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1. Introduction

letdeN, s1,...,s4€C and f1,..., fq be certain arithmetic functions such as Dirichlet characters.
In this paper, for each w € {e, x}, we study the multiple L-function
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where I :=limy, 100 [$ (M) with

mi,...,m ENd mi<-.--<m
19 (M) ::{{( 1 d) d| 1
{(m17~--7md)€N |m1<-..<m

In particular, when fj =1 for all j where 1 is the trivial character, we write LJ as ¢{” and call it the
multiple zeta function (¢ is often called the multiple zeta-star function or the non-strict multiple
zeta function). Moreover, when d =1, we write L(s; f) = LY (s; f), whence L(s; 1) = £(s) where ¢(s)
is the Riemann zeta function.

Let {x}¢ be the d-times copy of the variable x. Though it is, in general, difficult to evaluate the
value ¢{°(k1,...,kq) for given positive integers ki, ...,kq, there are many explicit results concern-
ing the values {é"({Zk}d) (see [6,7,17,23,29,31] for the case w = e and [22,25,26] for w = ). Let ¥
be a Dirichlet character and « an integer with the same parity as that of x. The purpose of the
present paper is, as a generalization and unification of the above results, to obtain explicit descrip-
tions of the values Lg’({/c}d; {x}% from a symmetric functions’ viewpoint. That is, we evaluate the
values LE({K}d; {x}% and Lg({/c}d; {x}%) as specializations of the elementary and complete symmetric
function, respectively.

When « is positive, we do this in the following two distinct ways: In the first method, making
use of the relations among the above symmetric functions and the power-sum symmetric function,
we express the values Lff({x}d; {X}d) in terms of a sum over partitions of d (Theorem 2.1). In the
second method, we consider a generating function of ij”({/c}d; {x}%. From the product expressions of
the generating function, we show that Lg’({/c}d; {x}%) can be expressed in terms of A2 («c; x), which
is defined by a finite sum involving the multinomial coefficients and roots of unity (Theorem 3.4).
As an application, in Section 4, equating the two expressions, we give several summation formulae
involving the Bernoulli numbers B, and the Euler numbers E,. It should be noted that some of
these (formulae (4.4), (4.5) and (4.9)) can be regarded as solutions of a kind of “inverse problem”, as
previously studied in [15] (see also [12]), for the sequences By, and Ey.

Moreover, we also study a special value, called a central limit value (see [2,3]), of the func-
tion LY (s1,...,Sq; {x}%) at sy =--- =s4 = —k where k is a non-negative integer. Note that such a
value can be defined because L§(s1, ..., Sq; {x}%) admits a meromorphic continuation to the whole

space CY. We then obtain formulae that extend the well-known expressions concerning the value
L(—«, x) of the usual Dirichlet L-function (Theorem 5.1).

In the final section, we discuss some generalizations of L%, and also give questions for the future
study.

Note that, for completeness and the reader’s convenience, we restate or briefly prove the corre-
sponding results for y =1.

Throughout the present paper, we use the following notation for Dirichlet characters: Let x be a
Dirichlet character modulo N. Denote by x’ the primitive character that induces y, N(x) the conduc-
tor, e(x) € {0, 1} the parity, i.e., x(—1) = (=1)¢%0 (we call x even if e(x) =0 and odd otherwise),

T(x) = Zlex(a)ebfv_m the Gauss sum of x and B, , the generalized Bernoulli number associ-
ated with x defined by YN xre 3% Bn,x%- Note that By1 =B, and By, , = —3nEn_;

eNt—1
where x_4 is the primitive Dirichlet character modulo 4. Further, for simplification, we always write

Kk =k(k, x):=2k+e(x) with k € Z.

