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Abstract

We characterize the restrictions of first-order Sobolev functions to regular subsets of a homogeneous
metric space and prove the existence of the corresponding linear extension operator.
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1. Main definitions and results

Let (X, d, �) be a metric space (X, d) equipped with a Borel measure �, which is non-negative
and outer regular, and is finite on every bounded subset. In this paper we describe the restrictions of
first-order Sobolev functions to measurable subsets of X which have a certain regularity property.

There are several known ways of defining Sobolev spaces on abstract metric spaces, where of
course we cannot use the notion of derivatives. Of particular interest to us, among these definitions,
is the one introduced by Hajłasz [13]. But let us first consider a classical characterization of
classical Sobolev spaces due to Calderón. Since it does not use derivatives, it can lead to yet another
way of defining Sobolev spaces on metric spaces. In [2] (see also [3]) Calderón characterizes the
Sobolev spaces Wk,p(Rn) in terms of Lp-properties of sharp maximal functions. To generalize
this characterization to the setting of a metric measure space (X, d, �), let f be a locally integrable
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real-valued function on X and let � be a positive number. Then the fractional sharp maximal
function of f, is defined by

f
�
� (x) := sup

r>0

r−�

�(B(x, r))

∫
B(x,r)

|f − fB(x,r)| d�.

Here B(x, r) := {y ∈ X : d(y, x) < r} denotes the open ball centered at x with radius r, and, for
every Borel set A ⊂ X with �(A) < ∞, fA denotes the average value of f over A

fA := 1

�(A)

∫
A

f d�.

If A = ∅, we put fA := 0.
In [2] Calderón proved that, for 1 < p�∞, the function u is in W 1,p(Rn), if and only if u and

u
�
1 are both in Lp(Rn). This result motivates us to introduce the space CW 1,p(X, d, �), which

we will call the Calderón–Sobolev space. We define it to consist of all functions u defined on X
such that u, u

�
1 ∈ Lp(X). We equip this space with the Banach norm

‖u‖CW 1,p(X,d,�) := ‖u‖Lp(X) + ‖u�
1‖Lp(X).

Let us now recall the details of the definition of Hajłasz mentioned above. Hajłasz [13] intro-
duced the Sobolev-type space on a metric space, M1,p(X, d, �) for 1 < p�∞. It consists of all
functions u ∈ Lp(X) for which there exists a function g ∈ Lp(X) (depending on u) such that the
inequality

|u(x) − u(y)|�d(x, y)(g(x) + g(y)) (1.1)

holds �-a.e. (This means that there is a set E ⊂ X with �(E) = 0 such that (1.1) holds for every
x, y ∈ X\E.) As in [14] we will refer to all functions g which satisfy the inequality (1.1) as
generalized gradients of u. M1,p(X, d, �) is normed by

‖u‖M1,p(X,d,�) := ‖u‖Lp(X) + inf
g

‖g‖Lp(X),

where the infimum is taken over the family of all generalized gradients of u.
In the case where X = � ⊂ Rn is an open bounded domain with a Lipschitz boundary, d is

the Euclidean distance and � is n-dimensional Lebesgue measure on �, Hajłasz [13] showed that
the space M1,p(�, d, �) coincides with the Sobolev space W 1,p(�) and, moreover, that every
function u ∈ W 1,p(Rn) satisfies (1.1) with g = cM‖∇u‖. Here M is the Hardy–Littlewood
maximal operator and c = c(n). (For further development and application of this approach to
Sobolev spaces on metric space see, e.g., [9–11,13–15,17,19,22] and references therein).

It turns out that for a doubling measure �, the Hajłasz–Sobolev space coincides with the
Calderón–Sobolev space, i.e.,

CW 1,p(X, d, �) = M1,p(X, d, �), 1 < p�∞,

and, moreover, for every u ∈ M1,p(X, d, �), the function g = cu
�
1 (with some constant

c = c(X)) is a generalized gradient of u. This is an immediate consequence of a result of Hajłasz
and Kinnunen. (See [14], Theorem 3.4).

We recall that a measure � satisfies the doubling condition if there exists a constant Cd �1 such
that, for every x ∈ X and r > 0,

�(B(x, 2r))�Cd�(B(x, r)). (1.2)
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As usual, see [5], we call a metric measure space (X, d, �) with a doubling measure � a metric
space of homogeneous type and refer to Cd as a doubling constant.

In this paper we will only consider such metric measure spaces, which also satisfy an additional
condition, namely that there exists a constant Crd > 1 such that, for every x ∈ X and r > 0,

Crd�(B(x, r))��(B(x, 2r)). (1.3)

We call this condition the reverse doubling condition and refer to Crd as a reverse doubling
constant.

We will characterize the restrictions of Calderón–Sobolev and Hajłasz–Sobolev functions to
regular subsets of a homogeneous metric space (X, d, �).

Definition 1.1. A measurable set S ⊂ X is said to be regular if there are constants �S �1 and
�S > 0 such that for every x ∈ S and 0 < r ��S

�(B(x, r))��S�(B(x, r) ∩ S).

As non-trivial examples of regular subsets of Rn we can mention Cantor-like sets and Sierpiński-
type gaskets (or carpets) of positive Lebesgue measure. (Regular subsets of Rn are often also re-
ferred to as Ahlfors n-regular or n-sets [21].) For properties of metric spaces supporting
doubling measures and sets satisfying regularity conditions we refer to [1,20,21,30] and references
therein.

Given a Borel set A ⊂ X, a function f ∈ L1,loc(A) and � > 0 we let f
�
�,A denote the fractional

sharp maximal function of f on A,

f
�
�,A(x) := sup

r>0

r−�

�(B(x, r))

∫
B(x,r)∩A

|f − fB(x,r)∩A| d�, x ∈ A. (1.4)

Thus, f
�
� = f

�
�,X.

As usual, for a Banach space (A, ‖ · ‖A) of measurable functions defined on X and a Borel set
S ⊂ X, we let A|S denote the restriction of A to S, i.e., the Banach space

A|S := {f : S → R : ∃F ∈ A such that F |S = f }
equipped with the standard quotient space norm

‖f ‖A|S := inf{‖F‖A : F ∈ A, F |S = f }.
We can now state the first main result of this paper.

Theorem 1.2. Let (X, d, �) be a metric space of homogeneous type satisfying the reverse dou-
bling condition (1.3) and let S be a regular subset of X. Then a function u ∈ Lp(S), 1 < p�∞,
can be extended to a function ũ ∈ CW 1,p(X, d, �) if and only if u

�
1,S ∈ Lp(S). In fact,

‖u‖CW 1,p(X,d,�)|S ≈ ‖u‖Lp(S) + ‖u�
1,S‖Lp(S)

with constants of equivalence depending only on Cd, Crd, �S, �S and p. Moreover, there exists a
linear continuous extension operator

ExtS : CW 1,p(X, d, �)|S → CW 1,p(X, d, �).

Its operator norm is bounded by a constant depending only on Cd, Crd, �S, �S and p.
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Let us apply this result to X = Rn with Lebesgue measure (clearly, in this case (1.3) is satisfied
with Crd = 2n). Then, for every regular subset S ⊂ Rn, we have:

(i) W 1,p(Rn)|S = {u : S → R : u, u
�
1,S ∈ Lp(S)}, 1 < p�∞.

