
Theoretical

ELSEVIEd

Computer Science

Theoretical Computer Science 220 (1999) 345-362

www.elsevier.com/locate/tcs

Heaps and heapsort on secondary storage *

R. Fadel”, K.V. Jakobsen”, J. Katajainen”,‘, J. Teuholab,*

a Department of Computing, University of Copenhagen, Universitetsparken 1,
DK-2100 Copenhagen East, Denmark

b Department of Computer Science, University of Turku, Lemminktiisenkatu 14 A,
FIN-20520 Turku, Finland

Abstract

A heap structure designed for secondary storage is suggested that tries to make the best use
of the available buffer space in primary memory. The heap is a complete multi-way tree, with
multi-page blocks of records as nodes, satisfying a generalized heap property. A special feature
of the tree is that the nodes may be partially filled, as in B-trees. The structure is complemented
with priority-queue operations insert and delete-max. When handling a sequence of S operations,

the number of page transfers performed is shown to be 0(x:=,(l/P) logCMip,(N#‘)), where
P denotes the number of records fitting into a page, M the capacity of the buffer space in
records, and Ni the number of records in the heap prior to the ith operation (assuming P 2 1
and S >M >c P, where c is a small positive constant). The number of comparisons required
when handling the sequence is O(~~=, log, Ni). Using the suggested data structure we obtain an
optimal external heapsort that performs O((NIp) log CM,pj(N/P)) page transfers and O(N log, N)
comparisons in the worst case when sorting N records. @ 1999 Elsevier Science B.V. All rights
reserved.

Keywords: Secondary storage; Priority queues; Heaps; Sorting; Heapsort

1. Introduction

The traditional data structure for implementing a priority queue is the heap (see,
e.g., [S]). It is a complete binary tree with the heap property: the priority of a parent

is always higher than or equal to the priorities of its children. Thus the root contains

*A preliminary version of this work appeared as “External heaps combined with effective buffering”

in: Proceedings of the Computing: The Australasian Theory Symposium, Australian Computer Science
Communications 19, 2 (1997), 72-78.

’ Partially supported by the Danish Natural Science Research Council under contracts 9400952 (Project
“Computational Algorithmic?) and 9701414 (Project “Experimental Algorithmic?).

* Corresponding author. Fax: +358-2-333 8600.

E-mail addresses: teuhola@cs.utu.fi (J. Teuhola), jyrki@diku.dk (J. Katajainen)

0304-3975/99/$-see front matter @ 1999 Elsevier Science B.V. All rights reserved.

PII: SO304-3975(99)00006-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81147935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

346 R. Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362

the maximum. Of course, the order can also be the opposite - one may talk about

max-heaps and min-heaps. The two important priority-queue operations (in addition to

creation) against a max-heap are (1) insert, which inserts a record with an arbitrary

priority into the heap, and (2) delete-max, which extracts a record with the highest

priority from the heap. In both cases, the heap property should be restored. Perhaps

the best-known application of the heap structure is heapsort [lo, 201 which is one of

the few in-place sorting methods guaranteeing an O(N log, N) worst-case complexity’

when sorting N records in the primary memory of a computer.

However, there are some applications, for example, large minimum-spanning-tree
problems and extremely large sorting tasks, where the data collection may be too

large to fit in primary memory. In a two-level memory model, the typical measure

of complexity is the number of pages transferred between fast primary memory and

slow secondary storage. For this reason, the internal algorithms are not applicable as

such. Our intention is to generalize the heap into an effective external data structure.

In part, this was already done by Wegner and Teuhola in their external heapsort [19].

Their heap had the same structure as the internal heap, namely a complete binary tree,

but the nodes were extended to whole pages and node comparisons were replaced by

node merges. A clear advantage of external heapsort over external mergesort is that the

former operates in minimum space. Another “in-situ” sorting algorithm was presented

in [15], based on quicksort.

The external heapsort in [19] cannot be improved if we assume that the buffer space

in primary memory is of a fixed size. What happens if we express the complexity as a

function of both problem size N (in records) and buffer-space capacity A4 (in records),

keeping the page size P (in records) fixed? We could keep the top part of the heap

always in primary memory, resulting in 0((N/P)log2(N/M)) page transfers. This is,

however, asymptotically worse than the best possible bound @((N/P) logCMl,)(N/P)),

obtained by external O(M/P)-way mergesort [l].

Our intention is to create an external heap organization that tries to make the best use

of the available primary memory. Especially, we try to achieve the same complexity

for external heapsort as for multi-way mergesort. We will adopt some features from B-
trees [5], which have become the standard comparison-based external search structure.

Their virtues are balance, large fanout (implying short paths from root to leaf), and

jlexibility, due to the “slack” allowed in the loading factor of pages (usually between

0.5 and 1). It turns out that all these properties can be transferred to external heaps.

One may wonder, how a B-tree would manage as a priority queue. The maximum

is easily found from the rightmost leaf (which could be buffered). Inserting (as well

as deleting) records is quite efficient. However, a more careful study reveals that the

B-tree cannot compete with the heap to be described. The B-tree contains “too much”

order, and maintaining that order does not pay off. This is confirmed by the experiments

in Section 6.

z In this article, we use log, x as a shorthand notation for max(1, In x/ In a)

R. Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362 347

In a virtual-memory environment, where the user has no control over the page-

replacement policy, the best utilization of the physical resources is not possible. For

instance, Alanko et al. [4] noticed that (internal) heapsort sorts N records with

O(N log,(N/P)) page transfers in such an environment. The behaviour of several

priority-queue structures in virtual memory was studied by Naor et al. [14]. In their

experiments a P-way heap was superior to the B-tree [5] and to the splay tree [16].

