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a b s t r a c t

We obtain new and complete asymptotic expansions of the confluent hypergeometric
functions M(a, b; z) and U(a, b; z) for large b and z. The expansions are different in the
three different regions: z + a + 1 − b > 0, z + a + 1 − b < 0 and z + a + 1 − b = 0.
The expansions are not of Poincaré type and we give explicit expressions for the terms of
the expansions. In some cases, the expansions are valid for complex values of the variables
too. We give numerical examples which show the accuracy of the expansions.
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1. Introduction

Asymptotic approximations of the confluent hypergeometric functions M(a, b; z) and U(a, b; z) for large b and z have
been studied by several authors using different methods. For example, uniformmethods for integrals are used in [1], where
the author obtains uniform expansions ofM(a, b; z) and U(a, b; z) in terms of parabolic cylinder functions. See also [2] for
a similar expansion of the Whittaker function Wκ,µ(z) = e−z/2zµ+1/2M(1/2 + µ − κ, 1 + 2µ, z) when its parameters
and variable are large. Asymptotic methods for differential equations are used in [3,4], where the author derives uniform
asymptotic expansions of Mκ,iµ(z) = e−z/2zµ+1/2U(1/2 + µ − κ, 1 + 2µ, z) and Wκ,iµ(z) for real κ , µ and z in terms of
Bessel and Airy functions. See also [5] and [6] for similar expansions of the Whittaker functions when their parameters are
large. Using the Laplace’s method for integrals, non uniform expansions of M(a, b; z) and U(a, b; z) for large b and z are
obtained in [7] for real a, b and z in terms of elementary functions.
Recently, it has been proposed in [8–10] a variant of the Laplace’smethod for integrals that avoids the change of variables

of the standard method and simplifies the computations. As a difference with the standard method, this technique gives an
explicit formula for the coefficients of the expansion. In this paper we apply this method to two integral representations
ofM(a, b; z) and U(a, b; z) and obtain non-uniform expansions of these functions for large b and z in terms of elementary
functions. A review of the method is given in the following section. The asymptotics ofM(a, b; z) and U(a, b; z) in given in
Sections 3 and 4 respectively.
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2. Preliminaries

Consider the integral

F(z) :=
∫ b

a
e−zf (t)g(t)dt, z > 0, (1)

where (a, b) is a real interval (finite or infinite) and z is a large parameter. Let the functions f (t) and g(t) above be continuous
on (a, b), with (a, b) finite or infinite and suppose that the above integral exists for large enough z. Let t0 be the unique
minimum of f (t) on [a, b] and let f (t) and g(t) be analytic at t = t0. If t0 = a, we let g(t) to possess a power branch point
at t = a in such a way that (t − a)−sg(t) is analytic at t = a, with s ∈ (−1, 0] if t0 = a and s = 0 if t0 ∈ (a, b]. Then [9], [10,
Theorem 1],

F(z) ∼ e−zf (t0)
∞∑
n=0

Ψn(z), as z →∞, (2)

with

Ψn(z) :=
b
n
p−m c∑

k=b n−mp−m c

an+mk(z)
α + (−1)n+mkβ

m
Γ

(
k+

n+ s+ 1
m

) ∣∣∣∣ m!
f (m)(t0)z

∣∣∣∣k+ n+s+1m

. (3)

In this sum, b−ncwith n natural must be understood as zero and

α =

{
1 if t0 ∈ [a, b)
0 if t0 = b,

β =

{
1 if t0 ∈ (a, b]
0 if t0 = a.

The integerm is the degree of the first non-vanishing derivative of f (t) at t = t0 and p is the degree of the next non-vanishing
derivative. For n = 0, 1, 2, . . .,

an(z) := ezf (t0)
bn/mc∑
k=0

zk

k!

(
f (m)(t0)
m!

)k
×

n−mk∑
j=0

Aj(z)Bn−mk−j, (4)

where Aj(z) and Bj are the Taylor coefficients at t = t0 of e−zf (t) and (t − a)−sg(t) respectively:

e−zf (t) =
∞∑
n=0

An(z)(t − t0)n, g(t) =
∞∑
n=0

Bn(t − t0)n+s, |t − t0| < r.

The terms of the expansion are of the order Ψn(z) = O
(
z−(n+s+1)/m

)
as z →∞.