2. Multiple L-values via the symmetric functions
2.1. Symmetric functions

Let A = (A1, A2, ...) be a partition. We write A d if A is a partition of d, that is, |A| := Zj>1 Aj=d
and put £(A) := max{j | A # 0} (the length of A) and m;(X) :=#{j | »; =i} (the multiplicity of i in 1)
as usual. We denote by A, (resp. Ae) the partition whose parts consist of all the odd (resp. even) ones
of » and set ¢, := (—=1)*~t® and z, := s M Pm .
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For a partition A = (A1, A2,...), the elementary symmetric function e;, the complete symmetric
function h; and the power-sum symmetric function p, in ¥ = (x1, x2,...) are respectively defined by
e (x) = ]_[j21 e, (%), hy(x) := ]—Ij21 hy;(®) and p; (%) := ]_[j21 pa;(*) where, for r e N,

o0
. . . r
er .= E Xny - X, h; = E Xp, ---Xp, and pr.:E X,
n=1

ny<---<ny n<--<ny
Put v§:=ey, vi:i=hy, €} :=¢;, & :=1, &, :==—1 and &, :=1. Then, for each w € {o, x}, we have
8(1)
[ M
v(d)_zz—pu. (2.1)
uHd H

This follows from the following identities of the generating function of v?‘é) (x) (for further details, see
the proof of (2.14) and (2.14)" in [19, p. 25]);

S et ve id = [0 —xt) o = eXp(Sa) > pntn) - Zgg{ o pu}td. (22)
d=0 n=1 n=1 d=0 ukd “H

2.2. Evaluation formula I

For a partition @ = (41, (2,...) and a,b € Z satisfying apeu) +b > 0, let x,i = (xMi) for 1<
j<{(u) and set

) o w w
NeOO =N, enCO=>e(xi). wCO:=]]t(xh)
j=1 j=1 j=1
and
L) B i
B ._ apj+b.xp
Bawctb.x = ]11 @uj+b)

~ Bay. ~ Eap.
We similarly put Bgy4p := T8 2 and Equib = [T @it Moreover, set

j=1 (apj+b)! Jj=1 (apj+b)!*
()
ay) =[] (=x'@p~) and Wy(s x) =[] o,msu).
p:prime j=1

PIN, ptN(x")

Using these definitions, we obtain the following theorem:

Theorem 2.1. Let x be a Dirichlet character modulo N and k = 2k + e(x) > 1. Then, we have

® d. dy _ K ked glal) (=Dt wento Wl 0T~ | _kd
L7 () ) = (=22 {ZZ m NG e [T (23)

pkd
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Proof. We first recall the case d =1 (see, e.g., [24]). If x is primitive, then we have

k2 TOO (27 \¥Biy
Lk; x)=(1) 2 5 (N(X)> PIRE (2.4)

Otherwise, from the Euler product expression, we have L(k; x) = ay (k)L(k; x'). Hence, in this case,
the claim (2.3) clearly holds.
Now, let d > 2. Specializing x, = x (n)n—° with Re(s) > 1, we have

ve @ =L ({s)% (x}") and pe ) =L(ds: x?). (2.5)

Note that these series also converge for s =1 if x is not principal (see [4]). Then, from expres-
sion (2.1), we have

£y &) ‘W

Lg( Z H (rjsi x™M) =3~ "W,As x)H wisixp). o (26)

pu—d = ;u—d

We here put s =k =« (k, x) > 1. Notice that e()(ljt) =e(x)ij (mod 2) because (—l)e(X%J;) = Xi(—l) =
X (=DM = (—=1)¢OHi  and hence

e (ki xj0) ife(x)=0
ipj=rck ps =1 kkuj+ %, x))  ife(x)=1and u;is even, (2.7)
Kk + ’” 1,XM) ife(x)=1and u; is odd.

Therefore, from Egs. (2.4) and (2.7), we have

B —
K
s g e(x)T(Xu)< 2 ) PRI X (2.8)

— (1 . .
Loens; xit) = 1) 2 \N(xj) (k)

Substituting expression (2.8) into Eq. (2.6), we obtain the desired formula. O

2.3. Examples

For a partition u, we denote by Hu >a (resp. i >a) the product over all 1 < j < #£(u) such that
[ is odd (resp. even) and ;> a. In partlcular, we omit the condition “i; > a” ifa=1.