They also observed that a P-way heap (P >2) supports both the insert and delete-max

operations with O(log,N) page transfers (even though the delete-max operation has

the internal cost of O(P log,N)). The key observation in the present paper is that an

even more efficient heap structure is obtained by letting the fanout be O(M/P) and

storing O(M/P) pages in every node. Now, however, we must ourselves control the

movement of pages to and from secondary storage. Some operating systems actually

provide this facility for the users (see, e.g., [ll-13,211).

The performance of our heap structure is as follows. When handling an intermixed

sequence of insert and delete-max operations, starting from an empty heap, the number

of page transfers is O(CyEI((l/P) logcM/p)(Ni/P))) and the number of comparisons

O(Cy=l log, Ni). Here P denotes the number of records fitting into a page, A4 the

capacity of the buffer space in records, !Vi the number of records in the heap prior to

the ith operation, and S is the number of operations (P > 1, S > A4 > c . P, c = 2). This

results in external heapsort that performs O((N/P)logcMl,$N/P)) page transfers and

O(N log, N) comparisons in the worst case when sorting N records.

A data structure, called bufir tree, with a similar performance as ours has been

developed by Arge [2,3]. His structure is an (a,b)-tree which also supports off-line

search and delete operations. In measuring performance, the basic difference from our

approach is that he expresses the (amortized) complexity of the operations as a function

of P, M, and S, but not Ni. In sorting this difference is not essential, since the total

number of operations and the maximum size of the structure are about the same. The

buffer tree is quite complicated whereas the heap structure explored in this paper is

conceptually simple and practical, as confirmed by the experiments.

The rest of the paper is organized as follows. The new data structure is described

in Section 2. In Section 3 the procedures for accomplishing the two priority-queue

operations, insert and delete-max, are presented. The external and internal complexities

of these operations, as well as that of external heapsort, are analysed in Sections 4

and 5, respectively. In Section 6 the results of the simulation experiments are reported.

Finally, in Section 7 some conclusions are drawn and extensions to the repertoire of

operations are discussed.

2. Data structure

We assume that the elements to be stored in the heap are fixed-size records, each

having a priority attribute. Priorities need not be unique; ties are broken arbitrarily

in delete-max. The fixed-size assumption is not absolutely necessary, but allowing

348 R Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362

Primary memory

Merge buffer Insert buffer

Root Daae

Heap for mway merge
buffe; -

Pointer to the last leaf

i

Fig. 1. The internal and external data structures for m = 3.

variable-size records would complicate the presentation. In the formal description of

the heap data structure we use two parameters:

l P is the number of records fitting into a page. We assume that P 2 1, i.e., a page

should be at least as large as a record. Every page might contain some header

information, 0(1) pointers, but P is measured in records, not including the space

used by these pointers.

l m denotes the (maximum) fanout of the heap nodes and also the number of pages

storing records in a node. We assume that m > 2.

The value of m, which should be as large as possible, is determined by the amount of

space available in primary memory. Due to efficiency reasons, primary memory must

accommodate m + 0(1) pointers and 2m + 2 pages storing records. Hence, the value of

m depends on the application in question and the environment where the application

is run. In general, m is @(M/P) in which A4 denotes the amount of primary memory

available, measured in records.

The main part of the data structure (see Fig. 1) consists of a heap with the following

properties:

l Each node is composed of six parts: (a) a block of m pages, containing records

in ascending order of priority; (b) m pointers to its children; (c) m pointers to

the last records of the children, that is, a page and an offset inside this page are

R Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362 349

specified, (d) a pointer to its parent; (e) a pointer to its predecessor with respect

to the normal numbering of nodes in a heap; and (f) the order number of the node

among its siblings (needed in delete-max).

l The generalized heap property holds: for any record x in a node v and any record

y in a child of v, the priority of x is higher than or equal to the priority of y.

l The heap is otherwise complete, except that the lowest level can be incomplete: its

nodes are arranged to the left, as in a normal binary heap. Therefore, the position

of the last node of the heap is uniquely defined, and we can maintain a pointer to

it. We keep this pointer in primary memory. The parent of the last node is the only

internal node whose degree may be between 1 and m, all other internal nodes have

m children.

l Each node, except the last leaf, is at least half full, i.e., contains at least [I’m/21
records. This is called the load condition. A node with (temporarily) less records

is said to be imperfect.
l The last page of the root, containing the highest-priority records, is always kept

buffered in primary memory.

l The pages within a block are either physically consecutive, or two-way linked, so

that we can move from page to page in both directions. The latter alternative would

avoid wasting storage space because the empty pages at the end of each block could

be released and reused.

In addition to the last root page, primary memory contains two other buffers. New

records are not immediately inserted in the heap, but gathered in an insert bufSer
consisting of m pages. When this buffer space gets full, the contained records are

added to the heap as a batch. The records in the insert buffer are organized as a

normal (binary) heap because we have to look for a record with the highest priority.