(ii) There is a linear continuous extension operator from W 1,p(Rn)|S into W 1,p(Rn).

Observe that (ii) follows from a general result of Rychkov [27].
There is an extensive literature devoted to description of the restrictions of Sobolev functions

to different classes of subsets of Rn. We refer the reader to the books by Maz’ya [25] and by
Maz’ya and Poborchi [26], the article of Farkas and Jakob [7] and also references in [25], [26]
and [7], for numerous results and methods related to this topic. We also observe that the criterion
(i) can be useful for description of Sobolev extension domains, i.e., domains � ⊂ Rn such that
W 1,p(Rn)|� = W 1,p(�). For instance, it follows from a result of Koskela [23], that every Sobolev
extension domain is a regular subset of Rn whenever n − 1 < p < ∞.

The second main result of the paper is the following.

Theorem 1.3. Let (X, d, �) be a homogeneous metric space satisfying condition (1.3). Then, for
every regular subset S of X,

M1,p(X, d, �)|S = M1,p(S, d, �).

Moreover, there exists a linear continuous extension operator

ExtS : M1,p(S, d, �) → M1,p(X, d, �)

such that ‖ExtS‖�C(Cd, Crd, �S, �S, p).

For families of bounded domains in Rn satisfying a certain “plumpness" condition (the so-
called A(c)-condition) Theorem 1.3 was proved by Hajłasz and Martio [17]. Harjulehto [18]
has generalized this result to the case of homogeneous metric spaces (X, d, �) and domains �
satisfying the so-called A∗(ε, �)-condition. Observe that both A(c)- and A∗(ε, �)-sets are regular,
but Cantor-type sets of positive Lebesgue measure in Rn provide examples of a regular subset
which satisfies neither the A(c)- nor the A∗(ε, �)-condition.

In the particular case where X = Rn, d is the Euclidean distance and � is n-dimensional
Lebesgue measure, Theorem 1.3 has been proved independently by Hajłasz et al. [16].

The proofs of Theorems 1.2 and 1.3 are based on a modification of the Whitney extension
method suggested in the author’s work [28] for the case of regular subsets of Rn. (See also [29]).

We conclude this introduction by briefly describing the contents of the other sections of this
paper. The crucial step of our approach is presented in Section 2. Without loss of generality we
may assume that S is closed (see Lemma 2.1) so that X\S is open. Since � is doubling, X\S
admits a Whitney covering which we denote by WS (Theorem 2.4).

To each ball B = B(xB, rB) ∈ WS we assign a measurable subset HB ⊂ S, which we call the
“reflected quasi-ball associated with the Whitney ball B”. These sets HB have the properties that
HB ⊂ B(xB, �1rB) ∩ S and �(B)��2�(HB) whenever rB ��S . Furthermore, the family

HS := {HB : B ∈ WS}
has finite multiplicity, i.e., every point x ∈ S belongs to at most �3 sets of the family HS . Here
�1, �2, �3 are positive constants depending only on Cd, Crd and �S . The existence of this family
HS of reflected quasi-balls is proved in Theorem 2.6.
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The second step of the extension method and the proof of Theorem 1.3 are presented in
Section 3. We fix functions u ∈ M1,p(S, d, �) and g ∈ Lp(S) which satisfy the inequality
(1.1) on S. Then we define an extension ũ of u by the formula

ũ(x) = (ExtS u)(x) :=
∑

B∈WS

uHB
�B(x), x ∈ X\S. (1.5)

Here {�B : B ∈ WS} is a partition of unity associated with the Whitney covering.
Finally, we define an extension g̃ of g by setting

g̃(x) :=
∑

B∈WS

(gHB
+ |uHB

|)�B∗(x), x ∈ X\S,

where B∗ := B(xB, 9
8 rB). We show that ũ ∈ Lp(X), g̃ ∈ Lp(X) and g̃ is a generalized gradient

of ũ, i.e., the pair (ũ, g̃) satisfies the inequality (1.1) on X. Since ũ|S = u, this proves that
u ∈ M1,p(X, d, �)|S so that ExtS provides a linear extension operator from M1,p(S, d, �) into
M1,p(X, d, �).

Section 4 is devoted to estimates of the sharp maximal function of the extension ũ := ExtS u.
Given a function f defined on S we let f � denote the extension of f to all of X which is obtained
by simply setting f �(x) = 0 for all x ∈ X\S. In Theorem 4.7 we show that, for every � > 0 and
x ∈ X,

(ũ)
�
�(x)�C(M(u

�
�,S)�(x) + Mu�(x)).

Using this estimate and the Hardy–Littlewood maximal theorem we then prove a slightly more
general version of Theorem 1.2 related to the function space C�

p(X, d, �). This space consists of

all functions u defined on X such that u, u
�
� ∈ Lp(X). C�

p(X, d, �) is normed by

‖u‖C�
p(X,d,�) := ‖u‖Lp(X) + ‖u�

�‖Lp(X).

For the case X = Rn with Lebesgue measure this space was introduced and investigated by
DeVore and Sharpley [6] and Christ [4]. Clearly,

CW 1,p(X, d, �) = C1
p(X, d, �).

Our generalization of Theorem 1.2 is as follows:

Theorem 1.4. Let (X, d, �) be a metric space of homogeneous type satisfying condition (1.3)
and let S be a regular subset of X. A function u ∈ Lp(S), 1 < p�∞, belongs to the trace space
C�

p(X, d, �)|S if and only if u
�
�,S ∈ Lp(S). In fact,

‖u‖C�
p(X,d,�)|S ≈ ‖u‖Lp(S) + ‖u�

�,S‖Lp(S) (1.6)

and there exists a linear continuous extension operator

ExtS : C�
p(X, d, �)|S → C�

p(X, d, �)

whose operator norm is bounded by a constant depending only on Cd, Crd, �S, �S and p.

Observe that in the case where X = Rn and S is a Lipschitz or an (ε, �)-domain this result
follows from extension theorems proved by DeVore and Sharpley [6, pp. 99–101], (Lipschitz
domains), and Christ [4] ((ε, �)-domains).
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2. The Whitney covering and a family of reflected quasi-balls

We will use the following notation. Throughout the paper C, C1, C2, . . . will be generic positive
constants which depend only on Cd, Crd, �S, �S and p. These constants can change, even in a
single string of estimates. We write A ≈ B if there is a constant C such that A/C�B �CA. For
a ball B = B(x, r) we let xB and rB denote the center and radius of B. Given a constant 	 > 0
we let 	B denote the ball B(x, 	r). For A, B ⊂ X and x ∈ X we put

dist(A, B) := inf{d(a, b) : a ∈ A, b ∈ B}
and d(x, A) := dist({x}, A). Finally, by cl(A) we denote the closure of A in X.

Lemma 2.1. For every regular subset S ⊂ X

�(cl(S)\S) = 0.

Proof. Denote Y := cl(S)\S and fix y ∈ Y . Then for every r, 0 < r ��, there is a point ỹ ∈ S

such that dist(y, ỹ)�r/4. Clearly, B(ỹ, r/4) ⊂ B(y, r). Since S is regular and ỹ ∈ S, we obtain

�(B(y, r) ∩ S)��(B(ỹ, r/4) ∩ S)��S�(B(ỹ, r/4)).

