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1. Introduction

Let d ∈ N, s1, . . . , sd ∈ C and f1, . . . , fd be certain arithmetic functions such as Dirichlet characters.
In this paper, for each ω ∈ {•, �}, we study the multiple L-function

Lω
d (s1, . . . , sd; f1, . . . , fd) :=

∑
(m1,...,md)∈Iωd

f1(m1) · · · fd(md)

ms1
1 · · ·msd

d

,
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where Iωd := limM→+∞ Iωd (M) with

Iωd (M) :=
{ {(m1, . . . ,md) ∈ Nd | m1 < · · · < md � M} (ω = •),

{(m1, . . . ,md) ∈ Nd | m1 � · · · � md � M} (ω = �).

In particular, when f j = 1 for all j where 1 is the trivial character, we write Lω
d as ζω

d and call it the
multiple zeta function (ζ �

d is often called the multiple zeta-star function or the non-strict multiple
zeta function). Moreover, when d = 1, we write L(s; f ) = Lω

1 (s; f ), whence L(s;1) = ζ(s) where ζ(s)
is the Riemann zeta function.

Let {x}d be the d-times copy of the variable x. Though it is, in general, difficult to evaluate the
value ζω

d (k1, . . . ,kd) for given positive integers k1, . . . ,kd , there are many explicit results concern-
ing the values ζω

d ({2k}d) (see [6,7,17,23,29,31] for the case ω = • and [22,25,26] for ω = �). Let χ
be a Dirichlet character and κ an integer with the same parity as that of χ . The purpose of the
present paper is, as a generalization and unification of the above results, to obtain explicit descrip-
tions of the values Lω

d ({κ}d; {χ}d) from a symmetric functions’ viewpoint. That is, we evaluate the
values L•

d({κ}d; {χ}d) and L�
d({κ}d; {χ}d) as specializations of the elementary and complete symmetric

function, respectively.
When κ is positive, we do this in the following two distinct ways: In the first method, making

use of the relations among the above symmetric functions and the power-sum symmetric function,
we express the values Lω

d ({κ}d; {χ}d) in terms of a sum over partitions of d (Theorem 2.1). In the
second method, we consider a generating function of Lω

d ({κ}d; {χ}d). From the product expressions of
the generating function, we show that Lω

d ({κ}d; {χ}d) can be expressed in terms of Aω
κd(κ;χ), which

is defined by a finite sum involving the multinomial coefficients and roots of unity (Theorem 3.4).
As an application, in Section 4, equating the two expressions, we give several summation formulae
involving the Bernoulli numbers Bn and the Euler numbers En . It should be noted that some of
these (formulae (4.4), (4.5) and (4.9)) can be regarded as solutions of a kind of “inverse problem”, as
previously studied in [15] (see also [12]), for the sequences B2k and E2k .

Moreover, we also study a special value, called a central limit value (see [2,3]), of the func-
tion Lω

d (s1, . . . , sd; {χ}d) at s1 = · · · = sd = −κ where κ is a non-negative integer. Note that such a
value can be defined because Lω

d (s1, . . . , sd; {χ}d) admits a meromorphic continuation to the whole
space Cd . We then obtain formulae that extend the well-known expressions concerning the value
L(−κ,χ) of the usual Dirichlet L-function (Theorem 5.1).

In the final section, we discuss some generalizations of Lω
d , and also give questions for the future

study.
Note that, for completeness and the reader’s convenience, we restate or briefly prove the corre-

sponding results for χ = 1.
Throughout the present paper, we use the following notation for Dirichlet characters: Let χ be a

Dirichlet character modulo N . Denote by χ ′ the primitive character that induces χ , N(χ) the conduc-
tor, e(χ) ∈ {0,1} the parity, i.e., χ(−1) = (−1)e(χ) (we call χ even if e(χ) = 0 and odd otherwise),

τ (χ) := ∑N
a=1 χ(a)e

2π ia
N the Gauss sum of χ and Bn,χ the generalized Bernoulli number associ-

ated with χ defined by
∑N

a=1
χ(a)teat

eNt−1
= ∑∞

n=0 Bn,χ
tn

n! . Note that Bn,1 = Bn and Bn,χ−4 = − 1
2 nEn−1

where χ−4 is the primitive Dirichlet character modulo 4. Further, for simplification, we always write
κ = κ(k,χ) := 2k + e(χ) with k ∈ Z.

2. Multiple L-values via the symmetric functions

2.1. Symmetric functions

Let λ = (λ1, λ2, . . .) be a partition. We write λ � d if λ is a partition of d, that is, |λ| := ∑
j�1 λ j = d

and put 
(λ) := max{ j | λ j �= 0} (the length of λ) and mi(λ) := #{ j | λ j = i} (the multiplicity of i in λ)
as usual. We denote by λo (resp. λe) the partition whose parts consist of all the odd (resp. even) ones
of λ and set ελ := (−1)|λ|−
(λ) and zλ := ∏

j�1 jm j(λ)m j(λ)!.
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For a partition λ = (λ1, λ2, . . .), the elementary symmetric function eλ , the complete symmetric
function hλ and the power-sum symmetric function pλ in x = (x1, x2, . . .) are respectively defined by
eλ(x) := ∏

j�1 eλ j (x), hλ(x) := ∏
j�1 hλ j (x) and pλ(x) := ∏

j�1 pλ j (x) where, for r ∈ N,

er :=
∑

n1<···<nr

xn1 · · · xnr , hr :=
∑

n1�···�nr

xn1 · · · xnr and pr :=
∞∑

n=1

xr
n.

Put v•
λ := eλ , v�

λ := hλ , ε•
λ := ελ , ε�

λ := 1, ε• := −1 and ε� := 1. Then, for each ω ∈ {•, �}, we have

vω
(d) =

∑
μ�d

εω
μ

zμ
pμ. (2.1)

This follows from the following identities of the generating function of vω
(d)

(x) (for further details, see
the proof of (2.14) and (2.14)′ in [19, p. 25]);

∞∑
d=0

εd
ωvω

(d)t
d =

∞∏
n=1

(1 − xnt)−εω = exp

(
εω

∞∑
n=1

1

n
pntn

)
=

∞∑
d=0

εd
ω

{∑
μ�d

εω
μ

zμ
pμ

}
td. (2.2)

2.2. Evaluation formula I

For a partition μ = (μ1,μ2, . . .) and a,b ∈ Z satisfying aμ
(μ) + b � 0, let χ
j
μ := (χμ j )′ for 1 �

j � 
(μ) and set

Nμ(χ) :=

(μ)∏
j=1

N
(
χ

j
μ

)μ j
, eμ(χ) :=


(μ)∑
j=1

e
(
χ

j
μ

)
, τμ(χ) :=


(μ)∏
j=1

τ
(
χ

j
μ

)
and

B̃aμ+b,χ :=

(μ)∏
j=1

B
aμ j+b,χ

j
μ

(aμ j + b)! .