Observe that the terms an(z) are polynomials of degree bn/pc. Then, from (3) we see that the asymptotic sequenceΨn(z)
is a sum of bn/(p−m)c − b(n−m)/(p−m)c + 1 negative powers of z.

3. Asymptotic expansions ofM(a, b; z)

The starting point is the integral representation ofM(a, b; z) [11, Eq. (13.2.1)]:

M(a, b; z) =
Γ (b)

Γ (a)Γ (b− a)

∫ 1

0
ta−1 (1− t)b−a−1 ezt dt, Rb > Ra > 0. (5)

We define α = (b− a− 1)/z and we consider that both, b and z are large and of the same order, which means that a and α
are fixed. We consider three different cases: z + a+ 1− b > 0, z + a+ 1− b < 0 and z + a+ 1− b = 0.

3.1. Case I: z + a+ 1− b > 0

After the change of variable t → 1− t , the above integral can be written in the form (1),

M(a, b; z) =
Γ (b)ez

Γ (a)Γ (b− a)

∫ 1

0
g(t) e−zf (t) dt,
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Table 1
All the columns represent the relative error in the approximation of M(3/2, b; z) taking the first n terms of the expansion (6) for the given values of b
and z.

b, z n
0 1 2 3

40, 100 0.00717631 −0.00222531 −0.00401425 −0.00171174
80, 200 0.00370395 −0.000522916 −0.000495289 −0.000193111
100, 500 0.00046581 −0.000296132 −0.000227519 −0.0000804347
300, 700 0.00119686 −0.00003598 −9.44441× 10−6 −1.28325× 10−6

600, 1200 0.000898967 −9.05179× 10−6 −1.24016× 10−6 −8.68476× 10−8

with g(t) = (1 − t)a−1 and f (t) = t − α log t . We have that 0 < α < 1, the unique critical point of f (t) is t0 = α and
f (t) attains its unique minimum on [0, 1] at t0 = α. Both functions e−zf (t) and g(t) have a Taylor expansion at t = α (with
s = 0):

e−zf (t) = e−zf (t0)e−z(t−t0)
(
1+

t − t0
t0

)αz
= e−zf (t0)

∞∑
n=0

[
(−z)n

n∑
k=0

(−αz)k
k!(n− k)!(αz)k

]
(t − t0)n, with |t − α| < α,

g(t) =
∞∑
n=0

(1− a)n(1− t0)a−1−n

n!
(t − t0)n with |t − α| < 1− α.

We have f (t0) = α − α lnα, f ′′(t0) = 1/α and f ′′′(t0) 6= 0. With the notation of Section 2 we havem = 2, p = 3 and

an(z) =
bn/2c∑
k=0

n−2k∑
j=0

j∑
l=0

(−1)j(−αz)l(1− a)n−2k−jz j+k−l

2k(j− l)!l!k!(n− 2k− j)!αk+l(1− α)n−2k−j
.

Therefore, from Eqs. (2) and (3) we have that, for large b and z with fixed α, 0 < α < 1:

M(a, b; z) ∼
Γ (b)ez(1− α)a−1

Γ (a)Γ (b− a)

(α
e

)αz √2απ
z

×

[
1+

∞∑
n=1

2∑
k=0

a6n+2k−4(z)
√
π

(
2α
z

)3n+k−2
Γ

(
3n+ k−

3
2

)]
. (6)

The first few terms of the expansion are

M(a, b; z) ∼
Γ (b)ez(1− α)a−1

Γ (a)Γ (b− a)

(α
e

)αz √2απ
z

[
1+

(
(2− aα)(1− a)
2(1− α)2

+
1
12α

)
1
z
+ O

(
1
z2

)]
.

Table 1 shows a numerical experiment about the accuracy of the above approximation.

3.2. Case II: b > z + a+ 1

The integral (5) is of the form (1) with g(t) = ta−1, f (t) = −t − α log(1 − t) and α = (b − a − 1)/z, with α > 1. The
unique critical point of f (t) is t = 1 − α < 0 and f (t) attains its unique minimum on [0, 1] at t0 = 0. We have f (0) = 0,
f ′(0) = α − 1 and f ′′(0) 6= 0. With the notation of Section 2 we havem = 1 and p = 2. Both functions e−zf (t) and t1−ag(t)
have a Taylor expansion at t = 0. The one of t1−ag(t) = 1 is trivial (observe that in this case s = a− 1) and:

e−zf1(t) = eαzt(1− t)b−a−1 =
∞∑
n=0

an(z)tn, |t| < 1, (7)

with

an(z) =
n∑
k=0

(a+ 1− b)k(b− a− 1)n−k

k!(n− k)!
.

