
Journal of Computational and Applied Mathematics 35 (1991) 1199132
North-Holland

119

On the subdivision strategy in adaptive
quadrature algorithms

Jarle Berntsen
Institute of Marine Research, Nordnesgaten 33, N-5000 Bergen, Norway

Terje 0. Espelid and Tor Smevik
Department of Informatics, University of Bergen, Thormohlensgate 55, N-5008 Bergen, Norway

Received 20 October 1990

Abstract

Bemtsen, J., T.O. Espelid and T. Sorevik, On the subdivision strategy in adaptive quadrature algorithms,
Journal of Computational and Applied Mathematics 35 (1991) 119-132.

The subdivision procedure used in most available adaptive quadrature codes is a simple bisection of the chosen
interval. Thus the interval is divided in two equally sized parts. In this paper we present a subdivision strategy
which gives three nonequally sizedparts. The subdivision points are found using only available information. The
strategy has been implemented in the QUADPACK code DQAG and tested using the “performance profile”
testing technique. We present test results showing a significant reduction in the number of function evaluations
compared to the standard bisection procedure on most test families of integrands.

Keywords: Adaptive quadrature, subdivision.

1. Introduction

Automatic algorithms are now used widely for the numerical calculation of integrals. Since the
first such algorithm was given by McKeeman [13,14] in 1962, many new and sophisticated
algorithms, both adaptive and nonadaptive, have been developed, among these [4,15,16]. For a
more complete reference see [3, pp. 425-4341.

Adaptive quadrature algorithms have a general structure consisting of the following four
steps:

(1) Choose an interval from a set of subintervals.
(2) Subdivide the chosen interval.
(3) Compute local approximations to the integrals and estimate their errors for each new

subinterval.
(4) Update the interval collection, the global integral approximation and the estimate of the

global error. Check for convergence and, if necessary, repeat from step (1).

0377-0427/91/$03.50 0 1991 - Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81147843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

120 J. Berntsen et al. / Adaptive quadrature algorithms

A lot of work has been done, since McKeeman’s routine was published, to improve automatic
quadrature software. The designer of such software has to make a number of decisions [17]. First
of all he has to choose the basic quadrature rule to be used; McKeeman picked Simpson’s rule,
e.g. in QUADPACK [16] G auss-Kronrod rules are used, while quite recently Berntsen and
Espelid gave some arguments for choosing Gauss rules [2].

An aspect that has attracted some attention is the question of whether a local or global
convergence criteria is to be preferred [3,12,18].

Observe furthermore that the estimate of the true error in the approximation of the integral
governs the decision on whether to return the current approximation and terminate or to
continue. Both the efficiency and the reliability therefore depend heavily on the error estimating
procedure, a problem that has got a lot of attention; e.g., [2,4,5,8,9,16].

To our knowledge only a few papers [6,10,19] discuss the subdivision strategy used in adaptive
quadrature software. Almost every published routine of this type uses a simple bisection strategy,
that is, pick the interval to be processed next and divide it in two equally sized parts. One
exception to this is McKeeman’s original algorithm which is based on trisection, that is uniform
3-division. Lyness [lo] discusses the use of bisection versus trisection in this adaptive code based
on the Simpson rule and concludes that bisection is superior to trisection since the function
values can be reused. Both Hanke [6] and Sorevik [19] discuss the more general strategy: divide
in p > 1 equally sized parts with no reuse of function values. They conclude, based on theory
(model problems) and experiments, that p = 2 is not the optimal choice. The “best” value is of
course problem-dependent, but p = 3 (trisection) seems generally to be slightly better than
bisection.

We will, in this paper, focus on the subdivision strategy used in adaptive quadrature routines.
We will allow the interval to be divided in more than two nonequal parts. It turns out that on
problems where adaptability is important such a simple idea can reduce the work by 25560%. In
spite of the huge literature on one-dimensional numerical integration, we are not aware of any
paper which addresses this particular idea. The only article which has some relevance to this
topic is the paper by Hazlewood [7]. However, his idea is based on Newton-Cote rules and is
applied in a locally adaptive subdivision strategy.

The outline of this paper is as follows. In the next section we present the basic adaptive
p-division quadrature algorithm. In Section 3 we discuss, in some detail, alternative ways of
implementing a nonuniform 3-division algorithm. In Section 4 we present some test results and
finally in Section 5 we give some concluding remarks.

