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Abstract

The problem of determining an unknown termk(u) in the equationk(u)ut = (k(u)ux)x
is considered in this paper. Applying Tikhonov’s regularization approach, we develop a
procedure to find an approximate stable solution to the unknown coefficient from the over-
specified data. 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Cannon and DuChateau considered in [1] the following overspecified problem:

k(u)ut =
(
k(u)ux

)
x
, 0< x, 0< t < T, (1.1)

u(x,0)= 0, 0< x, (1.2)

u(0, t)= f (t), f (0)= 0, 0< t < T, (1.3)

−k(u(0, t))ux(0, t)= g(t), 0< t < T . (1.4)

Heref , g are known functions andk(λ), a positive function, is to be determined.
It was assumed thatf , g are strictly increasing and at least continuously differ-
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entiable. Under these conditions, Cannon and DuChateau proved that there exists
a uniquek(·) > 0 that depends on the dataf , g continuously. A similar problem
on a finite interval was also considered in the article.

A practically more interesting situation is that the input functionsf , g are
not smooth as most data are gathered through measurement or other laboratory
methods. Whenf , g are not differentiable, the method used in [1] does not apply.
Let us see:

Integral transform

v(x, t)=
u(x,t)∫
0

k(λ) dλ (1.5)

converts (1.1)–(1.4) to the following linearized problem:

vt = vxx, 0< x, 0< t < T, (1.6)

v(x,0)= 0, 0< x, (1.7)

v(0, t)=
f (t)∫
0

k(λ) dλ, 0< t < T, (1.8)

−vx(0, t)= g(t), 0< t < T . (1.9)

If the pair(v, k) solves the problem (1.6)–(1.9),

v(x, t)=
t∫

0

H(x, t − τ )g(τ ) dτ, (1.10)

H(x, t)= 1√
πt
e−x2/(4t ). (1.11)

Lettingx approach zero and using (1.8) yields

f (t)∫
0

k(λ) dλ= 1√
π

t∫
0

g(τ)√
t − τ

dτ. (1.12)

Therefore, the problem turns out to be an integral equation onk:

A(k)(λ)=G(λ), G(0)= 0, (1.13)

where

A(k)(λ)=
λ∫

0

k(λ) dλ, G(λ)= 1√
π

s∫
0

g(τ)√
s − τ

dτ

∣∣∣∣
s=f−1(λ)

. (1.14)
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Under the hypothesis of smoothness off and g, it was proven in [1] that
Eq. (1.13) has a uniquely determined solution that depends on the data contin-
uously.

In practice, the boundary dataf , g are obtained, in general, by physical mea-
surements and are thus not smooth. The problem (1.13) is ill-posed for non-
smooth data. We need to find new ways of determining the unknown coefficient
in Eq. (1.1).

In Section 2, we will apply the regularization approach adapted in [2–4] to
define and construct approximate stable solutionk(·) of (1.1). Then in Section 3,
we will demonstrate the applicability of our approximation approach by compar-
ing the exact solution and the approximate solution numerically.

2. Regularization approach

We assumef to be strictly increasing.f , g areL2 functions on[0, T ].
Based on the basic concept of Tikhonov’s regularizing operators, we will

define and construct an approximate solution of the integral equation (1.13). We
will show that the solution is stable under small changes of the data.

First of all, we introduce a smooth functional

Mα(k,G)= ∥∥A(k)−G
∥∥2
L2[0,T ] + α

∥∥k(λ)∥∥2
W1

2 [0,T ]

=
T∫

0

( λ∫
0

k(λ) dλ−G(λ)

)2

dλ+ α

T∫
0

(
k2(λ)+ k′2(λ)

)
dλ

(2.1)

and establish the following result:

Theorem 2.1. For every G ∈ L2[0, T ] and every α > 0, there exits a unique
minimizer kα(λ) ∈C[0, T ] such that

Mα(kα,G)= infMα(k,G). (2.2)

Proof. By considering the first variation of the functionalMα , we easily obtain

1

2

d

dε
Mα(k + εφ,G)

∣∣∣∣
ε=0

=
T∫

0

(( λ∫
0

k(λ) dλ−G(λ)

) λ∫
0

φ(λ) dλ

)
dλ

+ α

T∫
0

(
k(λ)φ(λ)+ k′(λ)φ′(λ)

)
dλ
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=
T∫

0

φ(λ)

( T∫
λ

λ∫
0

k(λ) dλdλ−
T∫
λ

G(λ) dλ− α
(
k′′(λ)− k(λ)

))
dλ

+ α
∥∥k′(λ)φ(λ)

∥∥T
0 .

