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Abstract 

This study characterized the composition and activity of the autochthonous microbial community in formation fluids of a saline 

CO2 storage aquifer during CO2 injection and during an N2 lift. The clean-up of the wells prior CO2 injection by N2 lift decreased 

the total microbial cell numbers, and the number of sulphate reducing bacteria (SRB) was reduced by at least two orders of 

magnitude. Fluorescence in situ Hybridisation (FISH) and molecular fingerprinting demonstrated that the microbial community 

was strongly influenced by the CO2 injection. Before CO2 arrival, up to 106 cells ml-1 were detected by DAPI-staining at a depth 

of 647 m below the surface. The microbial community was dominated by fermentative halophilic bacteria and sulphate reducing 

bacteria. Both the FISH and fingerprinting analyses revealed quantitative and qualitative changes after CO2 arrival.  An enhanced 

activity and quantity of the microbial population after five months of CO2 storage indicated that the community was able to adapt 

to the extreme conditions of the deep biosphere and to the extreme changes of these anthropogenically modified conditions.  

© 2010 Elsevier Ltd. All rights reserved 
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1. Introduction 

CO2 capture and storage in saline aquifers is a promising method to dispose of CO2 that would be otherwise 

emitted into the atmosphere. Microbiological monitoring of these systems is essential when reservoirs are 

favourable to microbial life, as microbes can influence storage by lowering injectivity, or precipitating carbonate 

and/or other minerals. This study reports the development of efficient microbiological monitoring procedures at the 

CO2SINK project, located near Ketzin, west of Berlin, Germany. CO2SINK is a pilot project for testing and 

monitoring of CO2 storage in a saline aquifer (Fig. 1). A complete understanding of subsurface processes, including 
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the effects of microbes, is essential for successful wide-scale implementation of CCS and for guaranteeing public 

acceptance of this relatively new technology.  

The potential influence of injection and long-term storage of CO2 in saline aquifers on the subsurface microbial 

communities is presently unexplored. Changes in microbial community composition and activity, should result from 

the injection of CO2 into the reservoir. The decreased pH value and other geochemical change induced by CO2 

injection has an influence on the metabolism of the both heterotrophic and lithoautotrophic microorganisms [1]. 

Therefore, injection of the CO2 in the supercritical state (temperature above 31.1 °C, pressure above 72.9 atm) may 

induce metabolic shifts in the microbial communities. Furthermore, microbial populations and activity can be 

strongly influenced by changes in the pH value, pressure, temperature, salinity and other abiotic factors. Therefore, 

it is important to characterise the microbial community of the deep subsurface before and during the injection of 

CO2.  

Thorough studies of samples from deep boreholes, using a variety of molecular techniques, have shown an active 

biosphere composed of diverse groups of microorganisms [2], [3], [4]. In addition, numerous studies of microbial 

communities in the deep biosphere have revealed that the most important metabolic pathways in the deep subsurface 

are sulphate reduction, fermentation and methanogenesis [5], [6], [7], [8], [9]. A description of microbial 

communities that originated from varied deep terrestrial settings has shown that those subsurface microbial 

communities could represent the greatest mass of living organisms on our planet [3], [10]. Furthermore, analyses of 

the composition of microbial communities will contribute to the understanding of biogeochemical processes in the 

deep subsurface and will enable better prediction of CO2 behaviour in saline aquifers. The interactions between 

microorganisms and the minerals of both the reservoir and the cap rock may cause major changes to the porosity and 

permeability of the reservoir [11], [12], [13]. In addition, microbiologically enhanced precipitation and corrosion 

may occur around the well affecting the casing and the cement. Moreover, the growth of microorganisms on the 

metal surface (biofilms) can have a profound effect on metal deterioration, known as microbially-influenced 

corrosion (MIC) [14].  

