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This paper is concerned with the following problem: Given a context-free 
grammar G, find a context-free grammar with the fewest nonterminal symbols 
or with the fewest rules that is equivalent to G. A reduction procedure is 
presented for finding such a reduced context-free grammar that is structurally 
equivalent to a given G. On the other hand, it is proved that there is no finite 
procedure for finding such a reduced context-free grammar that is weakly 
equivalent to a given G. 

I. INTRODUCTION 

This paper is concerned with the following problem: Given a context-free 
grammar (CFG) G, find a CFG with the fewest nonterminal symbols (NTS's) 
or with the fewest rules that is equivalent to G. Reduction of grammars 
has some practical significances. For example, the recognition and parsing 
algorithm for the language is less-time consuming, if a simplified grammar 
is used. Also, a simplified grammar often displays a predominant characteristic 
of the language. 

Two CFG's are said to be weakly equivalent if they generate the same 
language. In Section IV, it is proved that there is no finite procedure for 
finding a CFG with the fewest NTS's or with the fewest rules that is weakly 
equivalent to a given G. 

Two CFG's are said to be structurally equivalent if they not only generate 
the same sentences but they structure these sentences in the same manner. 
It is decidable whether two arbitrary CFG's are structurally equivalent 
(Fujii [1] and Paull [2]). Consequently, it is possible in principle to find 

* This paper is based on the authors' previous report, Simplification of context-free 
grammars, A68-32, papers of Tech. Group on Automaton, IECE, Japan (in Japanese), 
September 1968. 
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a C F G  with the fewest N T S ' s  or with the fewest rules that is structurally 
equivalent to a given G. The  problem is to find a procedure which yields 
the result with a reasonable amount of work. In  Section I I I ,  some properties 
of such a reduced C F G  that is structurally equivalent to a given G are 
investigated and a reduction procedure is presented, which is more efficient 
than the only existing procedure, namely the exhaustive search. In the case 
where each rule of a given C F G  is of one of the two forms X--+ aY or 
X - +  a where X and Y are N T S ' s  and a is a terminal symbol, the problem 
of finding a C F G  with the fewest N T S ' s  that is structurally equivalent to 
a given C F G  reduces to the problem of finding a minimum state nondeter- 
ministic finite automaton that is equivalent to a given automaton. The  
reduction procedure presented here is a generalization of Kameda's procedure 
for reducing a nondeterministic finite automaton (Kameda [3]). 

I I .  PRELIMINARIES 

The basic definitions and notations of the theory of context-free grammars 
and languages used in this paper are as in Ginsburg [4], unless stated 
otherwise. 

A context-free grammar (briefly CFG)  is a 4-tuple G = (Vz¢, VT, P, S), 
where V n is the set of nonterminal symbols (briefly NTS's) ,  V r is the set of 
terminal symbols, P is the set of rules and S E VN is the initial symbol of G. 

For an N T S  X of a C F G  G = (VN, VT, P, S), let 

L(X; a )  = {w I X  w, w 
G 

The language generated by the C F G  G, L(G), is the set L(S; G). 
In  the following, a C F G  with one or more initial symbols is sometimes 

considered. In  such cases, a C F G  is denoted as G = (VN, VT, P, Vs), 
where Vs is the set of initial symbols. The language generated by such a C F G  
G is defined by 

L(G) = O L(S; a). 
s e v  s 

For two CFG's  G and G', if L(G) = L(G'), i.e., they generate the same 
language, then they are said to be weakly equivalent. 

For two CFG's  G and G', we write G ~ G' if for any sentence w in L(G) 
and for any generation tree for w in G there exists some generation tree 
for w in G'  such that those two generation trees differ only in labelling 
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the nodes (that is, they are geometrically identical). I f  G < G' and G' < G, 
then they are said to be structurally equivalent. The following equivalent 
definition of structural equivalence is more convenient to work with. 

Let  G be a C F G  with rules {Xi -+  wi [ i = 1 to n}. Then  [G], the paren- 
thesized version of G is the C F G  with rules {X~ -+ [wi] [ i = 1 to n} where 
"["and"]" are special brackets that are not terminal symbols of G. Two CFG ' s  
G and G' are structurally equivalent if L ( [ G ] ) = L ( [ G ' ] ) .  (The notation 
G < G' means L([G]) _C L([G']). The  brackets used in constructing [G] and 
[G'] are the same and are not in either G or G'.) Structurally equivalent 
CFG ' s  not only generate the same sentences but they structure these sentences 
in the same manner. 

An N T S  X of a C F G  G = (VN, VT, P, Vs) is said to be useless if for 
• o . , 

each S m V s there is no ~b 1 and ¢2 m (Vn t3 VT) such that S ~ ~blX~b~, 
">~ . G 

or if there is no w in VT* such that X ~ w. I t  is well-known that there is 
G 

a simple procedure to determine the useless NTS's .  Any useless N T S  and 
every rule containing that N T S  can be discarded from the CFG without 
changing the language of the CFG. 