As in [19], moving records up or down requires merging of blocks. Here we need

an auxiliary merge bufir of m + 1 pages. Furthermore, a priority queue (heap) of m

pointers is kept in primary memory, to support m-way merging effectively.

3. Priorityqueue operations

In this section we describe how the heap data structure supports the operations insert

and delete-max. The operation find-max, which inspects (but does not remove) a record

with the highest priority, is often included in the repertoire of priority-queue operations

but, since it does not involve any page transfers, it is uninteresting for us.

3. I. Insert

Inserted records are stored first in the related buffer of m pages. When this buffer

becomes full, it is first sorted internally (by heapsort) and then the sorted outcome is

transferred to the heap as its new last leaf. To restore the heap property (also called

“heapifying” [8]), records are sifted up as follows. We merge the block of the last leaf

350 R Fade1 et al. I Theorefical Computer Science 220 11999) 345-362

with that of its parent (using the merge area in primary memory). Assume that the

merged sequence has r records and that h of these have priority higher than or equal

to the minimum priority in the parent before the merge. Let k = max(r - h, [Pm/2]).

Allocate Y - k highest-priority records to the parent, and the rest k to the child. It can

be easily verified that this choice maintains the load condition and restores the heap

condition between the parent and all its children. However, the sift-up must be repeated

for the parent and its grandparent, etc., up to the root, or until the heap condition is

found to hold.

One point in the above procedure needs elaboration. When defining the heap in

Section 2, we stated that the last leaf (L) may be imperfect. Now, having created a

new last leaf (L’), we must check whether L satisfies the load condition. If it does

not, we swap the two (actually the pointers in their parents) and sift-up both, one at

a time. The sift-up of the last leaf propagates upwards only in the case that its parent

is changed in the swap.

3.2. Delete-max

Due to the heap property, a record with the highest priority is either in the root or in

the insert buffer. Since the root is ordered, its last page buffered, and the insert buffer

is an internal heap, this record is easily found and extracted. If delete-max makes the

buffer page empty, another is read in from the root, namely the page that logically

precedes the one that became empty. If the root becomes imperfect, i.e. its load drops

below [Pm/2], we have to refill it after delete-max. If the children contain at least

[Pm/21 records, we move precisely [Pm/21 of them with the highest priorities to the

root. Note that no grandchildren need be touched because all nodes (except the last

leaf) must contain this amount of records. If there is only one child and it contains

less than [Pm/21 records, we move all of them to the root, which now becomes the

only node of the heap.

After refilling the root, it may happen that one or more of its children have become

imperfect and must be refilled, in turn. For internal nodes, refilling is done exactly

as for the root. As a result of the refill, the internal node may remain internal or it

may become a leaf. In the latter case, it may still remain imperfect. Of course, any

previous leaf can also become imperfect, after giving part of its records to the parent.

An imperfect leaf, say X, is refilled as follows. If X is the last leaf, then we do not

have to do anything; this is the exception to the load condition. Otherwise, we have

to “steal” records from the last leaf, denoted L. Let 1x1 denote the number of records

in leaf X. Now we calculate the sum s = 1x1 + IL], and depending on the value of s

there are three possibilities:

(1) If s >Pm, move Pm - 1x1 highest-priority records from L to X, and sift-up X.

(2) If [Pm/21 <s <Pm, then merge the blocks of X and L into X, and sift-up X

(deleting L).

(3) If s < [Pm/2], then merge the blocks of X and L into X, and delete L. Find the

new last leaf L’ (predecessor of L, obtained by following the related pointer) and

R Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362 351

repeat the process for X and L’. This is guaranteed to succeed because either

X = L’ or IL’] > [Pm/21 _ After filling X, it can be sifted up.

From the above discussion it is obvious that we can steal from a certain last leaf only

twice, whereafter it becomes empty and ceases to exist.

Let us now study the refill procedure of a single node. How do we find the [Pm/21

records with the highest priorities? The records in blocks are arranged in ascending

order. Moreover, we maintain pointers from the parent to the last record of each of its

children. Therefore, we can merge the blocks of the m children from back to front, until

the required amount of records is obtained. We call this a partial merge. To make the

m-way merge internally efficient, we use a priority-queue structure in primary memory

(see Fig. l), so that the next record with the highest priority is always obtained with

O(log, m) comparisons, instead of m.
Notice that, in merging, most of the front pages in the children’s blocks need not

be touched at all; this is important in respect of the complexity. On the other hand,

the lifted records are put to the front of the parent’s block, so all parent pages have

to be touched, to make room for the new ones.

The refilling process is recursive; we can proceed, e.g., in depth-first order. However,

we want to avoid the recursion stack because its size depends on the height of the heap

and, hence, on the number of records in it. An iterative traversal of the heap in depth-

first order is enabled by parent-child and child-parent pointers. After backtracking from

a child, the pointer to the next child is obtained from the parent immediately because

the order number among siblings is stored in each child.

We have not explained all details in the above descriptions concerning the mainte-

nance of pointers, the arrangement of merges, as well as the allocation and release of

storage. However, the inclusion of these features is relatively straightforward, so their

description is omitted.

