = 3 then dim(Y ∩
m(x)⊥) = 2, so Rz(X ∩ x⊥) ∩ (Y ∩ m(x)⊥) 	= 0. Hence there exists a unit vector u ∈ X ∩ x⊥
such that uz ∈ Y . If dimZ = 2, by the same argument there exists a unit vector u ∈ X ∩ x⊥
such that uz ∈ Z. In both cases, we may add v ∈ X such that (u, v, x) becomes a positively
oriented orthonormal basis for S. Since now uv = m(x) and 〈m(x), z〉 = 0, we have a Cayley
triple (u, v, z) ∈ C with the desired properties. �
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Proposition 3.6. Let p = {(λ,1), (μ,3), (ν,3)}. A cross-section for Symp/G2 is given by

⎧⎪⎨
⎪⎩
⎛
⎜⎝

μI2
A

ν

B

⎞
⎟⎠
∣∣∣∣∣
A = R−1

α

(μ
ν

)
Rα,B = R−1

θ

( ν
λ

)
Rθ,

(α, θ) ∈ ( ]0, π
2

]× [0, π
2

])∪ {(0,0)}

⎫⎪⎬
⎪⎭ .

Proof. From Lemma 3.5 follows (set X = Eμ, Y = Eν and Z = Eλ) that for each δ ∈ Symp there
exists a Cayley triple c′ = (u′, v′, z′) ∈ C such that

[δ]c′ =
⎛
⎜⎝

μI2
A

ν

B

⎞
⎟⎠ (3)

with A and B as in the proposition, and α, θ ∈ [0,π[. If Eμ is closed under π (that is if α = 0)
the restricted and co-restricted map Rz′ :Eμ → (Eν ∩ z′⊥) ⊕ Eλ is a bijection. Thus there exist
orthonormal vectors u,v ∈ Eμ such that uz′, vz′ ∈ Eν , and consequently (uv)z′ ∈ Eλ. On setting
z = z′, the triple c = (u, v, z) becomes a Cayley triple, for which [δ]c has the form stated in the
proposition, with α = θ = 0.

Assume Eμ is not closed under π . Set z = z′ if α � π
2 in (3) and z = −z′ if α > π

2 . If θ >
π
2 , then let (u, v) = (−u′,−v′), otherwise take (u, v) = (u′, v′). This gives us a Cayley triple
c = (u, v, z) for which [δ]c has the form given in the proposition, with α 	= 0. If we set S = Eμ,
we will have cosα = 〈Eμ,m(x)〉 and (uv)z = 1

〈Eμ,m(x)〉xm(x), where x ∈ Eμ ∩ {u,v}⊥ is the
unique vector such that uv = m(x). From Lemma 2.2 follows that cosα and (uv)z are the same
for all possible choices of c ∈ C for which [δ]c has the above form. Therefore different pairs
(α, θ) ∈]0, π

2 ] × [0, π
2 ] cannot correspond to endomorphisms within the same orbit of the group

action (1). �
The case (2, 2, 3) is analogous to the case (1, 3, 3). By the same technique as for Proposi-

tion 3.6, using Lemma 3.5 with (X,Y,Z) = (Eν,Eλ,Eμ), the following proposition is proved.

Proposition 3.7. If p = {(λ,2), (μ,2), (ν,3)}, then the set

⎧⎪⎨
⎪⎩
⎛
⎜⎝

νI2
A

μ

B

⎞
⎟⎠
∣∣∣∣∣
A = R−1

α

( ν
λ

)
Rα,B = R−1

θ

(
λ

μ

)
Rθ,

(α, θ) ∈ (]0, π
2

]× [0, π
2

])∪ {(0,0)}

⎫⎪⎬
⎪⎭

is a cross-section for Symp/G2.

The case (1, 1, 2, 3) is somewhat different from the two previous cases. The result reads as
follows.
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Proposition 3.8. If p = {(κ,1), (λ,1), (μ,2), (ν,3)} then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(

νI2
A

B

)∣∣∣∣∣
A = R−1

α

( ν
μ

)
Rα,B = S−1

θ,φ

(
μ

λ
κ

)
Sθ,φ,

(α, θ,φ) ∈ ]0, π
2

]× [0, π
2

]× ]0, π
2

]
∪ ( ]0, π

2

]× {(0,0)})∪ {(0,0,0)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

is a cross-section for Symp/G2.

Proof. If Eν is closed under π then, analogous to the case (1, 3, 3), one shows the existence of a
Cayley triple c = (u, v, z) ∈ C for which u,v,uv ∈ Eν, z, uz ∈ Eμ, vz ∈ Eλ and (uv)z ∈ Eκ . This
is the case α = θ = φ = 0.