III. REDUCTION WITHIN THE STRUCTURAL EQUIVALENCE 

In  this section, a procedure is presented for finding a C F G  with the 
fewest N T S ' s  or with the fewest rules among the CFG's  structurally 
equivallent to a given CFG. As usual, such a reduced C F G  as well as a 
given C F G  has a single initial symbol. However, by a minor modification, 
the procedure given in this paper is also applicable to the case where one 
or more initial symbols are admitted. 

1. Reduced Backwards-Deterministic Grammar and C Matrix 

Let G = (VN, VT, P, Vs) be a C F G  and let [G] be the parenthesized 
version of G. For each N T S  X in VN, let 

C~(x; [a])  = {(wl, w~) 1 S ~ wlXw2, S e Vs,  wl, w~ ~ (VT u {[,]})*). 

For a subset M of VN, let 

C(M; [a] )  = 0 C(X; [a] )  - -  U e(Y;  [a]) .  
X e M  Y6M 

For any (wl, w 2) in C(M; [G]), there is an S ~ V s such that S * wlXw 2 when 
• [a] 

and only when X is in M. A subset M of VN such that C(M;[G]) =/: ¢ is 
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called a distinguishable set of [G]. The  following proposition follows directly 
from the definitions. 

PROPOSITION 1. I f  M =# M' (M, M' C VN), then 

C(M; [G]) r ]  C(M'; [G]) : ¢. 

A CFG 6~with no two rules having the same right side is called a backwards- 
deterministic grammar (BDG). Two N T S ' s  X and Y of a BDG G' are 
equivalent if there is no distinguishable set of [G] having one of these without 
the other. (This is an equivalence relation,) A BDG is reduced if no two 
distinct N T S ' s  are equivalent and if it has no useless N T S ' s  (McNaughton 

[5]). 
The first step of the reduction procedure presented here is to transform a 

given C F G  G = (VN, VT, P, S) into a reduced B D G  G = (V~,  Vr ,  P, Vs) 
that is structurally equivalent to G: This step is essentially the same 
as the procedures of Theorems 1 and 4 of McNaughton [5]. For convenience, 
the procedure is presented in Appendix 1. In  general, more than one initial 
symbols appear in G. The following proposition holds for a BDG [5]. 

PROPOSITION 2. I f  X ~ Y(X ,  Y ~ VN), thenL(X; [G]) n L(Y; [ G ] ) -  ¢.1 

G is the CFG  with the fewest N T S ' s  and with the fewest rules among 
the BDG's  structurally equivalent to the given G. However, G is not neces- 
sarily the CFG with the fewest N T S ' s  or with the fewest rules among the 
general CFG' s  structurally equivalent to the given G. 

Denote the set of the distinguishable sets of [G] by ~.2 (The procedure 
for finding the distinguishable sets is shown in Appendix 1, which is essentially 
the same as the one shown in Theorem 3 of McNaughton [5]. Construct 
the C matrix as follows: There is a column corresponding to each N T S  of G 
and there is a row corresponding to each distinguishable set in ~ .  For 
simplicity, the row corresponding to D a ~ and the column corresponding 
to X ~ V~ are called the row D and the column X, respectively. The  inter- 
section of the row D and the column X is 1 if X a D and 0 if X ¢ D. 

The  following proposition follows immediately from Propositions 1 and 2 
and the definition of the C matrix. 

1 We use X, Y,... for NTS's of G. 
It can be shown that the number of the distinguishable sets of [G] is at most 

2 ", where n is the number of the NTS's of the CFG G = (VN, Vr, P, S) from which 
the BDG G was obtained. 
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PROPOSITION 3. I f  the intersection of the row D and the column X is 1, 
then for each (wl,  we) E C(D; [G]) and for each w eL(X;  [G]), wtww z is in 
L([G]). Furthermore, i f  the intersection of the row D and the column X is O, 
then for any (wl,  we) E C(D; [G]) and for any w eL(X;  [G]), WxWW e is not in 
L([G]). 

2. Some Properties of Structural Equivalence 

In  this subsection some necessary conditions are given for an arbitrary 
C F G  to be a C F G  with the fewest N T S ' s  or with the fewest rules that is 
structurally equivalent to the given CFG.  The  structurally equivalent C F G  
with the fewest N T S ' s  or with the fewest rules has only to be searched for 
among the C F G ' s  that satisfy those conditions. This  reduces the number  of 
candidates to be tested. 

I t  is said that a C F G  G has a redundant N T S  if, for some two N T S ' s  
A 1 and A~ of G, the C F G  obtained from G by replacing all the A 1 and A 2 
appearing in G by a new N T S  B (B is an initial symbol if at least one of 
A 1 and As is an initial symbol of G) is structurally equivalent to G. 

Let  a C F G  G: = (V~:, VT, P:,  S 1) be an arbitrary C F G  with the fewest 
N T S ' s  or with the fewest rules that is structurally equivalent to the given 
C F G  G. Of course, G 1 is structurally equivalent to the B D G  G obtained 
in Subsection 1. Evidently, we can assume that G 1 has neither useless N T S ' s  
nor redundant NTS ' s .  