2. A globally adaptive quadrature algorithm.

We define the integral to be computed by

If = /-‘f(x) dx.

An adaptive quadrature algorithm has input a, b, f and an error tolerance Q. The output will
normally be an estimate of the integral Q and an error estimate ,??. If possible, the algorithm
computes 6 with 2 < 6. This does not ensure that) If - 0 1 G c, but it does suggest that it is
likely.

J. Berntsen et al. / Adaptive quadrature algorithms 121

At a certain stage in an adaptive quadrature algorithm we have M intervals, say Hk,
k=l , . . . , M (an interval collection). Furthermore we have, for each interval in the collection, an ,9
approximation bk to the integral and an error estimate Ek to this approximation. The basic
structure in such an algorithm is then the following.

A globally adaptive quadrature algorithm.
Initialize:

Control:

Initialize the interval collection and put M = 1; Produce &, and 8,; Put
b= Q1 and l?=l?,;
while ,!? > c do
begin

Process intervals:
Update:

Pick an interval from the collection; say interval Hk;
Divide this interval in p parts;
Compute: i):‘, Ez”, i = 1,. . . , p;
6 = fi + (cp o(i)) _ & .

)g =)g + (&y%, _ & ‘I’
I 1 k

Let these p new intezals replace interval Hk in the collection and put
M=M+(p-1);

end

Note that when we pick an interval, say Hk, from the interval collection, we need information
associated with that interval both in the step Process intervals and the step Update, e.g., ok, ik
and interval bounds [ak, bk].

If p > 1 is kept fixed and the subdivision is uniform, then the new interval bounds are
produced easily. However, if we allow p to vary, but still use a uniform subdivision, then the
actual p-value to be used on Hk has to be saved too (we assume that which p-value to use may
depend on the function values used to produce 0,).

A nonuniform subdivision of Hk is slightly more complicated: we may save the future
subdivision points along with the rest of the information on Hk (including p in case its value is
allowed to vary). This choice is based on the fact that p is much smaller than the number of

b a

t
I I
I I I

t I I I I III! I

Fig. 1. A subdivision of an interval and the associated subdivision tree: s = 4 and p = 3.

122 J. Berntsen et al. / Adaptive quadrature algorithms

function values n used by the basic quadrature rule Q and thus the subdivision points are
cheaper to store than the n function values. Thus, we take the trouble to compute future
subdivision points for all intervals without knowing whether this interval ever will be picked
from the collection.

In order to illustrate how such an algorithm works, let us stop the algorithm after s
subdivision steps and illustrate what has happened by a subdivision tree. In such a tree each
node represents an interval. A node is either a leave (an interval that has not been subdivided so
far in the process) or an interior node with exactly p branches. The root represents the original
interval [a, b], while the leaves represent the interval collection at any time. Thus the leaves
represent the final partition of the original interval when the algorithm stops. In Fig. 1 we
illustrate such a subdivision tree.

The statements in the following theorem are easy to prove.

Theorem 1 (p-division). In a p-division algorithm, with p fixed, the total number of intervals that
have been processed after s subdivision steps is N = 1 + ps. This number is equal to the total number
of nodes in the subdivision tree. The number of interior nodes in the subdivision tree is Ninterior = s
and the number of leaves is N,,,,,, = 1 + (p - 1)s.

Note that when the algorithm stops, then only the leaves in the tree have information that
contribute to the final estimates ,!? and 0. The internal nodes have been used to find the final
subdivision, but are, with respect to the final estimates, in some sense “waisted”. Assume that
the total work WP done by a p-division algorithm is essentially proportional to the number of
processed intervals and thus the number of nodes in the subdivision tree

WP = c(1 +ps).

Observe that approximately a (p - 1)/p part of the total work contributes to the final estimate
in a p-division algorithm. This part is smallest for p = 2 and increases with p. Let us formulate
this fact in the next observation.

Observation. Assume that the final partitions of the original interval have approximately the
same distribution (and thus the same number of points) for both the 2- and 3-division strategy;
then

$W,- +W, or W3=0.75W,.

In such a case the 3-division strategy will achieve the same result as the 2-division strategy using
75% of the effort.