We similarly put B̃aμ+b := ∏
(μ)

j=1

Baμ j+b

(aμ j+b)! and Ẽaμ+b := ∏
(μ)

j=1

Eaμ j+b

(aμ j+b)! . Moreover, set

αχ(s) :=
∏

p:prime
p|N, p�N(χ ′)

(
1 − χ ′(p)p−s) and Wμ(s;χ) :=


(μ)∏
j=1

αχ
μ j (sμ j).

Using these definitions, we obtain the following theorem:

Theorem 2.1. Let χ be a Dirichlet character modulo N and κ = 2k + e(χ) � 1. Then, we have

Lω
d

({κ}d; {χ}d) = (−1)
κd
2 2κd

{∑
μ�d

εω
μ

zμ

(−1)
(μ)−eμ(χ)

2
(μ)

Wμ(κ;χ)τμ(χ)

Nμ(χ)κ
B̃κμ,χ

}
πκd. (2.3)
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Proof. We first recall the case d = 1 (see, e.g., [24]). If χ is primitive, then we have

L(κ;χ) = (−1)k+1− e(χ)
2

τ (χ)

2

(
2π

N(χ)

)κ Bκ,χ

κ ! . (2.4)

Otherwise, from the Euler product expression, we have L(κ;χ) = αχ(κ)L(κ;χ ′). Hence, in this case,
the claim (2.3) clearly holds.

Now, let d � 2. Specializing xn = χ(n)n−s with Re(s) > 1, we have

vω
(d)(x) = Lω

d

({s}d; {χ}d) and p(d)(x) = L
(
ds;χd). (2.5)

Note that these series also converge for s = 1 if χ is not principal (see [4]). Then, from expres-
sion (2.1), we have

Lω
d

({s}d; {χ}d) =
∑
μ�d

εω
μ

zμ


(μ)∏
j=1

L
(
μ j s;χμ j

) =
∑
μ�d

εω
μ

zμ
Wμ(s,χ)


(μ)∏
j=1

L
(
μ j s;χ j

μ

)
. (2.6)

We here put s = κ = κ(k,χ) � 1. Notice that e(χ j
μ) ≡ e(χ)μ j (mod 2) because (−1)e(χ j

μ) = χ
j
μ(−1) =

χ(−1)μ j = (−1)e(χ)μ j , and hence

κμ j = κ(k,χ)μ j =

⎧⎪⎪⎨⎪⎪⎩
κ(kμ j,χ

j
μ) if e(χ) = 0,

κ(kμ j + μ j
2 ,χ

j
μ) if e(χ) = 1 and μ j is even,

κ(kμ j + μ j−1
2 ,χ

j
μ) if e(χ) = 1 and μ j is odd.

(2.7)

Therefore, from Eqs. (2.4) and (2.7), we have

L
(
κμ j;χ j

μ

) = (−1)
κμ j

2 +1−e(χ j
μ)

τ (χ
j
μ)

2

(
2π

N(χ
j
μ)

)κμ j B
κμ j ,χ

j
μ

(κμ j)! . (2.8)

Substituting expression (2.8) into Eq. (2.6), we obtain the desired formula. �
2.3. Examples

For a partition μ, we denote by
∏μ,o

μ j�a (resp.
∏μ,e

μ j�a) the product over all 1 � j � 
(μ) such that

μ j is odd (resp. even) and μ j � a. In particular, we omit the condition “μ j � a” if a = 1.

2.3.1. Principal Dirichlet characters
Let χ

(N)
1 be the principal Dirichlet character modulo N . Note that κ = κ(k,χ

(N)
1 ) = 2k.

Corollary 2.2. It holds that

Lω
d

({2k}d;{χ(N)
1

}d) = (−1)kd22kd

{∑
μ�d

εω
μ

zμ

(−1)
(μ)

2
(μ)

( ∏
p:prime

p|N


(μ)∏
j=1

(
1 − p−2kμ j

))
B̃2kμ

}
π2kd.

(2.9)

In particular, we have Lω
d ({2k}d; {χ(N)

1 }d) ∈ Qπ2kd.
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Proof. Since (χ
(N)
1 )

j
μ = 1 for all 1 � j � 
(μ), we have Nμ(χ

(N)
1 ) = 1, eμ(χ

(N)
1 ) = 0, τμ(χ

(N)
1 ) = 1 and

B̃
2kμ,χ

(N)
1

= B̃2kμ . Hence the claim follows immediately from expression (2.3). �

Example 2.3 (The case χ = χ
(1)
1 = 1). For κ = 2k with k ∈ N, we have

ζω
d

({2k}d) = Lω
d

({2k}d; {1}d) = (−1)kd22kd
{∑

μ�d

εω
μ

zμ

(−1)
(μ)

2
(μ)
B̃2kμ

}
π2kd. (2.10)

The expression (2.10) for ω = � gives the result obtained in [25].

Example 2.4 (The case χ = χ
(2)
1 ). For κ = 2k with k ∈ N, we have

Lω
d

({2k}d;{χ(2)
1

}d) = (−1)kd
{∑

μ�d

εω
μ

zμ

(−1)
(μ)
∏
(μ)

j=1 (22kμ j − 1)

2
(μ)
B̃2kμ

}
π2kd. (2.11)

2.3.2. Primitive real Dirichlet characters
For a fundamental discriminant D , let χD be the associated primitive real Dirichlet character mod-

ulo |D| defined by the Kronecker symbol ( D
· ) (see [30]). Note that e(χD) = e(D) := 1−sgn D

2 where
sgn D is the signature of D , whence κ = κ(k,χD) = 2k + e(D).

Corollary 2.5. It holds that

Lω
d

({κ}d; {χD}d)
= (−1)

κd
2 2κd

{∑
μ�d

εω
μ

zμ

(−1)
(μ)− 1
2 e(D)
(μo)

2
(μ)

∏
p:prime

p||D|
∏μ,e

j (1 − p−κμ j )

|D|κ |μo|− 1
2 
(μo)

B̃κμo,χD B̃κμe

}
πκd.