On the other hand, B(y, r) ⊂ B(ỹ, 5r/4) so that by the doubling condition

�(B(y, r))��(B(ỹ, 5r/4))�C3
d�(B(ỹ, r/4)).

Hence �(B(y, r) ∩ S)��SC−3
d �(B(y, r)). We let DA denote the family of density points of the

set A := X\S. Then

�(B(y, r) ∩ A)

�(B(y, r))
< 1 − �SC−3

d , y ∈ Y,

which implies Y ∩ DA = ∅. Thus, Y ⊂ A\DA so that by Lebesgue’s theorem, see, e.g.
[8, Section 2.9], �(Y )��(A\DA) = 0. �

In the remaining part of the paper we will assume that S is a closed regular subset of X.
We will need the following technical lemma.

Lemma 2.2. Let B(b, r) ⊂ X\S be a ball in X and let C1, C2 be two positive constants such that
C1r �dist(B, S)�C2r . Then for every 	 > 0 and every x ∈ 	B we have

(C1 − 	)r �d(x, S)�(C2 + 1 + 	)r.

Proof. Since dist(·, S) is a Lipschitz function, for every a ∈ B we have

d(x, S)�d(a, S) + d(a, x)�d(a, S) + d(a, b) + d(b, x)�d(a, S) + (1 + 	)r.

Since a ∈ B is arbitrary, we obtain

d(x, S)�dist(B, S) + (1 + 	)r �(C2 + 1 + 	)r.
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On the other hand,

d(x, S)�d(b, S) − d(b, x)�dist(B, S) − 	r �(C1 − 	)r

proving the lemma. �

The next lemma easily follows from inequalities (1.2) and (1.3).

Lemma 2.3. For every x ∈ X, r > 0, 1� t < ∞,

�(B(x, r))�Crdt−��(B(x, tr)) (2.1)

and

�(B(x, tr))�Cdt
�(B(x, r)), (2.2)

where � := log2 Crd and 
 := log2 Cd .

Theorem 2.4. There is a countable family of balls WS such that

(i) X\S = ∪{B : B ∈ WS}.
(ii) For every ball B = B(x, r) ∈ WS

3r �dist(B(x, r), S)�25r. (2.3)

(iii) Every point of X\S is covered by at most N = N(Cd) balls from WS .

Proof. Since � is a doubling measure, there exists a constant Mε = M(ε, Cd) such that in every
ball B(x, r) there are at most Mε points {xj } satisfying the inequality d(xi, xj )�εr, i �= j (one
can put Mε := (4ε−1)log2 Cd ). In [12], Theorem 2.3, it was shown that for every metric space with
this property the following is true: for every open subset G ⊂ X with a non-empty boundary there
is a countable family of balls WG such that G = ∪{B : B ∈ WG}, every point of G is covered
by at most 9M 1

2
sets from WG and r �dist(B(x, r), �G)�4r for every B = B(x, r) ∈ WG.

Let us apply this result to the open set G = X\S. We conclude that there exists a countable
family of balls W̃S which covers X\S with multiplicity at most 9M 1

2
. Moreover, every ball

B̃ = B(x, r) ∈ W̃S satisfies the following inequality:

r �dist(B̃, S)�4r. (2.4)

Let us slightly modify W̃S and construct a family of balls WS satisfying the inequality (2.3)
rather than (2.4). To this end we put ε := 1

4 and given B̃ ∈ W̃S fix a maximal ε-net in B̃, i.e., a
family of points {xi, i ∈ IB̃} ⊂ B̃ satisfying the following conditions:

(a) d(xi, xj )�ε for all i, j ∈ IB̃ , i �= j ;
(b) for every z ∈ B̃ there xi such that d(xi, z) < ε.

As we have noted above this family of points consists of at most Mε elements.
We let AB̃ denote a family of balls {B(xi, εrB̃), i ∈ IB̃}. Then, clearly, AB̃ also consists of at

most Mε elements and by (b)

B̃ ⊂ ∪{B(xi, εrB̃) : i ∈ IB̃}.
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We put WS := ∪{AB̃ : B̃ ∈ W̃S}. Then property (i) is obvious. Since multiplicity of W̃S is
bounded by 9M 1

2
, the family WS has multiplicity at most 9M 1

2
· Mε. This proves property (iii) of

the theorem. To prove (ii) fix a ball B = B(xi, r) ∈ AB̃ with r = εrB̃ and a point a ∈ B. Recall
that xi ∈ B̃. Then by (2.4) and Lemma 2.2 (with 	 = 1)

rB̃ �d(xi, S)�6rB̃

so that

d(a, S)�d(xi, S) + d(xi, a)�6rB̃ + r = (6/ε + 1)r = 25r.

On the hand, by (2.4)

d(a, S)�d(xi, S) − d(xi, a)�dist(B̃, S) − r �rB̃ − r = 3r.

Thus, for every a ∈ B we have 3r �d(a, S)�25r which implies property (ii). The theorem is
proved. �

Theorem 2.4 and Lemma 2.2 imply the following additional properties of Whitney’s balls.

Lemma 2.5. (a) For every B = B(xB, rB) ∈ WS there is a point yB ∈ S such that

B(yB, rB) ⊂ B(xB, 30rB) and B = B(xB, rB) ⊂ B(yB, 30rB). (2.5)

Moreover, �(B(xB, rB)) ≈ �(B(yB, rB)).
(b) For every B ∈ WS and every x ∈ B∗

rB �d(x, S)�28rB. (2.6)

(Recall that B∗ := 9
8B).

(c) If B, K ∈ WS and B∗ ∩ K∗ �= ∅, then

1
28 rB �rK �28rB. (2.7)

(d) For every ball K ∈ WS there are at most N balls from the family W ∗
S := {B∗ : B ∈ WS}

which intersect K∗.
Here N is a positive constant depending only on Cd .

Proof. By Lemma 2.2 d(xB, S)�27rB so that there is a point yB ∈ B(xB, 28rB) ∩ S. Now
the statement of part (a) easily follows from the inequality d(xB, yB)�28rB and the doubling
condition.

Property (b) immediately follows from the inequality (2.3) and Lemma 2.2. In turn, property
(c) is a simple corollary of (b).

To prove (d) we put AK := {B ∈ WS : B∗ ∩ K∗ �= ∅} and M := card AK . Then by (c)
1
28 rB �rK �28rB for every B ∈ AK . Since B∗ ∩ K∗ �= ∅, we have

B ⊂ (9/8 + (9/8) · 28 + 1)K ⊂ 34K,

so that

BK := ∪{B : B ∈ AK} ⊂ 34K. (2.8)
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In a similar way we prove that K ⊂ 34B for each B ∈ AK so that by Lemma 2.3 �(K)�C1�(B),

B ∈ AK . Hence

C−1
1 M�(K)�

∑
{�(B) : B ∈ AK}. (2.9)

On the other hand, by property (iii) of Theorem 2.4∑
{�(B) : B ∈ AK} =

∫
BK

∑
{�B : B ∈ AK} d��N(Cd)�(BK)

so that by (2.8) and Lemma 2.3∑
{�(B) : B ∈ AK}�N(Cd)�(34K)�C2�(K).

This and (2.9) imply M �C1C2 proving property (d). �

Let us formulate the main result of the section.

