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Abstract

The problem of determining an unknown tektix) in the equatiork (u)u; = (k(u)uy)x
is considered in this paper. Applying Tikhonov's regularization approach, we develop a
procedure to find an approximate stable solution to the unknown coefficient from the over-
specified datal 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Cannon and DuChateau considered in [1] the following overspecified problem:

k(w)u;, = (k(u)ux)x, O<x,0<t<T, (1.2)
u(x,00=0, O<ux, (1.2
u@©,0)=f(@), fO0 =0, 0<r<T, (1.3)
—k(u(O, t))ux(O, t)=g(@), O<t<T. (1.4)

Here f, g are known functions ankl(1), a positive function, is to be determined.
It was assumed that, ¢ are strictly increasing and at least continuously differ-
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entiable. Under these conditions, Cannon and DuChateau proved that there exists
a uniquek(-) > 0 that depends on the dafa g continuously. A similar problem
on a finite interval was also considered in the article.

A practically more interesting situation is that the input functighsg are
not smooth as most data are gathered through measurement or other laboratory
methods. Wherr, g are not differentiable, the method used in [1] does not apply.
Let us see:

Integral transform

u(x,t)
v(x,t) = / k(A da (1.5)
0
converts (1.1)—(1.4) to the following linearized problem:

Vr=1uvyx, O<x,O0<t<T, (1.6)

v(x,00=0, O<ux, 1.7)
£ @)

v(0,1) = / k(M) dr, O<r<T, (1.8)
0

—ux(0,1) =g(t), O<t<T. (1.9

If the pair (v, k) solves the problem (1.6)—(1.9),

1
v(x,t):/H(x,t—r)g(r)dt, (1.10)
0
H(x,1)= L, (1.11)
; T
Letting x approach zero and using (1.8) yields
£ @) 1 )
g(T
k(A)dr = — dr. 1.12
| k= — [ Ear (1.12)
0
Therefore, the problem turns out to be an integral equaticit on
A() ) =GR), GO)=0, (1.13)
where
A 1 [ e
8(T
A(k)(k):/k(k)dk, G(k):—/ dt . (1.14)
ﬁ 0 A/S—T S=f_1()\.)

0
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Under the hypothesis of smoothness pfand g, it was proven in [1] that
Eq. (1.13) has a uniquely determined solution that depends on the data contin-
uously.

In practice, the boundary dayg g are obtained, in general, by physical mea-
surements and are thus not smooth. The problem (1.13) is ill-posed for non-
smooth data. We need to find new ways of determining the unknown coefficient
in Eqg. (1.1).

In Section 2, we will apply the regularization approach adapted in [2-4] to
define and construct approximate stable solutiohof (1.1). Then in Section 3,
we will demonstrate the applicability of our approximation approach by compar-
ing the exact solution and the approximate solution numerically.

2. Regularization approach

We assumg’ to be strictly increasingf, g areL? functions on[0, T].

Based on the basic concept of Tikhonov’s regularizing operators, we will
define and construct an approximate solution of the integral equation (1.13). We
will show that the solution is stable under small changes of the data.

First of all, we introduce a smooth functional

Mk, G) = HA(k) - GHiZ[O,T] +O‘”k()‘) ”iV%[O,T]

T A T

2
:/(/k(k)dA—G(A)) d/\+a/(k2(/\) +K'2(0)) dx

0 0 0
(2.1)

and establish the following result:

Theorem 2.1. For every G € L2[0, T] and every « > 0, there exits a unique
minimizer k, (1) € C[0, T such that

M (ky, G) = inf M* (k, G). (2.2)

Proof. By considering the first variation of the function®l”, we easily obtain

}iM“(k—i-eqb,G)
2de e=0
T A s
=/<</k(k)dk—G(k)> /q&(k)dk) dx
0 0 0

T
ta / (KOI$ 0 + K ' () dA
0
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T T X T
:/q&(k)(//k(k)dkdk—/G(k)dk—a(k”(k) —k(k))) dX
0 A0 A

oK g

It follows then that the minimizek, (1) is determined by the following Euler
integrodifferential equation:

T A T
//k(k)dkdk—/G(k)dk:a(k”(k) — k(%)) (2.3)
A0 A

with the boundary conditions
k' (0)=k'(T) =0. (2.4)

The solution of (2.3), (2.4) is unique. In factfiis a solution of the homogeneous
equation

T X
/ /k(k) drdr=a(k" () —k0)), (2.5)
A0

we multiply both sides by and integrate oi from 0 to T to obtain the equality
2 2
—af[km [y =AW,

which implies that, fox > 0,k=0. O

Now, we denote the function obtained above as an opekatet R(G, o),
depending on the parameter For positive small numbeY, measuring the error
in data, if we can select an appropriate functign= «(8§) as regularization
parameterR(Gs, a(8)) is then a regularizing operator and hence the minimizer
kqasy = R(Gs, 2(8)), can be taken as an approximate solution of the problem, as
discussed in detail below.