This observation rests heavily on the assumption. At least two objections are easy to spot. (1)
The uniform 3-division strategy is less adaptive than the 2-division strategy. (2) The 3-division
strategy will occasionally divide a subinterval in three parts when only a division in two is
necessary.

As a remark to the second objection the opposite is of course true too: the bisection algorithm
sometimes processes 5 or 7 intervals when it is only necessary to use trisection and process 4
intervals. Which value of p that finds the best balance between adaptability and low “waist” has
been discussed in the literature and we summarize the experience.

J. Berntsen et al. / Adaptive quadrature algorithms 123

Rule of Thumb (Hanke [6] and Sorevik [19]). When adaptability is important, then uniform
3-division is slightly better than bisection:

IV, = 0.95 w,.

This result is theoretically justified and confirmed by numerical experiments. We should note
that when adaptability is not important, e.g., a strongly oscillating function over the whole

interval, then we can expect an even greater benefit from choosing trisection instead of bisection.
We see two immediate remedies to the disappointing 5% improvement (compared to the

indicated 25%).
(1) Choose a nonuniform 3-division based on available information. Such a strategy may even

be more adaptive than bisection.
(2) Avoid dividing in three parts when only two is necessary by designing an a priori error

estimate for a potential subdivision.
We could of course generalize this idea to any value of p > 2, however we prefer to simplify

the discussion by concentrating on 3-division. From a practical point of view p should not be
chosen too big. Given that we want to compute the subdivision points using only the available n
function values, then we expect that, on the average, at least three function values per new
subinterval is necessary information, giving n/p >, 3. For n = 20 then values of p equal to 2, 3, 4
and 5 seem reasonable.

3. Nonuniform 3-division

Suppose that we have an interval H: [a, b] (let us drop the subscript k) and given n function
values f,, f2,. . . , f,. (All points E [a, b], e.g., Gauss-Kronrod points.) The problem we want to
address is: how to use this information to find two subdivision points c and d such that
a < c < d -C b giving new subintervals [a, c], [c, d], [d, b].

There exist a large number of possible ways to compute c and d. We will, in this paper,
discuss three, essentially different, approaches to this problem.
l Focus on the difficulty. Choose c and d such that the difficulty is isolated.
l Model, a priori, the local error of any potential subdivision and choose c and d in order to
minimize the sum of these three local error estimates.
l Model, a priori, the future work associated with a potential subdivision and choose c and d in
order to minimize the total estimated work for this subdivision.

The first of these three approaches is the simplest and is easy to implement. Furthermore, the
extra cost associated with this strategy is negligible. One basic algorithm for this strategy looks as
follows.

Algorithm focus on the difficulty.

l Find the location of the difficulty.
l Estimate the width of the difficulty.
l if the width > (b - a)/3 then

Choose a uniform 3-division
else

124 J. Berntsen et al. / Adaptive quadrature algorithms

Use the c and d values suggested by the location and width with one exception: if c = a or
d = b, then accept either [a, d] or [c, b] as the difficult interval and bisect the rest of the
interval.
endif

Note that we keep p = 3 always in this algorithm making no attempt to discover when a
2-division (possibly nonuniform) would have been sufficient or a value of p > 3 preferable. In
order to do such a judgment we will need to have tools as indicated by the two alternative
approaches to this problem. The implementation of this first strategy is discussed in the next
section. Here we just mention that the location of a difficulty is spotted by a great (in absolute
value) fourth-order divided difference. The width is then estimated by comparing the sizes of
neighbor divided differences.

We will now briefly discuss the two alternative approaches to the problem to choose the
division points c and d. Suppose that we have two trial values c and d. We need to model the
error in absolute value if the integral of f over [c, d] is approximated by the quadrature rule Q

E,c.dl = K(d - c)4fl~ Jdd I.
C,

Here K is a constant, q 3 1 is an integer and dd is a divided difference computed using available
information. Note: this is meant to be an a priori estimate, before the n new function values are
available, and will be based on function values used in connection with the interval H: [a, b]
itself. Formula (1) is a natural estimate of the error if the function is sufficiently smooth and the
interval sufficiently small with proper choices of q and the order of the divided differences.
However, due to lack of information we have to use a low-order divided difference, take the
maximum in absolute value of all possible divided differences over the actual interval, choose (or
compute) a value of q to be used, hoping that this model will give good choices of c and d.
Suppose that trial values of c and d are available; then, based on (1) we get for the three new
intervals, with the notation D,c,dl = max,c,dl Idd 1 that

Ekd z NC!- 44~,a,cl,
E [c.d~ = K(d- c)~~,~,,~,
E,ci,61 = K(b - d)qD,,,b,.

