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a b s t r a c t

Recently Andrews proposed a problem of finding a combinatorial
proof of an identity on the q-little Jacobi polynomials. We give
a classification of certain triples of partitions and find bijections
based on this classification. By the method of combinatorial
telescoping for identities on sums of positive terms, we establish
a recurrence relation that leads to the identity of Andrews.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the study of parity in partition identities, Andrews [2] obtained the following identity on the
little q-Jacobi polynomials [5, p. 27]:

2φ1


q−n, qn+1

−q ; q,−q


= (−1)nq

n+1
2

 n
j=−n

(−1)jq−j2 . (1.1)

The basic hypergeometric series 2φ1 is defined as follows:

2φ1


a, b
c ; q, z


:=

∞
n=0

(a; q)n(b; q)n
(c; q)n(q; q)n

zn,

where |z| < 1, |q| < 1 and

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1),

(a; q)∞ =

∞
i=0

(1 − aqi);

see [5].
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Let Gn(q) denote the sum on the left hand side of (1.1). Andrews [2] established the following
recurrence relation for n ≥ 1:

Gn(q)+ qnGn−1(q) = 2q−( n2 ), (1.2)

from which (1.1) can be easily deduced. Andrews asked for a combinatorial proof of identity (1.1) as
one of the fifteen open problems.

In this paper, we give a combinatorial interpretation of a homogeneous recurrence relation for the
sum

Fn(q) = q(
n
2 ) 2φ1


q−n, qn+1

−q ; q,−q

,

that is,

Fn(q)+ (q2n−1
− 1)Fn−1(q)− q2n−3Fn−2(q) = 0, (1.3)

for n ≥ 2. It is readily seen that (1.3) is a consequence of (1.2) and identity (1.1) can be easily derived
from (1.3).

To be more specific, we shall present the method of combinatorial telescoping for sums of positive
terms, which is a variant of the method of combinatorial telescoping for alternating sums. In this
framework, we find a classification of certain triples of partitions and a sequence of bijections, leading
to a combinatorial explanation of recurrence relation (1.3).

Themethod of combinatorial telescoping for alternating sumswas proposed by Chen et al. [3], and
it can be used to show that an alternating sum satisfies certain recurrence relation. It applies to many
q-series identities on alternating sums such as Watson’s identity [9]

∞
k=0

(−1)k
1 − aq2k

(q; q)k(aqk; q)∞
a2kqk(5k−1)/2

=

∞
n=0

anqn
2

(q; q)n
, (1.4)

and Sylvester’s identity [8]
∞
k=0

(−1)kqk(3k+1)/2xk
1 − xq2k+1

(q; q)k(xqk+1; q)∞
= 1. (1.5)

For the purpose of this paper, we consider a sum of positive terms
∞
k=0

f (n, k). (1.6)

Suppose that f (n, k) is a weighted count of a set An,k, namely,

f (n, k) =


α∈An,k

w(α),

wherew is a weight function.Wewish to find sets Bn,k,Hn,k andH ′

n,k with aweight assignmentw such
that there exists a weight preserving bijection

φn,k: An,k ∪ Hn,k ∪ H ′

n,k+1 −→ Bn,k ∪ Hn,k+1 ∪ H ′

n,k, (1.7)

where ∪ stands for disjoint union. Let

g(n, k) =


α∈Bn,k

w(α),

h(n, k) =


α∈Hn,k

w(α),

h′(n, k) =


α∈H ′

n,k

w(α).
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Then the bijection φn,k in (1.7) implies that

f (n, k)+ h(n, k)+ h′(n, k + 1) = g(n, k)+ h(n, k + 1)+ h′(n, k). (1.8)
We assume, like the conditions for creative telescoping [10,6,7], that Hn,0 = H ′

n,0 = ∅ and Hn,k, H ′

n,k
vanishes for sufficiently large k. Summing (1.8) over k yields the following relation:

∞
k=0

f (n, k) =

∞
k=0

g(n, k). (1.9)

It is often the case that relation (1.9) can be expressed as a recurrence relation.
For example, to derive the recurrence relation (1.3) for Fn(q), we let

Fn,k =
(qn−k+1

; q)2k
(q2; q2)k

q

n−k
2


. (1.10)

Then Fn(q) can be written as

Fn(q) =

∞
k=0

Fn,k. (1.11)

Let
f (n, k) = Fn,k + q2n−1Fn−1,k,

g(n, k) = Fn−1,k + q2n−3Fn−2,k.

By using the method of combinatorial telescoping, one can establish relation (1.9), which can be
rewritten as the recurrence relation (1.3) of Fn(q).