In this study we concentrated on the results obtained from the observation well 1 (Ktzi 200), where CO2 arrived 

after two weeks of injection. We were able to study the effects of the ten months CO2 storage on the microbial 

community after arrival. The main objective was to characterise the microbial community of a deep saline aquifer 

and to assess the influence of CO2 exposure on the composition of the microbial community by using fingerprinting 

methods and FISH technique without previous incubation. The completed analyses provide fundamental data on the 

predominant microbial processes and changes in those processes during the CO2 storage monitoring.  

 

 

 

Figure 1 The concept of CO2SINK CO2 storage monitoring 
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2. Methodology 

2.1 Study site 

The storage site is located in the north eastern Germany near Ketzin. The target reservoir for CO2 storage is the 

Triassic Stuttgart Formation [15], consists of siltstones and sandstones interbedded by mudstones deposited in a 

fluvial environment [16]. For the injection and monitoring of the CO2 in a natural saline aquifer, three 700 to 850 m 

deep holes were drilled by mud rotary drilling in March and April 2007 (Fig. 1). The temperature and pressure of the 

formation fluid were approximately 35 °C and 62 bar, and the salinity was roughly 235 g l
-1

.    

Prior to CO2 injection, a number of hydraulic tests were performed on all wells. The so-called N2 lift was 

performed in the injection well and the two observation wells two days prior to the CO2 injection to “clean up” the 
wells from the rest of the drill mud [12]. The injection of CO2 into the Ktzi 201 well was started on the end of June 

2008 [17]. The CO2 arrival in the Ktzi 200 well was observed about two weeks later, after 500 t of CO2 have been 

injected. The CO2 arrival in the observation well 1 (Ktzi 200) was detected by the downhole measurements of the 

amount and nature of the dissolved gases in the fluid samples. Notably, detailed physical, geochemical and 

microbiological monitoring was performed in all three wells [18]. This study concentrates on the results obtained 

from the observation well 1 (Ktzi 200), where it was possible to monitor the effects of the CO2 exposure during the 

five months.  

 

2.2 Sample collection 

Fluid samples during N2 lift were collected directly from the well head. Fluid samples were collected from the 

reservoir using downhole sampling (Erdöl-Erdgas Workover GmbH) at a depth of 647 m (perforation depth) using 

double ball-lining (Doppelkugelbüchse, DKB) and flow-through (PNL64) samplers. Both samplers were sterilized 

flushed with sterilised deionised water and ethanol immediate before sampling. The pH, conductivity, temperature 

and other parameters were measured directly after the sampling process. The fluids were transferred aseptically into 

sterilised 100 to 1000 ml glass vials, refrigerated to 4 °C and immediately transferred to the laboratory for 

microbiological analyses. Contamination control during sampling is described by Wandrey and co-authors [19]. 

 

2.3 Geochemical analysis 

The total organic carbon content was determined using a TOC-analyser (Dimatec GmbH) according to DIN EN 

1484-H3. The concentrations of cations and anions were measured after filtration of the sample (0.45 µm) using an 

ion chromatograph with an emission spectrometry (ICP-OES: inductively coupled plasma-optical emission 

spectrometry) according to DIN 38402-21. Quantification of the dissolved low molecular weight organic acids (e.g. 

acetate) has been done by ion chromatography with conductivity detection (ICS 3000, Dionex Corp.). Electrical 

conductivity, pH and fluid temperature were measured during the sampling process using a portable 

pH/mV/Temperature meter (WTW).  

 

2.4 Molecular approaches applied  

 

2.4.1 Fluorescence in situ hybridisation   

FISH coupled with rRNA-targeted oligonucleotide probes was applied for direct visualisation, identification and 

localisation of bacterial cells from selected phylogenetic groups in environmental samples. To obtain sufficient 

biomass for FISH, freshly collected fluid samples (500 to 1000 ml) were concentrated to a volume of approximately 

0.5 ml by centrifugation (Heraeus Biofuge Pico, Sigma 6K15) and were then fixed as described previously by 

Pernthaler et al. [20]. The probes for the domains Bacteria and Archaea and specific probes for the sulphate 

reducing bacteria, labelled with the cyanine dye Cy3 and FLUOS (Thermo Scientific) were used. Detection limit is 

10
3
 cells ml

-1
. Details of the procedures are given in Morozova et al. [21].  