Suppose Eν is not closed under π . Set S = Eν . Now PS⊥m :S → S⊥ is injective and hence,
for dimension reasons, there exists a unit vector x ∈ S = Eν such that m(x) ∈ (Eν ⊕ Eμ) \ Eν .
In this case {x,m(x)} is linearly independent, so we may chose z ∈ span{x,m(x)} to be a unit
vector orthogonal to m(x). By Lemma 2.2(3), the vector x(m(x)) is independent of the choice
of x ∈ Eν . We get two subcases:

First case: x(m(x)) ∈ Eκ . This means that z(m(x)) = 1
〈E⊥

ν ,m(x)〉x(m(x)) ∈ Eκ . It follows that

Rz(Eν ∩x⊥) = (Eμ ∩m(x)⊥)⊕Eλ, whence there exist orthonormal u,v ∈ Eν ∩x⊥ such that uz ∈
Eμ and vz ∈ Eλ. After choosing the sign of u, we arrive at the case (α, θ,φ) ∈]0, π

2 ] × {(0,0)}
of the proposition.

Second case: x(m(x)) /∈ Eκ . Here z(m(x)) /∈ Eκ , and dim(Rz(Eν ∩ x⊥) ∩ ((Eμ ∩ m(x)⊥) ⊕
Eλ)) = 1. Hence there exists a unit vector u ∈ Eν ∩ x⊥ (unique up to change of sign) such that
uz ∈ (Eμ ∩m(x)⊥)⊕Eλ. Adding v ∈ Eν ∩{u,x}⊥ of unit length, and possibly changing the signs
of the vectors u, v and z, we get [δ]c as in the proposition with (α, θ,φ) ∈]0, π

2 ]×[0, π
2 ]×]0, π

2 ].
To prove the irredundancy of the parametrisation given in the proposition, we first note

that cosα = 〈Eν,m(x)〉, where x is any unit vector in Eν . This means that the angle α ∈
[0, π

2 ] is uniquely determined by δ. In case Eν is not closed under π , we also have (uv)z =
± 1

〈E⊥
ν ,m(x)〉x(m(x)), and hence cosφ = 〈Eκ ,x(m(x))

〈E⊥
ν ,m(x)〉 which is independent of the choice of x.

Therefore, φ is also independent of the choice of the Cayley triple c. Finally, if φ 	= 0 then

sin θ = 〈Eμ,(uv)z〉
sinφ

, which implies independence of choice for the angle θ . Hence all the angles are
determined by δ itself, and the parametrisation is irredundant. �
3.4. Type (1, 2, 2, 2)

This is perhaps the most difficult of all 15 cases. We begin by spelling out a rather obvious
fact.

Lemma 3.9. Let U ⊂ V be a 2-dimensional subspace, and x ∈ U⊥. Then the function v �→
〈U,xv〉 is constant on the unit sphere in U .

Proof. This is a consequence of Lemma 2.2(2). Set S = U ⊕ span{x}. Then xv = ‖x‖m(e) for
some e ∈ S. Since 〈xv, x〉 = 0 we have 〈U,xv〉 = 〈S,xv〉 = ‖x‖〈S,m(e)〉. Now e �→ 〈S,m(e)〉
is constant on the unit sphere in S, whence v �→ 〈U,xv〉 is constant on the unit sphere in U . �
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Suppose δ ∈ Sym(V ), p(δ) = {(κ,1), (λ,2), (μ,2), (ν,2)}. If S = Eκ ⊕ Eλ is closed under π ,
take z ∈ Eμ to be a unit vector. Then Rz(Eλ) ⊂ (Eμ ∩ z⊥) ⊕ Eν , which implies existence of a unit
vector u ∈ Eλ for which uz ∈ Eν . Choosing v ∈ Eλ ∩ u⊥ appropriately, we get a Cayley triple
c = (u, v, z) such that

[δ]c =

⎛
⎜⎜⎜⎜⎜⎝

λI2
κ

μ

ν

B ′

⎞
⎟⎟⎟⎟⎟⎠ ,

B ′ = R−1
φ

(
μ

ν

)
Rφ, with φ ∈

[
0,

π

2

]
.

By Lemma 3.9, the value of sinφ = 〈Eμ, (uv)z〉 does not depend on the choice of z. Therefore,
the matrix B ′ is uniquely determined by δ.