It follows then that the minimizerkα(λ) is determined by the following Euler
integrodifferential equation:

T∫
λ

λ∫
0

k(λ) dλdλ−
T∫
λ

G(λ) dλ= α
(
k′′(λ)− k(λ)

)
(2.3)

with the boundary conditions

k′(0)= k′(T )= 0. (2.4)

The solution of (2.3), (2.4) is unique. In fact, ifk is a solution of the homogeneous
equation

T∫
λ

λ∫
0

k(λ) dλdλ= α
(
k′′(λ)− k(λ)

)
, (2.5)

we multiply both sides byk and integrate onλ from 0 toT to obtain the equality

−α∥∥k(λ)∥∥2
W1

2
= ∥∥A(k)∥∥2

L2,

which implies that, forα > 0, k ≡ 0. ✷
Now, we denote the function obtained above as an operatorkα = R(G,α),

depending on the parameterα. For positive small numberδ, measuring the error
in data, if we can select an appropriate functionα = α(δ) as regularization
parameter,R(Gδ,α(δ)) is then a regularizing operator and hence the minimizer
kα(δ) = R(Gδ,α(δ)), can be taken as an approximate solution of the problem, as
discussed in detail below.

Theorem 2.2. Let kT (λ) ∈ C1[0, T ] be the exact solution of Eq. (1.13)with the
exact right-hand member Gt(λ):

A(kT )(λ)=
λ∫

0

kT (λ) dλ=GT (λ). (2.6)

Then, for every ε > 0, there exists a positive number δ(ε) such that for any
functionGδ(λ) ∈L2[0, T ] satisfying∥∥Gδ(λ)−GT (λ)

∥∥
L2[0,T ] � δ � δ(ε), (2.7)
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the following inequality holds:∥∥kα(δ)(λ)− kT (λ)
∥∥
C[0,T ] < ε, (2.8)

where

kα(δ) =R
(
Gδ,α(δ)

)
, α(δ)= δr , 0< r < 2. (2.9)

Proof. By the definition ofkα(δ), we have

Mα(δ)(kα(δ),Gδ)�Mα(δ)(kT ,Gδ). (2.10)

It follows then that∥∥A(k)α(δ) −Gδ
∥∥2
L2

�
T∫

0

( λ∫
0

kT (λ) dλ−Gδ(λ)

)2

dλ+ δr

T∫
0

(
k2
T (λ)+ k′2

T (λ)
)
dλ

=
T∫

0

(
GT (λ)−Gδ(λ)

)2
dλ+ δr

T∫
0

(
k2
T (λ)+ k′2

T (λ)
)
dλ

� δ2 + δr

T∫
0

(
k2
T (λ)+ k′2

T (λ)
)
dλ� δrd, (2.11)

whered = 1+ ∫ T
0 (k

2
T (λ)+ k′2

T (λ)) dλ and‖kα(δ)‖2
W1

2
� d .

So bothkT andkα(δ) belong to the compact subset ofC[0, T ]:
E = {

k(λ): ‖k‖2
W1

2
� d

}
.

The continuity of the inverseA−1 onAE implies that

‖kT − kα(δ)‖C � ‖A−1‖ · ‖AkT −Akα(δ)‖L2. (2.12)

Moreover,

‖AkT −Akα(δ)‖2
L2 � 2

(‖AkT −Gδ‖2
L2 + ‖Gδ −Akα(δ)‖2

L2

)
= 2

(‖GT −Gδ‖2
L2 + ‖Gδ −Akα(δ)‖2

L2

)
� 2(δ2 + δrd)� 2δr(1+ d). (2.13)

Then (2.12), (2.13) show that theδ(ε) needed in the theorem should be chosen in
the form

δ(ε)�
[

ε2

2‖A−1‖2(1+ d)

]1/r

(2.14)

to end the proof of the theorem.✷



530 P. Wang, K. Zheng / J. Math. Anal. Appl. 271 (2002) 525–533

Finally, we show thatG(λ) depends on the initial dataf , g continuously.

Theorem 2.3. For every positive δ, there exists a number ∆(δ) > 0 such that the
inequalities∥∥f−1

δ − f−1
T

∥∥
C

�∆�∆(δ), ‖gδ − gT ‖C �∆�∆(δ) (2.15)

imply

‖Gδ −GT ‖L2 � δ, (2.16)

where

GT (λ)= 1√
π

s∫
0

gT (τ )√
s − τ

dτ

∣∣∣∣
s=f−1

T (λ)

,

Gδ(λ)= 1√
π

s∫
0

gδ(τ )√
s − τ

dτ

∣∣∣∣
s=f−1

δ (λ)

. (2.17)

Proof. Since

π‖Gδ −GT ‖L2

�
T∫

0

( f−1
δ (λ)∫
0

gδ(τ )√
f−1
δ (λ)− τ

dτ −
f−1
T (λ)∫
0

gT (τ )√
f−1
T (λ)− τ

dτ

)2

dλ

� 2

T∫
0

( f−1
δ (λ)∫
0

gδ(τ )√
f−1
δ (λ)− τ

dτ −
f−1
T (λ)∫
0

gδ(τ )√
f−1
T (λ)− τ

dτ

)2

dλ

+ 2

T∫
0

( f−1
T (λ)∫
0

gδ(τ )− gT (τ )√
f−1
T (λ)− τ

dτ

)2

dλ

� 80T
∥∥f−1
δ − f−1

T

∥∥
C
‖gδ‖2

C + 8‖gδ − gT ‖2
C

T∫
0

f−1
t (λ) dλ,

where the estimate of the first term on the right-hand side follows from the fol-
lowing computation:

( f−1
δ (λ)∫
0

gδ(τ )√
f−1
δ (λ)− τ

dτ −
f−1
T (λ)∫
0

gδ(τ )√
f−1
T (λ)− τ

dτ

)2
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� 4‖gδ‖2
C

(
2
√∣∣f−1

δ (λ)− f−1
T (λ)

∣∣− ∣∣√f−1
δ (λ)−

√
f−1
T (λ)

∣∣)2

� 8‖gδ‖2
C

(∣∣√f−1
δ (λ)−

√
f−1
T (λ)

∣∣2 + 4
∣∣f−1
δ (λ)− f−1

T (λ)
∣∣2)

� 40‖gδ‖2
C + ∣∣f−1

δ (λ)− f−1
T (λ)

∣∣2.
We then choose∆(δ) = πδ2/(80TM1 + 8M2), whereM1 = (1 + ‖gT ‖C)2,
M2 = ∫ T

0 f
−1
T (λ) dλ, to end the proof. ✷

Theorems 2.2 and 2.3 imply then the following stability result.

Theorem 2.4. The solution of (1.13)depends on nonsmooth data f , g contin-
uously.

3. An example

In this section, we will apply the regularization approach presented in Section 2
to Euler equation (2.3) to demonstrate the applicability and the accuracy of the
approach.

First of all, we replace Eq. (2.3) by its finite difference approximation on a
given uniform grid with steph= T/(n+ 1), T = 1:

α

[
khj+1 − 2khj + khj−1

h2 − khj

]
=

n∑
i=j

h

i∑
l=1

hkhl −
n∑
i=j

hGhi ,

j = 1,2, . . . , n, (3.1)

where

Ghi = 2√
π

i∑
j=1

(√
τi − τj−1 −√

τi − τj
)
ghj , τi = f−1(ih),

i = 1,2, . . . , n, (3.2)

kh = (kh1, . . . , k
h
n) with kh0 = kh1, khn = khn+1, f−1

h = (f h1 , . . . , f
−1
n ) and gh =

(gh1, . . . , g
h
n) are difference solutions.

The above equations can be rewritten in matrix form:

(
h4B + αD

)
kh = 2√

π
h3RQgh, (3.3)

where
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B =




n n− 1 . . . 2 1
n− 1 n− 1 . . . 2 1
...

...
. . .

...
...

2 2 . . . 2 1
1 1 . . . 1 1


 ,

D =




h2 + 1 −1
−1 h2 + 2 −1

−1 h2 + 2 . . .
. . .

. . . h2 + 2 −1
−1 h2 + 2 −1

−1 h2 + 2



,

R =




1 1 . . . 1 1
0 1 . . . 1 1
...

...
. . .

...
...

0 0 . . . 1 1
0 0 . . . 0 1


 ,

Q= (qij ), qij =
{√

τi − τj−1, i � j,

0, i < j,
i, j = 1,2, . . . , n.

Now, letfT (t)= t , gT (t)= (2/35)
√
t/π(32t3 − 56t2 + 35). The exact solution

of (1.13) is

kT (λ)= 2λ3 − 3λ2 + 1.

In practice, exact smooth data are not given. Let us try to recover, by applying our
regularizing approach, the solution of (1.13) from the perturbations of the data:

fδ(t)= t1−δ, gδ(t)= gT dt (t)+ δ sin(50t).

Table 1
(n= 79, δ = 10−8, r = 1.78)

λ 0.05 0.10 0.15 0.20 0.25 0.30 0.35

kT (λ) 0.99275 0.97200 0.93925 0.89600 0.84375 0.78400 0.71825
kδ(λ) 1.04908 0.99454 0.94404 0.89616 0.84421 0.78530 0.71985

λ 0.40 0.45 0.50 0.55 0.60 0.65 0.70

kT (λ) 0.64800 0.57475 0.50000 0.42525 0.35200 0.28175 0.21600
kδ(λ) 0.64949 0.57602 0.50108 0.42617 0.35278 0.28239 0.21644

λ 0.75 0.80 0.85 0.90 0.95

kT (λ) 0.15625 0.10400 0.06075 0.02800 0.00725
kδ(λ) 0.15637 0.10374 0.06059 0.02968 0.01363
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The comparison of the approximate solutionkδ and the solutionkT with exact
data is shown in Table 1. One can see from this comparison that, when there is a
small change in data, the solution of (1.13) does not change much, which shows
that, using our regularizing approach, we can obtain stable approximate solution
of (1.13) from nonsmooth approximate data.
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