The total new error for this trial subdivision will then be

q:,;) = K((c - a)q~,,,cl + (d- c)q~Lc,,l + (b - d)‘DI,,bl).
Now, choose c and d in such a way that (5) is minimized. This may at first look like a simple
task, but note that the maximum (e.g., fourth-order) divided difference in each of the three
intervals may vary with c and d. We have tried several simplified implementations of this model
without being able to compete with the simple focus on the difficulty strategy, taking into
account the smaller effort in the latter.

The third approach, minimize the future work, is based upon the model for the error over each
subinterval given in (1). In order to judge how much future work is needed, given a trial
subdivision, we assume that this can be measured as follows. Given a tolerance eta, and some
trial interval (any of the intervals [a, b], [c, d] or [d, b]). A crude measure of the work left to be

J. Berntsen et al. / Adaptive quadrature algorithms 125

done in connection with this trial interval is how many equal parts ptria, we have to subdivide our
trial interval into in order to get the error in each part Esub less than eto,/Ptria,:

E
Etrial etol

sub
Z-G----

PPrial Ptrial ’

Thus we expect to have to process the trial interval itself in addition to at least ptria, (smallest
possible integer satisfying (6)) subintervals giving us the work expressed in the number of
intervals to be processed (I is here the length of the trial interval)

Krial =

:

0, if I=O,

I’
if I>0 and ptriai = 1,

1 + plria,, if 1 > 0 and Ptrial > 1.

Note that we are using this model only to determine the points c and d and do not intend to
trust ptria, to guide us in the number of subintervals we are going to choose. Finally we compute
the total work associated with a given subdivision

where each of these subintervals are treated as a trial interval and the work computed as
indicated. Minimizing I%&, by varying c and d will now give us the optimal subdivision.

Unfortunately, this is not a simple optimization problem due to the same objection as mentioned
for the second strategy. Several simplified versions of this strategy have been implemented too
with the overall impression that it is hard to beat the simple focus on the difficulty strategy. It is
reasonable to let the input value of c influence et,,, implying that we get different subdivision

points if we change the value of the requested error.

4. Focus on the difficulty

This section is divided in two parts. In the first part we give a more detailed description on
how we have implemented the simple focus on the difficulty strategy. Next we present the
different test problems and we conclude this section with the results of the numerical experi-
ments.

4.1. Implementation

One of the best adaptive, general purpose, codes available today is the QUADPACK’s code
DQAG. This code is based on Gauss-Kronrod rules with several options for the choice of n, the
number of points. We have picked the 21-point version based on our experience that on
problems where adaptability is important this is to be preferred [l].

126 J. Berntsen et al. / Adaptive quadrature algorithms

As mentioned we have chosen a fourth-order divided difference to locate the difficulty. Thus
we need to compute 17 inner products, each one consisting of 5 elements. The weights used in
each inner product are precomputed and stored along with the Gauss-Kronrod weights. Thus
the work amounts to 4 extra multiplications per function evaluation in the rule. This comes in
addition to the work done in DQAG in connection with rule evaluation and error estimation.

Next we search for the index to the greatest divided difference (in absolute value). By
comparing the sizes of neighbor divided differences to the maximum using heuristic values of the
reduction factor, we compute the width of the difficulty. Based on this information we pick c
and d in order to isolate the difficulty in the interval.

We do not believe that the choice of the fourth-order divided difference is crucial. In order to
discover problem spots, e.g. in cubic spline functions, we need at least a third-order divided
difference. The quadrature rule and error evaluation in DQAG takes place in the subroutine
DQK21. We have modified this particular routine to evaluate, in addition to the fourth-order
divided differences, the maximum of these and the index to this maximum, and finally the points
c and d giving the width = d - c. After deciding if this actually is an isolation of a trouble spot
with a possible modification of c and d, we return the values of c and d in addition to the rest
of the parameters computed by DQK21.