Suppose S is not closed under π . Set r = PS⊥m :S → Eμ ⊕ Eν . By Lemma 2.2(2), we have
dim r(S) = 3, which implies r(S) ∩ Eμ 	= {0}. We distinguish three different subcases:

First case: dim r−1(Eμ) = 1, r(Eκ ) ⊂ Eμ. This implies m(Eκ ) ⊂ Eκ ⊕ Eμ. Because S is not
closed under π , we have m(Eκ ) 	= Eκ . Therefore, the subspace (Eκ + m(Eκ )) ∩ m(Eκ )⊥ of V is
non-trivial. Let z ∈ (Eκ + m(Eκ )) ∩ m(Eκ )⊥ be a unit vector. As Rz(Eλ) ⊂ (Eμ ∩ z⊥) ⊕ Eν , there
exists a unit vector u ∈ Eλ such that uz ∈ Eν . Adding v ∈ Eλ ∩ u⊥ with suitable orientation, and
possibly changing the sign of z (this is to obtain β,φ � π

2 below), we get c = (u, v, z) ∈ C for
which

[δ]c =
⎛
⎜⎝

λI2
A′

ν

B ′

⎞
⎟⎠ ,

A′ = R−1
β

(
κ

μ

)
Rβ, B ′ = R−1

φ

(
μ

ν

)
Rφ, (β,φ) ∈

]
0,

π

2

]
×
[

0,
π

2

]
.

Note that we have β 	= 0, since S is not closed under π .
Second case: dim r−1(Eμ) = 1, r(Eκ ) 	⊂ Eμ. Let e ∈ r−1(Eμ),‖e‖ = 1. By assumption, e is

unique up to change of sign, and e /∈ Eκ . Hence 〈Eλ, e〉 	= 0 and thereby dim(Eλ ∩ e⊥) = 1. Take
u ∈ Eλ ∩ e⊥ and v ∈ S ∩ {e,u}⊥ to be unit vectors. Both u and v are chosen in 1-dimensional
subspaces, and are therefore uniquely determined by δ up to change of sign. Since S is not closed
under π , the vectors e and uv are non-proportional, and we may choose z ∈ span{e,uv} to be a
unit vector orthogonal to uv. Then c = (u, v, z) is a Cayley triple, and

[δ]c =
(

λ

A

B

)
, where

A = S−1
α,β

(
λ

κ

)
Sα,β, α,β ∈]0,π[ and
μ
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B = S−1
θ,φ

(
μ

νI2

)
Sθ,φ, θ,φ ∈ [0,π[.

Lemma 3.10. The triple c ∈ C can be chosen such that either

(1) α,β, θ ∈]0, π
2 [, φ ∈ [0,π[ or

(2) α,β, θ ∈]0, π
2 ], π

2 ∈ {α,β, θ}, φ ∈ [0, π
2 ] or

(3) α,β ∈]0, π
2 ], θ = φ = 0.

In this presentation, the tuple (α,β, θ,φ) is uniquely determined by δ.

We denote by L2 the set of angles (α,β, θ,φ) ∈ R
4 described in Lemma 3.10.

Proof. In our construction, the vectors u, v and z (an thereby all elements of the basis bc) are
uniquely determined up to change of sign. In any case, by choosing the signs of u, v and z we
can assure that α,β, θ � π

2 , but in general not φ � π
2 . If {v,uv,uz} contains an eigenvector of δ,

indeed it is possible also to get φ � π
2 . In the situation when uz ∈ Eμ (i.e., when θ = 0) we will

have vz, (uv)z ∈ Eν , and may set φ = 0. These are in turn the cases 1, 2 and 3 in the lemma. �
Third case: dim(r−1(Eμ)) = 2. Since Eλ ⊂ S has codimension 1, it follows that r−1(Eμ) ∩

Eλ 	= {0}. Hence there is a unit vector e ∈ Eλ such that r(e) ∈ Eμ. This implies the existence of
unit vectors u ∈ Eλ, v ∈ Eκ with the property that uv = m(e) ∈ Eλ ⊕Eμ. Taking z ∈ span{e,uv}∩
uv⊥ we get a Cayley triple c = (u, v, z).

Lemma 3.11. Given c ∈ C as above, dim r−1(Eμ) = 2 if and only if (uv)z ∈ Eν .

Proof. For any unit vector x ∈ S we have (uv)z = ± 1
〈S⊥,m(x)〉xm(x). This implies, by

Lemma 2.2, that (uv)z ∈ (S + m(S))⊥ = (S + r(S))⊥. Since r :S → Eμ ⊕ Eν is injective,
for dimension reasons we have Eμ ⊕ Eν = r(S) ⊕ span{(uv)z}. Certainly, dim r−1(Eμ) =
dim(r(S) ∩ Eμ) = 2 if and only if 〈Eμ, (uv)z〉 = 0, that is if and only if (uv)z ∈ Eν . �

We remark that r(Eλ) = Eμ precisely when Eν = span{vz, (uv)z}.
Let

L1 = {0} ×
[

0,
π

2

]
×
{

π

2

}
×
[

0,
π

2

]

and

L3 =
{

π

2

}
×
]

0,
π

2

]
×
[

0,
π

2

]
× {0}.

