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The role of inflammation in the progression of neurodegenerative disease remains unclear. We have
shown that systemic bacterial insults accelerate disease progression in animals and in patients with Alz-
heimer’s disease. Disease exacerbation is associated with exaggerated CNS inflammatory responses to
systemic inflammation mediated by microglia that become ‘primed’ by the underlying neurodegenera-
tion. The impact of systemic viral insults on existing neurodegenerative disease has not been investi-
gated. Polyinosinic:polycytidylic acid (poly I:C) is a toll-like receptor-3 (TLR3) agonist and induces type
I interferons, thus mimicking inflammatory responses to systemic viral infection. In the current study
we hypothesized that systemic challenge with poly I:C, during chronic neurodegenerative disease, would
amplify CNS inflammation and exacerbate disease. Using the ME7 model of prion disease and systemic
challenge with poly I:C (12 mg/kg i.p.) we have shown an amplified expression of IFN-a and b and of
the pro-inflammatory genes IL-1b and IL-6. Similarly amplified expression of specific IFN-dependent
genes confirmed that type I IFNs were secreted and active in the brain and this appeared to have anti-
inflammatory consequences. However, prion-diseased animals were susceptible to heightened acute
sickness behaviour and acute neurological impairments in response to poly I:C and this treatment also
accelerated disease progression in diseased animals without effect in normal animals. Increased apopto-
sis coupled with double-stranded RNA-dependent protein kinase (PKR) and Fas transcription suggested
activation of interferon-dependent, pro-apoptotic pathways in the brain of ME7 + poly I:C animals. That
systemic poly I:C accelerates neurodegeneration has implications for the control of systemic viral infec-
tion during chronic neurodegeneration and indicates that type I interferon responses in the brain merit
further study.

� 2010 Elsevier Inc.Open access under CC BY license.
1. Introduction

Despite a huge number of published papers on inflammatory
processes during chronic neurodegeneration in the last 20 years,
it remains unclear how inflammation contributes to progression
of neurodegeneration (Wyss-Coray, 2006). We have used the
ME7 model of murine prion disease to demonstrate that microglia,
the major macrophage population of the brain, are primed by
ongoing neurodegeneration and amyloidosis to produce exagger-
ated responses to systemic challenge with the bacterial endotoxin,
lipopolysaccharide (LPS). In this context the term microglial prim-
ing, derived from the widely used term macrophage priming, signi-
fies a markedly increased ability of microglia from ME7 animals to
express interleukin-1b (IL-1b) in response to LPS when neither
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ME7 nor LPS alone are sufficient to effect IL-1b synthesis (Cunning-
ham et al., 2005a). This further stimulation of primed microglia re-
sults in acute neuronal death and accelerated progression of
disease (Cunningham et al., 2009). Based on those ME7 studies
we have since shown that either acute or chronic systemic inflam-
mation is associated with more rapid cognitive decline in Alzhei-
mer’s disease patients (Holmes et al., 2003, 2009). Similarly it is
well known that delirium, commonly triggered by systemic infec-
tion in the demented population, accelerates progression of AD
(Fong et al., 2009). Thus, further studies of the mechanisms by
which systemic inflammation exacerbates underlying CNS pathol-
ogy may yield insights into the role of inflammation in progression
of chronic neurodegeneration in CNS disease.

Exacerbation of chronic CNS pathology by systemic gram-nega-
tive bacterial stimulation is not specific to the ME7 model of prion
disease: this been replicated in many animal models of chronic
neurodegeneration including Parkinson’s disease, Amyotrophic lat-
eral sclerosis, AD and ageing (Sly et al., 2001; Nguyen et al., 2004;
Godbout et al., 2005; Kitazawa et al., 2005; Godoy et al., 2008).
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There is also evidence that infection with neurotropic viruses such
as herpes simplex virus-1 and cytomegalovirus can exacerbate
cognitive decline (Strandberg et al., 2003), but surprisingly, given
their high frequency in the aged and demented population, sys-
temic viral infections have been relatively overlooked. The syn-
thetic double-stranded RNA (dsRNA), poly inosinic:polycytidylic
acid (poly I:C), potently induces the type I interferons a and b
and other inflammatory cytokines (Jacobs and Langland, 1996;
Matsumoto and Seya, 2008) and has been used to mimic the acute
phase of viral infection but its effects on the brain remain little
investigated (Katafuchi et al., 2003; Traynor et al., 2006; Cunning-
ham et al., 2007; Konat et al., 2009). TLR3 stimulation induces a
much more robust anti-viral response than TLR4 stimulation
(Doyle et al., 2003) and this is characterised by high expression
of type I interferons.

In the current study, we hypothesized that the neurodegenerat-
ing brain is primed with respect to stimulation by systemic anti-
viral mimetics. Thus, we predicted that ME7 prion-diseased ani-
mals would show similar systemic cytokine responses but ampli-
fied CNS inflammatory and sickness behavioural responses to
systemic poly I:C stimulation, with respect to normal animals gi-
ven the same stimulus. We have examined the CNS inflammatory
profile and in particular, have focussed on type I interferons and
downstream pathways. We also predicted that poly I:C would
accelerate disease progression but have no lasting consequences
for normal animals.

2. Materials and methods

2.1. Animals and stereotaxic surgery

Female C57BL/6 mice (Harlan, Bicester, UK), were housed in
groups of five and given access to food and water ad libitum. We
used females in order to avoid fighting and injury, which has sig-
nificant effects on behaviour. Animals were kept in a tempera-
ture-controlled room (21 �C) with a 12:12 h light–dark cycle. The
mice were anaesthetised intraperitoneally (i.p.) with Avertin
(2,2,2-tribromoethanol) and positioned in a stereotaxic frame.
Two small holes were drilled in the skull either side of the midline
to allow for bilateral injection of 1 ll of a 10% w/v ME7-infected
C57BL/6 brain homogenate made in sterile PBS. Injections were
made into the dorsal hippocampus (co-ordinates from bregma:
anteroposterior, – 2.0 mm; lateral, – 1.6 mm; depth, – 1.7 mm)
using a microsyringe (Hamilton, Reno, Nevada) with a 26 gauge
needle. Control animals were injected with a 10% w/v normal brain
homogenate (NBH) in PBS, derived from a naive C57BL/6 mouse.
All procedures were performed in accordance with United King-
dom Home Office and Republic of Ireland Department of Health
& Children licenses and all efforts were made to minimise both
the suffering and number of animals used.