Indeed, once we have bijections φn,k in (1.7), we are led to a correspondence

φn: An ∪ Hn −→ Bn ∪ Hn, (1.12)
given by φn(α) = φn,k(α) if α ∈ An,k ∪ Hn,k ∪ H ′

n,k+1, where

An =

∞
k=0

An,k, Bn =

∞
k=0

Bn,k and Hn =

∞
k=0


Hn,k ∪ H ′

n,k


.

By the method of cancelation (see [4]), the above bijection φn implies a bijection
ψn: An −→ Bn.

More precisely, we can define the bijectionψn: An → Bn by settingψn(a) to be the first element b that
falls into Bn while iterating the action of φn on a ∈ An.

In the next section, we shall give explicit constructions of the bijections for the recurrence relation
(1.3) which implies the following identity:

n
k=0

(qn−k+1
; q)2k

(q2; q2)k
q

n−k
2


= (−1)nqn

2
n

j=−n

(−1)jq−j2 . (1.13)

Notice that (1.13) is obtained from (1.1) by multiplying both sides by q(
n
2 ). As will be seen, the

summand Fn,k of the left hand side of (1.13) can be viewed as a weighted count of some set Pn,k of
triples of partitions. So we may write

Fn,k =


α∈Pn,k

w(α).

We shall construct bijections
φn,k: Pn,k ∪ {2n − 1} × Pn−1,k−1 → Pn−1,k−1 ∪ {2n − 3} × Pn−2,k

for k = 1, 2, . . . , n − 2. Moreover, for k = n − 1 or n, we provide an involution In,k on
Pn,k ∪ {2n − 1} × Pn−1,k−1

with the invariant set Pn−1,k−1. Furthermore, one can verify that the bijectionsφn,k and the involutions
In,k areweight preserving. This yields recurrence relation (1.3), which leads to the identity of Andrews.
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Fig. 2.1. Illustration of an element (τ , λ, µ) ∈ Pn,k .

2. The combinatorial telescoping

The objective of this section is to construct the bijections φn,k and the involutions In,k asmentioned
in the introduction so that we can use the combinatorial telescoping argument to establish recurrence
relation (1.3).

Let us recall some notation and definitions for partitions as used in Andrews [1]. A partition is a
nonincreasing finite sequence of nonnegative integers λ = (λ1, . . . , λℓ). The integers λi are called
the parts of λ. The sum of parts and the number of parts are denoted by |λ| = λ1 + · · · + λℓ and
ℓ(λ) = l, respectively. The partition with no parts is denoted by ∅. Denote by D the set of partitions of
distinct parts, and denote by E the set of partitions of even parts. We shall use diagrams to represent
partitions and use rows to represent parts.

Define Pn,k to be the set of triples (τ , λ, µ), where

τ = (n − k − 1, n − k − 2, . . . , 2, 1, 0)

is a triangular partition, λ is a partition of distinct parts such that n − k + 1 ≤ λi ≤ n + k and µ is
a partition of even parts not exceeding 2k; see Fig. 2.1. As will be seen, there is a reason for including
the zero part in a triangular partition.

For k = 0, we have Pn,0 = {(τ ,∅,∅)}, where τ = (n− 1, n− 2, . . . , 2, 1, 0), and for k > n, we set
Pn,k = ∅. For k = n − 1 and k = n, we have

Pn,n−1 = {(τ , λ, µ): τ = (0), 2 ≤ λi ≤ 2n − 1, λ ∈ D, µ1 ≤ 2n − 2, µ ∈ E},

Pn,n = {(τ , λ, µ): τ = ∅, 1 ≤ λi ≤ 2n, λ ∈ D, µ1 ≤ 2n, µ ∈ E}.

It should be mentioned that we have imposed the distinction between the partition with only a
zero part and the empty partition. Under this convention, one sees that


k≥0 Pn,k is a disjoint union.

Moreover, the kth summand Fn,k of Fn(q) as given in (1.10) can be viewed as a weighted count of Pn,k,
that is,

Fn,k =


(τ ,λ,µ)∈Pn,k

(−1)ℓ(λ)q|τ |+|λ|+|µ|.

We now proceed to construct the bijections φn,k in (1.7). Let

An,k = Pn,k ∪ {2n − 1} × Pn−1,k,

Bn,k = Pn−1,k ∪ {2n − 3} × Pn−2,k,

Hn,k = {2n − 1} × Pn−1,k−1,

H ′

n,k = Pn−1,k−1.

The following theorem gives a combinatorial telescoping relation for Pn,k.