Let  cr be defined by 

if(A) = {X [L(A; [G1]) ('IL(X'~ [G]) :/: 4, Xf f  VN} 3 

for an N T S  A of G 1. From Proposition 2, the definition of a and the fact 
that an N T S  of G is not useless, it follows that e(S a) = Vs .  Furthermore,  
the following proposition follows from the definition of a and the fact that  
an N T S  A of G 1 is not useless. 

PROPOSITION 4. L(A; [G1]) _C Ux~(a) L(X; [G]). 

For an N T S  d of [Gt], let 

~(A; [Gn]) = {(wl, we) ] if w EL(A; [G1]), then wlww ~ EL([G1]) = L([G])}. 

PROPOSITION 5. ~(~z/; [G1]) C Nxea(A) C(X; [G]). 

3 We use A, B .... for NTS's of G 1. 
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Proof. Suppose the proposition does not hold. Then  there is some 
(w~ , w~) such that 

(1) for any w eL(A;  [G~]), w~wwe eL([G~]) = L([G]), and 

(2) there is some X in a(A) such that for any S ~ Vs ,  w~Xwe is not 
derivable from S in [G]. 

By the definition of a, if X is in a(A), then there is a string w in 
L(A; [G ~] C3L(X; [G]). By Proposition 2, this w is not derivable from any 
other N T S  in [G] other than X. Hence, WlWW ~ is not in L([G]) by (2). 
This contradicts (1). Q.E.D. 

Now, for the mapping a defined above, the following proposition holds. 
The  proof is given in Appendix 2. 

PROPOSITION 6. Let A and B be two distinct N T S ' s  of G ~. Then, a(A) ~ a(B). 

Let VN 2 be the set of (r(A)'s where A is an N T S  of G 1, and denote 
a(S 1) ~- Vs in T/~ 2 by S 2. Let G ~ = (VN2 , VT, p2, S~) be the C F G  obtained 
from G 1 by replacing each N T S  A of G 1 by its corresponding N T S  a(A). 
From Proposition 6, it follows immediately that G 2 is structurally equivalent 
to G 1. 

Consider a C F G  G = (VN, VT, P, S) such that each N T S  of ~ is repre- 
sented by a subset of the set of N T S ' s  of the BDG G = (Vlv , VT, P, Vs). 
The C F G  ~ is said to have the property SP  if for each rule of ~ ,  
M - +  ~lMl~2M2 "'" o~nM~O%+l, where ~ ~ Vr* (1 ~<j ~ n + 1), 4 M e  12N, 
M C_ Vy  , Mi  e 17-N, andMi_C VN(1 ~ i ~ n), it holds that for any X l  in M1, 
X~ in M s,..., and X~ in Mn ,  there is a rule in G whose right side is 
azX~a~X~ "" ~ X ~ + x  and whose left side is an N T S  in M. ~ 

The  following proposition is important. 

PROPOSITION 7. The CFG G 2 has the property SP. 

Proof. Suppose that G ~ does not have the property SP. Then, there 
exists a rule G N ~ chNl~2N 2 "'" C%NnO~n+l in G 2 such that for some X 1 e N1,  
X 2 e N 2,..., and X~ e N~ (1) there is no rule in G whose right side is 
~lXl~X2 "" a n X ~ + l ,  or (2) there is a rule in G whose right side is 

In the following, if we use ~1, ~2 ,..., and ~+1, then it is assumed that they are in 
gr*. 

5 There is at most one rule in G whose right side is ~121~2X~ "'" o~nX,~+., since G 
is a BDG. 

6 We use N, M, ... for NTS's of G 2. 



9 8  TANIGUCHI AND KASAMI 

alXla2X ~ ": unX~an+l and whose left side, X, is not in N. By the definition 
of a, there is a string w i in L ( X  i ; [G]) n L(Ni  ; [G~]) for each i, since X,  

g< 
is in N i . Thus,  there exists a derivation N ~ [alwl~2w2 "" a~W~n+l] 

in [G2]. In  the case of (1), there is no N T S  in [(~] which derives 
[czlwla2w 2 "" e~nW~an+l]. Therefore, G and G 2 cannot be structurally 
equivalent, a contradiction. In  the case of (2), there is a derivation 
X * [a lwl~w2. . .  anW~an+1] in [G]. Hence, L(X;  [G]) c5 L(N;  [G2]) ~ 6. By 
the definition of a, this implies that X is in N, which contradicts the assump- 
tion that X is not in N. Q.E.D. 

We say that the rule of G, X --~ c~lX~c~2X 2 "" c~nXna~+ 1 is contained in the 
rule (of ~ )  M--+ c~lM~a~M ~ "" a~M~c~+~, if X ~ M, and X i  ~ Mi  for each i. 

PROPOSITION 8. For each rule of  G, there is at least one rule of  G 2 which 

contains it. 

Proof. Consider the terminal string generated by a derivation in [G] 
which uses the rule X- -*  [c~IXI~2X 2 "" c~X,~an+l] in the first place. By the 
structural equivalence this string must be generated by a derivation in [G ~] 
which uses a rule of the form N - ~  [~INlc~N2 "'" c~nN~c~+l] in the first place. 
Suppose that the rule of G 2, N ~ [c~INI~N 2 "" c~N~an+l], was used in the 
first place to generate that terminal string. Then, X ~ N and X i ~ N i for 
each i; for, if Y is not ill M, L(Y;  [G]) (3 L(M;  [G2]) = 6" Q.E.D. 