4. External complexity

The external costs are measured in terms of page transfers (reads and writes). The

complexity will be determined only for an intermixed sequence of insert and delete-

max operations - the worst case of a single operation can be really bad; for example

in delete-max, the refilling may propagate to all nodes of the heap. It depends on the

application whether this is important or not. For instance, in external heapsort, only

the overall cost counts.

As for pointers, we make a very pessimistic assumption that a pointer access costs as

much as a page access. This could be improved, but it would complicate the proofs con-

siderably. Also, the data structures and algorithms should have been described in greater

detail. Our cost estimate means that the resulting transfer count will be about twice

as high as necessary, since each pointer access is normally followed by a page/block

access.

352 R. Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362

4. I. Heaps

As usual, we define the depth of the root of the heap to be zero and that of any

other node one plus the depth of its parent. Moreover, we say that a node is on level

i if its depth is i. The height of the tree is the largest depth of any node.

Lemma 1. The height of an m-way heap storing N records, such that each node
(except possibly the last leaf) stores at least [Pm/21 records, is bounded by

log,(W) + W 1.

Proof. Since the number of nodes is bounded by

that the height of the heap is at most log,(N/P) + 0(1). 0

and m 32, it is obvious

Let us next analyse the cost of basic subroutines in the insert and delete-max oper-

ations.

Lemma 2. The merging of two sorted blocks occupying p and q pages, respectively,
costs 2(p + q) page transfers. If the p pages reside in primary memory and p result
pages can also stay in primary memory, we need 2q transfers.

Proof. The results are obvious because the merging is done by a single scan over the

blocks. 0

Lemma 3. Assume that an imperfect parent of (at most) m children is given, and
each of the children’s sorted blocks consists of at most m pages. A partial m-way
merge of these blocks, gathering the [Pm/21 highest-priority records and merging
them to their parent, requires at most 7m page transfers.

Proof. It is again clear that the sorted blocks are scanned sequentially (now from

back). Let us first think about the page reads. We clearly have to touch at least [m/21
pages. However, for each block, the first and last of the touched pages may contribute

very little to the result (one and zero records may be lifted from them, in the worst

case). Therefore, we get an upper bound 2m+ [m/21 for the number of page reads. The

blocks are read page-wise into the merge buffer and the result is written to the front of

the parent. Thus, we have to read also the pages in the parent and move the records

forward (no gaps allowed). This is another [m/21 page reads. All pages in the parent

may have to be rewritten, causing m page writes. Thus, the total number of page

transfers amounts to at most 4m + 2 < 5m. When we add the reads and writes of m
pointers, we get the claimed result. q

Now we are ready to analyse the cost of a sequence of insert and delete-max operations,

starting from an empty heap.

R. Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362 353

Theorem 4. An intermixed sequence of S insert and delete-max operations requires at
most 26 ET=, ((l/P) log,(Nij/P)) + O(S/P) page transfers in total, where il, i2, . . . , is,
are the indices of insert operations and Ni, denotes the number of records stored in

the heap prior to the execution of the ijth insert operation, Especially, il = 1 and
N,=0.

Proof. To prove the result, we shall apply the standard bank-account paradigm (for

example, see [181). We assume that each page transfer costs one euro. To perform all

the operations in the sequence, a certain amount of money, namely 26h/P + 0(l/P)

euros, are allocated to each record, where h is the height of the tree at insert time, i.e.,

h d log,(N/P) + 0(1). Here N, in turn, denotes the number of records in the structure

before the insert. Now it is our intention to show that the allocated money is sufficient

to pay all the page transfers required in the whole sequence of operations (both inserts

and deletes). This will then directly give the claimed result.

We continue the metaphor by saying that the money is deposited to imaginary ac-
counts, associated with various parts of the data structure. The insert buffer has an

insert account, from which money is withdrawn to pay for the sift-ups of inserted

blocks. Each record has a delete account, containing money to pay for the refills. In

addition, each node has a merge account, which is needed only when the node be-

comes the last leaf and the money there is used for paying the merge of the last leaf

with another node, plus the related sift-up. At record insert, the following amounts are

deposited into the individual accounts:

(1) 6h/P + 0(l/P) euros to the insert account,

(2) 14h/P + 0(1/P) euros to the delete account of the record,

(3) 6h/P + 0(1/P) euros to the merge account of the (not yet stored) node to be

created next (if ever).

Let us now analyse the individual operations and steps.

(A) Insert

In most cases a record is inserted in the insert buffer, causing no page transfers.

However, the associated money is deposited to the related accounts, as described above.

When the insert buffer gets full (Pm new records), a new last leaf is created, resulting

in one or two sift-up chains (see the algorithm). Each chain consists of parent-child

merges, where the other partner can always be kept in primary memory (see Lemma

2). The accumulated amount of money in the insert account is 6hm + O(m) euros

because the new height of the tree is at most one larger than the heights before any of

the Pm previous inserts. Thus, there is enough money to pay for sift-ups (4hm+O(m)).
The remaining 2hm + O(m) euros are used for reading 2h + 0(1) pointers.

(B) Delete-max

Each record has, as explained, a delete account opened at insert time. Now we should

show that it contains a sufficient amount of money for the record to be lifted up to

the root. In fact, we can prove the following invariant:

Each record on level i has 14ifP + 0(l/P) euros in its delete account.