(2.12)

Proof. Since χD is real, we have (χD)
j
μ = 1 if μ j is even and χD otherwise. One can therefore obtain

the formula by using the well-known property τ (χD) = ie(D)|D| 1
2 . �

Example 2.6 (The case χ = χ−4). For κ = 2k + 1 with k ∈ Z�0, we have

Lω
d

({κ}d; {χ−4}d) = (−1)
κd
2

{∑
μ�d

εω
μ

zμ

(−1)
(μ)+ 1
2 
(μo)

∏μ,e
j (2κμ j − 1)

2
(μ)+κ |μo| Ẽκμo−1 B̃κμe

}
πκd.

(2.13)

Remark 2.7. For a non-principal Dirichlet character χ , it is known that L(1,χ) �= 0 (see, e.g., [30]).
However, in general, it does not seem to be the case that Lω

d ({1}d; {χ}d) �= 0 for d � 2. In fact, when
ω = •, we can obtain the following example of a pair of d and χ such that L•

d({1}d; {χ}d) = 0 (al-
though we were not able to derive a similar result for the case ω = �):
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L•
2

({1}2; {χ−8}2) = 1

1 · 3
+ −1

1 · 5
+ −1

1 · 7
+ 1

1 · 9
+ 1

1 · 11
+ −1

1 · 13
+ −1

1 · 15
+ 1

1 · 17
+ · · ·

+ −1

3 · 5
+ −1

3 · 7
+ 1

3 · 9
+ 1

3 · 11
+ −1

3 · 13
+ −1

3 · 15
+ 1

3 · 17
+ · · ·

+ 1

5 · 7
+ −1

5 · 9
+ −1

5 · 11
+ 1

5 · 13
+ 1

5 · 15
+ −1

5 · 17
+ · · ·

+ · · ·

= −
{

3

4

B2

2! − 1

16

(
B1,χ−8

1!
)2}

π2 = 0.

In the last equality, we have used the facts B2 = 1
6 and B1,χ−8 = −1.

2.4. q-Analogues of the multiple L-functions

Let 0 < q < 1 and [n]q := 1−qn

1−q . Defined a q-analogue Lω
q,d of Lω

d by

Lω
q,d(s1, . . . , sd; f1, . . . , fd) :=

∑
(m1,...,md)∈Iωd

f1(m1)qm1(s1−1) · · · fd(md)qmd(sd−1)

[m1]s1
q · · · [md]sd

q
.

Similarly to the case for Lω
d (or q = 1), we write Lω

q,d as ζω
q,d if f j = 1 for all j and Lq(s; f ) = Lω

q,1(s; f ).
The function Lω

q,d is a natural extension of the q-analogue of the Riemann zeta function ζq(s) :=
Lq(s;1) studied in [16] (see also [18]). Many relations among the values ζω

q,d at positive integers
have been studied; see, e.g., [9,10,28,33] for the case ω = • and [27] for ω = �. Specializing xn =
χ(n)qn(s−1)[n]−s

q with Re(s) > 1 in Eq. (2.1) and using

vω
(d)(x) = Lω

q,d

({s}d; {χ}d) and p(r)(x) =
d−1∑
l=0

(
d − 1

l

)
(1 − q)l Lq

(
ds − l;χd), (2.14)

we obtain the following expression which gives a q-analogue of expression (2.6).

Proposition 2.8. It holds that

Lω
q,d

({s}d; {χ}d) =
∑
μ�d

εω
μ

zμ


(μ)∏
j=1

μ j−1∑
l j=0

(
μ j − 1

l j

)
(1 − q)l j Lq

(
μ j s − l j;χμ j

)
. (2.15)

It may be noted that a recursive expression of ζ •
q,d({s}d) was obtained in [9, Theorem 1].

Remark 2.9. Let (P , Q ) = (L•, L�) or (L•
q, L�

q). Then, for d � 1, it is straightforward to obtain from

Eq. (2.2) that
∑

a,b�0
a+b=d

(−1)a Pa({s}a; {χ}a)Q b({s}b; {χ}b) = 0 (here we understand that (Lω)c = Lω
c and

(Lω
q )c = Lω

q,c). Further, one can obtain more explicit relation between Pa({s}a; {χ}a) and Q b({s}b; {χ}b).
In fact, for any (P , Q ) ∈ {(L•, L�), (L�, L•), (L•

q, L�
q), (L�

q, L•
q)}, it holds that

Pd
({s}d; {χ}d) =

∑
μ�d

εμuμ


(μ)∏
j=1

Q μ j

({s}μ j ; {χ}μ j
)
. (2.16)
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This follows from the relations e(d) = ∑
μ�d εμuμhμ and h(d) = ∑

μ�d εμuμeμ (see [19, Example 20,

p. 33]) together with relations (2.5) and (2.14). Here, we put uμ := (

(μ)

m1(μ),m2(μ),...

)
where

( n
a,b,...

)
(n = a + b + · · ·) denotes the multinomial coefficient.

3. Multiple L-values via generating functions

3.1. Product expressions of generating functions

The second method to evaluate the value Lω
d ({κ}d; {χ}d) is well known for the case χ = 1. Namely,

we start from the following identity which is obtained by specializing xn = χ(n)n−κ and replacing t
by tκ in the generating functions (2.2):

∞∑
d=0

εd
ωLω

d

({κ}d; {χ}d)tκd =
∞∏

n=1

(
1 − χ(n)tκ

nκ

)−εω

. (3.1)

The right-hand side of Eq. (3.1) can then be written as follows.

Proposition 3.1. It holds that

∞∏
n=1

(
1 − 1(n)t2k

n2k

)
=

∞∏
n=1

(
1 − t2k

n2k

)
=

k∏
l=1

sin (πζ l
2kt)

πζ l
2kt

, (3.2)

∞∏
n=1

(
1 − χ

(2)
1 (n)t2k

n2k

)
=

∞∏
n=1

(
1 − t2k

(2n − 1)2k

)
=

k∏
l=1

cos

(
πζ l

2kt

2

)
(3.3)

for k ∈ N and, for a Dirichlet character χ modulo N � 3,

∞∏
n=1

(
1 − χ(n)tκ

nκ

)
= (

N−12N−1) 1
2 κ

N̄∏
j=1

κ∏
l=1

sin
π( j − χ( j)

1
κ ζ l

κ t)

N
. (3.4)

Here, ζm := e
2π i
m for m ∈ N and N̄ := 	 N−1

2 
 with 	x
 being the largest integer not exceeding x. In Eq. (3.4),
we take the argument of χ( j) satisfying χ( j) �= 0 to be 0 � argχ( j) < 2π .

We need the following lemma (see [11, Example 11, Chapter VI, p. 115]).