2.2. Systemic poly I:C challenges

Poly I:C was obtained from Amersham Biosciences (Little Chal-
font, Buckinghamshire, UK). It was prepared for injection by resus-
pending in sterile saline, heating to 50 �C at a concentration of
2 mg/ml to ensure complete solubilisation and then allowing to
cool naturally to room temperature to ensure proper annealing of
double-stranded RNA. Poly I:C was stored at �20 �C until use.
Experimental groups at 18 weeks post-inoculation with ME7 or
NBH were challenged intraperitoneally (i.p.) with either poly I:C
(12 mg/kg) or sterile saline to examine systemic and CNS inflam-
matory responses to systemic poly I:C. All animals for which mRNA
data was analysed were challenged only once with poly I:C (at
18 weeks). Dose response studies have previously been performed
(Cunningham et al., 2007) and this dose produces hypothermia and
weight loss in normal mice that is comparable with that induced
by infection with influenza virus at 0.1 of its LD50 (McKinstry
et al., 2009). The choice of 18 weeks post-ME7 inoculation as the
point for systemic challenge for mRNA transcriptional analysis
was based on our previous finding that robust priming of microglia
occurs at this time (Cunningham et al., 2005a). Animals were ini-
tially perfused at 6 h post-poly I:C to capture the time point at
which qualitative and quantitative differences were apparent in
the hypothermic response (from preliminary data) and subse-
quently, further animals were perfused at 4 h to examine earlier
gene expression. In a subset of animals repeated systemic chal-
lenges were made at 14, 16 and 18 weeks to examine the effect
of repeated ‘‘viral stimulation” on the progression of neurodegen-
erative disease. In these animals, temperature responses and acute
neurological deficits were measured after each of the three chal-
lenges. The data have been presented for temperature at 14 weeks
and neurological changes at 16 weeks since these were the earliest
time points in disease at which robust changes were evident. The
two weeks interim period allowed full recovery from each sys-
temic inflammatory response before initiation of subsequent chal-
lenges. Tissue for analysis of histological changes was taken at 3 or
15 h post-poly I:C to examine microglial and inflammatory mark-
ers and neurodegenerative changes, respectively.

2.3. ELISA for cytokines

Under terminal anaesthesia the thoracic cavity was opened and
blood collected into heparinised tubes directly from the right at-
rium of the heart. This procedure was carried out 6 h post-poly
I:C challenge. Whole blood was centrifuged to remove cells and
the remaining plasma aliquoted and stored at �20 �C before assay.
These samples were then analysed for IL-6, TNF-a and IFN-b (IL-1b
levels were previously determined to be considerably lower after
poly I:C challenge). Samples were serially diluted to verify linear
responses and were quantified only if the absorbance fell on the
linear portion of the standard curve. The IFNb assay kit was sup-
plied by Biosource (Nivelles, Belgium) and mouse IL-6, and TNF-a
were measured using R&D systems ‘‘duo-set” kits. Protocols fol-
lowed for these assays were as previously published (Cunningham
et al., 2007). The reliable quantitation limit of all assays was
15.6 pg/ml.

2.4. Immunohistochemistry for IBA-1, COX-2, IL-1b, IRF3, caspase-3,
TUNEL

ME7 and NBH animals were deeply anaesthetised and transcar-
dially perfused with heparinised saline followed by 10% formal-sal-
ine at 18 weeks post-inoculation and at 3, 6 or 15 h post-poly I:C or
saline for histology experiments. Tissue was paraffin wax-embed-
ded and 10 lm coronal sections of fixed tissue at the level of the
hippocampus were cut on a microtome, dewaxed in xylene and
rehydrated through alcohols of decreasing concentration. Primary
antibodies were obtained from Santa Cruz (Santa Cruz, CA, US:
COX-2), Millipore (activated caspase-3: Temecula, CA, USA), Pepro-
tech (London, UK: IL-1b), Abcam (Cambridge UK: IBA-1), Invitrogen
(NY, USA: IRF3), Promega (TUNEL, Southampton, UK). Biotinylated
secondary antibodies, normal sera, and avidin–biotin complex were
from Vector Laboratories (Peterborough, UK). Avidin-horseradish
peroxidase was obtained from DAKO (Cambridge, UK). Immunohis-
tochemistry for all antigens was carried out by the Avidin–Biotin-
Complex (ABC) method with minor modifications, depending on
the antibody used, and has been described in detail in previous pub-
lications (Cunningham et al., 2005a). Cell counting was performed
for IL-1b, TUNEL and IBA-1. For IL-1b and TUNEL, positive cells were
identified and counted throughout the hippocampus and thalamus
of all animal groups. For IBA-1, a 0.62 � 0.47 mm section of the
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centre of the dorsal hippocampus, (containing the CA1 pyramidal
layer and stratum oriens and radiatum, but not the dentate gyrus
granule layer) was photographed and used for microglial counts
in NBH and ME7 animals treated with poly I:C. Positively stained
cells were identified and counted using the analyse particles func-
tion in Image J software (rsbweb.nih.gov).

2.5. RNA extraction and Taqman reverse transcription-PCR

Animals challenged intraperitoneally with poly I:C (12 mg/kg)
or saline were terminally anaesthetised at 4 and 6 h after poly
I:C and then transcardially perfused with heparinised saline. Brains
were rapidly removed, hippocampi and hypothalami dissected out,
placed in eppendorf tubes, snap frozen on liquid nitrogen and
stored at �80 �C until further use.

Total RNA was extracted from brain samples using Qiagen
RNeasy� Plus mini kits (Qiagen, Crawley, UK) according to the
manufacturer’s instructions. Contaminating genomic DNA was
eliminated via degradation during extraction using the Qiagen
RNase-free DNase1 enzyme. Approximate yields were determined
by spectrophotometry at 260 and 280 nm. RNA was stored at
�80 �C until cDNA synthesis and PCR assay.

All equipment and reagents were supplied by Applied Biosys-
tems (Warrington, UK) unless otherwise stated. Assays for IFN-a,
IFN-b, IL-10, IP-10, IRF-7, TLR3, RIG-I, PKR, OAS, Mx1, Bax, Fas, IFNc,
and all T cell transcripts were designed using the published se-
quences for these genes, applied to Primes Express™ software.
Where possible, probes were designed to cross an intron such that
they were cDNA specific. All primer pairs were checked for specific-
ity by standard reverse transcription (RT)-PCR followed by gel elec-
trophoresis. Each primer pair produced a discrete band of expected
amplicon size. We subsequently learned that C57 mice have a non-
functional Mx1 protein due to a deletion in exons 9 though 11 in the
Mx1 gene (Staeheli and Sutcliffe, 1988; Jin et al., 1998). Our primers
for this gene were designed such that they are specific to an unaf-
fected region of the gene and span the boundary of exons 2 and 3.
For Taqman PCR, cDNA was generated from total RNA using a High
Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Two
hundred nanograms of total RNA were reverse transcribed in a
10 ll reaction volume. One microliter of the RT reaction (equivalent
to 20 ng of RNA) was subsequently used for the PCR, as described
previously (Cunningham et al., 2007). The housekeeping gene glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) was measured in
each sample using Applied Biosystems Rodent GAPDH Taqman Kit.
All PCR data were normalised to the expression of GAPDH. More de-
tailed description of these methods, and full primer sequences, are
available in supplemental information.