Therefore, from (2) and (3) we have that, for large b and z with fixed α > 1:

M(a, b; z) ∼
Γ (b)

Γ (a)Γ (b− a)

∞∑
n=0

Γ (2n+ a− 1) [(2n+ a− 1)a2n(z)+ (b− a− z − 1)a2n−1(z)]
(b− a− z − 1)2n+a

. (8)
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Table 2
All the columns represent the relative error in the approximation of M(3/2, b; z) taking the first n terms of the expansion (8) for the given values of b
and z.

b, z n
0 1 2 3 4

50, 20 −0.11362533 0.01752476 −0.00241692 −0.00088089 0.00177587
100, 40 −0.05430195 0.00399357 −0.00027097 −0.00003898 0.00004085
200, 80 −0.02657879 0.00095620 −0.000032248 −2.0363× 10−6 1.0984× 10−6

300, 100 −0.01424644 0.00025788 −3.4181× 10−6 −3.0658× 10−7 6.2285× 10−8

1000,200 −0.00293981 9.5455× 10−6 −2.5216× 10−9 −1.0740× 10−9 3.4167× 10−11

The first few terms of the expansion are

M(a, b; z) ∼
Γ (b)

Γ (b− a)
1

(b− a− z − 1)a

[
1−

a(a+ 1)(a+ 1− b)
2(b− a− z − 1)2

+ O

(
1
b2

)]
.

Observe that the integration interval (0, 1) in (5) is contained in the disk of convergence of the expansion (7). As it is argued
in [9], this means that (8) holds not only for b− z − a− 1 > 0, but also forR(b− z − a− 1) > 0.
Table 2 shows a numerical experiment about the accuracy of the above approximation.

3.3. Case III: b = z + a+ 1

The functions f (t) and g(t) are the same than those in case II, but now α = 1 and the unique critical point of f (t) is
t = 1−α = 0. Again, f (t) attains its minimum on [0, 1] at t0 = 0 and f (0) = 0, but now f ′(0) = α−1 = 0, f ′′(0) = α 6= 0
and f ′′′(0) 6= 0. With the notation of Section 2 we have m = 2 and p = 3. Once again, the Taylor expansion at t0 = 0 of
t1−ag(t) = 1 is trivial and:

e−zf (t) = e(b−a−1)t(1− t)b−a−1 =
∞∑
n=0

[
n∑
k=0

(1+ a− b)k(b− a− 1)n−k

k!(n− k)!

]
tn, |t| < 1.

Then, the coefficients an(z) read

an(z) =
bn/2c∑
k=0

n−2k∑
j=0

(a+ 1− b)j(b− a− 1)n−k−j

j!k!(n− 2k− k)!2k
.

Therefore, from (2) and (3) we have that, for large b and z and α = 1:

M(a, b; z) ∼
Γ (b)

2Γ (a)Γ (b− a)

(
2

b− a− 1

)a/2
×

[
Γ

( a
2

)
+

1∑
k=0

a2k+1(z)Γ
(
k+

a+ 1
2

)(
2

b− a− 1

)k+1/2

+

∞∑
n=2

2∑
k=0

a3n+2k−4(z)Γ
(
k+

3n+ a
2
− 2

)(
2

b− a− 1

)k+3n/2−2]
. (9)

The first few terms of the expansion are

M(a, b; z) ∼
Γ (b)

2Γ (a)Γ (b− a)

(
2

b− a− 1

)a/2 [
Γ

( a
2

)
−
2
3
Γ

(
a+ 3
2

)√
2

b− a− 1
+ O

(
1
z

)]
.

As in the previous case, (9) holds not only for b− z − a− 1 = 0 but also forR(b− z − a− 1) = 0.
Table 3 shows a numerical experiment about the accuracy of the above approximation.