These values are stored with the rest of the information connected to this interval. When the
interval eventually is picked to be subdivided, then the subdivision points are used. In order to
complete the documentation of these ideas we include, in the Appendix, the modified part of the
DQK21 code.

4.2. Testing

The testing technique used is a performance profile testing technique suggested in [ll]. These
tests are based on a selection of six test families of integrands. Each test family has a special

Table 1

Test families Attributes

1
/
ol(1 x - X I)“’ dx

2 i%(x) dx,

Singularity

Discontinuous

where fi(x) =
0, ifxgh

exp(a2x), otherwise

3 JolexP(- a,Ix-hl)dx

4
J

210=4/((x - A)’ + 102”4) dx
1

C, function

One peak

5 2

4

0
10a,/((x - X,)’ + 102”5) dx

’ r=l
Four peaks

6
J

‘2&x - h) cos(B(x - A)‘) dx, Nonlinear oscillation

Ghere B = lO”“/max(h2, (1 - X)2)

J. Berntsen et al. / Adaptive quadrature algorithms 127

0 I I I I I I I 0 / I I I I I I I

1.0 2.0 3.0 4.0 5.0 6.0 7.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-LOClO(REQUESTED ERROR) -LOGlO(REQUES-TED ERROR)

Fig. 2. Test family 1 (Singularity, q = -0.5 and X E Fig. 3. Test family 2 (Discontinuous, (Ye = 0.5 and A E

LO, 11). 10, 11).

0) / I I I I I I O/ I I I 1 I 1 1

1.0 2.0 3.0 4.0 5.0 6.0 7.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-LOGlO(REQUESTED ERROR) -LOGlO(REQUESTED ERROR)

Fig. 4. Test family 3 (C, function, (Ye = - 2 and X E
10, 11).

Fig. 5. Test family 4 (One peak, (Ye = -4 and X E [l, 21).

attribute, a difficulty parameter (Y and one or more random parameters A (distributing the
position of the difficulty uniformly over the integration interval) (see Table 1 and Figs. 2-7).

We have made one choice of value for each difficulty parameter and in addition we ran the
codes on 50 sampled problems from each test family. We tested three versions of the DQAG
code: (1) the original code DQAG which is based on bisection; (2) we replaced bisection with a
simple trisection; (3) we replaced bisection with nonuniform 3-division based on the focus on the
difficulty strategy.

O(I , I \ \ , I

1.0 2.0 3.0 4.0 5.0 6.0 7.0
-LOGlO(REQUESTED ERROR)

Fig. 6. Test family 5 (Four peaks, (Ye = -2, A, E [l, 21,
i=l ,...,4).

0 1 , I 1 , , I ,

1.0 2.0 3.0 4.0 5.0 8.0 7.0
-LOGlO(REQUESTED ERROR)

Fig. 7. Test family 6 (Nonlinear oscillation, 0~~ = 3 and
x E LO, 11).

128 J. Berntsen et al. / Adaptive quadrature algorithms

We ran all codes on 7 different error requests: 10-j, j = 1,. . . ,7. For each routine and error
request we computed the average number of function evaluations based on 50 samples. We
define the average number of function values for the DQAG code as a basic value for each error
request, defined in each case to be 100%. Thus the results for the trisection version and the
nonuniform version are given relative to this.

Note that the Rule of Thumb for uniform 3-division is confirmed by these experiments for all
problems where adaptability is important with one exception: for singular problems it behaves
far better than expected. We have at the moment no explanation to this behavior.

Furthermore, we see that nonuniform 3-division has results in the range 40-75s for all
problems where adaptability is important (singularity, discontinuous, C,, function and one peak).
For the one peak problem family adaptability seems to become less important with smaller error
requests. This is reasonable since the function is smooth and once the peak is isolated in a
sufficiently small interval, it will not be more difficult than the rest of the intervals in the
collection. This phenomenon is not observed in the three nonsmooth families since here the
major job at any time will be to isolate the difficult area.

If we make the four peak family more difficult, we will improve the behavior of the
nonuniform 3-division. Making this problem easier will move the results in direction of the
results for the oscillating test family.