Theorem 2.6. There is a family of Borel sets HS = {HB : B ∈ WS} such that:

(i) HB ⊂ (�1B) ∩ S, B ∈ WS .
(ii) �(B)��2�(HB) whenever B ∈ WS and rB ��S .

(iii)
∑

B∈WS
�HB

��3.

Here �1, �2, �3 are positive constants depending only on Crd, Cd and �S .

Proof. Let K = B(xK, rK) ∈ WS and let yK be a point on S satisfying condition (a) of
Lemma 2.5. Thus, B(yK, rK) ⊂ CK and K ⊂ B(yK, CrK) with C = 30.

Given ε, 0 < ε�1, we denote Kε := B(yK, εrK). Let B = B(xB, rB) be a ball from WS with
rB ��S . Set

AB := {K = B(xK, rK) ∈ WS : Kε ∩ Bε �= ∅, rK �εrB}. (2.10)

Recall that Bε := B(yB, εrB). We define a “quasi-ball” HB by letting

HB := (Bε ∩ S)\(∪{Kε : K ∈ AB}). (2.11)

If rB > �S we put HB := ∅.
Prove that for some ε:=ε(Crd, Cd, �S) small enough the family of subsets HS :={HB :B ∈ WS}

satisfies conditions (i)–(iii). By (2.11) and (2.5)

HB ⊂ Bε := B(yB, εrB) ⊂ B(yB, rB) ⊂ B(xB, CrB) = CB.

In addition, by (2.11) HB ⊂ S so that HB ⊂ (CB) ∩ S proving property (i).
Let us prove (ii). Suppose that B = B(xB, rB) ∈ WS and rB ��S . If K ∈ AB , then by (2.10)

Kε ∩ Bε �= ∅ and rK �εrB . Hence

rKε (= εrK)�εrBε (:= ε2rB)�rBε

so that yK ∈ 2Bε. But rK �εrB = rBε and K ⊂ B(yK, CrK) which implies K ⊂ (C + 2)Bε.
Thus

UB := ∪{K : K ∈ AB} ⊂ (C + 2)Bε. (2.12)
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By property (iii) of Theorem 2.4∑
K∈AB

�K(x)�
∑

K∈WS

�K(x)�N = N(Cd), x ∈ X,

so that by (2.12) and (2.2)∑
K∈AB

�(K) =
∫
UB

∑
K∈AB

�K d��
∫

(C+2)Bε

N d� = N�((C + 2)Bε)�C1�(Bε).

On the other hand, for every K ∈ AB by (2.1) and by (a), Lemma 2.5

�(Kε) = �(B(yK, εrK))�Crdε��(B(yK, rK))�C2ε
��(K).

Hence

�(∪{Kε : K ∈ AB})�
∑

K∈AB

�(Kε)�C2ε
�
∑

K∈AB

�(K)�C3ε
��(Bε).

Since S is regular and rBε = εrB ��S , �(Bε ∩ S)��−1
S �(Bε) so that

�(HB) = �((Bε ∩ S)\(∪{Kε : K ∈ AB}))
� �(Bε ∩ S) − �(∪{Kε : K ∈ AB})�(�S − C3ε

�)�(Bε).

By (2.2) and by property (a) of Lemma 2.5

�(Bε) = �(B(yB, εrB)) � C−1
d ε
�(B(yB, rB))

� C−1C−1
d ε
�(B(xB, rB)) = C4ε


�(B)

so that

�(HB)�C4(�
−1
S − C3ε

�)ε
�(B).

We define ε by setting ε := (2C3�S)− 1
� . Then the inequality �(B)��2�(HB) holds with

�2 := 2C−1
4 �



� +1
S (2C3)



� proving property (ii) of the theorem.

Let us prove (iii). Let B = B(xB, rB), B ′ = B(xB ′ , rB ′) ∈ WS be Whitney’s balls such that
rB, rB ′ ��S and HB ∩ HB ′ �= ∅. Since HB ⊂ Bε, HB ′ ⊂ B ′

ε, we have Bε ∩ B ′
ε �= ∅.

On the other hand, B /∈ AB ′ and B ′ /∈ AB , otherwise by (2.10) and (2.11) HB ∩ HB ′ = ∅.
Since Bε ∩ B ′

ε �= ∅, by definition (2.10) rB > εrB ′ and rB ′ > εrB so that rB ≈ rB ′ . By (2.5)

Bε = B(yB, εrB) ⊂ B(yB, rB) ⊂ CB

and similarly B ′
ε ⊂ CB ′. But Bε ∩ B ′

ε �= ∅ so that CB ∩ CB ′ �= ∅ as well. Moreover, since
rB ≈ rB ′ , we have B ′ ⊂ C5B and B ⊂ C5B

′. This and the doubling condition imply
�(B ′) ≈ �(B).

We denote

TB := {B ′ ∈ WS : HB ∩ HB ′ �= ∅, rB ′ ��S}
and VB := ∪{B ′ : B ′ ∈ TB}. Thus, we have proved that VB ⊂ C5B and �(B ′) ≈ �(B) for every
B ′ ∈ TB .
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Let MB := card TB be the cardinality of TB . Clearly, to prove (iii) it suffices to show that
MB ��3. We have

MB�(B)�C
∑

B ′∈TB

�(B ′) = C

∫
VB

∑
B ′∈TB

�B ′ d��C

∫
C5B

∑
B ′∈TB

�B ′ d�.

By the property (iii) of Theorem 2.4∑
{�B ′ : B ′ ∈ TB}�

∑
{�B ′ : B ′ ∈ WS}�N = N(Cd)

so that

MB�(B)�C

∫
C5B

Nd� = CN�(C5B)�C�(B)

proving the required inequality MB ��3. �

3. The extension operator: proof of Theorem 1.3

For every u ∈ M1,p(X, d, �) and every generalized gradient g of u the restriction g|S is a
generalized gradient of u|S so that M1,p(X, d, �)|S ⊂ M1,p(S, d, �).

Let us prove that formula (1.5) provides a linear continuous extension operator fromM1,p(S, d, �)

into M1,p(X, d, �). Obviously, this will imply the converse imbedding as well.
Recall that for every u ∈ M1,p(S, d, �) its generalized gradient g belongs to Lp(S) and satisfies

the inequality

|u(x) − u(y)|�d(x, y)(g(x) + g(y)), x, y ∈ S\E, (3.1)

where E is a subset of S of measure 0. We may suppose that g is almost optimal, i.e., ‖g‖Lp(S)

�2‖u‖M1,p(S,d,�).
The extension operator ExtS , see (1.5), is determined by the family of Borel subsets

HS = {HB : B ∈ WS} introduced in the previous section. We recall that �(HB) > 0 for
every ball B ∈ WS with rB ��S and HB := ∅ whenever rB > �S . Therefore, according to our
notation uHB

is the average of u over HB whenever rB ��S and uHB
:= 0 otherwise.

We let �S = {�B : B ∈ WS} denote a partition of unity associated to the Whitney covering WS ,
see, e.g. [24]. We recall that �S is a family of functions defined on X which have the following
properties: For every ball B ∈ WS (a) 0��B �1; (b) supp �B ⊂ B∗(:= 9

8B); (c)
∑{�B(x) :

B ∈ WS} = 1 on X\S; (d) for some constant C = C(Cd)

|�B(x) − �B(y)|�C
d(x, y)

rB
, x, y ∈ X.