354 R. Fade/ et al. I Theoretical Computer Science 220 (1999) 345-362

First, it should be noticed that inserts do not invalidate the invariant because we can

assume that, when some records are swapped between a parent and its child, also the

money in their accounts is swapped! It is quite normal in the accounting method to

move money around, where appropriate.

In most cases a record with the highest priority is deleted from the buffered root

page (or, in special cases, from the insert buffer). When the buffer page gets empty,

another is read in, namely the one preceding the earlier buffer page. This costs one

access, which is l/P per record, so that this cost can be included in the 0(1/P) term

of the complexity.

When the root gets imperfect, it is refilled by (at most) [Pm/21 highest-priority

records of its children. Refilling may then propagate in the heap arbitrarily wide. In

a successful refill, it is sufficient to check that the invariant holds after the refill. A

successful refill moves [Pm/21 records up. According to Lemma 3, a refill, together

with all pointer manipulation, costs at most 7m transfers. Each of the lifted [Pm/21

records pays 14/P euros (withdrawn from its delete account), which together sum up

to the required amount. The claimed invariant is easily seen to hold, and each record

has enough money to travel all the way to the root.

If refilling does not succeed, the node either is or has become a leaf (after making

its only child, i.e. the last leaf, empty). This case is handled by merging the imperfect

leaf with the last leaf, resulting in a sift-up. The money that each node has in its

merge account (6hm + O(m) euros) is used now. As explained in the algorithm, a leaf

merge can happen only twice for a certain last leaf. The cost of these two (binary)

block merges is at most 5m + O(l), because the other partner (last leaf) contributes

at most m pages to the merges altogether and each merge results in at most m pages.

The cost of two sift-ups is at most 6hm + O(m) (see discussion on insert cost). The

sift-ups thus dominate, and the money in the merge account suffices to defray the cost

of the task. After two merges, the last leaf ceases to exist and its money has been

spent.

In maintaining the merge accounts, we still have to consider the situation where the

current last leaf is swapped (if imperfect) with the inserted new last leaf. Actually, we

prove the following invariant:

Each node on level i has 6im + O(m) euros in its merge account, except the last
leax which may have only 3im + O(m) euros if it is imperfect.

Immediately after node insert (before the swap), the invariant holds, based on the

initial amount of money given to it. Assume that the heights of the heap before and

after the node insert are h and h’. Obviously, either h’ = h or h’ = h + 1. In case of

swapping with the previous last leaf, the new (full) node exchanges half of the money

in its merge account, namely 3h’m + O(m) euros, with the whole contents of the merge

account (3hm + O(m)) of the imperfect last leaf. After the swap the new node (on

level h) has 3hm + 3h’m + O(m) 2 6hm + O(m) euros in its merge account, and the last

leaf (on level h’) has 3h’m + O(m) euros. Both quota are sufficient and the invariant

holds. 0

R. Fade1 et al. f Theoretical Computer Science 220 (1999) 345-362 355

It must be emphasized that the complexity result has a tremendous slack in it.

Accessing pointers counts for about half the amount. Therefore, the real constant factor

would be around 13 and even that is pessimistic, i.e., computed assuming always the

worst cases. Moreover, we used the insert operations to cover all the costs. If there

are equally many deletes, i.e. each record is deleted sooner or later, the complexity per

operation is still halved. From Theorem 4 we easily get the following:

Corollary 5. An intermixed sequence of S insert and delete-max operations requires

at most 26 ck,((l/P) lOg,(Ni/P))+O(S/P) page transfers in total, where Ni denotes
the number of records stored in the heap prior to the execution of the ith operation.

Especially, Nl = 0.

Let N denote the maximum number of records ever stored in the heap. Since Ni <N

for all i and N GS, we have two weaker results:

Corollary 6. An intermixed sequence of S insert and delete-max operations requires
at most 2&S/P) log,(N/P) + O(S/P) page transfers in total.

Corollary 7. An intermixed sequence of S insert and delete-max operations requires

at most 26(S/P) log,(S/P) + O(S/P) page transfers in total.

4.2. Heapsort

Our starting point was the external heapsort by Wegner and Teuhola [19], which

sorts N records with 0((N/P)log2(N/P)) page transfers. Now we improve on this. In

principle, we could first build the heap by repeating the insert operation for each record

to be sorted and then extract the records in sorted order by repeating the delete-max

operation. However, we obtain a better constant factor to the complexity by using a

faster heap-building procedure.

Theorem 8. Given N records stored compactly on [N/P] pages, an external heap can
be built with O(N/P) page transfers.

Proof. The claimed complexity is obtained, e.g., by the following algorithm. First,

compute the number Ne of records to be assigned on level ! in a complete external

heap will full nodes:

NC =
(

Pm.me for e=O,...,e,, - 1,

N - x2;-’ Ne for e = e,,,

where e,,,, = Vog,(N/P)l - 1. S econd, partition the set of all records into subsets

Ro,...&,, such that, for I=O,. . .,6,,, IRe] = Ne and, for any record x in Ri, any
record y in Rj, and i < j, the priority of x is larger than or equal to the priority of y.

Third, assign these subsets to the heap nodes on their respective levels, after internal

sort. Clearly, this will produce a legitimate heap.

356 R. Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362

Partitionings are performed bottom-up, so that we first determine the leaf level, then

the next higher level, and so on. In order to extract the records of level e, we have

to solve a selection problem, where we determine the highest-priority record belonging

to level 8. In this selection, the records on levels e + 1, 8 + 2,. . . are already excluded.