Theorem 2.2. Let k7 (1) € CL[0, T'] be the exact solution of Eq. (1.13)with the
exact right-hand member G, (1):

A
AT 0) = / k() dr=Gr (). (2.6)
0

Then, for every ¢ > 0, there exists a positive number §(¢) such that for any
function Gs(1) € L2[0, T] satisfying

1G5 = Gr (W) || o071 <8 < 8(o), (2.7)
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the following inequality holds:

ey (M) — k(1) ||C[0’T] <e, (2.8)
where

ka@)=R(Gs, (), a@d)=8", O<r<2 (2.9)

Proof. By the definition ofk, (8), we have
M (kg (5, Gs) < M*® (k. Gs). (2.10)

It follows then that

A(k)a(é) GSHZZ
|| L

2
kr(A) dx — Gg(k)) dr+8" / (K2 (1) + K2 (1)) da
0

o

T
(Gr() — Gs(W)?dr+ 8" / (k2. (0) + k{2 (0))
0

T
<8248 /(k%(,\) +K2())dr < 8" d, (2.11)
0
whered =1+ /0 (k2() + k2 (1) dA and||ka(5)||W1 <d
2
So bothkr andke sy belong to the compact subset@to, TI:
= {k): ||k||Wl <d}.
The continuity of the inversd —1 on AE implies that
lkr — ka@llc < NATH - |Akr — Aka(s) |l 2- (2.12)
Moreover,
Akr — Akgs)122 < 2()| Ak — Gsl12, + |G — Akas)l1?
| Akr «®)l72 <2(I1Akr — Gsll5, + 1G5 «®52)
=2(IGr — G52, + 1G5 — Aka(s)l125)
<2082 +8d) <25 (1+d). (2.13)

Then (2.12), (2.13) show that tld¢s) needed in the theorem should be chosen in
the form

£2 1r
Sl mAagzard .
< [2||A_1||2<1+d>} (2.14)

to end the proof of the theoremo
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Finally, we show that (1) depends on the initial datg, g continuously.

Theorem 2.3. For every positive §, there exists a number A(8) > 0 such that the

inequalities
15 = e SASAG). g —grlc <A< AW
imply
1Gs — Grllg2 <38,
where
GT()") = T )
s=fr1)
Gy = _/ 5(T) .
~/—0 s T s=f1 )
Proof. Since
w||Gs — Grll;2
T, £t frton 2
. /( / s / gr (1) df) "
9 N o it —t

£

I\)

(]
+2Z(

fT )
/ 8s(1) —gr(r)

(/\)—T

i
gs(1)

2
/ s / )
dr — ——————=dt | dA
o -« o VIt -t

2
r) dis

<807 £ — f7 | llgsl + 8ligs — g7 112 f o an,

where the estimate of the first term on the right-hand side follows from the fol-

lowing computation:

it 7o
( / B® /
o VIfitw—< 0

gs(7)

2
7df)
Vit -

(2.15)

(2.16)

(2.17)
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<alssl (21570 - £ 0] - Wt o - w))’

<82 (Y 770~V i P+ 4l 0 - 7o)
<40lgsI2 + | #7200 — £t P

We then chooseA(8) = 782/(80T M1 + 8M>), where M1 = (1 + |lgrllc)?,
M2= [ f71(.)dx, to end the proof. O

Theorems 2.2 and 2.3 imply then the following stability result.

Theorem 2.4. The solution of (1.13)depends on nonsmooth data f, g contin-
uously.

3. An example

In this section, we will apply the regularization approach presented in Section 2
to Euler equation (2.3) to demonstrate the applicability and the accuracy of the
approach.

First of all, we replace Eq. (2.3) by its finite difference approximation on a
given uniform grid with stegr = T/(n + 1), T = 1:

K, — 2k" 4kt n_o i n
jt+l J ji—1 nl_ h h
a[ i —kj}_ZhE hk' = " hG!,
i=j I=1 i=j
i=12,....n, (3.1)

where

2 i
6= Z S (AT aT g =,
j=1
i=1,2,....n, (3.2)

K= (kD with kB =k K=kt = (R D and gl =
(g?, e, g,’;) are difference solutions.
The above equations can be rewritten in matrix form:

2
(h*B +aD)k" = ﬁthQgh, (3.3)

where
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n n-1 ... 2 1
n—-1 n-1 ... 2 1
B ) : -]
2 2 ... 21
1 1 ...1 1
G
-1 K242 -1
-1 K242
D= ,
n2+2 -1
-1 K242 -1
-1 h%242
11 ... 11
01 11
R= : RN 8
00 ... 11
00 ..01

T —Ti-1, =], ..
0 = (gij), qij:{o’ -1 i<§ i,j=12,...,n.

Now, let f7(t) =1, g7 (1) = (2/35)/1/7 (322 — 5612 + 35). The exact solution
of (1.13) is

kr() =203 —-322 4+ 1.

In practice, exact smooth data are not given. Let us try to recover, by applying our
regularizing approach, the solution of (1.13) from the perturbations of the data:

@) =118 gs(t) = grdt(r) + 8sin(50r).

Table 1
(n=79,6=108,r=179
X 0.05 010 015 020 025 030 035

kT (%) 0.99275 097200 093925 089600 084375 078400 071825
ks (™) 1.04908 099454 094404 089616 084421 078530 071985

A 0.40 045 050 055 060 065 Q70

kT (X)) 0.64800 057475 050000 042525 035200 028175 021600
ks(x) 0.64949 057602 050108 042617 035278 028239 021644

A 0.75 080 085 090 095

kT (X)) 0.15625 010400 006075 002800 000725
ks(X) 0.15637 010374 006059 002968 001363
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The comparison of the approximate solutipnand the solutiorky with exact

data is shown in Table 1. One can see from this comparison that, when there is a
small change in data, the solution of (1.13) does not change much, which shows
that, using our regularizing approach, we can obtain stable approximate solution
of (1.13) from nonsmooth approximate data.
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