Lemma 3.2. For ai,bi ∈ C (1 � i � l) satisfying
∑l

i=1 ai = ∑l
i=1 bi , we have

∞∏
n=1

(n + a1) · · · (n + al)

(n + b1) · · · (n + bl)
= Γ (1 + b1) · · ·Γ (1 + bl)

Γ (1 + a1) · · ·Γ (1 + al)
. (3.5)

Proof of Proposition 3.1. Let N � 3. By the periodicity of χ , the left-hand side of Eq. (3.4) equals
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∞∏
n=1

N−1∏
j=1

(
1 − χ(nN − (N − j))tκ

(nN − (N − j))κ

)
=

∞∏
n=1

N−1∏
j=1

(n − N− j
N )κ − χ( j)( t

N )κ

(n − N− j
N )κ

=
∞∏

n=1

∏N−1
j=1

∏κ
l=1(n − N− j+χ( j)

1
κ ζ l

κ t
N )∏N−1

j=1 (n − N− j
N )κ

=
(

N−1∏
j=1

Γ

(
j

N

))κ N−1∏
j=1

κ∏
l=1

Γ

(
j − χ( j)

1
κ ζ l

κ t

N

)−1

. (3.6)

In the last equality, we have used formula (3.5) (it is easy to check the condition in Lemma 3.2 from∑N−1
j=1 χ( j) = 0 when κ = 1 and

∑κ
l=1 ζ l

κ = 0 otherwise). Note that
∏N−1

j=1 Γ (
j

N ) = (N−1(2π)N−1)
1
2 by

the Gauss–Legendre formula Γ (Na)(2π)
N−1

2 = N Na− 1
2
∏N−1

j=0 Γ (a + j
N ) with a = 1. Further, the double

product in the final right-hand side of (3.6) can be written as

κ∏
l=1

Γ

( N
2 − χ( N

2 )
1
κ ζ l

κ t

N

)−δN N̄∏
j=1

Γ

(
j − χ( j)

1
κ ζ l

κ t

N

)−1

Γ

(
N − j − χ(N − j)

1
κ ζ l

κ t

N

)−1

,

where δN := 1 if N is even and 0 otherwise. Notice also that χ( N
2 ) = 0 for even N � 3 and

χ(N − j)
1
κ ζ l

κ = −χ( j)
1
κ ζ l−k

κ if 0 � argχ( j) < π and −χ( j)
1
κ ζ l+k

κ otherwise. Therefore, using the for-
mula Γ ( 1

2 ) = √
π and replacing l ± k in ζ l±k

κ by l, we see that the above expression is equal to

π− δN
2

κ∏
l=1

N̄∏
j=1

Γ

(
j − χ( j)

1
κ ζ l

κ t

N

)−1

Γ

(
1 − j − χ( j)

1
κ ζ l

κ t

N

)−1

= π− (N−1)
2 κ

κ∏
l=1

N̄∏
j=1

sin
π( j − χ( j)

1
κ ζ l

κ t)

N
.

Here, we have used the reflection formula Γ (x)Γ (1 − x) = π
sin (πx) and the equality − δN

2 κ − N̄κ =
− (N−1)

2 κ . Hence, substituting the above expression into (3.6), we obtain the desired formula.

Eqs. (3.2) and (3.3) are easily obtained from the infinite product expressions sin (πt)
πt = ∏∞

n=1(1− t2

n2 )

and cos ( πt
2 ) = ∏∞

n=1(1 − t2

(2n−1)2 ), respectively (see [23] for (3.2)). This completes the proof. �
3.2. Evaluation formula II

Let a /∈ πZ. For ω ∈ {•, �}, we define the sequences {T ω
n (a)}n�0 by the expansions

sin (a + t) =
∞∑

n=0

T •
n (a)

tn

n! and cosec (a + t) =
∞∑

n=0

T �
n(a)

tn

n! . (3.7)

It is clear that T •
n (a) = (−1)

1
2 n(n−1)trin(a) where trin(a) = sin (a) if n is even and cos (a) otherwise. On

the other hand, T �
n(a) can be written as T �

n(a) = cosec (a)
∑n

k=0

(n
k

)
ik Ekhn−k(cot (a)) where hl(α) is the

polynomial in α of degree l defined by (1 +α tan (t))−1 = ∑∞
l=0 hl(α) tl

l! (note that hl is even if l is and
odd otherwise).
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For a Dirichlet character χ modulo N , define the sequence {Aω
n (κ,χ)}n�0 as follows;

(i) The case N = 1 (i.e., χ = 1 and κ = 2k): For n ∈ Z�0, let Aω
2n+1(2k,1) ≡ 0 and

Aω
2n(2k,1) : =

⎧⎪⎪⎨⎪⎪⎩
∑

n1,...,nk�0
n1+···+nk=n

( 2n+k
2n1+1,...,2nk+1

)
ζ

∑k
l=1 lnl

k (ω = •),
∑

n1,...,nk�0
n1+···+nk=n

( 2n
2n1,...,2nk

)
(
∏k

l=1(22nl − 2)B2nl )ζ

∑k
l=1 lnl

k (ω = �).

(3.8)

(ii) The case N = 2 (i.e., χ = χ
(2)
1 and κ = 2k): For n ∈ Z�0, let Aω

2n+1(2k,χ
(2)
1 ) ≡ 0 and

Aω
2n

(
2k,χ

(2)
1

) : =

⎧⎪⎪⎨⎪⎪⎩
∑

n1,...,nk�0
n1+···+nk=n

( 2n
2n1,...,2nk

)
ζ

∑k
l=1 lnl

k (ω = •),
∑

n1,...,nk�0
n1+···+nk=n

( 2n
2n1,...,2nk

)
(
∏k

l=1 E2nl )ζ

∑k
l=1 lnl

k (ω = �).

(3.9)

(iii) The case N � 3: Define

Aω
n ( j;κ,χ) : =

∑
n1,...,nκ�0

n1+···+nκ=n

(
n

n1, . . . ,nκ

)(
κ∏

l=1

T ω
nl

(
π j

N

))
ζ

∑κ
l=1 lnl

κ (1 � j � N̄) (3.10)

and let

Aω
n (κ,χ) : =

∑
n1,...,nN̄ �0

n1+···+nN̄=n

(
n

n1, . . . ,nN̄

) N̄∏
j=1

Aω
n j

( j;κ,χ)χ( j)
n j
κ . (3.11)

Example 3.3 (The case χ = χ−4). Let En(x) be the Euler polynomial defined by 2etx

et+1 = ∑∞
n=0 En(x) tn

n! .