Summarising all cases above, we get the following proposition.

Proposition 3.12. Let p = {(κ,1), (λ,2), (μ,2), (ν,2)}. A cross-section for Symp/G2 is given by

⎧⎪⎨
⎪⎩
(

λ

A

B

)∣∣∣∣∣
A = S−1

α,β

(
λ

κ
μ

)
Sα,β,B = S−1

θ,φ

(
μ

νI2

)
Sθ,φ

(α,β, θ,φ) ∈ L ∪L ∪L

⎫⎪⎬
⎪⎭ .
1 2 3
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The set of angles L1 here covers the case when S is closed under π (this is when β = 0), and
what is referred to as first case above. The sets L2 and L3 correspond to the second and third
cases respectively.

3.5. Type (1, 1, 1, 2, 2)

Proposition 3.13. Let p = {(λ1,1), (λ2,1), (λ3,1), (μ,2), (ν,2)} and let D =
(

μ

λ3
νI2

)
. Then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

λ1
λ2

λ3
μ

B

⎞
⎟⎟⎟⎠
∣∣∣∣∣
B = S−1

α,β

(
μ

νI2

)
Sα,β,

(α,β) ∈ ( ]0, π
2

]× [0, π
2 ])∪ {(0,0)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∪̇

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

λ1 0
λ2 0

a a∗
μ 0

0 0 a 0 A

⎞
⎟⎟⎟⎟⎠
∣∣∣∣∣
a ∈ R \ {0},a ∈ R

3,A ∈ Sym
(
R

3
)
,(

a a∗
a A

)
∈ (c ◦ r)

(
K′

1,2,3(D)
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∪̇

⎧⎨
⎩
(

λ1
λ2

C

)∣∣∣∣∣ C = T −1
α,β,γ

(
νI2

λ3
μI2

)
Tα,β,γ ,

(α,β, γ ) ∈ [0, π
2

[× [0, π
2

]× [0, π
2

]
⎫⎬
⎭

is a cross-section for Symp/G2.

Proof. Suppose δ ∈ Symp. Take (u, v) ∈ Eλ1 ×Eλ2 . We distinguish three subcases:
First case: uv ∈ Eλ3 . Here let z ∈ Eμ. With a suitable choice of signs for u, v and z, the

matrix [δ]c will belong to the first set given in the proposition. From Lemma 3.9 follows that
cosα = 〈Eμ,uz〉 and − cosβ sinα = 〈Eμ, vz〉 do not depend on the choice of z ∈ Eμ. Since
alterations of the vectors u and v can only change α and β to π − α and π − β respectively
(and thereby give rise to matrices that are either unchanged or do not belong to the set), the given
matrices belong to different orbits of (1).

Second case: 〈Eμ,uv〉 	= 0. Taking z ∈ Eμ ∩ uv⊥, the Cayley triple c ∈ C is uniquely deter-
mined up to change of signs. This gives the second set in the proposition.

Third case: 〈Eμ,uv〉 = 0, uv /∈ Eλ3 . Since in this case 〈Eν, uv〉 	= 0, a unit vector z ∈ Eν ∩uv⊥
can be chosen in only two ways. The matrices [δ]c obtained here constitute the third set. �
3.6. Types (1,1,1,1,1,1,1), (1,1,1,1,1,2) and (1,1,1,1,3)

These three sorts of matrices can be treated simultaneously. Let

α ∈ R, X =
(

x1 x2 x3 x4
X1 X2 X3 X4

)
∈ R

4×4, xi ∈ R,Xi ∈ R
3,

and define



E. Darpö / Journal of Algebra 312 (2007) 668–688 683
UX,α =
(

x1

[− sinα

cosα

] [
cosα

sinα

]
x2

[− sinα

cosα

]
x3

[− sinα

cosα

]
x4

[− sinα

cosα

]
X1 0 X2 X3 X4

)

=
(−x1 sinα cosα −x2 sinα −x3 sinα −x4 sinα

x1 cosα sinα x2 cosα x3 cosα x4 cosα

X1 0 X2 X3 X4

)
∈ R

5×5.

Given 1 � j � k � 6 and λj , . . . , λk,μ ∈ R, set

D
(j)
k =

⎛
⎜⎜⎝

λj

. . .