 

2.4.2 PCR–Single-Strand-Conformation Polymorphism and Denaturing Gradient Gel Electrophoresis 

Genetic profiling of amplified 16S rRNA genes were applied for characterization of the microbial community by 

Single-Strand-Conformation Polymorphism (PCR-SSCP) and Denaturing Gradient Gel Electrophoresis (DGGE). 

For DNA extraction, microbial cells were concentrated by filtration of the reservoir fluids on 0.2 µm filter units 

(Millipore). Nucleic acids were extracted from preserved filters with Ultra Clean Power Soil DNA Isolation Kit (Mo 
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Bio Laboratories) according to manufacturer’s suggested protocols. 16S rRNA subunits were amplified by 

polymerase chain reaction (PCR) using different Bacteria, sulphate-reducing bacteria and Archaea-specific primers. 

PCR products were analysed by electrophoresis via SSCP [22] and DGGE methods [23]. The obtained 16S rRNA 

gene sequences were compared with the sequences available in the GenBank database using BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

3. Microbial monitoring during CO2 storage 

Saline aquifers could be characterised as an extreme habitat for microorganisms due to reduced geochemical 

conditions, high pressure and salinity, a high number of microorganisms were found in all fluid samples. A total of 

10
6 

cells ml
-1

 were measured in samples from a depth of 647 m (Fig. 2). The observed cell numbers are at least one 

order of magnitude higher than the values identified by other analyses of anaerobic aquifers and enumerated by 

acridine orange direct microscopic counts [24], [25]. Fingerprinting analyses revealed that fermentative halophilic 

bacteria (Halanaerobium sp., Halobacteroidaceae) and sulphate reducing bacteria (Desulfohalobium sp., 
Desulfotomaculum sp.) are dominant microorganisms in this microbial community. FISH analyses with specific 

probes that targeted phylogenetic groups of the SRB confirm those results. Previous microbiological and molecular 

analyses of deep saline groundwater revealed a sulphate-reducing microbial population belonging to Firmicutes 

[26]. Several other studies have discovered evidence of Desulfotomaculum spp. and other sulphate-reducing bacteria 

in the deep subsurface [8], [27], [28], [29].  

 

Figure 2 Iron concentration, pH, SRB and archaeal cell counts (FISH), and total cell counts (DAPI) during CO2 monitoring. Last sampling 

(10 months after CO2 arrival) was performed at a 692 m depth because the fluid level was lowered to the bottom of the filter screens  

The N2 lift prior to CO2 injection removed remaining organics from the drill mud [19]. Furthermore, N2 lift 

resulted in decreasing of the TOC and acetate concentrations [21] and drastic reduction of the numbers of bacteria 

after clean up the well (Fig. 2). Similar results were reported for the injection well Ktzi 201 after N2 lift [11], [12]. 

The decrease in organic carbon in the well by N2 lift contributed to the reduction of the SRB cell numbers and 

activity. Thus, the cell activity was too low to be detected using FISH (Fig. 2). Also both the PCR-SSCP analyses 
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and DGGE with specific primer for SRB were not able to detect the presence of SRB in the fluid samples taken after 

N2 lift (Fig. 3A, 3B; Tab. 1, 2).  

 

 

Figure 3 Molecular fingerprinting analyses. A: PCR-SSCP analyses of the microbial community in the fluids taken before CO2 injection, during 

N2 lift and after CO2 arrival in observation well. SRB are marked with red circles, fermenting bacteria are marked with green circles. B: DGGE 

analyses of the sulphate-reducing community in the fluids taken before CO2 injection, and after CO2 arrival in observation well. 

 

Table 1 Affiliation of the PCR-SSCP fragments 

 
SSCP Fragments Similarity 

[%] 
Organism References 

Before CO2 injection 3, 4 90 - 100 
Halanaerobium sp. 