Theorem 2.1. For n ≥ 2 and 0 ≤ k ≤ n − 2, there is a bijection

φn,k: Pn,k ∪ {2n − 1} × Pn−1,k−1 → Pn−1,k−1 ∪ {2n − 3} × Pn−2,k. (2.1)
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Proof. For k = 0, Pn−1,k−1 is the empty set, and the bijection φn,0 is defined by

φn,0: (τ ,∅,∅) → (2n − 3, (τ ′,∅,∅)),

where τ ′ is obtained from τ by removing the first two parts. For example, when n = 2, we have
τ = (1, 0) and the triple of partitions ((1, 0),∅,∅) is mapped to (1, (∅,∅,∅)), which belongs to
{2n − 3} × Pn−2,k. Because of the zero part, it is always possible to remove the first two parts of τ .

For k > 0, the bijection φn,k is essentially a classification of the set Pn,k into four classes, that is,

Pn,k = An,k ∪ Bn,k ∪ Cn,k ∪ Pn−1,k−1,

where

An,k = {(τ , λ, µ) ∈ Pn,k: λ1 ≤ n + k − 2, µ1 = 2k},
Bn,k = {(τ , λ, µ) ∈ Pn,k: either n + k or n + k − 1 appears in λ, but not both},

Cn,k = {(τ , λ, µ) ∈ Pn,k: λ1 = n + k, λ2 = n + k − 1}.

Namely, for the triple of partitions (τ , λ, µ) ∈ Pn,k, if neither n + k nor n + k − 1 appears in λ and 2k
does not appear in µ, then (τ , λ, µ) falls into Pn−1,k−1. If neither n+ k nor n+ k− 1 appears in λ and
2k appears in µ, then (τ , λ, µ) falls into An,k. If exactly one of n + k and n + k − 1 appears in λ, then
(τ , λ, µ) falls into Bn,k. If both n + k and n + k − 1 appear in λ, then (τ , λ, µ) falls into Cn,k.

For Pn−2,k, we need the following classification:

Pn−2,k = A′

n,k ∪ B′

n,k ∪ C ′

n,k ∪ Dn,k,

where

A′

n,k = {(τ , λ, µ) ∈ Pn−2,k: λℓ ≥ n − k + 1},

B′

n,k = {(τ , λ, µ) ∈ Pn−2,k: n − k or n − k − 1 appears in λ, but not both},

C ′

n,k = {(τ , λ, µ) ∈ Pn−2,k: λℓ = n − k − 1, λℓ−1 = n − k, µ1 = 2k},
Dn,k = {(τ , λ, µ) ∈ Pn−2,k: λℓ = n − k − 1, λℓ−1 = n − k, µ1 < 2k}.

In other words, for the triple of partitions (τ , λ, µ) ∈ Pn−2,k, if neither n − k nor n − k − 1 appears in
λ, then (τ , λ, µ) falls into A′

n,k. If exactly one of n − k and n − k − 1 appears in λ, then (τ , λ, µ) falls
into B′

n,k. If both n − k and n − k − 1 appear in λ and 2k appears in µ, then (τ , λ, µ) falls into C ′

n,k. If
both n − k and n − k − 1 appear in λ and 2k does not appear in µ, then (τ , λ, µ) falls into D′

n,k.
We are now ready to describe the bijection φn,k. Assume that (τ , λ, µ) is a triple of partitions in

Pn,k.
Case 1: (τ , λ, µ) ∈ Pn−1,k−1. Set φn,k(τ , λ, µ) to be (τ , λ, µ) itself.
Case 2: (τ , λ, µ) ∈ An,k. Removing the first two rows from τ and removing the first row from µ, we
get τ ′ and µ′, respectively. Let λ′

= λ. Then we have (τ ′, λ′, µ′) ∈ A′

n,k and

|τ | + |λ| + |µ| = 2n − 3 + |τ ′
| + |λ′

| + |µ′
|.

So we obtain a bijection ϕA: An,k → {2n − 3} × A′

n,k as given by (τ , λ, µ) → (2n − 3, (τ ′, λ′, µ′)).
Fig. 2.2 gives an illustration of the correspondence.
Case 3: (τ , λ, µ) ∈ Bn,k. Removing the first two rows from τ , we get τ ′. Subtracting 2k from the part
λ1 in λ, we get a partition λ′. Let µ′

= µ. Then we have (τ ′, λ′, µ′) ∈ B′

n,k and

|τ | + |λ| + |µ| = 2n − 3 + |τ ′
| + |λ′

| + |µ′
|.

Thus we obtain a bijection ϕB: Bn,k → {2n − 3} × B′

n,k defined by (τ , λ, µ) → (2n − 3, (τ ′, λ′, µ′)).
See Fig. 2.3 for an illustration.
Case 4: (τ , λ, µ) ∈ Cn,k. Removing the first two rows from τ , we get τ ′. Subtracting 2k from the parts
n + k − 1 and n + k in λ, we get a partition λ′. Adding 2k to µ as a new part, we get µ′. Then we have
(τ ′, λ′, µ′) ∈ C ′

n,k and

|τ | + |λ| + |µ| = 2n − 3 + |τ ′
| + |λ′

| + |µ′
|.
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Fig. 2.2. The bijection ϕA in Case 2.