Recall that the extension operator ũ = ExtS u is defined by the formula

ũ(x) :=
∑

B∈WS

uHB
�B(x), x ∈ X\S, (3.2)

and ũ(x) := u(x), x ∈ S. We also define an extension g̃ of g by letting

g̃(x) :=
∑

B∈WS

(gHB
+ |uHB

|)�B∗(x), x ∈ X\S, (3.3)

and g̃(x) := g(x) for x ∈ S.
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To prove that ExtS satisfies conditions of Theorem 1.3 it suffices to show that

‖ũ‖Lp(X) �C‖u‖Lp(S), ‖g̃‖Lp(X) �C(‖g‖Lp(S) + ‖u‖Lp(S)) (3.4)

and the inequality

|ũ(x) − ũ(y)|�Cd(x, y)(g̃(x) + g̃(y)) (3.5)

holds �-a.e. on X. Then

‖ũ‖M1,p(X,d,�) �‖ũ‖Lp(X) + ‖g̃‖Lp(X) �C(‖u‖Lp(S) + ‖g‖Lp(S))

proving that ‖ũ‖M1,p(X,d,�) �C‖u‖M1,p(S,d,�) and ‖ExtS‖�C.
Proofs of inequalities (3.4) and (3.5) are based on a series of auxiliary lemmas.

Lemma 3.1. Let H, H ′ ⊂ S and let 0 < �(H), �(H ′) < ∞. Then

|uH − uH ′ |�diam(H ∪ H ′)(gH + gH ′) (3.6)

and for every y ∈ S

|uH − u(y)|�diam(H ∪ {y})(gH + g(y)). (3.7)

Proof. We have

I := |uH − uH ′ |� 1

�(H)

1

�(H ′)

∫
H

∫
H ′

|u(x) − u(y)| d�(x) d�(y)

so that by (3.1)

I � 1

�(H)

1

�(H ′)

∫
H

∫
H ′

d(x, y)(g(x) + g(y)) d�(x) d�(y).

Since d(x, y)�diam(H ∪ H ′) for every x ∈ H, y ∈ H ′, we have

I � diam(H ∪ H ′)
�(H)�(H ′)

∫
H

∫
H ′

(g(x) + g(y)) d�(x) d�(y) = diam(H ∪ H ′)(gH + gH ′)

proving (3.6). In a similar way we prove the inequality (3.7). �

Lemma 3.2. Let B̃ ∈ WS and let x ∈ B̃. Then for every y ∈ X\S and every ball B ∈ WS such
that B∗ ∩ {x, y} �= ∅ we have

|uHB
− uHB̃

|�C(d(x, S) + d(x, y) + d(y, S))(g̃(x) + g̃(y)). (3.8)

If y ∈ S, then for every B ∈ WS such that B∗ � x

|uHB
− u(y)|�Cd(x, y)(g̃(x) + g̃(y)). (3.9)

Proof. First, we prove (3.8). Suppose that y ∈ X\S and consider the case rB ��S, rB̃ ��S .
Since �(HB), �(HB̃) > 0, by (3.6)

|uHB
− uHB̃

|�diam(HB ∪ HB̃)(gHB
+ gHB̃

). (3.10)

By (2.6) rB ≈ d(x, S) whenever x ∈ B∗ and by property (i) of Theorem 2.6, HB ⊂ �1B

so that HB ⊂ B(x, Cd(x, S)). Since x ∈ B̃ ⊂ (B̃)∗, we also have HB̃ ⊂ B(x, C2d(x, S)).
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In a similar way we prove that HB ⊂ B(y, C2d(y, S)) whenever y ∈ B∗. Hence

diam(HB ∪ HB̃)�diam(B(x, C2d(x, S)) ∪ B(y, C2d(x, S)))

so that

diam(HB ∪ HB̃)�C2(d(x, S) + d(x, y) + d(y, S)). (3.11)

Since rB, rB̃ ��S and x ∈ B∗ or y ∈ B∗, by definition of g̃, see (3.3), we have gHB̃
� g̃(x),

gHB
� g̃(x) (whenever x ∈ B∗) or gHB

� g̃(y) (if y ∈ B∗). Hence

gHB
+ gHB̃

�2(g̃(x) + g̃(y)).

Combining this inequality with (3.10) and (3.11) we obtain (3.8) for the case rB, rB̃ ��S .
Let us prove (3.8) for the case rB > �S, rB̃ ��S . By (2.6) �S �rB �Cd(y, S) whenever y ∈ B∗

or �S �rB �Cd(x, S), if x ∈ B∗. Hence

C

�S

(d(x, S) + d(x, y) + d(y, S))�1.

Since x ∈ B̃, by (3.3) |uHB̃
|� g̃(x), and since rB > �S , uHB

:= 0. Hence

|uHB
− uHB̃

| = |uHB̃
|� g̃(x)� C

�S

(d(x, S) + d(x, y) + d(y, S))(g̃(x) + g̃(y))

proving (3.8). In the same way we prove (3.8) for the case rB̃ > �S, rB ��S . The remaining case
rB̃ > �S, rB > �S is trivial because here uHB

= uHB̃
= 0.

We prove (3.9) by a slight modification of the proof given above. Using estimate (3.7) rather
than (3.6) we have

|uHB
− u(y)|�C(d(x, S) + d(x, y))(g̃(x) + g̃(y)).

But d(x, S)�d(x, y), and (3.9) follows. �

Lemma 3.3. Let B̃ ∈ WS and let x ∈ B̃∗(:= 9
8 B̃). Then for every y ∈ X\S we have

|ũ(x) − ũ(y)|�C max
B∈A

min{1, d(x, y)/rB}|uHB
− uHB̃

|, (3.12)

where A := {B ∈ WS : B∗ ∩ {x, y} �= ∅}.
If y ∈ S, then

|ũ(x) − u(y)|�C max{|uHB
− u(y)| : B ∈ WS, B∗ � x}. (3.13)

Proof. By definition (3.2) and properties of the partition of unity we have

I := |ũ(x) − ũ(y)| =
∣∣∣∣∣∣
∑

B∈WS

uHB
�B(x) −

∑
B∈WS

uHB
�B(y)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∑

B∈WS

(uHB
− uHB̃

)(�B(x) − �B(y))

∣∣∣∣∣∣
�
∑
B∈A

|uHB
− uHB̃

||�B(x) − �B(y)|
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so that by property (d) of Lemma 2.5 for every y ∈ X\S
I �2N max

B∈A
|uHB

− uHB̃
‖�B(x) − �B(y)|. (3.14)

Since 0��B �1, this implies

I �C max{|uHB
− uHB̃

| : B ∈ A}.
On the other hand, by property (d) of partition of unity we have

I �C1d(x, y) max
B∈A

r−1
B |uHB

− uHB̃
|.

Clearly, these inequalities imply (3.12). Similarly to (3.14), for y ∈ S we have

|ũ(x) − u(y)|�N max{|uHB
− u(y)| : B ∈ WS, B∗ � x}

proving (3.13). �

We are in a position to prove that for some C the function Cg̃ is a generalized gradient of ũ.

Lemma 3.4. The inequality

|ũ(x) − ũ(y)|�Cd(x, y)(g̃(x) + g̃(y))

holds �-a.e. on X.