4. Asymptotic expansions U(a, b; z)

The starting point is the integral representation [[11], Equation 13.2.5]:

U(a, b; z) =
1

Γ (a)

∫
∞

0
ta−1 (1+ t)b−a−1 e−zt dt, Rz > 0, Ra > 0. (10)

The integral (10) is of the form (1) with g(t) = ta−1 and f (t) = t − α log(1 + t). As in the previous section, we define
α = (b− a− 1)/z and we consider b and z large and of the same order and then a and α are fixed. We consider again three
different cases: z + a+ 1− b > 0, z + a+ 1− b < 0 and z + a+ 1− b = 0.
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Table 3
All the columns represent the relative error in the approximation ofM(3/2, b; b− 5/2) taking the first n terms of (9) for the given values of b.

b n
0 1 2 3 4

20 −0.23709530 0.02068824 0.01951005 −0.03234603 0.02805755
50 −0.13678165 0.00699928 0.00244375 −0.00168864 0.00042447
100 −0.0932349680 0.00327724 0.00056032 −0.00011135 −0.00012957
200 −0.06445130 0.00157444 0.00013380 0.00001967 −0.00004709
500 −0.04003611 0.00061037 0.00002086 9.33063× 10−6 −6.85496× 10−6

Table 4
All the columns represent the relative error in the approximation of U(3/2, b; z) taking the first n terms of the expansion (11) for the given values of b
and z.

b, z n
0 1 2 3

80, 30 −0.00729139 0.000288621 −0.000171287 −0.000150116
150, 50 −0.0037508 0.0000616996 −0.0000264384 −0.0000121119
500, 300 −0.00109959 0.0000228974 1.06293× 10−7 −6.2741× 10−8

1000, 600 −0.0.00055101 5.71282× 10−6 1.76091× 10−8 −3.41763× 10−9

1500, 800 −0.000387509 −1.77026× 10−6 −5.68313× 10−9 −8.70561× 10−10

4.1. Case I: b > z + a+ 1

In this case we have α > 1, the unique critical point of f (t) is t0 = α − 1 and f (t) attains its unique minimum on [0, 1]
at t0 = α − 1. Both functions e−zf (t) and g(t) have a Taylor expansion at t0 = α − 1 (with s = 0):

e−zf (t) = e−zf (t0)e−z(t−t0)
(
1+

t − t0
1+ t0

)αx
= e−zf (t0)

∞∑
n=0

[
(−z)n

n∑
j=0

(−αz)k
k!(n− k)!(αz)k

]
(t − t0)n, |t − (α − 1)| < α,

g(t) =
∞∑
n=0

(−1)n(1− a)n(1− α)a−1−n

n!
(t − t0)n , |t − (α − 1)| < α − 1.

We have f (t0) = α − 1− α lnα, f ′′(t0) = 1/α and f ′′′(t0) 6= 0. With the notation of Section 2 we havem = 2, p = 3 and

an(z) =
[n/2]∑
k=0

n−2k∑
j=0

j∑
l=0

(−1)nzk+j−l(−αz)l(1− a)n−2k−j(α − 1)2k−n+j

k!(j− l)!l!(n− 2k− j)!2kαk+l
.

Therefore, from (2) and (3) we have that, for large b and z and fixed α > 1:

U(a, b; z) ∼
1

Γ (a)

(α
e

)αz
(α − 1)a−1

√
2απ
z

[
1+

∞∑
n=1

2∑
k=0

a6n+2k−4(z)
√
π

(
2α
z

)3n+k−2
Γ

(
3n+ k−

3
2

)]
. (11)

The first few terms of the expansion are

U(a, b; z) ∼
1

Γ (a)

(α
e

)αz
(α − 1)a−1

√
2απ
z

[
1+

(
(2− aα)(1− a)
2(1− α)2

+
1
12α

)
1
z
+ O

(
1
z2

)]
.

Table 4 shows a numerical experiment about the accuracy of the above approximation.

4.2. Case II: b < z + a+ 1

In this case α < 1, the unique critical point of f (t) is t = α− 1 6∈ [0, 1] and f (t) attains its minimum on [0, 1] at t0 = 0.
We have f (0) = 0, f ′(0) = 1− α and f ′′(0) 6= 0. With the notation of Section 2 we have m = 1 and p = 2. Both functions
e−zf (t) and t1−ag(t) have a Taylor expansion at t = 0. The one of t1−ag(t) = 1 is trivial (observe that in this case s = a− 1)
and:

e−zf1(t) = e−αzt(1+ t)b−a−1 =
∞∑
n=0

an(z)tn, |t| < 1,

with

an(z) =
n∑
k=0

(a+ 1− b)k(b− a− 1)n−k

k!(n− k)!
.
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Table 5
All the columns represent the relative error in the approximation of U(3/2, b; z) taking the first n terms of the expansion (12) for the given values of b
and z.