Fig. 2.3. The bijection ϕB in Case 3.

Thus we obtain a bijection ϕC : Cn,k → {2n − 3} × C ′

n,k as given by (τ , λ, µ) → (2n − 3, (τ ′, λ′, µ′)).
This case is illustrated in Fig. 2.4.

We now consider the quadruples (2n − 1, (τ , λ, µ)) in {2n − 1} × Pn−1,k−1. For any (τ , λ, µ) ∈

Pn−1,k−1, remove the first two rows of τ and add two parts n − k and n − k − 1 to λ to get τ ′ and λ′.
Let µ′

= µ. Then we see that (τ ′, λ′, µ′) ∈ Dn,k and

2n − 1 + |τ | + |λ| + |µ| = 2n − 3 + |τ ′
| + |λ′

| + |µ′
|.

Thus we obtain a bijection

ϕD: {2n − 1} × Pn−1,k−1 → {2n − 3} × Dn,k

as given by (2n − 1, (τ , λ, µ)) → (2n − 3, (τ ′, λ′, µ′)). This case is illustrated by Fig. 2.5.
Combining the bijections ϕA, ϕB, ϕC and ϕD, we complete the proof. �
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Fig. 2.4. The bijection ϕC in Case 4.

Fig. 2.5. The bijection ϕD on {2n − 1} × Pn−1,k−1 .

In the following theorem, we provide involutions In,k for k = n − 1 and k = n, where n ≥ 1.

Theorem 2.2. For n ≥ 1 and for k = n − 1 or n, there is an involution In,k on

Pn,k ∪ {2n − 1} × Pn−1,k−1

with the invariant set Pn−1,k−1.

Proof. We only give the description of the involution In,n since In,n−1 can be constructed in the same
manner.
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Case 1. For (∅, λ, µ) ∈ Pn,n, if the first part of λ is 2n, then move it to µ. Conversely, if µ contains a
part 2n but λ does not, then move this part from µ back to λ.

Case 2. For (∅, λ, µ) ∈ Pn,n with λ1 = 2n− 1 and µ1 < 2n, remove the first part 2n− 1 of λ to get
λ′, and set

In,n(∅, λ, µ) = (2n − 1, (∅, λ′, µ)),

which belongs to {2n − 1} × Pn−1,n−1. Conversely, for

(2n − 1, (∅, λ, µ)) ∈ {2n − 1} × Pn−1,n−1,

adding a part 2n − 1 to λ, we get λ′ and set

In,n(2n − 1, (∅, λ, µ)) = (∅, λ′, µ),

which belongs to Pn,n.
Case 3. It can be seen that the set of triples (∅, λ, µ) ∈ Pn,n with λ1 < 2n − 1 and µ1 < 2n is

exactly Pn−1,n−1. So we set Pn−1,n−1 to be the invariant set of the involution.
In summary, we obtain an involution on Pn,n ∪ {2n − 1} × Pn−1,n−1 with the invariant set

Pn−1,n−1. �

The weight functionsw on Pn,k, {2n − 1} × Pn−1,k and {2n − 3} × Pn−2,k are defined by

w(τ, λ, µ) = (−1)ℓ(λ) q|τ |+|λ|+|µ|,

w(2n − 1, (τ , λ, µ)) = q2n−1 (−1)ℓ(λ) q|τ |+|λ|+|µ|,

w(2n − 3, (τ , λ, µ)) = q2n−3 (−1)ℓ(λ) q|τ |+|λ|+|µ|.

One sees that the bijections and involutions in Theorems 2.1 and 2.2 are weight preserving. For
example, for n = 8 and k = 4, let

τ = (3, 2, 1, 0), λ = (10, 9, 8) and µ = (8, 8, 4).

It can be verified that (τ , λ, µ) ∈ A8,4. Applying the bijection φ8,4 we get

τ ′
= (1, 0), λ′

= (10, 9, 8) and µ′
= (8, 4).

Moreover, it can be checked that

w(τ, λ, µ) = w(13, (τ ′, λ′, µ′)) = −q53.

Since φn,k and In,k are weight preserving, we get the following recurrence relation for Fn(q).

Corollary 2.3. For n ≥ 2, we have

Fn(q)+ (q2n−1
− 1)Fn−1(q)− q2n−3Fn−2(q) = 0. (2.2)

It is easy to verify that

(−1)nqn
2

n
j=−n

(−1)jq−j2 (2.3)

also satisfies recurrence relation (2.2). Taking the initial values into consideration, we are led to the
identity of Andrews.
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