2.6. Body temperature

Core body temperature was measured using a thermocouple
rectal probe (Thermalert TH5, Physitemp, Clifton, New Jersey).
Temperature measurements were made on three separate occa-
sions in the week prior to poly I:C injections to habituate mice to
the procedure and thus minimise the effects of stress. Tempera-
tures were recorded at baseline and then at 4, 9, 13 and 24 h fol-
lowing i.p. challenge with poly I:C.

2.7. Motor co-ordination: horizontal bar and inverted screen

Following systemic challenge with poly I:C, ME7 or NBH-inocu-
lated mice were assessed for their co-ordination of motor function.
The horizontal bar was designed to assess forelimb muscle
strength and co-ordination, and consisted of a 26 cm long metal
bar, 0.2 cm diameter, supported by a 19.5 cm high wooden column
at each end. Each mouse was held by the tail, placed with its front
paws at the central point of the bar, and rapidly released. Mice
were scored based on whether they fell, held on for 60 s, or reached
a platform on a supporting column, with the latter two results
scoring the maximum of 60 s. The inverted screen (Kondziela,
1964) assessed muscular strength for all four limbs. It consisted
of a wooden frame, 43 cm square, covered with wire mesh
(12 mm squares of 1 mm diameter wire). The mouse was placed
on the screen and this was then slowly inverted. The time it took
for the mouse to fall was measured, up to a criterion of 60 s. Pad-
ding was provided to cushion mice falling from either apparatus.

2.8. Statistics

Behavioural data was analysed by repeated measures ANOVA
with Bonferroni post hoc analysis after significant main effects.
Peripheral ELISA data and CNS transcription data were analysed
by two-way ANOVA with ME7/NBH and poly I:C/saline or time
post-poly I:C as factors, with Bonferroni post hoc tests. One-way
ANOVAs were also performed where the inclusion of multiple time
points post-poly I:C did not allow a full factorial analysis. Cell counts
were analysed by one-way ANOVA for IBA-1, IL-1b and TUNEL.
3. Results

3.1. Anti-viral response in the hippocampus and hypothalamus

Intra-peritoneal treatment of NBH and ME7 animals (18 weeks
post-inoculation) with poly I:C resulted in the robust transcription
of IFNb in the hippocampus 6 h following administration of poly I:C
(Fig. 1a). IFNb was transcribed more robustly in ME7 animals than
in NBH animals given the same poly I:C challenge. There was an ef-
fect of disease (F = 7.93, df 1, 14, p = 0.0137), an effect of poly I:C
(F = 17.82, df 1, 14, p = 0.0009) and an interaction of these two fac-
tors (F = 4.68, df 1, 14, p < 0.05) by two-way ANOVA for IFNb. The
hippocampal induction of IFN-a was less marked and more vari-
able. Nonetheless, there was an interaction between disease and
poly I:C for this gene (F = 5.68, df 1, 14, p < 0.05). TLR3 mRNA
was induced in the hippocampus both by poly I:C treatment and
by ME7. Two-way ANOVA revealed a main effect of both poly I:C
(F = 41.38, df 1, 14, p < 0.0001) and of ME7 (F = 24.3, df 1, 14
p = 0.0002) but there was no significant interaction, although
TLR3 was induced further by poly I:C challenge in ME7 animals
(one-way ANOVA, ME7 + poly I:C versus NBH + poly I:C p < 0.01
and versus ME7 + saline p < 0.001). RIG-I showed similar expres-
sion to IFNb, with main effects of disease (F = 59.21, df 1, 14,
p < 0.0001) and of poly I:C (F = 351.86, df 1, 14, p < 0.0001) and a
significant interaction of these two factors (F = 9.97, df 1, 14,
p < 0.01). Thus anti-viral responses were amplified in ME7 + poly
I:C animals with respect to NBH + poly I:C.

These transcripts (IFNb, IFNa, TLR3, RIG-I) were also examined
in the hypothalamus since this region is highly sensitive to circu-
lating inflammatory mediators. Poly I:C induced robust transcrip-
tion of all 4 genes in the hypothalamus, but this transcription
was equivalent in ME7 and NBH animals. These data are shown
in Fig. 1b. Two-way ANOVAs for these genes showed that there
were main effects of poly I:C in all cases, but no effect of ME7
and no interaction between the two factors (F = 1.62, df 1, 14,
p > 0.22 in all cases). Thus, the exaggerated anti-viral response of
ME7 animals, to poly I:C, is present in the hippocampus, but not
in the hypothalamus.

3.2. Systemic cytokines

The levels of IFNb, TNF-a and IL-6 were elevated in the plasma
of poly I:C-treated animals (6 h post-treatment) but were below



Fig. 1. Systemic poly I:C induces anti-viral transcripts in the brain. Expression of mRNA for IFNb, IFNa, TLR3 and RIG-I in the hippocampus (a) or hypothalamus (b) of NBH and
ME7 animals (6 hours post-challenge, 18 weeks post-inoculation) treated once with saline or poly I:C (12 mg/kg). Data are expressed as mean ± SEM, n = 3 for NBH + saline
and n = 5 for all other groups. Significant interaction of poly I:C and ME7 in the hippocampus by two-way ANOVA is indicated by *p < 0.05 and **p < 0.01. Interactions between
factors were not observed in the hypothalamus and main effects of poly I:C are described in the text.
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detectable levels in both NBH and ME7 animals challenged with
sterile saline (Table 1). Poly I:C groups were significantly different
to relevant saline controls for IFNb (p < 0.001), TNF-a (p < 0.01) and
IL-6 (p < 0.05) by Bonferroni post hoc tests. Treatment with poly I:C
did not produce significantly different cytokine levels in NBH ver-
sus ME7 animals (p > 0.05 for all three cytokines). Therefore, sys-
temic cytokine responses to poly I:C are not significantly
different in animals with prior neurodegeneration.
Fig. 2. Poly I:C induces marked hypothermia in ME7 animals. Animals were treated
once with poly I:C (12 mg/kg) at 14 weeks post-inoculation with ME7 or NBH. Core-
body temperature was taken by rectal probe at 0, 4, 9, 13 and 24 h post-poly I:C or
saline. n = 10 for all groups except NBH + poly I:C (n = 14). Data are expressed as
mean ± SEM. Significant differences between ME7 + poly I:C and corresponding
NBH + poly I:C time point by Bonferroni post hoc test, after significant two-way
3.3. Core-body temperature response to poly I:C

At the earliest time point examined (14 weeks post-inoculation
with ME7, 4 h after poly I:C), poly I:C induced the predicted mild
hyperthermic response in normal (NBH) animals but caused hypo-
thermia in prion-diseased (ME7) animals. In addition, the later
hypothermic phase was exaggerated in ME7 animals with respect
to NBH animals treated with poly I:C (Fig. 2). Repeated measures
ANOVA revealed a significant effect of time (F = 5.66, df 4, 160,
p < 0.0005), a significant effect of treatment (F = 9.29, df 3, 40,
p < 0.0001) and an interaction of treatment and time (F = 6.46, df
12, 160, p < 0.0001). Bonferroni post hoc tests revealed that
ANOVA, are denoted by ***p < 0.001, **p < 0.01, *p < 0.05. Full ANOVA analyses are
in the main text.