Cayol, J.L. et al. Haloanaerobium lacusroseus sp. nov., an 

extremely halophilic fermentative bacterium from the 

sediments of a hypersaline lake, 1995 
Rainey, F.A. et al.  The Taxonomic Status of the 

Fermentative Halophilic Anaerobic Bacteria: Description of 

Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., 
Orenia gen. nov. and further Taxonomic Rearrangements at 

the Genus and Species Level, 1995 

Wu, X.Y. et al. A strictly anaerobic halophilic organism 
isolated from the sediment of northeast Pacific, submitted 

N2 lift 
1, 2, 3, 4, 

6, 7  

After CO2 
arrival 

2 days 1, 4, 5, 6, 
8, 9 

1 month 2, 3, 4 

5 months 4, 5, 7 

10months 2, 5, 6, 

11 

After CO2 
arrival 

2 days 7, 10 95 
Halobacteroidaceae 

Gales, G. et al. A new Gram-positive halophilic 
fermentative bacterium isolated from a deep hypersaline 

subsurface environment, unpublished 
1 month 4 

10months 6, 17 

Before CO2 injection 6,7 97 
Desulfohalobium 

utahense 

Jakobsen, T.F. et al. Desulfohalobium utahense sp. nov., a 
moderately halophilic, sulfate-reducing bacterium isolated 

from Great Salt Lake, 2006 
N2 lift 0 

After CO2 
arrival 

5 months 1, 2, 3 

10months 7 

After CO2 

arrival 

2 days 1, 2, 3 91 - 98 
Bacteroidetes 

Wang, L. et al. Gene diversity of CYP153A and Alk B 

alkane hydroxylases in oil-degrading bacteria isolated from 
the Atlantic Ocean, 2010 

Wang, J.J. et al. Diversity of free-living bacteria along with 

a salinity gradient, unpublished 

1 month 1 

After CO2 
arrival 

10months 4 94 
Comamonas 

aquatica 

Liang, B. and Li, S.P. Isolation and characterization of a 
phenanthrene-degradation strain from a polluted farmland, 

unpublished 

After CO2 

arrival 

10months 12, 13 95 
Empedobacter sp.  

Cao, J. Empedobacter brevis strain Y7D isolated from a 

petroleum-oil contaminated soil, unpublished   

A B 
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Table 2 Affiliation of the DGGE fragments 

 
DGGE Fragments 

 
Similarity 

[%] 
Organism References 

Before CO2 injection  
 

12, 13, 
14 

100 Desulfotomaculum 
halophilum  

Zverlov, V. et al. Lateral gene transfer of dissimilatory 
(bi)sulfite reductase, 2005             

After 

CO2 

arrival 

5 months 16 99 
uncultured 

Kjeldsen, K.U. et al. Diversity of sulfate-reducing bacteria from 

an extreme hypersaline sediment, Great Salt Lake (Utah), 2007   

 

The CO2 arrival resulted in a pH decrease from 7.5 to 5.5 after degassing of CO2 and decrease of the number of 

bacteria from 10
6
 to 10

3 
(Fig. 2). A change of the environmental parameter, among others the pH decrease, is known 

to have deleterious effect on the cell function and biochemistry, affecting bacterial activity and composition [30], 

[31]. The bacterial population recovered in the following months after CO2 arrival as indicated by the total cell 

counts (Fig. 2) and PCR-SSCP analyses (Fig. 3A). Furthermore, our previous study revealed the increase of the 

active cells proportion from ½ to ¾ in the microbial community five months after CO2 arrival [21]. This 

strengthened the assumption that the microorganisms are capable of adapting to the extreme shifts of environmental 

condition in the deep biosphere and to their active involvement in reservoir biogeochemical cycling.  

 

 

Figure 4 PCR with specific primers for domain Archaea. Arrows show PCR-products.  