Note that En = 2n En( 1
2 ). Then, since

cosec

(
π

4
+ t

)
=

√
2

cos (t) + sin (t)
=

√
2(i + 1)

2

2e4it· 3
4

e4it + 1
−

√
2(i − 1)

2

2e−4it· 3
4

e−4it + 1
,

we see that T �
n( π

4 ) = (−1)
1
2 n(n+1)2

4n+1
2 En( 3

4 ). While on the other hand, it is clear that T •
n ( π

4 ) =
2− 1

2 (−1)
1
2 n(n−1) . Hence, from definitions (3.10) and (3.11), we have

Aω
n (κ,χ−4) = Aω

n (1;κ,χ−4)

=

⎧⎪⎪⎨⎪⎪⎩
2− κ

2
∑

n1,...,nκ�0
n1+···+nκ=n

( n
n1,...,nκ

)
(−1)

1
2

∑κ
l=1 nl(nl−1)ζ

∑κ
l=1 lnl

κ (ω = •),

2
κ(2d+1)

2
∑

n1,...,nκ�0
n1+···+nκ=n

( n
n1,...,nκ

)
(
∏κ

l=1 Enl (
3
4 ))(−1)

1
2

∑κ
l=1 nl(nl+1)ζ

∑κ
l=1 lnl

κ (ω = �).

(3.12)

Put ε̃ω := εω+1
2 , that is, ε̃• = 0 and ε̃� = 1. We then obtain the following theorem which gives

extensions of the formulae for ζω
d obtained in [6,23] for the case ω = • and [22] for ω = � (see

also [29]).
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Theorem 3.4. Let χ be a Dirichlet character modulo N and κ = 2k + e(χ) � 1. Let

Cω
d (κ,χ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

εd
ω(−1)k(d−ε̃ω)

((2d+1−ε̃ω)k)! (N = 1, κ = 2k),

εd
ω(−1)kd

22kd(2kd)! (N = 2, κ = 2k),

εd
ω(−1)κd

(N2d−εω 2(N−1)εω )
κ
2 (κd)!

(N � 3).

Then, we have Aω
n (κ,χ) = 0 if κ � n and

Lω
d

({κ}d; {χ}d) = Cω
d (κ,χ)Aω

κd(κ,χ)πκd. (3.13)

Proof. Let N � 3. It is straightforward from the definitions of T ω
n (a) to see that

N̄∏
j=1

κ∏
l=1

(
sin

π( j − χ( j)
1
κ ζ l

κ t)

N

)−εω

=
∞∑

n=0

Aω
n (κ,χ)

(−1)n

n!
(

πt

N

)n

. (3.14)

In fact, when ω = •, the left-hand side of Eq. (3.14) is given by

N̄∏
j=1

∞∑
n1,...,nκ=0

κ∏
l=1

T •
nl

(
π j

N

)
1

nl!
(

−πχ( j)
1
κ ζ l

κ t

N

)nl

=
N̄∏

j=1

∞∑
n=0

A•
n( j;κ,χ)

(−1)n

n!
(

πχ( j)
1
κ t

N

)n

=
∑

n1,...,nN̄ =0

N̄∏
j=1

A•
n j

( j;κ,χ)
(−1)n

n!
(

πχ( j)
1
κ t

N

)n j

=
∞∑

n=0

A•
n(κ,χ)

(−1)n

n!
(

πt

N

)n

.

The case when ω = � is similar. Therefore, from Eq. (3.4), we have

∞∏
n=1

(
1 − χ(n)tκ

nκ

)−εω

=
∞∑

n=0

{(
N−12N−1)− 1

2 εωκ
Aω

n (κ,χ)
(−1)n

n!
(

π

N

)n}
tn. (3.15)

Hence, comparing the coefficients of tκd in expressions (3.1) and (3.15), we see that Aω
n (κ,χ) = 0 if

κ � n and obtain formula (3.13) for N � 3.
One can similarly obtain formulae (3.13) for the other cases, that is, N = 1 or N = 2, by using the

expansions

sin (t) =
∞∑

n=0

(−1)n

(2n + 1)! t2n+1, cosec (t) =
∞∑

n=0

(−1)n−1(22n − 2)B2n

(2n)! t2n−1,

cos (t) =
∞∑

n=0

(−1)n

(2n)! t2n, sec (t) =
∞∑

n=0

(−1)n E2n

(2n)! t2n.

(3.16)

Actually, for example let N = 1. Then, from (3.2), we have
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∞∑
d=0

εd
ωLω

d

({2k}d; {1}d)t2kd =
∞∏

n=1

(
1 − 1(n)t2k

n2k

)−εω

=
k∏

l=1

(
sin (πζ l

2kt)

πζ l
2kt

)−εω

=
⎧⎨⎩

∑∞
n=0 A•

2n(2k,1)
(−1)nπ2n

(2n+k)! t2n (ω = •),∑∞
n=0 A�

2n(2k,1)
(−1)n−kπ2n

(2n)! t2n (ω = �).
(3.17)

In the last equality with ω = • (resp. ω = �), we have used the expansion of sin (t) (resp. cosec (t))
in (3.16). Now comparing the coefficients of t2kd on both sides of (3.17), we have

Lω
d

({2k}d; {1}d)(= ζω
d

({2k}d)) =
⎧⎨⎩

εd•(−1)kd

(2kd+k)! A•
2kd(2k,1)π2kd (ω = •),

εd
� (−1)kd−k

(2kd)! A�
2kd(2k,1)π2kd (ω = �),

whence the desired formula follows. This completes the proof of the theorem. �
Example 3.5 (The case χ = 1). The following results are well known (see [6,22]):

κ = 2k 2 4 6

ζ •
d ({κ}d) 1

(2d+1)! π
2d 22d+1

(4d+2)! π
4d 3·26d+1

(6d+3)! π
6d

ζ �
d ({κ}d)

(−1)d−1(22d−2)B2d
(2d)! π2d – –

Notice that, from expression (3.13), we have ζ �
d ({4}d) = ((24d +4)S2d(−1)−4S2d(−4))π4d/(4d)! where

Sk(t) := ∑k
n=0

(2k
2n

)
tn B2n B2k−2n . However, we do not know whether the expression can be reduced to

a “simpler” (or “closed”) form, because it would appear to be difficult to simplify the sum Sk(t) for
a general t ∈ C (see [12] for the comment on Sk(−1)). We remark that, on the other hand, it is well
known that Sk(1) = −(2k − 1)B2k for k �= 1 and S1(1) = 1

3 .