Selection of the highest-priority record on level 8 can be done with O(C:=c(Ni/P))

page transfers by adapting the linear selection algorithm developed for primary memory

[6]. This is straightforward because the essential parts of the algorithm are linear scans,

otherwise the processing can be done in primary memory. Partitioning makes also

(trivially) O(C;=s(Ni/P)) page transfers. By summing up and assuming that m 22, we

obtain that the total number of page transfers performed is bounded by

0 emF’ 5 (NJP) + N/_/P
> (

= 0 “mF’ 5 (Pm . m’/P) + NL~~/P
t=O i=O t=O i=O

Q 0 lrnz’ (2 . Pm . ml/P) + Nl_fP
t=0 >

< 0(4 . Pm . mema-’ /P + N&P)

= O(N/P + Ne_/P)

= O(N/P). El

Theorem 9. Given N records stored compactly on [N/P] pages, external
can sort these with at most 14(N/P) log,(N/P) + O(N/P) page transfers.

heapsort

Proof. Referring to the proof of Theorem 4, we note that the insert account is not

needed now because the heap is built off-line with O(N/P) page transfers as described in

Theorem 8. Also, the merge account can be avoided; we can let any leaf be imperfect,

not just the last one, because the height of the heap does not grow after building it. We

only need the delete account of records, which got an initial deposit of 14h/P+O(l/P)

euros each. Altogether we make at most

O(N/P) + ,Y$ (14hi/P + O(l/P)) < O(N/P) + 5 (14 log,(N/P)/P + 0(1/P))
i=l i=l

= 14(N/P) log,(N/P) + O(N/P)

page transfers. 0

Compared to external n-way mergesort, the complexity of which is known to be

only 2(N/P) log,(N/P) + O(N/P), our algorithm seems clearly inferior. Observe that

here it can be larger than m since mergesort uses less internal space than heapsort. It is,

however, obvious that our constant factor is highly exaggerated. Pointer manipulation

costs are overestimated and many approximations were overly pessimistic. Experimental

comparison between the two sorting methods is reported in Section 6.

To compare the methods with respect to their space usage, we first have to fix the

assumed implementation of mergesort. A pointer-free implementation would require

R Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362 351

O(N/P) extra pages to keep the intermediate results. It is thus more economic to apply

a pointer-based solution, where a page slot can be reused as soon as its contents have

been read to the internal buffer. This version is comparable to our external heapsort;

both require a constant number of pointers per page. The external heap has the addi-

tional cost, due to fragmentation, that every node can have an almost-empty last page,

resulting in O(NIpm) extra pages.

5. Internal complexity

The internal costs of insert and delete-max are counted as the number of priority

comparisons. Notice that the number of record moves cannot be higher than a con-

stant times the number of comparisons, because either (1) the decision about record

movement is done only after its priority has been compared with some other, or (2)

a block move is accompanied by a corresponding number of comparisons. Also the

number of pointer manipulations is at most of the same order as the number of priority

comparisons. Altogether, the total number of all internal operations performed is pro-

portional to that of comparisons. However, here we refrain from giving upper bounds

to constant factors.

5.1. Heaps

Again we compute the complexity for a sequence of insert and delete-max operations,

starting from an empty heap. The following theorem gives an asymptotic complexity

which was proved the best possible in [171.

Theorem 10. An intermixed sequence of S insert and delete-max operations requires
O(cf=, log, Ni) priority comparisons in total, where Ni denotes the number of records
stored in the heap prior to the execution of the ith operation. Especially, NI = 0.

Proof. Assume that the indices of insert operations are il, iz,. . . , is, and the indices of

delete-max operations jt,jz, . . . , js, .
Let us first analyse the costs of inserts. The ikth insert in a non-full insert buffer costs

O(log, Bi,) comparisons, where B, is the number of records currently in the buffer.

Since Bi, < Nik, the cost is O(log, Ni,) comparisons. When the insert buffer becomes

full, it is sorted, using O(Pm log,(Pm)) comparisons. Let blPm,2J+l,. . . , bp, denote the

indices of insert operations for the last [Pm/21 records in the buffer. At the inserts

of these records, the total number of records in the heap has been at least [Pm/2].

Therefore, the sorting cost can be estimated by

O(Pmlog,(Pm))dO(Pmlog,(2N~,)) for k=bLPm121+1,...,bPm.

The cost per insert bk is 0(2 log, 2Nba) or O(log, Nbk). This means that half of the

records in the insert buffer “pay” the sorting, in the amortized sense. In a sift-up, binary

parent-child merges are performed, using the merge buffer. The cost per page is O(P)

358 R Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362

comparisons. Now we utilize Theorem 4, from which we get an upper bound for the

number of pages handled. By multiplying this by the number of comparisons per page

we get OV~C~~,((lP) log,(N&)) comparisons, which is at most O(~~=, log, Ni,),

as required.