b, z n
0 1 2 3 4

40, 100 0.017069 −0.00123825 0.000100331 −8.92728× 10−6 8.26084× 10−7

80, 200 0.00941109 −0.000363507 0.0000163158 −8.3974× 10−7 4.81173× 10−8

100, 300 0.00438706 −0.0000906646 1.99168× 10−6 −4.93653× 10−8 1.37619× 10−9

300, 700 0.00341076 −0.0000441363 7.05264× 10−7 −1.34366× 10−8 2.97661× 10−10

600, 1200 0.00306411 −0.0000315543 4.30402× 10−7 −7.22087× 10−9 1.25242× 10−10

Table 6
All the columns represent the relative error in the approximation of U(3/2, b; b− 5/2) taking the first n terms of the expansion (13) for the given values
of b.

b n
0 1 2 3 4

50 −0.117071 −0.00539794 −0.0018597 −0.0050693 −0.00671053
100 −0.0836316 −0.00273335 −0.00045599 −0.00101899 −0.00100372
300 −0.0489939 −0.000930897 −0.0000502492 −0.0000873915 −0.000052745
500 −0.0381539 −0.000563225 −0.0000180304 −0.0000286884 −0.0000137196
1000 −0.0271356 −0.000284228 −4.47042× 10−6 −6.47886× 10−6 −2.24977× 10−6

Therefore, from (2) and (3) we have that, for large b and z and fixed α < 1:

U(a, b; z) =
1

Γ (a)

∞∑
n=0

Γ (2n+ a− 1) [(2n+ a− 1)a2n(z)+ (z + a+ 1− b)a2n−1(z)]
(z + a+ 1− b)2n+a

. (12)

The first few terms of the expansion are

U(a, b; z) ∼
1

(z + a+ 1− b)a

[
1−

(a)1(b− a− 1)
2(z + a+ 1− b)2

+
(8z + (3a+ 1)(b− a− 1))(b− a− 1)(a)2

24(z + a+ 1− b)4
+ O

(
1
b3

)]
.

Table 5 shows a numerical experiment about the accuracy of the above approximation.

4.3. Case III: b = z + a+ 1

In this case α = 1, the unique critical point of f (t) is t = α − 1 = 0 and again, f (t) attains its minimum on [0, 1] at
t0 = 0 and f (0) = 0, but now f ′(0) = 1 − α = 0, f ′′(0) 6= 0 and f ′′′(0) 6= 0. Then we have m = 2 and p = 3. Once again,
the Taylor expansion at t0 = 0 of t1−ag(t) = 1 is trivial (with s = a− 1) and:

e−zf (t) = e(b−a−1)t(1+ t)b−a−1 =
∞∑
n=0

[
n∑
k=0

(−1)n(1+ a− b)k(b− a− 1)n−k

k!(n− k)!

]
tn, |t| < 1.

Then, the coefficients an(z) read

an(z) =
bn/2c∑
k=0

n−2k∑
j=0

(−1)n(a+ 1− b)j(b− a− 1)n−k−j

j!k!(n− 2k− j)!2k
.

Therefore, from (2) and (3) we have that, for large b and z and α = 1:

U(a, b; z) =
1

2Γ (a)

(
2

b− a− 1

)a/2 [
Γ

( a
2

)
+

1∑
k=0

a2k+1(z)Γ
(
k+

a+ 1
2

)(
2

b− a− 1

)k+1/2

+

∞∑
n=2

2∑
k=0

a3n+2k−4(z)Γ
(
k+

3n+ a
2
− 2

)(
2

b− a− 1

)k+3n/2−2]
. (13)

The first few terms of the expansion are

U(a, b; z) ∼
1

2Γ (a)

(
2

b− a− 1

)a/2 [
Γ

( a
2

)
+
2
3
Γ

(
a+ 3
2

)√
2

b− a− 1
+ O

(
1
b

)]
.

Table 6 shows a numerical experiment about the accuracy of the above approximation.
As a final remark, we want to mention that the accuracy of the above expansions is similar to the accuracy of the

expansions given in [7], as well as the computational speed. The advantage of the expansions of this paper is analytical,
as every one of the terms of the expansions are given by simple and explicit formulas.
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