Table 1
Plasma inflammatory cytokine concentrations.

Cytokine NBH + saline NBH + poly I:C ME7 + saline ME7 + poly I:C

IFNb ND 2567 ± 410 ND 2737 ± 694
TNF-a ND 132 ± 24 ND 121 ± 36
IL-6 ND 1837 ± 374 ND 1739 ± 569

Systemic cytokine levels 6 h post-poly I:C or sterile saline (pg/ml). ND signifies
cytokines below detection limit (not detectable).
ME7 + poly I:C animals were significantly different to NBH + poly
I:C animals at 4 h, 9 h (p < 0.001) and 13 h (p < 0.05) and signifi-
cantly different to ME7 + saline animals at 9 and 13 h (p < 0.001).
Conversely ME7 + saline were not different to NBH + saline at any
time point (p > 0.05). Similar early and exaggerated hypothermic
responses were seen after poly I:C challenge to ME7 animals at
16 and 18 weeks (data not shown).
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3.4. CNS inflammatory cytokine responses to systemic poly I:C

As shown in Fig. 3 poly I:C induced differential hippocampal re-
sponses in NBH and ME7 animals 18 weeks post-inoculation. TNF-
a mRNA was markedly induced in ME7 animals per se (Fig. 3a).
One-way ANOVA (F = 51.85, df 5, 26, p = 0.0001) with selected Bon-
ferroni post hoc tests revealed that ME7 + saline was significantly
different to NBH + saline. Systemic challenge with poly I:C induces
opposite effects on TNF-a in NBH and ME7 animals. Levels in
ME7 + poly I:C animals were actually depressed at 4 h with respect
to ME7 animals and statistically significantly lower at 6 h
(p < 0.001 by one-way ANOVA with Bonferroni post hoc test).

Poly I:C induced very marked increases by 4 h in IL-6 in the hip-
pocampus of both NBH and ME7 animals (Fig. 3c). The increase
was, however, more marked in ME7 + poly I:C animals. A signifi-
cant one-way ANOVA (F = 65.01, df 5, 26, p < 0.0001) with selected
Bonferroni pairwise tests revealed no difference between IL-6 lev-
els in NBH + saline and ME7 + saline animals (p > 0.05), but showed
that ME7 + poly I:C at 4 h was significantly different to NBH + poly
I:C (p < 0.001) and these levels decreased somewhat by 6 h.

IL-1b mRNA was clearly induced in the hippocampus of ME7
animals at 4 h post-poly I:C and returned to near baseline levels
by 6 h in normal animals. The poly-I:C-induced increase was mark-
edly higher in ME7 animals (Fig. 3b). One-way ANOVA (F = 24.54,
df 5, 26, p < 0.0001) followed by selected Bonferroni post hoc com-
parisons showed that ME7 + saline was significantly higher than
NBH + saline (p < 0.05). The IL-1b increase post-poly I:C was more
marked in ME7 than in NBH (p < 0.001).
Fig. 3. Inflammatory cytokine and NFjB- and IRF3-dependent gene transcription.
Hippocampal expression of mRNA for TNF-a (a), IL-6 (b), IL-1b (c) IFNb (d), PTX3 (e)
and IP-10 (f) at 4 and 6 h post-challenge of NBH and ME7 animals (18 weeks post-
inoculation) with poly I:C. n = 5 for all 6 h animals, n = 4 for both 4 h groups, n = 5
for ME7 + saline and n = 3 for NBH + saline. CNS cytokine mRNA levels were
measured by quantitative PCR from ME7 and NBH animals. Significant differences,
by Bonferroni post hoc test after significant one-way ANOVA, between ME7 + poly
I:C and NBH + poly I:C time point are denoted by ***p < 0.001, **p < 0.01, *p < 0.05.
Full ANOVA analyses are in the main text.
IFNb, which is IRF3-dependent, was induced more markedly in
the hippocampus of ME7 animals treated with poly I:C (Fig. 3d)
and appeared to peak at 4 h. A significant one-way ANOVA
(F = 18.45, df 5, 25; p < 0.0001) followed by Bonferroni post hoc
tests revealed that ME7 + poly I:C was significantly higher than
NBH + poly I:C at their peak values (p < 0.01), but ME7 + saline
and NBH + saline were not significantly different (p > 0.05).

PTX3, an NFjB-dependent gene with no reported regulation by
IRF3, showed an exaggerated induction in the hippocampus of
ME7 + poly I:C compared to NBH + poly I:C. Levels of this transcript
were still rising at 6 h (Fig. 3e), distinct from the NFjB-dependent,
primary response genes IL-1b, TNFa and IL-6 (Fig. 2a and b) and
consistent with secondary induction by IL-1b. Selected Bonferroni
post hoc comparisons after a significant one-way ANOVA
(F = 9.27, df 5, 25, p < 0.0001) revealed that ME7 + saline was not
significantly different to NBH + saline but that ME7 + poly I:C was
significantly different to NBH + poly I:C at 6 h (p < 0.001).

We also examined the time course of hippocampal expression
of the NFjB and IRF3-dependent gene interferon-inducible protein
10 (IP-10). This chemokine mRNA showed a very similar temporal
pattern of induction to the other primary response genes studied
(Fig. 3f), peaking at 4 h and decreasing thereafter, making it unli-
kely that it is induced by IFNb. After a significant one-way ANOVA
(F = 67.76, df 5, 25, p < 0.0001), Bonferroni post hoc tests showed
that ME7 + poly I:C was significantly higher than NBH + poly I:C
but ME7 + saline was not significantly different to NBH + poly I:C
(p > 0.05).

3.5. Histological analysis of cellular changes

IBA-1, COX-2 and IL-1b staining illustrated clear morphological
evidence of microglial activation (Fig. 4 a versus b and c) and in-
creased expression of COX-2 (d and e) but an absence of IL-1b-po-
sitive cells (g and h) in ME7 animals with respect to NBH controls
3 h after treatment with saline or poly I:C. IBA-1 revealed signifi-
cantly increased numbers of activated microglia (p < 0.001 ANOVA
with Bonferroni post hoc test; Table 2) in ME7 animals compared
to NBH with no further increase following administration of poly
I:C (p� 0:05). Upon systemic challenge with poly I:C these
microglial cells, in the periventricular and dentate gyrus regions,
now synthesised detectable levels of IL-1b (i) in ME7 but not
NBH animals. IL-1b positive cells were found to be significantly
higher in number in ME7 animals challenged with poly I:C than
all other groups (p < 0.05 by ANOVA with Bonferroni post hoc test;
Table 2). The endothelial cell layer was also induced to synthesize
COX-2 in response to systemic poly I:C in both NBH and ME7 ani-
mals (d and f). Quantification of individual COX-2-labelled cells is
not straightforward in the tightly apposed endothelial layer of hip-
pocampal vessels, but it is clear that the vast majority of hippo-
campal vessels are positively labelled after poly I:C challenge in
NBH and ME7, while those in the ME7 + saline group are not.
Numerous cells in periventricular and perivascular areas and
around the dentate gyrus showed IRF3 labelling, and there was evi-
dence of more intense and more frequent staining of nuclei in the
hippocampus and thalamus, consistent with nuclear translocation
in the areas of prior ME7-associated pathology. There were no
gross changes in the hippocampal levels of PrPSc in response to sys-
temic poly I:C challenge (Supplementary data).