Example 3.6 (The case χ = χ
(2)
1 ). We obtain the following results:

κ = 2k 2 4 6

L•
d({κ}d; {χ(2)

1 }d) 1
22d(2d)! π

2d 1
22d(4d)! π

4d 3
4(6d)! π

6d

L�
d({κ}d; {χ(2)

1 }d)
(−1)d E2d
22d(2d)! π2d – –

From expression (3.13), it can be expressed as L�
d({4}d; {χ(2)

1 }d) = T2d(−1)π4d/(24d(4d)!) where

Tk(t) := ∑k
n=0

(2k
2n

)
tn E2n E2k−2n . We also note that Tk(1) = 22k+1 E2k+1(1) for k � 0 (see [12]).

Example 3.7 (The case χ = χ−4). We obtain the following results:

κ = 2k + 1 1 3 5

L•
d({κ}d; {χ−4}d)

(−1)
1
2 d(d−1)

22dd! πd (−1)
1
2 d(d−1) ·3

23d+1(3d)! π3d (−1)
1
2 d(d−1) ·5(L5d−1)

25d+2(5d)! π5d

L�
d({κ}d; {χ−4}d)

(−1)
1
2 d(d−1) Ed( 3

4 )

d! πd – –

Here, Ld is the Lucas number defined by the recursion equation L1 = 1, L2 = 3 and Ld =
Ld−1 + Ld−2 for d � 3 (it can be shown that Ld = αd + βd where α = 1+√

5
2 and β = 1−√

5
2 ). Note

that it is obtained in [6] that ζ •
d ({10}d) = 210d+1 · 5(L10d+5 + 1)π10d/(10d + 5)!, and can be similarly

shown that L•
d({10}d; {χ(2)

1 }d) = 5(L10d + 1)π10d/(24(10d)!).
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4. Summation formulae for the Bernoulli and Euler numbers

From Theorems 2.1 and 3.4, we immediately obtain the following corollary:

Corollary 4.1. It holds that

∑
μ�d

εω
μ

zμ

(−1)
(μ)−eμ(χ)

2
(μ)

Wμ(κ;χ)τμ(χ)

Nμ(χ)κ
B̃κμ,χ = (−1)

κd
2 2−κdCω

d (κ,χ)Aω
κd(κ,χ). (4.1)

The above equation expresses many (non-trivial) relations among the generalized Bernoulli num-
bers. We here give several formulae involving the Bernoulli and Euler numbers.

Example 4.2. Let χ = 1 and χ = χ
(2)
1 . Then, from expression (4.1), we have respectively

∑
μ�d

εω
μ

zμ

(−1)
(μ)

2
(μ)
B̃2kμ = εd

ω(−1)k̃εω Aω
2kd(2k,1)

22kd((2d + 1 − ε̃ω)k)! , (4.2)

∑
μ�d

εω
μ

zμ

(−1)
(μ)
∏
(μ)

j=1 (22kμ j − 1)

2
(μ)
B̃2kμ = εd

ω Aω
2kd(2k,χ

(2)
1 )

22kd(2kd)! . (4.3)

These expressions show that both finite sums Aω
2kd(2k,1) and Aω

2kd(2k,χ
(2)
1 ) can be written as sums

of products of the Bernoulli numbers. On the other hand, putting d = 1 and ω = • in expressions (4.2)
and (4.3), one can also see from definitions (3.8) and (3.9) that B2k (k � 1) has the following expres-
sions in terms of the multinomial coefficients and the k-th root of unity:

B2k = (2k)!
22k−1(3k)!

∑
n1,...,nk�0

n1+···+nk=k

(
3k

2n1 + 1, . . . ,2nk + 1

)
ζ

∑k
l=1 lnl

k , (4.4)

B2k = 1

22k−1(22k − 1)

∑
n1,...,nk�0

n1+···+nk=k

(
2k

2n1, . . . ,2nk

)
ζ

∑k
l=1 lnl

k . (4.5)

Formula (4.4) was essentially obtained by Nakamura [23] (one can easily check that expression (4.4)
is equivalent to (2.2) in [23]). Furthermore, putting k = 1 and ω = � in expression (4.2) (resp. (4.3))
and noting A•

2d(2,χ
(2)
1 ) = (22d − 2)B2d (resp. A�

2d(2,χ
(2)
1 ) = E2d), we obtain an expression for B2d

(resp. E2d) (d � 1) in terms of a sum of products of the Bernoulli numbers:

B2d = − 22d(2d)!
(22d − 2)

∑
μ�d

1

zμ

(−1)
(μ)

2
(μ)


(μ)∏
j=1

B2μ j

(2μ j)! , (4.6)

E2d = 22d(2d)!
∑
μ�d

1

zμ

(−1)
(μ)

2
(μ)


(μ)∏
j=1

(
22μ j − 1

) 
(μ)∏
j=1

B2μ j

(2μ j)! . (4.7)

Formula (4.6) was obtained by Ohno in [26].
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Example 4.3. Let χ = χ−4. Then, formula (4.1) yields

∑
μ�d

εω
μ

zμ

(−1)
(μ)+ 1
2 
(μo)

∏μ,e
j (2κμ j − 1)

2
(μ)+κ |μo| Ẽκμo−1 B̃κμe = εκd
ω (−1)

κd
2 Aω

κd(κ,χ−4)

22κd(1−ε̃ω)(κd)! . (4.8)

Similarly to expressions (4.4) and (4.5), putting d = 1 and ω = • and writing κ = 2k + 1, we see from
expression (3.12) that E2k (k � 0) can be written as

E2k = (−1)k

(2k + 1)22k

∑
n1,...,n2k+1�0

n1+···+n2k+1=2k+1

(
2k + 1

n1, . . . ,n2k+1

)
(−1)

1
2

∑2k+1
l=1 nl(nl−1)ζ

∑2k+1
l=1 lnl

2k+1 . (4.9)

5. Special values at non-positive integers

It has been shown that, in some special cases, L•
d(s1, . . . , sd;χ1, . . . ,χd) can be continued mero-

morphically to the whole space Cd and has possible singularities on sd = 1 and
∑ j

k=1 sd−k+1 ∈ Z� j
for j = 2,3, . . . ,d. (See [3,21,32] when χ j = 1 for all j, and [1] when χ1, . . . ,χd are of the same con-
ductor. One can also obtain more precise information about the singularities from these references.)
Hence, in such cases, it is easy to see that L�

d(s1, . . . , sd;χ1, . . . ,χd) also admits a meromorphic con-
tinuation to Cd with the same possible singularities since L�

d can be expressed in terms of L•
d′ for

1 � d′ � d. In this section, we study a special value, called a central limit value, of Lω
d (s1, . . . , sd; {χ}d)

at s1 = · · · = sd = −κ where κ = 2k + e(χ) is a non-negative integer. Since it is seen that such a point
is a point of indeterminacy of the function, to define the value, we have to choose the limiting pro-
cess of (s1, . . . , sd) → (−κ, . . . ,−κ) (for more precise details, see [2,3]). Here, the central limit values
(Lω

d )C (s1, . . . , sd;χ1, . . . ,χd) are defined by

(
Lω

d

)C
(s1, . . . , sd;χ1, . . . ,χd) := lim

δ→0
Lω

d (s1 + δ, . . . , sd + δ;χ1, . . . ,χd).