λk

μI7−k

⎞
⎟⎟⎠ .

Proposition 3.14. Suppose p = {(λi,1), (μ,7 − k)}i∈k , k ∈ {4,5,6}. A cross-section for
Symp/G2 is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

λ1 0
λ2 0

a a∗
λ3 0

0 0 a 0 A

⎞
⎟⎟⎟⎟⎠
∣∣∣∣∣
a ∈ R,a ∈ R

3,A ∈ Sym
(
R

3
)
,(

a a∗
a A

)
∈ (c ◦ r)

(
K1,2,3

(
D

(4)
k

))
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∪̇

⎧⎪⎪⎨
⎪⎪⎩
(

λ1
λ2

B

)∣∣∣∣∣
B = U−1

X,αD
(3)
k UX,α,

(α,X) ∈ ]0, π
2

[× r
(
K′

1,2

(
D

(3)
k

))
∪ {π

2

}× r
(
K′

1,2,3

(
D

(3)
k

))
⎫⎪⎪⎬
⎪⎪⎭ .

Proof. Taking (u, v) ∈ Eλ1 × Eλ2 we get two subcases. Firstly, if 〈Eλ3 , uv〉 = 0 then we let
z ∈ Eλ3 . This gives c = (u, v, z) ∈ C for which [δ]c belongs to the first set in the proposition.

Secondly, if 〈Eλ3 , uv〉 	= 0, then we set E = Eλ3 ⊕ Eλ4 and choose z in the 1-dimensional

subspace E ∩ uv⊥. Writing w = (PE(uv))∧, we have
( z

w

)= R−1
α

( f3
f4

)
for some α ∈]0,π[ and

(f3, f4) ∈ Eλ3 × Eλ4 . If α = π
2 , that is if (w, z) ∈ Eλ3 × Eλ4 , then signs may be chosen such

that X ∈ K′
1,2,3(D

(3)
k ). Otherwise, we choose z such that α < π

2 , and thereafter u,v such that

X ∈ K′
1,2(D

(3)
k ). This gives the second set. �

4. Parametrisation of symmetric matrices

In this section we parametrise the sets of all symmetric matrices having a fixed set of eigen-
pairs (Proposition 4.1). In Proposition 4.2 we also give cross-sections for the orbit sets of these
matrices under the Z2-action realised by changing the sign of a standard basis vector in the
underlying vector space R

n.
Let

D =
⎛
⎝λ1Is1

. . .

⎞
⎠ ∈ R

n×n (4)
λkIsk
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where λi 	= λj if i 	= j . We write p = p(D) for the set of eigenpairs of D.
By the real spectral theorem, the map c : On(R) → Symp, T �→ T −1DT is surjective. In order

to get an irredundant parametrisation of Symp, one might try to find a cross-section S ⊂ On(R)

for the set P = {c−1(A) ⊂ On(R) | A ∈ Symp} of preimages of c in On(R).
We denote by C(D) the centraliser in On(R) of the matrix D. For any S,T ∈ On(R), we have

S−1DS = T −1DT ⇔ DST −1 = ST −1D ⇔ ∃N ∈ C(D): S = NT. (5)

This means that P = C(D)\On(R), the set of left cosets of C(D) in On(R). Note that C(D) ⊂
On(R) is in general not a normal subgroup and therefore, left and right cosets not necessarily
coincide.

Let v ∈ R
n be a unit vector. There exists a unique τ1 ∈ [0,π] such that v = cos τ1e1 + sin τ1v2

for some v2 ∈ e⊥
1 of unit length. Continuing this procedure, in n steps we get the polar coordinates

p(v) = (τ1, . . . , τn) for v, for which τn ∈ {0,π}, vn = cos τnen = ±en, vi = cos τiei + sin τivi+1
and finally v = v1. Adding the condition that τi = 0 whenever τi−1 ∈ {0,π}, the coordinates of
any unit vector v ∈ R

n are unique. We denote by

Tn = {(τ1, . . . , τn) ∈ [0,π]n−1 × {0,π} | τi−1 ∈ {0,π} ⇒ τi = 0
}

the set of polar coordinates on the unit sphere of R
n.

Given m ∈ n and τ ∈ Tm, set y = p−1(τ2, . . . , τm) ∈ R
m−1 and define

R̃(τ ) =
(

cos τ1 − sin τ1y
∗

sin τ1y Im−1 − (1 − cos τ1)yy∗
)

∈ Om(R),

R(τ) =
(

In−m

R̃(τ)

)
∈ On(R).

If τ1 /∈ {0,π}, then R̃(τ ) is the matrix of rotation in span{e1, T e1} ⊂ R
m mapping e1 �→ p−1(τ ).