2.3.1. Principal Dirichlet characters
Let X{N) be the principal Dirichlet character modulo N. Note that x =k (k, Xl(N)) =2k

Corollary 2.2. It holds that

@ (opd. [N kd - 2kd & (=1t o p2k) 2kd
L3 (2K {xy }) (=172 Z ol [T TT0- ) | B 0.

p:prime j=1
pIN

(2.9)

In particular, we have L‘”({Zk}d {X1N)}d) € Qmkd,
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Proof. Since (XfN)){L =1 forall 1< j<4(un), we have NM(Xl(N)) =1, eu(xl(N)) =0, TM(XfN)) =1 and

sz“ ™= Bok,.. Hence the claim follows immediately from expression (2.3). O

Example 2.3 (The case x = X(l) =1). For k = 2k with k € N, we have

g;‘l’ (- 1)43(M)

& (k) = L (120 (1)) = (1)kd22kd{2 g

z,m}nz"d. (2.10)
The expression (2.10) for w = * gives the result obtained in [25].
Example 2.4 (The case x = )(1(2) ). For k =2k with k € N, we have

L) 1 2kpa
£@ (_])Z(M) 1‘[ s (%Ki —1)
= J BZku}nde. (211)

® d
L3 ((2k); {X1(2)} )= (_1)kd{ z )
ud H

2.3.2. Primitive real Dirichlet characters

For a fundamental discriminant D, let yp be the associated primitive real Dirichlet character mod-
ulo |D| defined by the Kronecker symbol (2) (see [30]). Note that e(xp) =e(D) := @ where
sgn D is the signature of D, whence x =« (k, xp) = 2k + e(D).

Corollary 2.5. It holds that

LY ()% {xp)?)

e
e (— 1)‘3(")*‘9(9)5(#0) [p: PTlme l_[ -p )

= (—1)% 2ed D] B B ed
= {% 26w | D|lHol= 3 L(1to) Koo Prepte (70
n

(2.12)

Proof. Since yxp is real, we have (XD)iL =1if uj is even and xp otherwise. One can therefore obtain
the formula by using the well-known property (xp) =i°®|D|2. O

Example 2.6 (The case x = x_4). For k =2k + 1 with k € Z3(, we have

£® (—1)P W+ o) TTC KMy — 1) _ N
- ] E By (T
2L(p)+i| ol Kio—1Bicpte

L2 (k) (x—a)) = (-1 ¥ { .

z
uHd K

(213)

Remark 2.7. For a non-principal Dirichlet character yx, it is known that L(1, x) # 0 (see, e.g., [30]).
However, in general, it does not seem to be the case that L(‘f({l}d; {x}%) 0 for d > 2. In fact, when
w = e, we can obtain the following example of a pair of d and x such that L;({l}d; {1 =0 (al-
though we were not able to derive a similar result for the case w = x):
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L;({l}z;{x,g}z):L+_—l+_—]+L+ L e S NI
1.3 ' 1.5 1.7 1.9 1-11 1-13 " 1-15  1-17
-1 -1 1 1 -1 -1 1
t3st3 7 3o st 3 3 s
1 -1 -1 1 1 -1
t5 759 511 513 515 5.7
+..
{332 1(31,)(_8)2} 5
- - T =0.
421 16\ 1
In the last equality, we have used the facts B = % and By o =—1.

2.4. q-Analogues of the multiple L-functions

Let 0 <q<1 and [n]g := %. Defined a g-analogue Lg)d of L§ by

) frm)g™E1 =D fy(mg)gmaa—D

[mi1y - - [mgly

Lya(st, .. sas f1o..., fa) =

Similarly to the case for L§ (or ¢ =1), we write L‘”d as g’ " if fj=1forall jand Ly(s; f) = L‘”1(S' .
The function L‘”d is a natural extension of the g- analogue of the Riemann zeta function g4(s) :=
Lg(s; 1) studied in [16] (see also [18]). Many relations among the values { at positive integers
have been studied; see, e.g., [9,10,28,33] for the case w = e and [27] for w ; *. Specializing x, =
)((n)q"(s‘”[n]q_s with Re(s) > 1 in Eq. (2.1) and using

d—1
d—1
v ® =L 4((s)% {x)9) and pm(x):Z( | )(1—q>qu(ds—1;xd), (214)
=0

we obtain the following expression which gives a g-analogue of expression (2.6).