Let us now consider delete-max. A record with the highest priority is found ei-

ther from the root or from the insert buffer with one comparison, but keeping the

latter in shape costs O(log, Bjk) comparisons (for Bjk records in the buffer), which is

O(log, Njk), In case of an imperfect root, one or more refills are required. In a refill, an

m-way merge is performed, the complexity of which is not any more linear, because

an internal priority queue must be maintained. The cost per page is O(P log, m) com-

parisons. Merging leaves and the following sift-up cost O(P) comparisons per page, as

in insert. Again, by Theorem 4, we get O((P + Plog, m) . C~=t((l/P)log,(N~~/P)))

comparisons, which is at most O(c:=, log, Ni,). In other words, again the inserts cover

both insert and delete costs. This completes the proof of the theorem. 0

5.2. Heapsort

Using Theorem 10, it is trivial to derive the internal complexity of external heapsort.

Theorem 11. External heapsort sorts N records with O(N log, N) priority compar-

isons.

Proof. If N < Pm, we can do the whole job in the insert buffer, i.e., we use internal

heapsort which requires O(N log, N) comparisons. Now, assume that N > Pm and think

first of a simplified version of external heapsort, implemented as N inserts followed

by N delete-max operations. We can apply Theorem 10 directly: we replace Ni by the

upper bound N and S by 2N, and obtain O(czt log, N) = O(N log, N) comparisons.

The more advanced heap-building algorithm of Theorem 8 makes only O(N log,M)

comparisons, including the internal sort of nodes. This, added to the last N terms in

the above sum (corresponding to delete-max operations), improves the constant factor

in O(N log, N). 0

As for the internal complexity, external heapsort is satisfactory since its performance

is asymptotically the same as that of internal heapsort.

6. Experimental results

A number of test runs were performed with the suggested external heap structure,

in order to investigate its usefulness in practice. Here we report only a few results and

restrict ourselves to recording the external behaviour. A more detailed experimental

study can be found in [9].

Actually, the tests were only simulations of the real operations. The operating

system was not trusted, we wanted to have full control of all page transfers. Two

R. Fadei et al. I Theoretical Computer Science 220 (‘1999) 345-362 359

simulators were implemented. The first simulates external memory usage, offering op-

erations PageRead and PageWrite for the use of the programmer. The number of these

operations is counted. The second simulates virtual memory and applies the LRU (Least

Recently Used) page-replacement algorithm. In this environment the programmer can

use the memory as if it were an internal array. The simulator keeps track of the pages

in primary memory and counts the number of page transfers. The simulator is simpli-

fied so that a replaced page is rewritten to secondary storage also in a case where the

page was not changed.

In the experiments only page transfers of interest were measured, that is, the transfers

of the pages containing records only. The page transfers performed when accessing

pointers, program segments, temporary variables, or other such data structures are not

included in the counts.

Our first experiment compared the performance of three priority-queue structures:

(1) An m-way heap as described in the preceding sections. A technical difference from

the theoretical description was that the whole root was buffered, for simplicity.

(2) A P-way (internal) heap implemented using the virtual-memory simulator, and

(3) a P-way B-tree used as a priority queue, with highest-priority records kept in a

buffer of M/P pages, and the page transfers controlled by explicit PageRead and

PageWrite commands.

Notice that both insert and delete-max have logarithmic external complexity also for

the B-tree, but the base of logarithm is P. Moreover, the amortized complexity of

delete-max has a factor l/P since the rightmost leaf is buffered.

The test setting was such that we first inserted a certain number N of records into

the structure, and then started to execute insert and delete-max. operations randomly,

both having 50% probability. The measurements were taken during this latter period.

The total number of page transfers for subsequent N operations is shown in Fig. 2, for

page size P = 50 and primary memory size M = 5OP. As expected, the external heap

is by far the best of the three data structures tested. The observation that the B-tree is

slightly better than the P-way heap in virtual memory is not quite in agreement with

the results obtained in [14]. Apparently, the difference results from the fact that we

did not try to take advantage of page alignments in the virtual-memory simulator. This

increases the number of page transfers to about the double, compared to the optimal

alignment of sibling sets in the P-way heap.

The second experiment concerned sorting. Our external heapsott was, naturally, com-

pared with external mergesort, which is the de facto standard in practice. Moreover, the

theoretical complexities of the two are asymptotically the same, as well as the buffer

sizes (up to a constant factor). The outdegree m of the external heap and the order

n of merging were somewhat smaller than M/P, due to the auxiliary structures in the

primary memory. Comparison with hillsort presented in [191 would have been unfair

because it uses only a constant number of buffer pages.

In the external mergesort, the sorting was carried out bottom-up, without recursion.

The initial sorted lists of size f m pages were created by internal mergesort. The al-

gorithm had also an extra workspace, equal to the input size, in secondary storage.

360 R. Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362

250000

Number
ofpage
transfers

20000 40000 60000 80000 100000

Numberofoperations

Fig. 2. The average number of page transfers per insert/delete-max operation when P = 50 and M/P = 50.

400 000

300 000 .-
Number
ofpage
accesses

200000--

200000 400000 600000 600000 1000000

Input size

Fig. 3. The number of page transfers for the two external sorting programs when P = 50 and M/P = 50.

The merging passes were done from the initial area to the working space and back in

alternating order.

The number of page transfers performed by the two sorting methods is depicted in

Fig. 3 for P = 50 and M/P = 50. It seems that at least our current (non-optimized)

version of external heapsort does not quite reach the efficiency of mergesort. The

R. Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362 361

heap-building procedure was implemented using normal insert operations. The faster

off-line procedure could probably improve the results. Anyway, for practical purposes,

we suggest the m-way external heap to be used mainly as a priority queue, not for

external sorting. The latter application is at least theoretically interesting, due to its

optimality, up to constant factors.