This last family is included to demonstrate the effect of using these codes to a problem with
difficulties spread out over the whole integration area. Still we observe an improvement
compared to DQAG, but in this case it is more moderate.

Only one place is DQAG better than its modifications: error request 10-l for the C, function.
This problem is very easy and in many of the sampled cases a division in 2 is sufficient. This fact
makes it impossible for codes based on 3-division to compete with bisection.

We conclude this section by giving Table 2, which illustrates that the accuracy we have
achieved with DQAG itself and the nonuniform 3-division do not differ much in spite of the
reduction in the number of function evaluations we have achieved.

Table 2
The average number of correct digits with nonuniform 3-division minus the average number of correct digits with
DQAG

Error request Singularity Discontinuous One peak Oscillatory Four peaks

10-l 0.02 0.37 1.21 2.11 0.33 1.16

10-2 0.15 0.31 0.74 1.25 0.18 0.90
10-3 0.08 0.50 1.40 0.43 0.06 0.40
1O-4 -0.18 0.34 0.86 -0.11 - 0.01 0.49
10-s - 0.44 0.21 0.66 - 0.21 - 0.02 0.65
10-6 -0.57 - 0.87 1.46 - 0.32 -0.12 0.40
10-7 -0.19 - 2.84 1.02 - 0.64 - 0.20 0.26

J. Berntsen et al. / Adaptive quadrature algorithms 129

5. Conclusions and remarks

We summarize our experience in the following remarks.
l A subdivision strategy based on a nonuniform p-division of intervals with p 2 2 makes
adaptive quadrature more efficient on problems where adaptability is important. We feel that the
reduction in work is so great that future adaptive codes should include such a technique.
l A simple strategy of the type focus on the difficulty can be implemented with low cost and the
tests show significant improvements in efficiency, without loss in reliability.
l Possible improvements of the simple strategy would be to (1) handle oscillating problems even
better by trying to detect this situation and then increase p and (2) detect when p can be
reduced in order to save work when this is possible.
l More sophisticated strategies, e.g., minimize the error or minimize the future work of a potential
subdivision have a higher implementation cost than the simple strategy. We have, so far, been
unable to design these strategies such that they become generally better than the simple strategy.
The reason for this is probably that we have too little information available to implement these
strategies in a proper manner.

Appendix

We give here the FORTRAN code for the tail of the modified QUADPACK routine DQK21.
This is an implementation of the subdivision algorithm “Algorithm focus on the difficulty”. c
and d are new output parameters of the modified routine (to be saved along with the local
interval [a, b]).

C

C

C

C

C

C

C

C

C

C

C

C

Non-uniform 3-division: Based on the 21 Gauss-Kronrod function
values we have computed the absolute value of the 17 divided
differences and stored these values in dd(i), i = 1, 2, 17.

x(i), i = 1, 2, 21, are the 21 Gauss-Kronrod points
on this local interval [a,b].

The problem is now to decide where to choose the two
division points: c and d.

Locate the maximum dd[1:17]; Save the address in index
and the value in divmax.

divmax = dd(l)
index = 1
do 510 i = 2,17

if (dd(i) .gt.divmax) then
divmax = dd(i)

index = i
endif

510 cant inue
C

C Find the size of the difficult. region. This search is
C based on the choice of the fourth order divided difference.

130 J. Berntsen et al. /Adaptive quadrature algorithms

600

699

700

799

C

C

C

C

C

C

C

C

The region of influence is determined: it will be bounded by
the indices low and up. The value factor = 0.02 has been used
in the tests reported in this paper.

low = 1

compar = divmax*f actor
do 600 i = index-1,1,-l

if (dd(i).le.compar) then
low = i + 4
go to 699

endif
cant inue

cant inue
up = 21
do 700 i = index+l,l7,1

if (dd(i) .le.compar) then
up = i
go to 799

endif
cant inue
continue

Four, mutually exclusive, possibilities: 1 < low < up < 21;
up <= low; low = 1 < up <= 21; 1 < low < up = 21;
Now low=1 or up=21 suggests difficulty close to endpoint.
If both low>1 and up<21 then we expect an interior difficulty.