So far it has been shown that each N T S  of G 1 corresponds to a subset of 
the set of N T S ' s  of G (Proposition 6) and that for the rules Propositions 7 
and 8 hold. In  the following, the relation between the N T S ' s  of G 1 and 
the C matrix is considered. In  the synthesis we can obtain from the C matrix 
some informations about the NTS ' s  that are necessary in order to be 
structurally equivalent to G. 

For a subset M of VN, the set of N T S ' s  of G, l e t f ( M )  be a set of l ' s  
in the C matrix that lie at the intersections of a set of rows D's such that 
D 2 M and a set of columns X ' s  such that X E  M. We call such a set of l ' s  
in the C matrix a grid. An N T S  M of G 1 corresponds to a grid f (a(M)).  
A set of grids forms a cover, if every 1 in the C matrix is a point of at least 
one grid in the set. 

PROPOSITION 9. The set that consists of  all the grids f ( N )  where N is an 
N T S  of G 2 forms a cover. 

Proof. Suppose that there exist row D and column X such that the 
intersection of the row D and the column X is 1 that is not a point of grid 
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f ( N )  for any NTS N of G 2. Hence, this 1 is not a point of grid f(a(A)) 
for any NTS A of G 1. Thus by the definition of grid it does not hold that 
a(A) C_ D and X e a(A) for any NTS A of G 1. By Proposition 3, for each 
(wl, w2) e C(D; [G]) and w eL(X; [G]), wlww 2 is in L([G]). We show that 
waww 2 cannot be in L([G1]), contradicting the assumption that G 1 and G 
are structurally equivalent. In [Ga], w can be derived from only an NTS 
A such that a(A) ~ X by the definition of a. Therefore, in order to prove 
the proposition, it suffices to show that for such an A, WlAW ~ cannot be 
derived (from S 1) in [Ga], that is, C(A; [G1])n C(D; [ G ] ) = ¢ .  Since 
C(A; [G1]) _C C(A; [G1]), it follows from Proposition 5 that 

O(A; [aq) _c (3 C(Y; 
Yea(A) 

By the definition of grid, the right side 0r~(A) C(Y; [G]) coincides with the 
union of C(D'; [G]) for row D' such that a(A) CC_D'. Therefore, from 
Proposition 1 and the fact that a(_//)_C D does not hold, it follows that 
C(A; [G ~] n C(D; [G]) = ~. Q.E.D. 

3. Reduction Procedure 

In the previous subsection it was shown that, in order to find a CFG with 
the fewest NTS ' s  or with the fewest rules that is structurally equivalent 
to the given CFG G, we have only to consider CFG's  that are constructed 
as follows: Choose a cover in the C matrix, let each grid correspond to an 
NTS and form a rule when it will possess the property SP. In particular, 
the condition of possessing property SP is very usefull to reduce the number 
of candidates. 

Next, it will be shown that we have only to choose those covers which 
consist only of prime grids. A grid f (M) ,  where M_C VN, is called a prime 
grid, if it is not properly contained in any other g r id f (M' ) ,  where M' C V N 
and ~ =/= M'.  For each grid f ( M )  there exists a unique prime grid that 
contains it. 

For a subset M of VN, let p(M) be the subset of VN which consists of 
NTS X such that the prime grid that contains the grid f ( M )  contains at 
least one point on the column X. The following proposition follows from 
the definitions. 

PROPOSITION 10. Y e p(M) if, and only if, C(Y; [G])D_ NX~M C(X; [G]). 

Let VN 3 be the set of p(N) 's  where N is an NTS of G ~ and let 
G a = (VN ~, VT, P~, S ~) be the CFG obtained from G ~ by replacing each 
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N T S  N of G ~ by its corresponding N T S  p(N).  The  initial symbol of G 3, S 3, 
is Vs which is the initial symbol of Ge; for, since Vs e ~ ,  p (Vs)  = V s .  
The  number  of distinct N T S ' s  of G 3 is less than or equal to that of G e, 
and the number  of distinct rules of G a is less than or equal to that of G ~. 

I t  is clear that for each rule of G there is at least one rule of G a which 
contains it and that the set which consists of all the grids f ( M )  where M 
is an N T S  of G 3 forms a cover. 

In  order to show that we have only to consider those covers which consist 
only of prime grids, it suffices to prove the following proposition. 

PROPOSITION 11. The CFG G 3 is structurally equivalent to G. Furthermore, 
G 8 has the property SP.  

Proof. First, we show that G 3 has the property SP. Let 

N--,- o~lNlo12N2 ... ol,Nn%+~ , (1) 

where a j e V T *  (1 ~ j ~ n + l ) ,  N e V 2 v  2 and N i e V u  2 ( l ~ i ~ n )  be a 
rule of G = and let 

p(N)--+ ~ip(N~) ~2p(N2) ... o~,p(A~) ~+~ , (2) 

where c 9 ~ VT* (1 ~ j  ~ n + 1), p(N)  ~ VN 3 and p(Ni) ~ VN 3 (l ~ i ~ n) 
be the corresponding rule of G 3. By Proposition 7, rule (1) possesses the 
property SP. 