Proof. We will suppose that x, y ∈ S\E, where E is a subset of S from the inequality (3.1)
(recall that �(E) = 0). Clearly, for x, y ∈ S the result follows from (3.1) so we may assume that
x ∈ X\S. We let B̃ ∈ WS denote a Whitney ball such that B̃ � x.

Denote I := |ũ(x) − ũ(y)| and consider two cases.
The first case: y ∈ B̃∗. Since x ∈ B̃, we have d(x, y)�2rB̃∗ �3rB̃ . Moreover, by (2.6) rB̃ ≈

d(x, S) ≈ d(y, S) and by the inequality (3.12)

I �Cd(x, y) max{r−1
B |uHB

− uHB̃
| : B ∈ WS, B∗ ∩ {x, y} �= ∅}.

Since x, y ∈ B̃∗, for every ball B ∈ WS such that B∗ ∩ {x, y} �= ∅ we have B∗ ∩ B̃∗ �= ∅.
Therefore by (2.7) rB̃ ≈ rB . In addition, by Lemma 3.2

|uHB
− uHB̃

|�C(d(x, S) + d(x, y) + d(y, S))(g̃(x) + g̃(y))

so that

|uHB
− uHB̃

|�CrB̃(g̃(x) + g̃(y)).

Hence

I � Cd(x, y)r−1
B̃

max{|uHB
− uHB̃

| : B ∈ WS, B∗ ∩ {x, y} �= ∅}
� Cd(x, y)(g̃(x) + g̃(y)).
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The second case: y /∈ B̃∗. Since x ∈ B̃, this implies d(x, y)� 1
8 rB̃ . Recall that rB̃ ≈ d(x, S)

so that d(x, S)�Cd(x, y). Since the distance function d(·, S) satisfies the Lipschitz condition,
we have

d(y, S)�d(x, S) + d(x, y)�Cd(x, y).

Let y /∈ S. Then by (3.12)

I �C max{|uHB
− uHB̃

| : B ∈ WS, B∗ ∩ {x, y} �= ∅}
so that by (3.8)

I �C(d(x, S) + d(x, y) + d(y, S))(g̃(x) + g̃(y))�Cd(x, y)(g̃(x) + g̃(y)).

In the remaining case, i.e., for y ∈ S, the lemma follows from estimates (3.9) and (3.13). �

Let f ∈ Lp(S), 1�p�∞. We define an extension F of f by letting F(x) := f (x), x ∈ S, and

F(x) :=
∑

B∈WS

|fHB
|�B∗ , x ∈ X\S. (3.15)

Lemma 3.5. ‖F‖Lp(X) �C‖f ‖Lp(S).

Proof. We will prove the lemma for the case 1�p < ∞; corresponding changes for p = ∞ are
obvious. By property (d) of Lemma 2.5 for every x ∈ X\S at most N = N(Cd) terms of the sum
in (3.15) are not equal zero. Therefore

|F(x)|p �C
∑

B∈WS

|fHB
|p�B∗(x), x ∈ X\S.

This inequality and the doubling condition imply∫
X\S

|F |pd��C
∑

B∈WS

|fHB
|p�(B∗)�C

∑
B∈WS

|fHB
|p�(B).

Recall that �(HB) ≈ �(B) whenever rB ��, see (i), (ii), Theorem 2.6, so that

|fHB
|p =

∣∣∣∣ 1

�(HB)

∫
HB

f d�

∣∣∣∣p � 1

�(HB)

∫
HB

|f |pd��C
1

�(B)

∫
HB

|f |pd�.

Recall also that HB = ∅ if rB > �. Hence∫
X\S

|F |pd��C
∑

B∈WS

∫
HB

|f |pd� = C

∫
S

|f |p
⎛⎝ ∑

B∈WS

�HB

⎞⎠ d�

so that by property (iii) of Theorem 2.6∫
X\S

|F |pd��C

∫
S

|f |pd�.

It remains to note that F |S = f and the lemma follows. �
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Let us prove that

‖ũ‖Lp(X) �C‖u‖Lp(S). (3.16)

Since 0��B �1 for every B ∈ WS , and supp �B ⊂ B∗, by (3.2) for every x ∈ X\S we have

|ũ(x)| =
∣∣∣∣∣∣
∑

B∈WS

uHB
�B(x)

∣∣∣∣∣∣ �
∑

B∈WS

|uHB
|�B(x)�

∑
B∈WS

|uHB
|�B∗(x).

Hence |ũ|� |F | where F(x) := u(x) for x ∈ S and

F(x) :=
∑

B∈WS

|uHB
|�B∗(x), x ∈ X\S.

Thus ‖ũ‖Lp(X) �‖F‖Lp(X). But by Lemma 3.5 ‖F‖Lp(X) �C‖u‖Lp(S), and (3.16) follows.
It remains to estimate Lp-norm of g̃. To this end we define a function G by letting

G(x) := g(x), x ∈ S and

G(x) :=
∑

B∈WS

|gHB
|�B∗(x), x ∈ X\S.

Then by (3.3) |g̃|� |G| + |F |. By Lemma 3.5 ‖G‖Lp(X) �C‖g‖Lp(S) so that

‖g̃‖Lp(X) �‖G‖Lp(X) + ‖F‖Lp(X) �C(‖g‖Lp(S) + ‖u‖Lp(S)).

Theorem 1.3 is completely proved.

4. The sharp maximal function: proof of Theorems 1.2 and 1.4

Let us fix a ball K = B(z, r) such that K ∩ S �= ∅. We denote two families of balls associated
to K by letting BK := {B ∈ WS : B∗ ∩ K �= ∅} and

B̃K := {B ∈ WS : B∗ ∩ K �= ∅, rB ��S}.
Lemma 4.1. (i) For every c ∈ R∫

K\S
|ũ − c| d��C

∑
B∈BK

�(B)|uHB
− c|.

(ii) For every ball B ∈ BK we have rB ��1r .
(iii) For every c ∈ R∑

B∈B̃K

�(B)|uHB
− c|�C

∫
(�2K)∩S

|u − c| d�.

Here �1, �2 are constants depending only on the doubling constant Cd .

Proof. Let us prove property (i). Recall that
∑{�B(x) : B ∈ WS} = 1 for every x ∈ X\S. Then

by definition (3.2)

I :=
∫

K\S
|ũ − c| d� =

∫
K\S

∣∣∣∣∣∣
∑

B∈WS

uHB
�B − c

∣∣∣∣∣∣ d�

�
∫

K\S

∑
B∈WS

|uHB
− c|�Bd� =

∑
B∈WS

∫
K\S

|uHB
− c|�Bd�.
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Hence, by properties (a), (b) of the partition of unity and by the doubling condition

I �
∑

B∈BK

∫
B∗

|uHB
− c|�Bd��

∑
B∈BK

�(B∗)|uHB
− c|�C

∑
B∈BK

�(B)|uHB
− c|.

Prove (ii) Let B ∈ BK and let y ∈ B∗ ∩ K . Then by (2.6) B∗ ⊂ X\S so that y /∈ S.
Therefore, there is a ball B ′ ∈ WS which contains y. Since K ∩ S �= ∅ and B ′ ∩ K �= ∅, we have
dist(B ′, S)�2r . But by Theorem 2.4 rB ′ �dist(B ′, S) so that rB ′ �2r . In addition, (B ′)∗ ∩B∗ �=
∅ so that by (2.7) rB ′ ≈ rB . This implies the required inequality rB ��1r with some constant
�1 = �1(Cd).