Proposition 2.8. It holds that

(1515 (X)) = Z 1>

wl(mu, 1(
wHd ”; 1 1;=0

) 1—q)'iLg(pjs — 1 x™9). (215)

It may be noted that a recursive expression of ;C;d({s}d) was obtained in [9, Theorem 1].

Remark 2.9. Let (P,Q) = (L*,L*) or (L;,La) Then, for d > 1, it is straightforward to obtain from

Eq. (2.2) that )~ 4 p>0 (—1)?Pa({s}%; (09 Qp({s)P; {x1P) = 0 (here we understand that (L), = L® and
a+b d

(L‘”)C = L“’ ¢)- Further, one can obtain more explicit relation between P, ({s}%; {x}%) and Qp({s}b; D).

In fact for any (P, Q) e {(L*,L*), (L*,L*), (Lg, LY, (L*,L’)} it holds that

()

{X} Zguuu 1—[ Q}L }Mf) (2.16)

ud j=1
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This follows from the relations ey = Z;u—d epuyhy, and hg) = Z;u—d epuye, (see [19, Example 20,
p. 33]) together with relations (2.5) and (2.14). Here, we put u, := (ml(}l)li(muz)(ﬂ)s--») where (a,;’)
(n=a+b+---) denotes the multinomial coefficient.

3. Multiple L-values via generating functions
3.1. Product expressions of generating functions

The second method to evaluate the value ij”({/c}d; {x}% is well known for the case y = 1. Namely,
we start from the following identity which is obtained by specializing x, = x (n)n™* and replacing t
by t* in the generating functions (2.2):

Dby () ) = 1"[(1 - X(:K)tk)_ ; (31)
d=0

n=1
The right-hand side of Eq. (3.1) can then be written as follows.

Proposition 3.1. It holds that

IO_O[ (l 1(n)t2k> l°_°[< tZk > ﬁ sin (T Kékt) (3 2)

ol n2k ol n2k L nfékf s .
o0 2) 2%k o0 2k k

X2 ey t nczk
]‘[(1—T =]] 1—( T Hcos (3.3)
n=1 n=1
for k € N and, for a Dirichlet character y modulo N > 3,

X e e iy 1 TG = x(DFELD
]‘[(1 - >=(N—12N—1)2 H]—[sin#. (34)

n=1 j=11=1

Here, iy :=¢ o for meNand N := L L| with |x] being the largest integer not exceeding x. In Eq. (3.4),
we take the argument of x (j) satisfying x (]) #0tobe0<argy(j) <2m.

We need the following lemma (see [11, Example 11, Chapter VI, p. 115]).

Lemma 3.2. For a;, b; € C (1 <i <) satisfying Z, 1Gi = ZL] b;, we have

(3.5)

1"—°[ (+a)---m+a) TA+by)---T(1+b)
S (+by--(tb)  T(+an--T+a)

Proof of Proposition 3.1. Let N > 3. By the periodicity of x, the left-hand side of Eq. (3.4) equals
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1"—"[”1(] XN = (N —j))t“) _ ﬁ'ﬁ (n— D" — x (D"
il j:l (nN - (N - ]))K n=1 j=1 (n - ¥)K

1
N—1 1k N—j+x()x ghe
ad l_[‘zl l_[lzl(n_ N “ )

=[1—
= N—1 N—j B
n=1 j=1 (= )

=<:i_[: (.>>K1]i_[:ﬁr<]—x(1) §K) 1. (3.6)