We then obtain the following results, which give generalizations of the formulae for ζ •
d obtained in

[17, Corollary 2(ii)].

Theorem 5.1.

(i) For N � 1, it holds that

(
Lω

d

)C ({0}d;{χ(N)
1

}d) =
{

εd
ω(−1)d

( εω
2
d

)
(N = 1),

0 (N � 2),
(5.1)

(
Lω

d

)C ({−2k}d;{χ(N)
1

}d) = 0 (k ∈ N). (5.2)

(ii) If χ is non-principal, then, for κ = 2k + e(χ) � 0, we have (Lω
d )C ({−κ}d; {χ}d) = 0.

Proof. We start from the equation
∑∞

d=0 εd
ωLω

d ({s}d; {χ}d)td = exp(εω
∑

n�1
1
n L(ns;χn)tn), which is

obtained from expressions (2.2) and (2.5). Note that this is valid for any s ∈ C unless (s, . . . , s) is a
singularity of Lω

d . Hence, using the formula L(−κ,χ) = − Bκ+1,χ

κ+1 , we have

∞∑
εd
ω

(
Lω

d

)C ({−κ}d; {χ}d)td = exp

(
−εω

∞∑ Bnκ+1,χn

n(nκ + 1)
tn

)
. (5.3)
d=0 n=1
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We first assume that χ is not principal. Then, noting (nκ + 1) + e(χn) = 2n(k + e(χ)) + 1 ≡ 1
(mod 2) (here we have used the identity e(χn) ≡ ne(χ) (mod 2)), we have Bnκ+1,χn = 0 for all
n � 1 because Bm,χ = 0 if m + e(χ) ≡ 1 (mod 2). This implies that the right-hand side of Eq. (5.3) is
identically equal to e0 = 1, whence the claim (ii) follows.

We next let χ = χ
(N)
1 . Note that

B
m,(χ

(N)
1 )n = B

m,χ
(N)
1

=
∏

p:prime
p|N

(
1 − pm−1) · Bm (m ∈ Z�0). (5.4)

Therefore, writing κ = 2k for k ∈ N in Eq. (5.3) and using B2nk+1 = 0, one similarly obtains Eq. (5.2).
To prove Eq. (5.1), we further set κ = 2k = 0 in Eq. (5.3). When N � 2, since B

1,(χ
(N)
1 )n = 0 by Eq. (5.4),

we obtain the claim. On the other hand when N = 1, since B1 = 1
2 , the right-hand side of Eq. (5.3)

can be written as

exp

(
−εω

2

∑
n�1

1

n
tn

)
= exp

(
εω

2
log (1 − t)

)
= (1 − t)

εω
2 =

∞∑
d=0

(−1)d
( eω

2
d

)
td.

This shows the claim. �
Remark 5.2. By employing a “renormalization procedures” in quantum fields theory, one can also
define values of multiple zeta functions at non-positive integers. For further details, see [5,13,14,20]
and references therein.

6. Concluding remarks

6.1. Multiple zeta functions attached to the Schur functions

It may be interesting to find a function ζλ(s1, . . . , sd) for a partition λ � d such that ζ(1d) = ζ •
d and

ζ(d) = ζ �
d . Recall that ζ •

d ({s}d) = ed(n−s) and ζ �
d ({s}d) = hd(n−s) where n−s = (1−s,2−s, . . .). Therefore,

since s(1d) = ed and s(d) = hd where sλ is the Schur function attached to λ (see [19]), such a function
ζλ can be regarded as a “multiple zeta function attached to sλ”:

Find! ζλ(s1, . . . , sd)

ζ •
d (s1, . . . , sd)

λ=(1d)

s1 = · · · = sd = s

ζ �
d (s1, . . . , sd)

λ=(d)

s1 = · · · = sd = sζλ({s}d) = sλ(n−s)

s1 = · · · = sd = s

λ=(1d) λ=(d)

ζ •
d ({s}d) = ed(n−s) ζ �

d ({s}d) = hd(n−s)

Question 6.1. For a fixed λ, are there any relations (such as a sum formula or a duality) among the
values ζλ(k1, . . . ,kd), which interpolate the relations for ζω

d (k1, . . . ,kd)?
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6.2. Alternating multiple zeta functions

Let

ζω
d (s1, . . . , sd) :=

∑
(m1,...,md)∈Iωd

(−1)m1 · · · (−1)md

ms1
1 · · ·msd

d

= Lω
d

(
s1, . . . , sd;

{
ϕ1

2

}d)
,

where ϕa
N(m) := ζ am

N for 1 � a � N . This is an alternating analogue of ζω
d (s1, . . . , sd). When ω = •,

the values at positive integers and their relations have been studied in [6,8]. Similarly to the proof
of Theorem 2.1, using expression (2.1) with the specialization xn = (−1)nn−s , we get the following
expressions of ζω

d ({s}d) in terms of a sum over partitions of d (note that this series also converges for
s = 1):

ζω
d

({1}d) =
∑
μ�d

{
εω
μ

zμ

(−1)
(μ)+ |μe |
2

∏μ,o
μ j�3(2μ j−1 − 1)

2
(μe)−
(μo)−(|μe|−|μo|) B̃μe

}
(log 2)m1(μ) · ∏μ,o

μ j�3 ζ(μ j) · π |μe|,

ζω
d

({2k}d) = (−1)kd22kd
{∑

μ�d

εω
μ

zμ

(−1)
(μe)
∏μ,o

j (22kμ j−1 − 1)

2
(μe)+2k|μo| B̃2kμ

}
π2kd ∈ Qπ2kd (k ∈ N).

These follow from the identities L(1;ϕ1
2 ) = − log 2 and

L
(
2kμ j;

(
ϕ1

2

)μ j
) =

{
− 22kμ j−1−1

22kμ j−1 ζ(2kμ j) if μ j is odd,

ζ(2kμ j) otherwise.