Prove (iii) We denote A := ∪{HB : B ∈ B̃K} and

mK(x) :=
∑

{�HB
(x) : B ∈ B̃K}.

Since |uHB
− c|� |u − c|HB

and �(HB) ≈ �(B), see (ii), Theorem 2.6,∑
B∈B̃K

�(B)|uHB
− c| �

∑
B∈B̃K

�(B)

�(HB)

∫
HB

|u − c| d���2

∑
B∈B̃K

∫
HB

|u − c| d�

= �2

∫
A

|u − c|mKd�.

By property (i) of Theorem 2.6 for every B ∈ B̃K we have HB ⊂ (�1B) ∩ S. Since B∗ ∩ K �= ∅
and rB ��1r , we obtain

(�1B) ⊂ (1 + (�1 + 9/8)�1)K = �2K

so that HB ⊂ (�2K) ∩ S. Thus, A ⊂ (�2K) ∩ S.
It remains to note that by property (iii) of Theorem 2.6 mK ��3 and the required property (iii)

follows. �

Lemma 4.2. For every ball K = B(z, r) such that z ∈ S and r ��S/�1 we have

r−�

�(K)

∫
K

|ũ − ũK | d��Cu
�
�,S(z).

Proof. We denote D := (�2K) ∩ S where �2 is the constant from the inequality (iii) of
Lemma 4.1. Let us prove that∫

K

|ũ − ũK | d��C

∫
D

|u − uD| d�. (4.1)

Since r ��S/�1, by (ii) of Lemma 4.1 we have rB ��S for every ball B ∈ BK . Thus,
BK=B̃K so that {HB : B∈BK} is a subfamily of the family HS satisfying properties (i)–(iii)
of Theorem 2.6.

Applying property (i) of Lemma 4.1 with c := uD we obtain∫
K\S

|ũ − c| d��Cd

∑
B∈B̃K

�(B)|uHB
− c|
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so that by (iii) of Lemma 4.1∫
K\S

|ũ − c| d��C

∫
D

|u − c| d�.

This implies∫
K

|ũ − c| d� =
∫

K∩S

|u − c| d� +
∫

K\S
|ũ − c| d��C

∫
D

|u − c| d�

so that∫
K

|ũ − ũK |�2
∫

K

|ũ − c| d��C

∫
D

|u − c| d�

proving (4.1). Since �(K) ≈ �(�2K), we finally obtain

r−�

�(K)

∫
K

|ũ − ũK | d��C(�2r)
−�
(

1

�(�2K)

∫
D

|u − uD| d�

)
�Cu

�
�,S(z). �

Recall that given a function u defined on S we let u� denote its extension by 0 to all of X.
As usual given f ∈ L1,loc(X) we let Mf denote the Hardy–Littlewood maximal operator:

Mf (x) := sup
r>0

1

�(B(x, r))

∫
B(x,r)

|f | d�.

Lemma 4.3. Let K = B(z, r) be a ball such that z ∈ S and r > �S/�1. Then

r−�

�(K)

∫
K

|ũ − ũK | d��CMu�(z).

Proof. Applying property (i) of Lemma 4.1 with c := 0 we obtain∫
K\S

|ũ| d��C
∑

B∈BK

�(B)|uHB
|.

Since uHB
:= 0 whenever rB > �S , we have∫

K\S
|ũ| d��C

∑
B∈B̃K

�(B)|uHB
|.

Applying (iii) of Lemma 4.1 with c := 0 we obtain∫
K\S

|ũ| d��C

∫
(�2K)∩S

|u| d�.

Since r > �S/�1, this implies

I := r−�

�(K)

∫
K

|ũ − ũK | d� � 2
r−�

�(K)

∫
K

|ũ| d�� 2��
1

��
S

1

�(K)

∫
K

|ũ| d�

� 2��
1

��
S

1

�(K)

(∫
K∩S

|u| d� + C

∫
(�2K)∩S

|u| d�

)
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so that

I � 4��
1C

��
S

1

�(K)

∫
(�2K)∩S

|u| d�.

Since �(K) ≈ �(�2K), we have

I � C

�(�2K)

∫
(�2K)∩S

|u| d� = C

�(�2K)

∫
�2K

|u�| d��CMu�(z). �

Lemmas 4.2 and 4.3 imply the following.

Proposition 4.4. For every z ∈ S

(ũ)
�
�(z)�C(u

�
�,S(z) + Mu�(z)).

Let us estimate the value of (ũ)
�
�(z) for z ∈ X\S. We will put inf

HQ

u
�
�,S := 0 whenever HQ = ∅

(recall that HQ = ∅ iff rQ > �S).

Lemma 4.5. Let Q = B(xQ, rQ) ∈ WS and let z ∈ Q. Then for every ball K := B(z, r) with
r � 1

8 rQ we have

r−�

�(K)

∫
K

|ũ − ũK | d��C

(
inf
HQ

u
�
�,S + Mu�(z)

)
. (4.2)

Proof. We have to prove that for arbitrary s ∈ HQ

I := r−�

�(K)

∫
K

|ũ − ũK | d��C (u
�
�,S(s) + Mu�(z)). (4.3)

Since r � 1
8 rQ, the ball K = B(z, r) ⊂ 9

8Q =: Q∗. By Lemma 3.3 for every x, y ∈ K(⊂ Q∗)

|ũ(x) − ũ(y)|�Cd(x, y) max{r−1
B |uHB

− uHQ
| : B ∈ WS, B∗ ∩ {x, y} �= ∅}.

Since x, y ∈ Q∗, for every ball B ∈ WS such that B∗ ∩ {x, y} �= ∅ we have B∗ ∩ Q∗ �= ∅.
Therefore by (2.7)

1

C1
rQ �rB �C1rQ, (4.4)

where one can put C1 = 28. We denote A := {B ∈ WS : B∗ ∩ Q∗ �= ∅}. Then

|ũ(x) − ũ(y)|�C
d(x, y)

rQ
max
B∈A

|uHB
− uHQ

|.

Hence
1

�(K)

∫
K

|ũ − ũK | d� � 1

�(K)2

∫
K

∫
K

|ũ(x) − ũ(y)| d�(x)d�(y)

� C
d(x, y)

rQ
max
B∈A

|uHB
− uHQ

|.
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Since d(x, y)�diam K �2r and r � 1
8 rQ, this implies

I �Cr−�
Q max

B∈A
|uHB

− uHQ
|. (4.5)

Let us consider two cases.
The first case: rQ ��S/C1, where C1 is the constant from the inequality (4.4). Then for

each B ∈ A we have rB ��S so that HB, HQ satisfy properties (i), (ii) of Theorem 2.6. Thus,
HB ⊂ (�1B) ∩ S, HQ ⊂ (�1Q) ∩ S, �(HB) ≈ �(B), and �(HQ) ≈ �(Q).

Since B∗ ∩ Q∗ �= ∅ and rB ≈ rQ, for some positive C2 = C2(�1) we have

B ∪ Q ∪ HB ∪ HQ ⊂ D := B(s, C2rQ).