 

After CO2 arrival, an increase of the archaeal cell numbers was detected (Fig. 2). PCR with specific primers for 

domain Archaea revealed presence of archaeal communities in the fluid samples taken during N2 lift and after CO2 

arrival (Fig. 4). Further analyses by DGGE and special primer for methanogenic archaea are in progress. It could be 

taken into consideration that CO2 arrival and pH decrease contributed to the temporal outcompetition of sulphate 

reducing bacteria by methanogenic archaea. The previously described groups of microorganisms are important 

terminal oxidisers in the anaerobic mineralisation of organic matter and can be observed as ecological equivalents, 

mineralising organic matter to CO2 or to CO2 and CH4 in high-sulphate and low-sulphate environments, respectively 

[5]. Under acidic conditions, the outcome of competition between these trophic groups was shown to be regulated 

by their pH susceptibility rather than by their thermodynamic energy yield [32]. At pH below 7 methanogenic 

archaea have better growth properties than SRB and would be expected to outcompete the SRB [33]. Interestingly, 

certain strains of methanogenic archaea have been shown to grow at low pH [34]. This correlates well with the 

observed increase in the archaea community for the samples where no or only a methodically insignificant number 

of SRB was detected (Fig. 2). Importantly, methanogenic archaea are highly resistant microorganisms [35] that may 

use only hydrogen and CO2 as energy and carbon sources and do not require other organic substrates.  

Further monitoring revealed that the SRB populations increased from 10
4
 to 10

6
 cells ml

-1
 after 5 months of CO2 

supply (Fig. 2). PCR-SSCP analyses and DGGE with specific primers for SRB also showed the presence of SRB in 

the samples taken after 5 and 10 months CO2 supply (Fig. 3A, 3B). Notably, recent studies revealed that in acidic 

environments addition of organic substrates increased sulphate reduction only after a lag phase [36], [37]. 

Furthermore, both FISH and PCR with archaeal primers revealed, that no archaea could be found in the fluid 

samples taken 5 months after CO2 arrival (Fig. 2, 4). Those results suggested that SRB outcompeted the 
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methanogens due to a reduction in sulphate, which is a major catabolic process due to the higher affinity of sulphate 

reducers for hydrogen and acetate and a higher energy yield of sulphate reduction [38], [39]. Under these conditions, 

methanogenesis occurs very slowly, and the cell activity is too low to be detected using FISH, as is the case for the 

samples obtained after five months of the CO2 arrival (Fig. 2).  

The identification of the SRB, which are known to be involved in corrosion [40], [41], [42], [43], [44], could be 

of great importance for the technical progress of the long-term CO2 storage technique. The increase of iron 

concentration (Fig. 2) followed by increasing of SRB in the observation well could be addressed to the biologically 

simulated corrosion processes, since their activity tends to pit the iron [14], [45], [46], [47]. Furthermore, our recent 

investigations showed that members of this group were able to rapidly and quantifiably change the permeability of 

the injectivity in the near well bore area [11], [12]. Further microbial monitoring should provide insight into 

microbial activity and composition and technical reliability of the CO2 storage technique. 

 

4. Conclusions 

The first results of the fluid samples analyses revealed high diversity of the saline aquifer inhabitants. Although 

saline aquifers could be characterised as an extreme habitat for microorganisms due to reduced conditions, high 

pressure and salinity, a high number of microorganisms were found. The microbial community was dominated by 

fermentative halophilic anaerobic bacteria, and sulphate reducing bacteria. Microbial monitoring during CO2 

injection has shown that the microbial community was strongly influenced by the CO2 injection. Both the 

fingerprinting analyses as well as FISH analyses revealed quantitative and qualitative changes after CO2 arrival. Our 

study revealed temporal shifts in the microbial community from chemoorganotrophic to chemolithotrophic 

populations, as evidenced by the temporarily outcompetition of sulphate reducing bacteria by methanogenic archaea.  

Of great importance was the identification of the sulphate reducing bacteria, which are known to be involved in 

corrosion processes. The reactions between the microorganisms and the minerals of both the reservoir rock and the 

cap rock may cause major changes in the structure and chemical composition of the rock formations, corrosion at 

the casing and the casing cement around the well, affecting the well integrity on the long-term basis. Analyses of 

microbial community composition and its changes provide information about the efficiency and reliability of the 

long-term CO2 storage technique.  
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