3.6. Evidence for exaggerated IFNb production and action in the CNS

Fig. 5(a–d) shows evidence of increased IFNa/b action in the
hippocampus via expression of IRF7, OAS, PKR and Mx1 transcrip-
tion. These genes are known to be IFNb-responsive, STAT1/2-
dependent genes and are not induced directly by TLR3 signalling
or by IRF3 activation (Honda and Taniguchi, 2006). IRF7 was clearly
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induced by poly I:C (main effect of poly I:C: F = 231.16, df 1, 14,
p < 0.0001). There was also a main effect of disease (F = 39.84, df
1, 14, p < 0.0001) and an interaction of disease and poly I:C
(F = 23.98, df 1, 14, p < 0.0005). Similarly OAS1a showed much
higher induction in ME7 + poly I:C animals than in NBH + poly I:C
animals. There were main effects of disease (F = 43.96, df 1, 14,
p < 0.0001) and of poly I:C (F = 79.41, df 1, 14, p < 0.0001) and an
interaction of these two factors (F = 21.32, df 1, 14, p < 0.0005).
Likewise, Mx1, assessed at the exon 2–exon 3 junction, showed
an exaggerated induction in ME7 animals treated with poly I:C.
There were main effects of disease (F = 7.70, df 1, 14, p < 0.05)
and of poly I:C (F = 45.29, df 1, 14, p < 0.0001) and an interaction
of these two factors (F = 5.87, df 1, 14, p < 0.05). Finally, PKR was
more robustly induced by poly I:C in ME7 animals than in NBH ani-
Fig. 4. Microglia are primed with respect to responses to systemic poly I:C. Microglial prim
NBH and ME7 animals. (a–c) IBA-1 labelling of microglial cells in NBH + poly I:C, ME7 + s
increased numbers in ME7 with respect to NBH. (d–f) COX-2 labelling shows few microgl
shows increased microglia but absent endothelial staining, while ME7 + poly I:C animal
NBH + poly I:C and ME7 + saline animals but ME7 + poly I:C (i) shows positive cells of mi
dentate gyrus. (j–l) IRF3 labelling in scattered cells in NBH + poly I:C and in ME7 + salin
ME7 + poly I:C animals. Scale bar = 100 lm in (a–c) and (g–i) and 50 lm in (d–f) and (j–
mals. There were main effects of disease (F = 9.51, df 1, 14, p < 0.01)
and of poly I:C (F = 55.12, df 1, 14, p < 0.0001), but no significant
interaction (F = 0.89, df 1, 14, p = 0.36) in this case. Thus, there is
exaggerated type I IFN action in the CNS of ME7 animals chal-
lenged with poly I:C with respect to NBH animals similarly
challenged.
3.7. Evidence of anti-inflammatory activation: additional IFNb effects?

IL-10 was modestly induced by both poly I:C in normal animals
(F = 34.97, df 1, 12, p < 0.0001) and by disease (main effect of dis-
ease: F = 28.32, df 1, 12, p = 0.0002) (Fig. 6a). There was also an
interaction of disease and poly I:C, ME7 + poly I:C showing consid-
ing and microglial/endothelial activation was assessed 3 h after poly I:C or saline in
aline and ME7 + poly I:C animal groups, showing more condensed morphology and

ia in NBH animals but activated endothelium after poly I:C. Conversely, ME7 + saline
s show both populations are COX-2-positive. (g–i) IL-1b labelling is absent in both
croglial morphology (inset) in periventricular and perivascular areas and around the
e and in greater numbers in periventricular areas and around the dentate gyrus in
l).



Fig. 5. IFNb-responsive, stat 1/2-dependent, gene transcription. Expression of
mRNA for the IFNb-responsive genes IRF7 (a), OAS1a (b), Mx1 (c) and PKR (d) was
examined in the hippocampus 6 h post-challenge with poly I:C or saline in ME7 and
NBH animals 18 weeks post-inoculation. Data are expressed as mean ± SEM, n = 3
for NBH + saline and n = 5 for all other groups. Significant interactions between
disease (ME7) and poly I:C by two-way ANOVA are indicated by *p < 0.05 and
***p < 0.0005.

Fig. 6. Evidence of anti-inflammatory profile post-IFNb induction. Expression of
mRNA for (a) IL-10, (b) TREM2, (c) iNOS, (d) MMP9, (e) IFNc and (f) IFNAR2 as
assessed by quantitative PCR at 6 h after a single challenge with poly I:C (12 mg/kg)
or saline in ME7 and NBH animals at 18 weeks post-inoculation. Data were
analysed by two-way ANOVA and significant interactions between disease and poly
I:C are in panels (a and b) and (c). Main effects of poly I:C are shown in (e) and (a)
main effect of disease is shown in (f), as assessed by Bonferroni post hoc test. The
degree of statistical significance is illustrated by *p < 0.05 and ***p < 0.001,
respectively.

Table 2
Immunohistochemical quantification.

IHC label NBH + poly I:C ME7 + saline ME7 + poly I:C

IBA-1 48 ± 5 172 ± 15* 172 ± 14*
IL-1b ND ND 49 ± 29*
TUNEL 1 ± 1 6 ± 1* 12 ± 3*

IL-1b and TUNEL counts were performed in the hippocampus and thalamus in
10 lm coronal sections, 3 and 15 h, respectively after poly I:C administration. IBA-1
counts were performed in a 0.62 � 0.47 mm region of the hippocampus. ND sig-
nifies that positive cells were not detectable. Significant differences to NBH + poly
I:C controls by one-way ANOVA and Bonferroni post hoc tests are signified by
*p < 0.05.
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erably more marked induction than all other groups (F = 22.23, df
1, 12, p = 0.0005).

TREM2 (Fig. 6b) was markedly induced by disease (two-way
ANOVA main effect of disease (F = 34.13, df 1, 12, p = 0.0001), and
was slightly, but not significantly, affected by poly I:C (F = 4.49,
df 1, 12, p = 0.0576). However there was a significant interaction
between disease and poly I:C. TREM2 was markedly more elevated
in ME7 + poly I:C than in any other group (F = 5.32, df 1, 12,
p = 0.0415).