We show by induction that rule (2) possesses the property SP. I t  is clear 
that the property S P  holds for p ( N ) - ~  ollNlo~2N ~ "'" o~N~c%+l, since 
p(N)  D_ N.  Suppose that the property S P  holds for 

p(N)--~ C~lP(N1) ... oii_~p(N~_x) ~iNio~,+iN~+l ... olnN~o~,+~ . 

Consider 

p(N)--+ c~p(Na) ... a~_ap(Ni_~) c~ip(N~) cq+~N~+~ ... a ,N,%+~ . 

By Proposition 10, if Yi ~p(Ni)  - -  N i ,  then C ( Y  i ; [G]) D_ (']Xi~Ni C ( X  i ; [G]). 
Therefore, if there is a rule 

X - - ~  (XlXl(x2X2 ' ' '  cxi_lXi_lO~iXio~i+lXi+l ""  o~X~(xn+ 1 

in G, where X ~ p ( N ) ,  X~ ap(Ny) (1 ~ j  ~ i -  1), X i  a N  i ,  and X~ a N~ 
(i q- 1 ~ k ~ n), then there must be a rule 

Y - +  ~ i x ~ x ~  ... ~ i - ~ & - ~ i Y ~ i + ~ x i + ~  "" ~nXn~n+~ 
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in G for each Yi ~ p(Ni) -- N i .  Furthermore, it must hold that 

c(Y; e(x; 

where N '  = {X[ X - +  o~1Xl~2X~"" a , X ~ +  1 ~ P, Xj  6p(N~) (1 ~<j ~ i -- 1), 
and X~ ~ N~ (i < k < n)}. 

Since N'  C p(N), Ox~2v" C(X; [G]) D_ Nx~,(u) C(x; [G]). Hence, ¢(Y; [(7]) D 
(]X~(N) C(X; [G]). Therefore, by Proposition 10, Y ~p(p(N)) ~- p(N). The 
above discussion verifies that the property SP  holds for 

p(N)--+ c~p(N~) ... oq_~p(N,_~) o~p(Ni) oq+~N,+~ ... o~,,N,~o~,~+~ . 

So we have shown that G 8 has the property SP. 
Next, we show that G a is structurally equivalent to G. In general, G 2 < G~; 

for there is the case where p(N) = p(N') for two distinct NTS's  N and N '  
of G ~. Since G 3 has the property SP, as shown above, and the initial symbol 
of G a is Vs,  it follows from the following proposition that G a < (7. Therefore, 
G 3 is structurally equivalent to G, since G ~ and G are structurally equivalent. 

Q.E.D. 

PROPOSITION 12. Suppose that each N T S  of a CFG ~ = ( ~  , VT , P, ~q) 
is represented by a subset of the set of N T S '  s of the BDG G = (V2¢, VT , P, ITs). 
I f  ~ has the property SP  and ~q is Vs , then ~ < (7. 

Proof. We first prove that for each NTS M of [~], 

L(M; [0]) _C U L(X; [O9 (3) 
X~M 

by induction on depth of the derivation. Depth of the derivation is 
defined as follows. For simplicity, denote V~r k3 {[,]} by VT'. The derivation 
M ~* [w] ~ V~* has depth 1 if it corresponds to a single use of the terminating 

[G] 
rule I V /~  [w] in [0]. The derivation 

M ::~ [ a l / l ~ 2 M 2  -." ~nMn~n+l] ; [~1[Wl]~2[w2] . .-  ~n[Wn]~n+l] ~ g ' *  [0] [G] T 

(which uses the rule M--~ [~lMl~2M2 ". ~nM,~+~] in the first place) where 
M i * [wi] ~ g '*  for each i has depth h + 1 if for each i, depth of the deriva- 

[G] . T 
tion M, ~ [wi] is less than or equal to h and for at least one i, the derivation 

. [0] 
M i ~] [wi] has depth h. 

643[I71I-7 
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I f  the derivation M ~* [w] ~ V~* has depth 1, then the rule M--+ [w] is 

in [G]. From the assumption_that ~ has the property SP, it follows that for 
some X in M, X --+ w is in P, that is, X [  w].£ 

Assume true that, if the derivation _ [w] e V~* has depth less than 
[a] , 

or equal to h, then for some X '  in M', X '  ~ [w]. Suppose that there is 
a derivation 

M ~1 [c~MI~aM2"'" ~ M ~ + I ]  * [c¢~[w~]~2[w2] -.. ~ [ w ~ ] e ~ +  d e V~* 
[G] 

of depth h -t- 1, where Mi ~ [wi] for each t. Then, the derivation Mt ~ [wi] 
[~] . [~] 

has depth less than or epual to h for each z. By the inductive hypothesis, 
Xi [~] [w~] for some Xi in M i .  Since ~ has the property SP and 

M ~ c~tMIo~2M 2 ... %M~o~,~+t 

is in t5, there is a rule X--~ eciXia2X 2 "'" ~Xn~+i in P for some X in M. 
Thus for some X in M, 

x bl[Wl] 2[w ] . . .  [G] [G] 

We have shown that (3) holds. 
In particular, L(~q; [~]) C UX~sL(X; [G]), since g is Vs by the assump- 

tion. This is equivalent to ~ < G. Q.E.D. 