Identify the situation and choose the two division points.

if ((low.gt.l).and.(up.lt.2l).and.(low.lt.up)) then

In this case low and up give the division points c and d,
unless the width is too large: uniform 3-division.

width = x(up) - x(low)
if (width.le.((b-a)/311 then

c = x(low)

d = x(up>
else

c = a + (b-a)/3
d = b - (b-a)/3

endif

elseif (up.le.low) then

This is unlikely to happen.. If it does, the “confusion”
is solved by expanding the region. Check for the ends
of the interval: Bisect the rest of the interval.

J. Berntsen et al. / Adaptive quadrature algorithms 131

UP = up-l

low =low+l

if (up.eq.1) then
c = x(low)
d = b - (b-c)/2

elseif(low.eq.21) then

d = x(up)
c = a + (d-a)/2

else
c = x(up>

d = x(low)

endif

elseif(low.eq.1) then

Left endpoint difficulty: Check width and divide in three

either uniformly or by bisecting the rest of the interval.

width = x(up) - a

if (width.le.((b-a)/3)) then
c = x(up)
d = b -(b-c)/2

else

c = a + (b-a)/3
d = b - (b-a)/3

endif

else

In this cases up = 21 and low > 1. Same procedure as
in the previous case, now with the right endpoint.

width = b - x(low)
if (width.le.((b-a)/3)) then
d= x(low)
c = a+(d-a)/2

else

c = a + (b-a)/3
d = b - (b-a)/3

endif
endif
return

end

132 J. Berntsen et al. /Adaptive quadrature algorithms

References

[l] J. Bemtsen, A test of some well known quadrature routines, Reports in Informatics 20, Dept. Inf., Univ. Bergen,

1986.
[2] J. Bemtsen and T.O. Espelid, Error estimation in automatic quadrature routines, ACM Trans. Math. Software, to

appear.
[3] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration (Academic Press, New York, 1984).
[4] C. de Boor, On writing an automatic integration algorithm, in: J.R. Rice, Ed., Mathematical Software (Academic

Press, New York, 1971) 201-209.
[5] T.O. Espelid and T. Sorevik, A discussion of a new error estimate for adaptive quadrature, BIT 29 (1989)

283-294.
[6] W. Hanke, Die optimaler Sektion bei adaptiven Integrationsverfahren mit globaler Strategic, Z. Angew. Math.

Mech. 62 (1982) T327-329.
[7] L.J. Hazlewood, An alternative strategy for cautious adaptive quadrature, J. Inst. Math. Appl. 20 (1977) 505-518.
[8] D.P. Laurie, Sharper error estimate in adaptive quadrature, BIT 23 (1983) 258-261.
[9] D.P. Laurie, Practical error estimation in numerical integration, J. Comput. Appl. Math. 12&13 (1985) 425-431.

[lo] J.N. Lyness, Notes on the adaptive Simpson quadrature routine, J. Assoc. Comput. Mach. 16 (3) (1969) 483-495.
[ll] J.N. Lyness and J.J. Kaganove, A technique for comparing automatic quadrature routines, Comput. J. 20 (1977)

170-177.
[12] M.A. Malcolm and R.B. Simpson, Local versus global strategies for adaptive quadrature, ACM Trans. Math.

Software 1 (2) (1975) 129-146.
[13] W.M. McKeeman, Algorithm 145, adaptive numerical integration by Simpson’s rule, Comm. ACM 5 (12) (1962)

604.
[14] W.M. McKeeman, Certification of algorithm 145, adaptive numerical integration by Simpson’s rule, Comm. ACM

6 (4) (1963) 167-168.
[15] T.N.L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 22 (1968) 847-856.
[16] R. Piessens, E. de Doncker-Kapenga, C.W. Uberhuber and D.K. Kahaner, QUADPACK, A Subroutine Package

for Automatic Zntegration, Ser. Comput. Math. 1 (Springer, Berlin, 1983).
[17] J.R. Rice, A metalgorithm for adaptive quadrature, J. Assoc. Comput. Mach. 22 (1975) 61-82.

[18] H.D. Shapiro, Increasing robustness, in global adaptive quadrature through interval selection heuristics, ACM
Trans. Math. Software 10 (2) (1984) 117-139.

[19] T. Sorevik, Reliable and efficient algorithms for adaptive quadrature, Technical Report, D.Sc. Thesis, Dept. Inf.,
Univ. Bergen, 1988.