The expression of iNOS was increased by poly I:C in NBH ani-
mals but was not increased by poly I:C in ME7 animals (Fig. 6c).
As such, there were no main effects of disease or poly I:C but an
interaction between these (F = 5.22, df 1, 14, p = 0.0385).

The expression of MMP9 was very low and was not altered by
any treatment (Fig. 6d). There were no statistically significant
changes.

IFNc (Fig. 6e) was modestly increased in ME7 animals (main ef-
fect of disease, F = 21.34, df 1, 14, p = 0.0004) and decreased by poly
I:C (main effect of poly I:C: F = 6.3, df 1, 14, p = 0.025). There was no
interaction between these factors.

Thus, in addition to reduced TNF-a expression (Fig. 3), there are
further anti-inflammatory changes that appear to be selectively
apparent in ME7 animals upon poly I:C treatment. Heightened
expression of the signalling type I interferon receptor, IFNAR2 in
ME7 animals (Fig. 6f) may contribute to this. IFNAR2 was induced
by prion disease (main effect of disease: F = 107.98, df 1, 12,
p < 0.0001) but is not significantly affected by poly I:C (F = 0.79,
df 1, 12, p = 0.39).
3.8. Neurological consequences

Despite these anti-inflammatory effects, presumably resulting
from IFNa/b action, animals challenged with poly I:C showed acute
and chronic exacerbations of disease. ME7 and NBH animals were
challenged with poly I:C (12 mg/kg) or saline at 14, 16 and
18 weeks post-inoculation with ME7 or NBH were assessed for per-
formance on muscle strength and motor co-ordination tasks (in-
verted screen and horizontal bar), which are known to
deteriorate with progression of the ME7 strain of prion disease
but to be intact at 16 weeks (Betmouni et al., 1999; Cunningham
et al., 2005b). Poly I:C significantly impaired performance of ME7
animals on both the inverted screen and horizontal bar at 16 weeks
post-inoculation (Fig. 7a and b). Neither co-ordination nor muscle
strength were acutely affected in poly I:C-treated NBH animals or



Fig. 7. Poly I:C induces acute neurological impairment in ME7 animals and accelerates disease progression. (a and b) ME7 and NBH animals were challenged i.p. with poly I:C
(12 mg/kg) at 16 weeks and their performance on the horizontal bar (a) and inverted screen (b) tests of motor co-ordination and muscle strength was assessed at 6, 14, 24 and
168 h post-challenge. (c and d) The same tests were conducted weekly to assess the influence on disease progression of poly I:C or saline challenges at 14, 16 and 18 weeks
post-inoculation with ME7 or NBH. Longitudinal studies (c and d) experiments were conducted with n = 12 NBH + pIC and n = 15 for all other groups. Data are shown as
mean ± SEM and statistically significant differences by Bonferroni post hoc test after significant main effects and interactions by repeated measures ANOVA are indicated by
*p < 0.05, ***p < 0.001. (e and f) These data are also shown with both acute and weekly time point assessments to depict the course of neurological impairments when
underlying disease and systemic challenge combine. Treatment with poly I:C is indicated by grey arrows and in longitudinal experiments animals were treated three times
with poly I:C.
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in ME7 + saline animals. Repeated measures ANOVA analysis of
acute effects on the horizontal bar revealed main effects of treat-
ment (F = 11.86, df 2, 38, p < 0.0001) and of time (F = 3.34, df 4,
156, p < 0.05) and an interaction of these two factors (F = 3.03, df
8, 156, p < 0.005). Bonferroni post hoc tests showed that ME7 + -
poly I:C animals were significantly impaired with respect to both
other groups at 6 h (p < 0.05), 14 h (p < 0.001) and 24 h (p < 0.05).
Similarly, on the inverted screen there were significant main ef-
fects of time (F = 5.04, df 4, 156, p < 0.001), of treatment
(F = 13.19, df 2, 38, p < 0.0001) and an interaction of treatment
and time (F = 2.58, df 8, 156, p < 0.05). Bonferroni post hoc tests
showed that ME7 + poly I:C animals were significantly impaired
compared to ME7 + saline at 6 and 14 h (p < 0.001) and were im-
paired compared to NBH + poly I:C at 6 h (p < 0.05) and 14 h
(p < 0.01).

Despite these acute impairments most animals recover their
baseline performance at 1 week post-challenge (168 h). However,
longitudinal analysis of performance on bar and screen tasks
showed that repeated challenge with poly I:C (at 14, 16 and
18 weeks) resulted in more rapid development of permanent loss
of function on these tasks. Repeated measures analysis of weekly
performance in the same animals revealed clearly exacerbated
neurological decline as measured by both tasks (Fig. 7c and d).
There were main effects of treatment (F = 17.12, df 2, 38,
p < 0.0001) and of time (F = 30.05, df 7, 266, p < 0.0001) and an
interaction of these factors (F = 9.25, df 14, 266, p < 0.0001) on
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bar performance. Bonferroni post hoc tests revealed significant dif-
ferences between ME7 + poly I:C and ME7 + saline from 17 weeks
onwards (p < 0.05 at 17 weeks and p < 0.001 from 18 weeks). Sim-
ilar analysis of inverted screen data revealed main effects of treat-
ment (F = 30.35, df 2, 38, p < 0.0001), of time (F = 61.72, df 7, 266,
p < 0.0001) and a significant interaction (F = 16.27, df 14, 266,
p < 0.0001). Bonferroni post hoc tests showed significant differ-
ences between ME7 + poly I:C and ME7 + saline at 17 and 19 weeks
(p < 0.001).

Thus poly I:C induced acute, neurological impairments and also
exacerbated progression of disease in ME7 animals, without effect
in normal animals. These data have also been illustrated as re-
peated acute events superimposed upon longitudinal decline
(Fig. 7e and f) to illustrate the influence of repeated anti-viral re-
sponses on disease course. We have demonstrated that the primary
response to systemic poly I:C (i.e. peripheral induction of IFNb) was
not significantly different after one, two or three systemic chal-
lenges with poly I:C (12 mg/kg i.p.). These data are shown in Sup-
plementary data (S3).