Now we are ready to describe our reduction procedure of CFG's.  In the 
following we give a procedure for finding a CFG with the fewest NTS ' s  
that is structurally equivalent to a given CFG. 

Procedure for Finding a Structurally Equivalent CFG with the Fewest NTS's  

(i) Transform a given CFG G into a reduced BDG G ~ (VN, VT, P, Vs) 
that is structurally equivalent to G and construct the C matrix. 

(ii) Let I be the number such that no set of less than I prime grids forms 
a cover and that at least one set of I prime grids forms a cover. Set i = I.  

(iii) Choose the cover of i prime grids in the C matrix (which has not 
been chosen until now) and go to step (v). I f  all the covers of i prime grids 
have been chosen, then go to step (iv). 

(iv) Set i = i -t- 1 and go to step (iii). 



REDUCTION OF CONTEXT-FREE GRAMMARS 103 

(v) For each prime grid chosen, let a set of N T S  X of G such that the 
prime grid contains at least one point on the column X of the C matrix be 
an NTS .  Form the rules by using these N T S ' s  when they possess the 
property SP. Let  Vs be the initial symbol. Denote the C F G  constructed 
here by G °. 

(vi) I f  either G o has a useless N T S  or there is a rule of G which is not 
contained in any rule of G °, then go to step (iii). Otherwise, test whether 
G < G o (or, G < G °) or not (for the test procedure, see Appendix 3). 
I f  G < G °, the process terminates. G o is a C F G  with the fewest N T S ' s  
that is structurally equivalent to G. v I f  not, go to step (iii). 

Taking into account the condition of structural equivalence in the test 
procedure (in Appendix 3), if we choose N T S ' s  one by one in the above 
procedure, the search procedure might be more efficient. A procedure for 
finding a structurally equivalent C F G  with the fewest rules is similar to 
the above procedure. So the procedure is not presented here. 

IV. REDUCTION WITHIN THE WEAK EQUIVALENCE 

In  this section we prove the following theorem. 

THEOREM. There is no finite procedure for finding a CFG with the fewest 
NTS 's  or with the fewest rules that is weakly equivalent to a given CFG. 

Before describing the proof, we show several lemmas. 

LEMMA 1. It is not decidable whether a given CFG generates {a, b} *c. 

Proof. Follows from the well-known result that it is not decidable 
whether a given C F G  generates {a, b}*. 

LEMMA 2. /z/ CFG with the fewest rules that generates {a, b}*c has three 
rules, S ~ aS, S-+ bS and S - ~  c (S is a initial symbol). Any CFG with 
three rules other than the above three rules cannot generate {a, b} *c. 

Proof. I t  is clear that the C F G  with the above three rules generates 
{a, b}*c. Suppose a C F G  G = (VN, {a, b, c}, P, S) with three rules generates 
{a, b}*c. In  order to generate sentences c, ac and bc, it is necessary to use 
the rules whose right side are c~c]3, a'a]Y and odb~" respectively, where % ~, od 
and cd are in KN* and ~'  and ]~" are in {c} k) VN*. Thus  three rules are 
necessary to generate {a, b}*c. Since G has only three rules, G cannot have the 

By Proposition 12, it is guaranteed that G O < G. 



104 TANIGUCHI  AND KASAMI 

rule whose right side is e (empty string). Therefore, ~ = / 3  = ~' = ~" = e 
and fi' and 8" are in {c} u {e} tj  VN and the rule S - +  c must be in P. 
If/3'(/3") is c, then G cannot generate the sentences other than ac(bc) which 
contain a(b). I f  ~'(fi") is E or an N T S  other than S, then the sentence ac(bc) 
cannot be generated. Therefore,/3'  = /3"  = S. I t  is easily verified that if 
the N T S  of the left side of the rules is the one other than S, then G 
cannot generate {a, b}*c. Q.E.D. 

LEMMA 3. The language {a, b}*c can be generated by a CFG with only 
one N T S  (initial symbol). Each rule of a CFG with only one N T S  S that 
generates {a, b} *c is of one of the two forms S --+ aS  or S --+ a' c where c~ and a' 
are in {a, b}*c. 

Proof. The first part is easily verified (the C F G  in Lemma 2 is an 
example). Suppose a CFG G with only one N T S  S generates {a, b}*c. 
G does not have the rule S--> e, since e is not in (a, b}*c. The rule that 
does not contain S in the right side must be of the form S --> a'c, where a '  
is in {a, b}*, and G must have at least one such a rule. In  fact, G has the 
rule S--> c in order to generate the sentence c. Therefore, the rule that 
contains S in the right side must be of the form S --~ aS, where ~ is in {a, b}*. 