Furthermore, since
∏∞

n=1(1 − ϕ1
2 (n)t2k

n2k )−εω = ∏∞
n=1(1 − (ζ4kt)2k

(2n−1)2k )−εω
∏∞

n=1(1 − 1
n2k ( t

2 )2k)−εω , then,

upon using formulae (3.2), (3.3) and (3.16), we have

ζω
d

({2k}d) = εd
ω(−1)k(d−ε̃ω) Aω

2kd(2k,ϕ1
2 )

22kd((2d + 1 − ε̃ω)k)! π2kd, (6.1)

where {Aω
n (2k,ϕ1

2 )}n�0 is defined by Aω
2n+1(2k,ϕ1

2 ) ≡ 0 and

Aω
2n

(
2k,ϕ1

2

) :=
∑

p,q�0
p+q=n

(
2n + (1 − ε̃ω)k

2p,2q + (1 − ε̃ω)k

)
ζ

p
2k Aω

2p

(
2k,χ

(2)
1

)
Aω

2q(2k,1).

Formula (6.1) can be straightforwardly obtained from (35) in [6].

6.3. A higher-rank generalization

Let si j ∈ C and f i j be arithmetic functions for 1 � i � r and 1 � j � d. Write S = (si j) and F = ( f i j)

(r × d matrices). We introduce the following “higher-rank” multiple L-function:

r Lω
d (S; F ) :=

∑
(m1,...,md)∈ r Iω

d∏
j=1

f1 j(m1 j) · · · fr j(mrj)

m
s1 j

1 j · · ·m
srj

r j

,

d



2384 Y. Yamasaki / Journal of Number Theory 129 (2009) 2369–2386
where m j = (m1 j, . . . ,mrj) ∈ Nr for 1 � j � d and r Iωd ⊂ (Nr)d is defined by

r Iωd :=
{ {(m1, . . . ,md) ∈ (Nr)d | m1 < · · · < md} (ω = •),

{(m1, . . . ,md) ∈ (Nr)d | m1 � · · · � md} (ω = �).

Here, we are employing the lexicographic order on Nr . Namely, (m1, . . . ,mr) > (n1, . . . ,nr) if m1 > n1,
or m1 = n1 and m2 > n2, or m1 = n1, m2 = n2 and m3 > n3, and so on. Clearly, 1 Iωd = Iωd and 1Lω

d = Lω
d .

As for the case r = 1, we write rζ
ω
d (S) as r Lω

d (S; (1)).
By induction on d, it is shown that the function r Lω

d (S; F ) can be expressed as a polynomial
in Lω

d′(t1, . . . , td′ ; g1, . . . , gd′) for 1 � d′ � d where tl is a sum of si j and gl is a product of f i j . For
example, we see that

r Lω
1

(
(si1); ( f i1)

) =
r∏

i=1

L(si1; f i1),

r Lω
2

(
(si j); ( f i j)

) =
r∑

p=1

′ p−1∏
i=1

L(si1 + si2; f i1 f i2)L•
2(sp1, sp2; f p1, f p2)

r∏
i=p+1

L(si1; f i1)L(si2; f i2).

Here, the prime ′ means that we replace • by ω in the summand for p = r. Hence, if f i j are bounded
for all i, j, then we see from the expression of r Lω

d in terms of Lω
d′ that the series r Lω

d (S; F ) converges
absolutely for Re(s1 j) � 1 for 1 � j � d − 1 and Re(si j) > 1 otherwise.

Question 6.2. Are there any relations among the values rζ
ω
d ((kij)), which are generalizations of the

relations for r = 1?

Let us denote by {x1, . . . , xr}d the r × d matrix (xij) such that xi1 = · · · = xid = xi for 1 �
i � r. Let χi be a Dirichlet character modulo Ni and κi = κi(ki,χ) = 2ki + e(χi) for 1 � i � r.
Though the function r Lω

d is not new in the above sense, one can calculate the special values

r Lω
d ({κ1, . . . , κr}d; {χ1, . . . ,χr}d) by our first method. In fact, we finally can obtain the following propo-

sition:

Proposition 6.3. Let |κ | := κ1 + · · · + κr . Then, we have

r Lω
d

({κ1, . . . , κr}d; {χ1, . . . ,χr}d)
= (−1)

|κ |d
2 2|κ |d

{∑
μ�d

εω
μ

zμ

(−1)r
(μ)−∑r
i=1 eμ(χi)

2r
(μ)

r∏
i=1

Wμ(κi;χi)τμ(χi)

Nμ(χi)
κi

B̃κiμ,χi

}
π |κ |d. (6.2)

In particular, for k1, . . . ,kr ∈ N with |k| := k1 + · · · + kr , it holds that

rζ
ω
d

({2k1, . . . ,2kr}d) = (−1)|k|d22|k|d
{∑

μ�d

εω
μ

zμ

(−1)r
(μ)

2r
(μ)

r∏
i=1

B̃2kiμ

}
π2|k|d ∈ Qπ2|k|d.

Proof. Replacing the variable xn by x1
n1

· · · xr
nr

in (2.2), we have

∞∑
d=0

εd
ωvω

(d)(y)td =
∞∏

n ,...,n =1

(
1 − x1

n1
· · · xr

nr
t
)−εω =

∞∑
d=0

εd
ω

{∑
μ�d

εω
μ

zμ

r∏
i=1

pμ

(
xi)}td, (6.3)
1 r
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where y = (x1
n1

· · · xr
nr

)n1,...,nr�1 (we also arrange the variables in y in the lexicographic order with

respect to (n1, . . . ,nr)) and xi = (xi
ni

)ni�1. Then, specializing xi
ni

= χi(ni)n
−κi
i in (6.3), we see that the

left-hand side of Eq. (6.2) is equal to
∑

μ�d
εω
μ

zμ

∏r
i=1

∏
(μ)

j=1 L(κiμ j;χμ j

i ). Therefore, one can obtain

Eq. (6.2) by following the same approach as in the proof of Theorem 2.1. �
Remark 6.4. From expression (6.2), we see that

r Lω
d

({κσ(1), . . . , κσ (r)}d; {χσ(1), . . . ,χσ(r)}d) = r Lω
d

({κ1, . . . , κr}d; {χ1, . . . ,χr}d)
for any σ ∈ Sr where Sr is the symmetric group of degree r.

Remark 6.5. It appears to be difficult to evaluate the values r Lω
d ({κ1, . . . , κr}d; {χ1, . . . ,χr}d) for r � 2

by using the second method of the present study (that is, by using the expansions (3.16) of trigono-
metric functions). This is because the generating function obtained from (6.3) for these values is a
“multiple” infinite product.
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