Otherwise, R̃(τ ) = Im if τ1 = 0 and R̃(τ ) = Im − 2e1e
∗
1 if τ1 = π .

Fix a matrix T ∈ On(R) and let τn = (τn
1 , . . . , τ n

n ) = p(T e1). Now T e1 = R(τn)e1. Since T

is orthogonal, (T e1)
⊥ = T e⊥

1 = T (span{e2, . . . , en}). The matrix T therefore factors uniquely as

T = R(τn)
( 1

T1

)
, where T1 ∈ On−1(R). Setting τn−1 = p(T1e1) we have T1e1 = R̃(τn−1)e1 and

T e2 = R(τn)R(τn−1)e2. Proceeding inductively, we get a factorisation T = R(τn) · · ·R(τ 1),
where τm ∈ Tm for all m ∈ n.

Conclusively,

r :T1 × · · · × Tn → On(R),
(
τ 1, . . . , τ n

) �→ R
(
τn
) · · ·R(τ 1) (6)

is a bijection. For simplicity, we shall use the notation Ri = R(τn+1−i ) when τ = (τ 1, . . . , τ n)

is given.
We now make a series of important (and, inevitably, very technical) definitions. Let i, j ∈ n.

First, if i < j , then for any τ ∈ T1 × · · · × Tn we set

στ (i, j) =
n−j+1∑

cos τ
n−j+1
r cos τn−i+1

j−i+r

r−1∏
sin τ

n−j+1
m sin τn−i+1

j−i+m.
r=1 m=1
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Second, we define N(i, j) to be the set of all τ ∈ T1 × · · · × Tn satisfying the following condi-
tions:

1. If i � j then either τ
n−j+1
i−j+1 = π

2 or ∃k ∈ i − j : τ
n−j+1
k ∈ {0,π}.

2. If i < j then στ (i, j) = 0.

Third, we take P(i, j) to be the set of all τ ∈ T1 × · · · × Tn for which the following hold true:

1. If i � j then τ
n−j+1
i−j+1 ∈ [0, π

2 ].
2. If i < j then στ (i, j) � 0.

In the case i � j , an element τ ∈ T1 × · · · × Tn belongs to N(i, j) if and only if
e∗
i Rj ej = 0, and to P(i, j) if and only if e∗

i Rj ej � 0. If i < j , we have (Riei)
∗Rjej =

στ (i, j)
∏j−i

m=1 sin τn−i+1
m . Also, if Riei ∈ span{ei, . . . , ej−1} then στ (i, j) = 0, so −(Riei)

∗Rjej

� 0 precisely when στ (i, j) � 0, and −(Riei)
∗Rjej = 0 precisely when στ (i, j) = 0. Hence τ ∈

N(i, j) is equivalent to −(Riei)
∗Rjej = 0, and τ ∈ P(i, j) is equivalent to −(Riei)

∗Rjej � 0.
Let D be a matrix of the form given by (4), and let K(D) be the set of τ ∈ T1 × · · · × Tn

satisfying the following property:
For all j ∈ n − 1, r ∈ k and all i ∈ N satisfying

∑r−1
μ=1 sμ < i <

∑r
ν=1 sν , the following impli-

cations hold true:

1. If τ ∈⋂j−1
t=1 N(i, t) then τ ∈ P(i, j).

2. If τ ∈ (
⋂j−1

t=1 N(i, t)) \ N(i, j), then τ /∈ N(i − 1, h) for some h ∈ j − 1.

Proposition 4.1. The restricted map c ◦ r :K(D) → Symp is a bijection.

Proof. We need to show that r(K(D)) is a cross-section for C(D)\On(R). The centraliser C(D)

of D consists of those orthogonal matrices that leave all eigenspaces of D invariant.
Let T ∈ On(R). Consider (λ, s) ∈ p with Eλ(D) = span{el, . . . , el+s−1}. We denote by vλ

i the
vector in R

s given by the restriction of the ith column of T to the rows l to l + s − 1 inclusive,
i.e., vλ

i = PEλ(D)T (ei). For j ∈ s we define ı(j) = min{i | dim(span{vλ
1 , . . . , vλ

i }) = j}. Since
T is invertible, dim(span{vλ

1 , . . . , vλ
n}) = s and the definition of ı : s → n is consistent. Now let

Sλ ∈ Os(R) be the matrix defined by e1 = (Sλv
λ
ı(1))

∧ and ej+1 = (SλP{e1,...,eı(j)}⊥(vλ
ı(j+1)))

∧.
Let

ST =
⎛
⎝ Sλ1

. . .
Sλk

⎞
⎠ .