Q.E.D. 
Now we prove the theorem. 

Proof of the Theorem. Suppose that there exists a finite procedure for 
finding a C F G  with the fewest N T S ' s  or with the fewest rules that is weakly 
equivalent to a given C F G  G. We show that if such a reduction procedure 
exists, it is decidable whether a given C F G  G generates {a, b}*e, which 
contradicts Lemma 1. 

Assume that such a reduction procedure exists. By the reduction procedure, 
find a C F G  G' with the fewest N T S ' s  or G" with the fewest rules that is 
weakly equivalent to a given G. I f  G" has more than three rules or less 
than three rules, then G" does not generate {a, b}*c by Lemma 2. I f  G" has 
three rules, then it is decidable by Lemma 2 whether G" generates {a, b}*c. 
I f  G' has two or more NTS's ,  then G'  does not generate {a, b}*c by Lemma 3. 
I f  G' has only one N T S  and G'  has a rule of the form other than the one in 
Lemma 3, then G' does not generate {a, b}*c by Lemma 3. I f  G' has only 
one N T S  and each rule of G' is of the form in Lemma 3, it is decidable 
whether G' generates {a, b}*c, since G' is a right-linear C F G  and {a, b}*c 
is a regular set and it is decidable whether a right-linear C F G  generates a 
particular regular set (see Ginsburg [4]). Thus  in any case, it is decidable 
whether a given G generates {a, b}*c. This completes the proof. 
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A P P E N D I X  1: A PROCEDURE FOR TRANSFORMING A C F G  G = (V~v, VT, 
P, S)  INTO A REDUCED B D G  G -~ (VN,  VT, P, Vs) THAT IS STRUCTURALLY 
EQUIVALENT TO G 

First, transform a C F G  G = ( g n ,  g r ,  P, S) into a structurally equivalent 
B D G  G = (VN, V r ,  P, Vs), which is not necessarily reduced. T h e  proce- 
dure is as follows. 

(i) Set I~r = ¢ and 15 = ¢. 

(ii) For each distinct ~ in Vr* such that for some X,  X ~ ~ is a rule in P, 
form a rule Ms ~ ~, where Ms = {X ] X --~ ~ is in P}. Let  M~ ~ ~ be in t5 
and M s in IF N . Then,  go to step (iii). 

(iii) Choose a string , / =  o~IMI~M 2 .'. ~M~c~+l ,  where ~. ~ VT* and 
M~ ~ I?~v for each j and i such that there is no rule i n / 5  whose right sides 
is ~ and that for some X- 1 ~ M1,  X 2 ~ Ms ,... , and X~ ~ M n ,  there is a rule 
in P whose right side is cqXl~2X 2 ".. ~nX~o~+ 1 . Then,  go to step (iv). 
I f  there is no such an ~1, then go to step (v). 

(iv) Form a rule M--~  7, where M = { X  [ X- -~  c~lXl~2X2 ... ~Xn~n+ 1 a P 
where X i a M i  for each i}. Let  M - - ~  be in t5, and if M is not in I~N, 
let M be in IT-iv. Then,  go to step (iii). 

(v) Let  ~ v =  I~v, f i ~ / 5  and V s = { M I S e M ,  M ~ V N } .  A C F G  
G = (F~r, Vr , /~ ,  Vs) is a B D G  that is structurally equivalent to G. G may 
have a useless N T S  which is not derivable from any initial symbol. From C, 
discard useless N T S ' s  and rules containing those NTS ' s ,  if any. 

Next, find the distinguishable sets of [G]. The  procedure is as follows. 

(i) Set ~ = ¢. 

(ii) Let  Ks be in 9 .  

(iii) Select any element M in ~ that is not marked off and go to step (iv). 
I f  every element in ~ has been marked off, the procedure terminates. 9 is the 
set of all the distinguishable sets of the B D G  [G]. 

(iv) For each (¢ t ,  ~b2) such that for some X i n  M, X--~ ~blY~b ~ is a rule in P, 
where Y a VN, find M '  = {Y] X---~ ¢1Y¢~ ~ P, X ~  M, Y ~ VN} and if M '  
is not in ~ ,  let M '  be in ~ .  Then,  mark off M and go to step (iii). 

Then,  by using ~ ,  classify the set of N T S ' s  of G by an equivalence relation 
of NTS ' s .  (An equivalence class of N T S ' s  is a nonempty set having all, 
and only all, the N T S ' s  equivalent to some given NTS. )  Let  the equivalent 
classes be, without repetition, E l ,  Ez ,..., and E ~ .  A reduced B D G  
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G = (VN, Vr ,  P, Vs) that is structurally equivalent to G (consequently, 
structurally equivalent to the given G) is constructed as follows: Let 
VN = {El, E2 ,..., E~} and Vs = {E~ [ Ei c~ Vs ¢ ¢}. For every rule of 
~, X---~ aiXia2X ~ "'" %X~c~n+ i where a~. ~ Vr* (1 ~ j  ~ n + 1) and X i ~ VJv 
(1 ~< i <~ n), take for G the rule E ~ o ~ I ~  ~E~. ""~E~ ~.÷1, where X e E~o, 
XieEt , , . . . ,  a n d X n e E i  . 