In the last equality, we have used formula (3.5) (it is easy to check the condition in Lemma 3.2 from
Z?’:’f x(j)=0when x =1and } [, ;‘K = O otherwise). Note that ]_[ F( )= (N"1@m)N-1)3 by

the Gauss-Legendre formula F(Na)(27r) — NNa—3 H 0 F(a + N) w1th a = 1. Further, the double

product in the final right-hand side of (3.6) can be wrltten as
—y N . P N . AL -1

- kgt N—j—x(N—jeg.t
]‘[r( x( R ) l—IF<J x () €K> F( J= XN = kg ) ’
=1 N N

> 3 and

where 8y :=1 if N is even and 0 otherwise. Notice also that X(%) =0 for even N
kif 0 <arg x(j) <m and —x (j)* §’+k otherwise. Therefore, using the for-

1 1
X(N—J) to=—xrL
mula I” ( ) = +/7 and replacing [ + k in ;’i" by I, we see that the above expression is equal to

N _ . % 1 -1
HF<] X+ CK> F<1_J x%) Ckf>

K
N
=1

=1 j=1
Kk N . 1
_(N-D . (= x(DEgL)
=7 2 sin ———~—— %~
[[]sin 0=
I=1 j=1
T__ and the equality ——K — Nk =

Here, we have used the reflection formula I'(x)I"(1 — x) = oo
— N DK Hence, substituting the above expression into (3.6), we obtain the desired formula.

Eqs (3.2) and (3.3) are ea511y obtained from the infinite product expressions 5‘"(’”) =TI (1= ;—i)

and cos (”{) =[I2,(1— W)’ respectively (see [23] for (3.2)). This completes the proof. O

3.2. Evaluation formula I

Let a ¢ wZ. For w € {e, x}, we define the sequences {T’(a)}n>0 by the expansions

sin(a+t) = Z T,;(a);—rz and cosec(a+t)= Z T,‘;(a):l—n‘. (3.7)

n=0 n=0

It is clear that T2 (a) = (—])%”(”*”trin (a) where triy(a) = sin (a) if n is even and cos (a) otherwise. On

the other hand, T} (a) can be written as T} (a) = cosec (a) > r_g (1)i¥ Exhn_k(cot (a)) where hy(a) is the
polynomial in o« of degree | defined by (14w tan(t))~! = > hl(oz)% (note that hy is even if [ is and

odd otherwise).
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For a Dirichlet character x modulo N, define the sequence {A7 (x, x)}n>o0 as follows;
(i) The case N=1 (i.e,, x =1 and k = 2k): For n € Z3, let Ag"nﬂ(zk, 1) =0 and

n-+k Yi iy .
Znnl‘_;‘ﬂ?:o (2n1+1 ,,,,, 2nk+1)§ - (=),
G2k, 1) = D . (3.8)
—1n
Z n,...,n 0 (2111 ,,,,, 2nk)(1_[ (22“1 _ 2)BZn1)§k = (0 =x).
ny-+--ng=n
(ii) The case N =2 (ie, x = X1(2) and k = 2k): For n € Zx, let A;"H_H(Zk, sz)) =0 and
2n In,
Zn"u,_mﬂz?_on (any e 2n ) =i (w=9),
AS (2K, x1P): = T . (3.9)
2 m >0 (2n1 ..... an)(nl 1 E2n) 8y i (w=%).
ny+--+ng=n

(iii) The case N > 3: Define

AYGik, )= ) (m )(HT( )) R 1<j<h)  (310)

ni,...,ng =0
nyF--Ane=n
and let
n N nj
w A E : | | [OIER Y
An(K,X)._ (nl,...,nﬁl>. A"J’(]’K’X)X(]) : (3.11)
ny,....,n5 =0 j=1

ny+--+ng=n

Example 3.3 (The case x = x_4). Let E,(x) be the Euler polynomial defined by 2 t+] =)0 En(x)%.
Note that E;, = 2”En(7). Then, since

il V2 V234 1) 243 _N2i-1) 204t
cosec| — +t _ ’
©cos(t) +sin(t) 2 edit 41 2 e—4it 1 1