Clearly, ST ∈ C(D). The matrix PEλ(D)ST T (that is the restriction of ST T to the rows l to
l + s − 1) now has the following form:

PEλ(D)ST T =

⎛
⎜⎜⎜⎜⎝

0 · · · 0 • ∗ · · ·
0 · · · · · · 0 • ∗ · · ·
...

. . .
. . .

⎞
⎟⎟⎟⎟⎠ . (7)
0 · · · · · · 0 • ∗ · · ·
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Here a bullet indicates a strictly positive entry, and an asterisk denotes an arbitrary real number.
The first non-zero entry of each row will be positive, and located strictly to the right of the first
non-zero entry of the previous row. These elements we call pivotal elements. The matrix ST T is
a tower of blocks of this type, one for each eigenvalue λ of D. Clearly, ST T is an exact invariant
for the left cosets of C(D) to which it belongs.

If we read τ ∈ N(i, j) as “the entry (i, j) of the matrix r(τ ) is zero” and τ ∈ P(i, j) as “the
entry (i, j) of r(τ ) is non-negative” we see that r(K(D)) is precisely the set of all orthogonal
matrices of the above form. Although these descriptions are not true in general, we will show
that they are correct if all entries to the left of (i, j) in the ith row are zero, which is the case in
the definition of K(D).

Let τ ∈ T1 × · · · × Tn. Fix i, j ∈ n, and assume τ ∈ ⋂j−1
t=1 N(i, t). The matrix T = r(τ )

factors into a product of rotations and reflections T = R1 · · ·Rn = R(τn) · · ·R(τ 1). Since Rm =(
Im−1

R̃m

)
we have e∗

i T ej = e∗
i R1 · · ·Rnej = e∗

i R1 · · ·Rjej .

On the other hand, for all t < min{i, j} we have

τ ∈ N(i, t)
i�t⇒ e∗

i Rt et = 0
t 	=i⇒ Rtei = ei ⇒ R∗

t ei = ei ⇒ e∗
i Rt = e∗

i . (8)

Hence e∗
i T ej = e∗

i Rm · · ·Rjej , where m = min{i, j}.
In the case i � j , this means that e∗

i T ej = e∗
i Rj ej . Therefore the statement τ ∈ P(i, j) is

equivalent to e∗
i T ej � 0 and τ ∈ N(i, j) is equivalent to e∗

i T ej = 0, under the present condition

that τ ∈⋂j−1
t=1 N(i, t).

As for the case i < j , we get e∗
i T ej = e∗

i Ri · · ·Rjej . Since by assumption e∗
i Riei = 0, Ri

must be a rotation, and it follows that R∗
i ei = −Riei . Moreover, τ ∈ N(i, t) for all t ∈ {i +

1, . . . , j − 1} implies that (Riei)
∗Rt = (Riei)

∗, by arguments analogous to (8). We calculate

e∗
i T ej = eiRi · · ·Rjej = −(Riei)

∗Ri+1 · · ·Rjej = −(Riei)
∗Rjej .

Hence τ ∈ N(i, j) if and only if e∗
i T ej = 0 and τ ∈ P(i, j) if and only if e∗

i T ej � 0.
Summarising the above, we get that K(D) parametrises the set of orthogonal matrices for

which the blocks PEλ(D)T have the form (7). This proves the proposition. �
Let i ∈ n. We write Z

(i)
2 = {In,Σi}, where Σi = In − 2eie

∗
i is the matrix of reflection in the

hyperplane e⊥
i . The (multiplicative) group Z

(i)
2 acts on Symp by g · B = gBg.

For any m ∈ n + 1 − i, set m̌ = i − 1 + m. Given τ ∈ K(D), we define

Li(τ ) =
{
m ∈ n + 1 − i

∣∣∣ τn+1−i
m 	= π

2
and

(
τn+1−i
m−1 /∈ {0,π} if m > 1

)}

=
{
m ∈ n + 1 − i

∣∣ e∗
m p−1(τn+1−i

) 	= 0
}

and

Ki(τ) =
{

m ∈ Li(τ )

∣∣∣∣ τ ∈
i−1⋂

N(m̌, t)

}
⊂ Li(τ ).
t=1
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The set {(m̌, i)}m∈Ki(τ) is the set of all pivotal elements on and below the diagonal in the ith
column of r(τ ).