A P P E N D I X  2: THE PROOF OF PROPOSITION 6 

Let ~1 be the CFG obtained from G i by replacing all the A and B in G a 
by a new NTS C (C is an initial symbol if at least one of A and B is an initial 
symbol of Gi). Since G i has no redundant NTS, ~ and G i are not structurally 
equivalent. In order to prove the proposition, it suffices to show that ~ i  
and G 1 are structurally equivalent under the assumption that a(A) = a(B). 
Since G 1 < ~1 and G is structurally equivalent to G l, it suffices to show 
that ~ i  < G under the assumption that a(A) = a(B). 

For each w eL(A;  [G~]) or L(B; [G~]), let T(w) be a generation tree of w 
in [Gi]. Let 

and 

J-(A;  [G1]) = {T(w)I w EL(A; [Gt])) 

J-(B;  [Gq) = {T(w) I w eL(B; [Gi])}. 

Let ~ bc a generation tree for a sentence in [~i]. By the definition of [¢i], 
i can be obtained from a generation tree t in [G l] by a finite number of 
relabelling the node or replacing the subtree as follows. Choose a node V 
with node name A or B such that there is no node with node name A or B 
on the path from the node V to the root of the tree under consideration. 

(1) Change the node name of the node V to C, or 

(2) Delete the subtree generated by the node V (for the terminology, refer 
to Ginsburg [4]), place an appropriate AtBe Y(B;  [G~]) (orAtA e J ' ( A ;  [G~])) 
with its root on the node V if the node name of V is A (or B), and change 
the node name of V to C. Repeat the above step until the names A and B 
disappear. ~ is the tree obtained in such a manner. 

Suppose that ~r(A) = a(B) = iV. From Proposition 5, it follows that 

C(A; [61]) C N C(X; [G]) A-l) 
X e N  
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and 

C(B; [G~]) _C ~ C(X; [G]). (A-2) 
X ~ N  

From Proposition 4, it follows that 

L(A; [G~]) _C U L(X; [G]) (A-3) 
X e N  

and 

L(B; [G~]) C_ ~J L(X; [G]). (A-4) 
X s N  

Since for each (wl, w~) e N x ~  C(x; [G]) and w e OxsNL(X; [G]), w~ww 2 
is inL([G]), it follows from (A-l) and (A-4) that for each (w~, w~) e ~(A; [G1]) 
and w eL(B; [G1]), wlww 2 is in L([G]). Similary, it follows from (A-2) and 
(A-3) that for each (wl, w2)a ~(B; [G1]) and w eL(A; [Gt]), wlww 2 is in 
L([G]). This means that if in the transformation of the generation tree stated 
above a tree t' generates a sentence in L([G]), then the tree t" obtained from 
t' by the transformation (1) or (2) generates a sentence in L([G]), too. 
Obviously, t generates a sentence in L([G]), since G and G 1 are structurally 
equivalent. Therefore, ~ generates a sentence in L([G]). Thus ~1 < G under 
the assumption that a(A) = a(B), completing the proof of the proposition. 

A P P E N D I X  3: A TEST PROCEDURE WHETHER e < G'  FOR TWO CFG ' s  

G -- (V~,  V~., P, V~) AND G' = (V~', V~, P', V~') 

Assume that G has no useless NTS's. 

(i) Set 17 N = ~ and P = ~. 

(ii) For each terminating rule X--~ ~, ~ e Vr* in P, let M~ = {X' [ X '  --+ 
is in P'}. If Ms :/: ~, then let (X, M~) ~ c~ be in P and (X, M~) in /2~v , 
and go to step (iii). If  M~ -----~ for some such an ~, then it does not hold 
that G < G'. 

(iii) Choose a string 

= ~ ( x l ,  M~) ~ ( x ~ ,  M2) . .  ~ ( x ~ ,  M~) ~+1, 

where ~j e VT* and (Xi ,  Mi) e ~z¢ for each j and i such that there is no 
rule in/5 whose right side is ~/and that there is at least one rule in P whose 
right side is ~lXl%X~ "" e~nXn~n+ 1 . Then, go to step (iv). If  there is no 
such an % then go to step (v). 



108 TANIGUCHI AND KASAMI 

(iv) Let  

M ~ {X '  ] X '  -~  ~lXl'~2X~' "" c~nX~'~+ 1 ~ P' ,  where Xi '  ~ Ms for each i}. 

I f  M = ~, then it does not hold that  G < G'.  Otherwise, for each rule 
X--+ ~IXIc~2X~'" ~X~%+1 in P,  form a rule (X,  M )  --+ ~q. Let  (X, M )  --~ ~/ 
be in P,  and if ( X , M )  is not  in 172q, let ( X , M )  be in 12~. Then,  go to step (iii). 

(v) I f  for each (X, M )  in 12 N where X is in V s ,  M c~ V s' 5~ $, then 
G < G' .  Otherwise, it does not hold that  G < 6/'. 
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