(Recall that s is an arbitrary point of HQ.) These inequalities and the doubling condition imply
�(HB) ≈ �(HQ) ≈ �(D). Hence

|uHB
− uD∩S |� 1

�(HB)

∫
HB

|u − uD∩S | d��C
1

�(D)

∫
D∩S

|u − uD∩S | d�.

A similar estimate is true for HQ so that

|uHB
− uHQ

|� |uHB
− uD∩S | + |uHQ

− uD∩S |�C
1

�(D)

∫
D∩S

|u − uD∩S | d�.

Applying this inequality to (4.5) we obtain

I �C
r−�
Q

�(D)

∫
D∩S

|u − uD∩S | d��C
r−�
D

�(D)

∫
D∩S

|u − uD∩S | d�,

where rD := C2rQ is the radius of the ball D := B(s, C2rQ). Hence by definition (1.4) we have

I �Cu
�
�,S(s) proving (4.3).

The second case: rQ > �S/C1. By (4.5) I �C max{|uHB
| : B ∈ A}. Recall that uHB

:= 0 if
rB > �S so that

I �C max{|uHB
| : B ∈ A, rB ��S}.

By Theorem 2.6 for every B ∈ A such that rB ��S we have HB ⊂ (�1B) ∩ S, �(HB) ≈ �(B).
Since rB ≈ rQ and z ∈ Q, for some positive C3 = C3(�1) we have HB ⊂ B(z, C3rQ). Put
D̃ := B(z, C3rQ). Since �(D̃) ≈ �(Q) and �(B) ≈ �(Q), we have �(HB) ≈ �(D̃). Hence

|uHB
|� 1

�(HB)

∫
HB

|u| d��C
1

�(D̃)

∫
D̃∩S

|u| d��CMu�(z)

proving that I �CMu�(z). �

Lemma 4.6. Inequality (4.2) is true for every r > 1
8 rQ.

Proof. We denote �3 := 8(�1 +10), r̃ := �3r and K̃ := �3K = B(z, r̃). Recall that �1 is the con-
stant from Theorem 2.6. Prove that K̃∩S �= ∅. In fact, let aQ ∈ Q and bQ ∈ S be points satisfying
the inequality d(aQ, bQ)�2d(Q, S). Then by (ii), Theorem 2.4, d(aQ, bQ)�2d(Q, S)�8rQ.
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But z ∈ Q so that

d(z, bQ)�d(z, aQ) + d(z, bQ)�2rQ + 8rQ = 10rQ �80r ��3r = r̃ .

Thus, bQ ∈ K̃ ∩ S proving that K̃ ∩ S �= ∅.
Let us consider two cases.
The first case: r̃ := �3r > �S/�1. Since r̃ is the radius of the ball K̃ = �3K , r̃ > �S/�1 and

K̃ ∩ S �= ∅, by Lemma 4.3

r̃−�

�(K̃)

∫
K̃

|ũ − ũK̃ | d��CMu�(z).

By the doubling condition �(K) ≈ �(K̃) so that

I := r−�

�(K)

∫
K

|ũ − ũK | d� � 2r−�

�(K)

∫
K

|ũ − ũK̃ | d�

� C
r̃−�

�(K̃)

∫
K̃

|ũ − ũK̃ | d��CMu�(z)

proving (4.2).
The second case: r̃ := �3r ��S/�1. Since 8r > rQ, we have

rQ < 8�S/(�1�3) < �S.

Therefore by Theorem 2.6 HQ �= ∅, �(HQ) ≈ �(Q) and HQ ⊂ (�1Q) ∩ S.
Take s ∈ HQ and put V := B(s, �3r). Since HQ ⊂ �1Q, d(s, xQ)��1rQ so that for every

a ∈ K = B(z, r)

d(s, a) � d(s, xQ) + d(xQ, z) + d(z, a)

� �1rQ + rQ + r �8�1r + 8r + r = (8�1 + 9)r ��3r

proving that K ⊂ V . On the other hand, V ⊂ 2�3K so that by the doubling condition
�(V ) ≈ �(K). Hence

I �2r−�
K

1

�(K)

∫
K

|ũ − ũV | d��Cr−�
V

1

�(V )

∫
V

|ũ − ũV | d�.

But rV := �3r ��S/�1 so that by Lemma 4.2 I �Cu
�
�,S(s). This finishes the proof of (4.2) and

the lemma. �

Theorem 4.7. For every z ∈ X

(ũ)
�
�(z)�C(M(u

�
�,S)�(z) + Mu�(z)).

Proof. For z ∈ S this follows from Proposition 4.4.
Let Q ∈ WS and let z ∈ Q. Then by Lemmas 4.5 and 4.6

(ũ)
�
�(z)�C

(
inf
HQ

u
�
�,S + Mu�(z)

)
. (4.6)

Recall that in this formula we put the infimum to be equal 0 whenever HQ = ∅, i.e., rQ > �S .
Therefore in the remaining part of the proof we may assume that rQ ��S . Then by Theorem 2.6
�(HQ) ≈ �(Q) and HQ ⊂ (�1Q) ∩ S.



160 P. Shvartsman / Journal of Approximation Theory 144 (2007) 139–161

Let us denote B := B(z, (�1+1)rQ) and h := (u
�
�,S)�. Since z ∈ Q, we have HQ ⊂ �1Q ⊂ B.

In addition, by the doubling condition �(HQ) ≈ �(B). Hence

inf
HQ

u
�
�,S = inf

HQ

h� 1

�(HQ)

∫
HQ

hd�� 1

�(HQ)

∫
B

hd�� C

�(B)

∫
B

hd��CMh(z).

This inequality and (4.6) imply the proposition. �

Remark 4.8. Similar estimates and definition of ũ, see (3.2), easily imply that |ũ(x)|�CMu�(x)

for every x ∈ X.

Proof of Theorem 1.4. It can be easily shown that for any extension U of a function u ∈ Lp(S)

to all of X we have u
�
�,S(x)�2U

�
�(x), x ∈ S. This immediately implies the inequality

‖u‖Lp(S) + ‖u�
�,S‖Lp(S) �2‖u‖C�

p(X,d,�)|S .

Now let u, u
�
�,S ∈ Lp(S), 1 < p�∞. Prove that ũ = ExtS u ∈ C�

p(X, d, �). By Theorem 4.7

‖(ũ)
�
�‖Lp(X) �C(‖M(u

�
�,S)�‖Lp(X) + ‖Mu�‖Lp(X)).

Recall that the operator M is bounded in Lp(X) whenever 1 < p�∞ and (X, d, �) is a metric
space of a homogeneous type, see, e.g. [19, p. 10]. Hence

‖(ũ)
�
�‖Lp(X) �C(‖(u�

�,S)�‖Lp(X) + ‖u�‖Lp(X)) = C(‖u�
�,S‖Lp(S) + ‖u‖Lp(S)).

Since ‖ũ‖Lp(X) �C‖u‖Lp(S), see (3.16), we finally obtain

‖ũ‖C�
p(X,d,�) := ‖ũ‖Lp(X) + ‖(ũ)

�
�‖Lp(X) �C(‖u‖Lp(S) + ‖u�

�,S‖Lp(S))

proving that ũ ∈ C�
p(X, d, �) and equivalence (1.6) holds.

The proof of Theorem 1.4 is complete. �
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