Let Ki (D) ⊂ K(D) be the set of all τ ∈ K(D) such that either

(1) Li(τ ) \ Ki(τ) 	= ∅ and τn+1−i
l < π

2 where l = min(Li(τ ) \ Ki(τ)), or
(2) Li(τ ) = Ki(τ) and |Li(τ )| = 1, or
(3) Li(τ ) = Ki(τ), |Li(τ )| > 1 and τ ∈ P(ř, t) where r = minLi(τ ) and t = min{m ∈ n | m >

i, τ /∈ N(ř,m)}.

Proposition 4.2. For any i ∈ n, the set (c ◦ r)(Ki (D)) is a cross-section for Symp/Z
(i)
2 .

Proof. Consider B = T −1DT ∈ Symp with T = r(τ ) and τ ∈ K(D). The element Σi acts as
Σi · B = ΣiBΣi = ΣiT

−1DT Σi = (T Σi)
−1D(T Σi). Suppose T Σi = r(τ̃ ) and ST Σi

T Σi =
r(τ̄ ), where ST Σi

∈ C(D) is the unique matrix, given in the proof of Proposition 4.1, for which
ST Σi

T Σi ∈ K(D). We need to show that for every τ ∈ K(D) either τ ∈ Ki (D) or τ̄ ∈ Ki (D), but
not both.

Certainly, T Σiei = −T ei and T Σiej = T ej for all j 	= i. From this follows that ST Σi
=∏

h∈H Σh, where H is the set of all h ∈ n for which the element (h, i) of T is a pivotal element.
On the other hand,

T Σi = R
(
τn
) · · ·R(τ 1)Σi = R

(
τn
) · · ·R(τn+1−i

)
ΣiR

(
τn−i

) · · ·R(τ 1),
R
(
τn+1−i

)
Σi =

(
Ii−1

R̃(τn+1−i )

)
Σi =

(
Ii−1

R̃(τn+1−i )Σ1

)
.

Setting θ = τn+1−i
1 and y = p−1(τn+1−i

2 , . . . , τ n+1−i
n+1−i ), we get

R̃
(
τn+1−i

)
Σ1 =

(
cos θ − sin θy∗
sin θy In−1 − (1 − cos θ)yy∗

)
Σ1 =

( − cos θ − sin θy∗
− sin θy In−1 − (1 − cos θ)yy∗

)

=
(

cos(π − θ) − sin(π − θ)(−y)∗
sin(π − θ)(−y) In−1 − (1 − cos(π − θ))(−y)(−y)∗

)
Ay = R

(
τ̃ n+1−i

)
Ay

where

Ay =
(

1
In−1 − 2yy∗

)
and τ̃ n+1−i = p

(
cos(π − θ)

sin(π − θ)(−y)

)
.

Hence τ̃ n+1−i
l = π − τn+1−i

l for all l for which τn+1−i
l−1 	∈ {0,π}. We now get three cases, as in

the definition of Ki (D).
If Li(τ ) \ Ki(τ) 	= ∅: Let l = min(Li(τ ) \ Ki(τ)). Now τ̃ n+1−i

l = π − τn+1−i
l . Since l /∈

Ki(τ) we have ľ /∈ H and therefore τ̄ n+1−i
l = τ̃ n+1−i

l . Hence precisely one of τn+1−i
l and τ̄ n+1−i

l

belongs to the interval [0, π
2 [. This is the first case in the definition of Ki (D).

If Li(τ )\Ki(τ) = ∅: Then the ith column of T equals p−1(τn+1−i ) and every non-zero entry
is a pivotal element. If |Li(τ )| = 1, then p−1(τn+1−i ) = (δhj )j∈n for some h ∈ n. Hence the hth
row of T looks like (δij )

∗
j∈n. This means that ST Σi

T Σi = ΣhT Σi = T and consequently τ̄ = τ .
This is the second case.



688 E. Darpö / Journal of Algebra 312 (2007) 668–688
Otherwise, if |Li(τ )| = |Ki(τ)| > 1, set r = minLi(τ ). The element (ř, i) of T is not equal
to ±1, so the ř th row must contain some other non-zero element. Say the first such element
is (ř, t). Note that then t > i, since (ř, i) is a pivotal element of T . We have ST Σi

T Σi =
(
∏

l∈Li(τ) Σľ
)T Σi . Since r ∈ Li(τ ), left multiplication with ST Σi

will change the sign of the ele-
ment (ř, t), whereas right multiplication with Σi leaves it unchanged. This implies that precisely
one of τ and τ̄ belongs to P(r, t), which is the requirement in the third case of the definition of
Ki (D). �

Finally, we remark that Ki1,...,il (D) =⋂l
j=1 Kij (D) is indeed a cross-section for the action of

the direct product
∏l

j=1 Z
(ij )

2 on Symp by (g1, . . . , gl) · B = g1 · · ·glBgl · · ·g1.
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