3.9. Apoptosis

We observed small numbers of activated caspase-3-positive
cells and larger numbers of TUNEL-positive cells in ME7 animals
15 h after treatment with saline or poly I:C. Examples of both acti-
vated caspase-3 and TUNEL-positive cells are shown in Fig. 8 (a and
b). The larger number and smaller size of TUNEL-positive cells re-
flects the later stage of cell-degeneration, as we have previously
shown after LPS treatment of ME7 animals (Cunningham et al.,
2005a,b). TUNEL-positive apoptotic cells (positive labelling plus
condensed nucleus) were counted in the areas of pathology (the
Fig. 8. Systemic poly I:C activates pro-apoptotic pathways and increases apoptosis
in ME7 animals. Examples of immunohistochemically labelled TUNEL and activated
caspase-3-positive apoptotic cells are indicated in (a) and (b), respectively by
arrows. (c–e) Analysis of mRNA expression of PKR, Bax and Fas at different times
post-poly I:C challenge (12 mg/kg i.p.). Data were analysed by one-way ANOVA
with selected pairwise Bonferroni post hoc tests. Significant post hoc tests are
indicated by **p < 0.01, and ***p < 0.001 and ns denotes a non-specific difference
between NBH and ME7. Data are expressed as mean ± SEM, n = 3 for NBH, n = 4 for
ME7 + pIC 4 h, NBH + pIC 4 h and n = 5 for all other groups.
hippocampus and thalamus) in 10 lm sections of animals 15 h
post-challenge with poly I:C or saline. ME7 + poly I:C animals
had significantly higher numbers of apoptotic cells per 10 lm sec-
tion than ME7 + saline (12 ± 3 versus 6 ± 1; p < 0.05 by one-way
ANOVA with Bonferroni post hoc test). NBH + poly I:C animals
showed very low number of apoptotic cells (1 ± 1 per 10 lm sec-
tion). These data are also shown in Table 2.

We examined expression of pro-apoptotic genes PKR, Fas and
Bax (Fig. 8c–e) and found a clear poly I:C-induced increase in
PKR and Fas mRNA expression. Bax was induced somewhat in
ME7 animals, but not elevated further by poly I:C treatment. Two
time-points are provided to provide temporal information but post
hoc comparisons have only been performed on the 4 h data. Dis-
ease and poly I:C influence PKR expression (F = 13.53, df 5, 20,
p < 0.0001) and Bonferroni post hoc comparisons revealed that
while NBH and ME7 were not significantly different, NBH + poly
I:C was significantly lower than ME7 + poly I:C at 4 h (p < 0.05).
Similar analysis of Bax revealed that NBH was significantly differ-
ent to ME7 but that no further changes were induced by poly I:C
treatment. Analysis of Fas data revealed a significant one-way
ANOVA (F = 38.3, df 5, 20, p < 0.0001) and Bonferroni post hoc tests
showed that NBH was significantly different to ME7 (p < 0.001) and
that ME7 + poly I:C was significantly higher than both ME7
(p < 0.001) and NBH + poly I:C (p < 0.01). Thus there was increased
apoptosis and amplified expression of pro-apoptotic genes in
ME7 + poly I:C animals.

4. Discussion

In the current study we have demonstrated that acute systemic
poly I:C stimulation, mimicking systemic viral infection, was asso-
ciated with significantly amplified CNS IL-1b and IFNb responses in
diseased animals compared to normal animals. Transcription of
several interferon-responsive genes demonstrated IFNa/b action
in the brain and this was associated with a number of anti-inflam-
matory effects. However, the IFN-responsive pro-apoptotic genes
PKR and Fas were also increased and were associated with in-
creased apoptotic cell death. Repeated poly I:C challenges induced
successive episodes of acute neurological deficits and caused a pro-
gressive acceleration of late stage disease signs without effect in
normal animals. Thus systemic challenge with the TLR3 agonist
poly I:C exacerbates existing chronic neurodegeneration.

4.1. TLR3 and the type I interferon response

Toll-like receptor-3 (TLR3) is a key pattern recognition receptor
for dsRNA and poly I:C (Alexopoulou et al., 2001), although dsRNA
can also be recognised by other sensors such as MDA5, RIG-I and
PKR (Honda and Taniguchi, 2006; Kato et al., 2006). The robust
induction of type I interferons a and b and other inflammatory
cytokines by poly I:C (Jacobs and Langland, 1996; Matsumoto
and Seya, 2008) makes this a useful tool with which to mimic acute
phase anti-viral responses and to examine the consequences of
these for CNS disease.

The stimulation of TLR3 initiates signal transduction via both
NFjB and interferon regulatory factor 3 (IRF3) and the stimulation
of both IRF3- and NFjB-dependent genes in the current study sug-
gest TLR3 engagement. IRF3 is expressed constitutively and trans-
locates to the nucleus where it induces transcription of the genes
for IFNa/b. The periventricular activation of IL-1b and IRF3 sug-
gests that dsRNA may even have some access to the parenchyma
in these regions with underlying pathology. Systemic poly I:C has
been reported to disrupt the blood brain barrier at 24 h post-chal-
lenge (Wang et al., 2004) and there is evidence that this barrier is
already somewhat compromised in areas of existing prion disease
pathology (Wisniewski et al., 1983; Chung et al., 1995). Although
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astrocytes and endothelial cells can respond to poly I:C in vitro
(Ishikawa et al., 2004; Kraus et al., 2004; Farina et al., 2005),
microglia have been shown to express TLR3, to respond to poly
I:C (Melton et al., 2003; Olson and Miller, 2004) and to be depen-
dent on TLR3 for responses to intracerebroventricularly adminis-
tered poly I:C (Town et al., 2006).

The production of type I interferons results in signalling at the
type I IFN receptor, inducing transcription of the gene for IRF7 as
well as other key anti-viral transcripts, PKR, OAS and Mx1 (Honda
and Taniguchi, 2006). The robust transcription of all of these genes
observed here demonstrates that IFNa/b is produced in the CNS, at
mRNA and protein levels, and is active in the brain. Levels of all of
these transcripts are markedly increased by systemic challenge
with poly I:C and this occurs to a much higher level in ME7 ani-
mals, despite similar systemic responses. Thus, the CNS produces
exaggerated type I interferon responses to systemic poly I:C sug-
gestive of a primed state of the degenerating brain with respect
to subsequent responses to these challenges.

4.2. Microglial priming and exacerbation of CNS inflammation

We have previously shown that during chronic neurodegenera-
tion, microglia are primed by disease to produce exaggerated sick-
ness and CNS inflammatory responses to systemic stimulation with
the TLR4 agonist LPS (Combrinck et al., 2002; Cunningham et al.,
2005a). The term microglial priming is based on early descriptions
of macrophage priming in which pretreatment with IFNc primes
macrophages to produce more robust responses to LPS (Johnson
et al., 1983; Pace et al., 1983). Though a CNS priming factor has
not yet been identified, evidence for similar in microglial priming
effects, and exacerbation of pathology, has since been provided
by researchers in many models of CNS pathology, including Parkin-
son’s disease (Godoy et al., 2008), prion disease (Cunningham et al.,
2009), Wallerian degeneration (Palin et al., 2008) ageing (Godbout
et al., 2005; Barrientos et al., 2006), ALS (Nguyen et al., 2004), AD
(Sly et al., 2001; Kitazawa et al., 2005) and stroke (McColl et al.,
2007). Thus systemic inflammatory events can accelerate neurode-
generative disease and we have recently shown that AD patients
who suffer systemic inflammatory events, including infections,
show more rapid progression of cognitive decline (Holmes et al.,
2003, 2009).