7. Conclusion and further work

We have described an external priority-queue organization, which is a natural gen-

eralization of the traditional heap organization in primary memory. Multi-page nodes

with a large fanout imply a very small height for the heap, which keeps the number

of page transfers low. The key point is an effective utilization of the primary memory.

The obtained complexity for priority-queue operations can be considered satisfactory

because it guarantees asymptotically optimal performance for external heapsort, in re-

spect of both external and internal complexity. Our frame of reference includes only

comparison-based techniques. For special distributions or restricted domains of priori-

ties, better results may be obtained by other means.

It would be of interest to develop efficient algorithms for maintaining some special

types of priority queues on secondary storage. The applications we have had in mind are

that of finding a minimum spaming tree in an undirected graph and that of computing

a shortest path tree in a directed graph. The standard solutions to these problems (for

example, see [8]) use a priority queue which, in addition to insert and delete-min,

supports an operation for decreasing priority values. This presupposes that the records

also contain a unique key (or address) and that there exists a search mechanism for

the records by this key. However, we have not been able to develop a data structure

which could be used to solve, for example, the minimum-spanning-tree problem faster

than by the method of Chiang et al. [7].

Acknowledgements

We would like to thank Jesper Bojesen who detected a severe error in an earlier

version of the sift-up algorithm.

References

[1] A. Agganval, J.S. Vitter, The input/output complexity of sorting and related problems, Comm. ACM

31 (1988) 1116-1127.

[2] L. Arge, The buffer tree: a new technique for optimal I/O-algorithms, Proc. 4th Workshop on Algorithms
and Data Structures, Lecture Notes in Computer Science, vol. 955, Springer, Berlin, 1995, pp. 334345.

[3] L. Arge, Efficient external-memory data structures and applications, BRIGS Dissertation DS-96-3,

Department of Computer Science, University of Aarhus, Arhus, 1996.
[4] T.O. Alanko, H.H.A. Erkio, I.J. Haikala, Virtual memory behavior of some sorting algorithms, IEEE

Trans. So&are Eng. SE-10 (1984) 422431.

362 R. Fade1 et al. I Theoretical Computer Science 220 (1999) 345-362

[5] R. Bayer, E.M. McCreight, Organization and maintenance of large ordered indexes, Acta Inform.

1 (1972) 173-189.

[6] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, R.E. Tarjan, Time bounds for selection, J. Comput. System

Sci. 7 (1973) 448461.

[7] Y.-J. Chiang, M.T. Goodrich, E.F. Grove, R. Tamassia, D.E. Vengroff, J.S. Vitter, External-memory

graph algorithms, Proc. 6th Annual ACM-SIAM Symp. on Discrete Algorithms, ACM, New York and

SIAM, Philadelphia, 1995, pp. 139-149.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, The MIT Press, Cambridge,

1990.

[9] R. Fadel, K.V. Jakobsen, Data structures and algorithms in a two-level memory, M.Sc. Thesis,

Department of Computing, University of Copenhagen, Copenhagen, 1996.

[lo] R.W. Floyd, Algorithm 245, Treesort 3, Comm. ACM 7 (1964) 701.

[ll] K. Harty, D.R. Cheriton, Application-controlled physical memory using external page-cache

management, Proc. 5th Intemat. Conf. on Architectural Support for Programming Languages and

Operating Systems, ACM SIGPLAN Notices 27 (1992) 187-197.

[12] K. Krueger, D. Loftesness, A. Vahdat, T. Anderson, Tools for the development of application-

specific virtual memory management, Proc. 8th Annual Conf. on Object-Oriented Programming Systems,

Languages, and Applications, ACM SIGPLAN Notices 28 (1993) 4864.

[13] D. McNamee, K. Amstrong, Extending the Mach external pager interface to accommodate user-

level page replacement policies, Technical Report 90-09-05, Department of Computer Science and

Engineering, University of Washington, Seattle, 1990.

[14] D. Naor, C.U. Martel, N.S. Matloff, Performance of priority queue structures in a virtual memory

environment, Comput. J. 34 (1991) 428437.

[15] H.W. Six, L. Wegner, Sorting a random access file in situ, Comput. J. 27 (1984) 27&275.

[16] D.D. Sleator, R.E. Tarjan, Self-adjusting binary search trees, J. ACM 32 (1985) 652-686.

[17] D.D. Sleator, R.E. Tarjan, Self-adjusting heaps, SIAM J. Comput. 15 (1986) 5269.

[18] R.E. Tarjan, Amortized computational complexity, SIAM J. Algebraic Discrete Meth. 6 (1985) 306318.

[19] L.M. Wegner, J.I. Teuhola, The external heapsort, IEEE Trans. Software Engineering 15 (1989)

917-925.
[20] J.W.J. Williams, Algorithm 232, Heapsort, Comm. ACM 7 (1964) 347-348.

[21] Y. Yokote, The Apertos reflective operating system: the concept and its implementation, Proc. 7th

Annual Conf. on Object-Oriented Programming Systems, Languages, and Applications, ACM SIGPLAN

Notices 27 (1992) 414434.