The demonstration here that animals primed by neurodegener-
ation also mount exaggerated IL-1b and type I interferon responses
to systemic challenge with poly I:C indicates that hyper-reactivity
of these primed cells is not specific to LPS challenges. This finding
therefore adds TLR3 activation to the list of pattern recognition
receptors likely to be capable of exacerbating neurodegenerative
disease. While this might have been predicted from our prior work
with LPS/TLR4 (Cunningham et al., 2009), its demonstration is sig-
nificant. We have made repeated challenges with poly I:C to dem-
onstrate acute, reversible, exacerbations of neurological function
whose magnitude depends on the severity of the underlying
pathology, and have shown that these repeated challenges also
accelerate disease in a cumulative manner. The repeated challenge
strategy was made possible by the demonstration that these re-
peated treatments do not produce tolerance to poly I:C in behav-
ioural (Cunningham et al., 2007) or peripheral type I interferon
(Supplementary data) responses. Thus, 3 challenges do not appear
to induce an inflammatory phenotype distinct from that induced
by a single challenge. We also show that a single poly I:C challenge
is sufficient to induce an acute increase in apoptosis (Fig. 8) and
that three challenges are insufficient to produce any lasting
impairment in normal animals (Fig. 7). Thus, our prediction is that
the acute neurological deficits are produced by the exaggerated
inflammatory response in areas with prior pathology and the
long-term deterioration is due to the additive effects of individual
discrete pathological insults superimposed on the progressing
disease.

4.3. Mechanisms: pro- and anti-inflammatory effects

Here we have examined many potential inflammatory path-
ways that might explain this exacerbation of disease, including
transcription of iNOS and matrix metalloproteinases such as
MMP9, the induction of IFNc and TNF-a and increased infiltration
of cytotoxic T cells or natural killer cells. All of these pathways
showed either no induction, or in the cases of IFNc and TNF-a, a
suppression of mRNA levels. The suppression of TNF-a and iNOS
concomitant with increased IL-1b, IL-6, IFNa/b, IL-10 and TREM2
represents a post-priming inflammatory phenotype that is some-
what different to that described after LPS challenge (Cunningham
et al., 2005a) and may reflect the anti-inflammatory influence of
IFNa/b. Type I interferons principally orchestrate anti-viral re-
sponses but have typically been viewed as anti-inflammatory in
the CNS: they limit leukocyte infiltration to the brain (Prinz
et al., 2008) and reduce the expression of pro-inflammatory cyto-
kines such as IL-17, IL-12 and TNF-a (Makar et al., 2008; Chen
et al., 2009). In addition, loss of endogenous IFNb exacerbates
inflammation and pathology in the EAE model of multiple sclerosis
(Teige et al., 2003). Notwithstanding any anti-inflammatory influ-
ence of IFNb, IL-1b is elevated at mRNA and protein levels, only
in the microglia of ME7 + poly I:C animals, and may be implicated
in the exaggerated hypothermia observed as well as remaining a
potential source of neurotoxicity that may contribute to the accel-
erated disease progression. IL-1b is known as an exacerbator of
ischaemia-induced neurotoxicity (Rothwell and Luheshi, 2000)
and an examination of poly I:C challenges and their consequences
in IL-1 receptor type 1 and interferon receptor 1 deficient mice (IL-
1R1�/� and IFNAR1�/�) are now important priorities in the ME7
model.

4.4. Interferons, sickness behaviour, apoptosis and CNS disease

Despite some anti-inflammatory effects in the brain, type I
interferon responses may still be deleterious. The use of IFN-a in
cancer therapy, has taught us that systemic IFN levels lead to sick-
ness behavioural responses and it has been shown that systemic
injection of interferons can induce interferon-responsive genes in
the hypothalamus (Wang et al., 2008). These data indicate that
type I IFNs have actions in the CNS, but that these, like sickness
behaviour in a general sense, are largely adaptive. However, there
is some evidence that transgenic (Campbell et al., 1999), or viral
encephalitis-induced (Sas et al., 2009) expression of IFN-a can pro-
duce CNS neuropathology. There remain limited studies of patho-
logical effects of acute type I IFN responses in the brain.

However, there is strong evidence that IFNa/b is a potent pro-
apoptotic stimulus and the marked type I interferon-dependent
up-regulation of PKR observed here might be a key event with re-
spect to neurodegeneration. PKR has been demonstrated in many
studies to induce apoptosis (Balachandran et al., 1998, 2000) with
up-regulation of Fas and Bax and activation of caspase-3 impli-
cated. Neurodegeneration in the ME7 model of prion disease is
via these pathways (Chiesa et al., 2005) and in the current study
we have shown increased Fas mRNA synthesis and caspase-3/TUN-
EL-positive cell death at the histological level. Thus, the type I IFN-
induced activation of PKR represents a strong possibility for induc-
tion of pro-apoptotic cascades that may accelerate the process of
neurodegeneration. Thus, while type I interferons exert some
anti-inflammatory effects in the current study, systemic viral infec-
tion and consequent CNS activation of pro-apoptotic pathways
could still have deleterious consequences for those with existing
CNS pathology.
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Based on the hypothesis that prion diseases are viral infections,
early studies attempted, and failed, to slow progression of disease
by boosting type I interferon responses (Gresser and Pattison,
1968; Field et al., 1969; Worthington, 1972; Gresser et al., 1983).
Indeed CNS treatment with poly I:C (Allen and Cochran, 1977) or
adenoviral co-infection actually accelerated prion disease (Ehres-
mann and Hogan, 1986). Here we have made systemic challenges
with poly I:C when microglial activation and synaptic and neuronal
degeneration are well established and in so doing have effected an
amplification of the CNS anti-viral response and an acceleration of
disease. This raises the possibility that inflammatory cells recog-
nise cellular dysfunction and mark these cells for destruction
through similar pathways used to destroy virally-infected cells.
Induction of some interferon-responsive genes during prion dis-
ease has previously been reported (Baker et al., 2004; Riemer
et al., 2004; Stobart et al., 2007) and amplification of these re-
sponses, in the current study, is associated with increased apopto-
sis and disease progression.

5. Conclusion

Based on the findings presented here, systemic challenge with
viral mimetics can accelerate neurodegenerative disease. Given
the high frequency of viral infection in the ageing population it is
important to assess the impact of systemic viral infection on
chronic neurodegeneration in both animal models and in humans.
The demonstration of similar disease exacerbation after real viral
infection would constitute an important proof of the current
hypothesis. Influenza, rhinoviruses and increasingly noroviruses
show high prevalence in the elderly population (Estes et al.,
2006) and murine-adapted strains of these viruses are available
(Hyde et al., 2009; Majde et al., 2010). That systemic inflammation,
triggered by diverse etiologies, can accelerate the progression of
AD (Holmes et al., 2009) suggests that interventions targeting
these systemic exacerbations offer opportunities to slow disease
progression.
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