4n+1

we see that Tx(%) = (—1) 2@+ En(3). While on the other hand, it is clear that Tp(%) =
2_%(—1)%”(”_1). Hence, from definitions (3.10) and (3.11), we have

AP (k, X—a) = A7 (1 Kk, X—a)

272) gy e >0 (111 _____ )( 1)2 Y mny— l)é-ZI 1 (w=e),
_ ny4-+ne=n
- (2d+1)
Y 50 (o " )T En () (— 13 Dlamons g,
ny+-+ne=n
(3.12)
Put g, := 8“’“ , that is, €, =0 and Z, = 1. We then obtain the following theorem which gives

extensions of the formulae for ¢ obtained in [6,23] for the case w = e and [22] for w = * (see
also [29]).
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Theorem 3.4. Let x be a Dirichlet character modulo N and k =2k +e(x) > 1. Let

ed (—1)k@—Fw)

[(LES B3] (N=1, k =2k,
o £y N=2, k=2
Cd (k,x):= 22kd (2q)! (N=2, k =2k),
ACIY (N>3).
(NZd—ewz(N—l)sm)% (Kcl)!
Then, we have A% (k, x) =0 if k {n and
LY (k) 0)%) = C§ (e, x) AL e, )T (313)

Proof. Let N > 3. It is straightforward from the definitions of T (a) to see that

N « ;o % I — n
HH(sin—n(] XI\EJ) {"t)> ZA‘“(K ( 1) (N) . (3.14)
j=11=1

In fact, when w = e, the left-hand side of Eq. (3.14) is given by

N 00 . N oo L1 n
Wf(Ti) 1 TX(¥*E (— 1)” Tx (et
[T X HTnI(W>,,—I!< —) UZE} L (T)

j=1 nq,...ne=0 I=1

1 .
1" A
- HA G <—”XI(V’) t)

The case when @ = « is similar. Therefore, from Eq. (3.4), we have

o0

n(l_ X(:K)tk>_w:2{(1\] 19N— 1) ekaw(K X)(_ )" (N) }tn' (3.15)

n=1 n=0

Hence, comparing the coefficients of t“? in expressions (3.1) and (3.15), we see that APk, x)=0if
k 1n and obtain formula (3.13) for N > 3.

One can similarly obtain formulae (3.13) for the other cases, that is, N=1 or N = 2, by using the
expansions

N N o DL e (DR — 2By 4y
sin(t) = ZO—(M_’_ 1)!t , cosec (t) = ZO @) t ,
- "~ (3.16)
—1)" —1)"Egn oy
cos(t) = Z ((Zn;! 2", sec(t) = Z%tz )
n=0 n=0

Actually, for example let N = 1. Then, from (3.2), we have
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ad 00 %N —f0 ks I —y
S e 12 (121 (1) 2k = 1‘[(1 _ %) _ H(sm (ﬂfzm)
=1

d=0 n=1 T §2kt

B > neo A3, (2K, 1)((2111)+713)' 2 (=), (317)
- _1yn—k :
Z,ﬁOA;n(zk,n“gT),tZ" (0 =%).

In the last equality with w = e (resp. w = x), we have used the expansion of sin (t) (resp. cosec(t))
in (3.16). Now comparing the coefficients of t?*¢ on both sides of (3.17), we have

d(_1)kd
Sk Ak DT (=),

8(3 (_1)kd <
(2kd)! 2k

LY (2K (1)) (= ¢ (12k))) =

5k, DT (0 =),
whence the desired formula follows. This completes the proof of the theorem. O

Example 3.5 (The case x =1). The following results are well known (see [6,22]):

K =2k 2 4 6

o d 1 2d 22+ 44 3.26d+1 64
() e U (e
C‘;({K}d) <—1)d*'<<22;)d|—2>82d 2d _ _

Notice that, from expression (3.13), we have {5({4}‘1) = ((2% +4)S53(=1) —452d(—4))714d/(4d)‘ where

Sk(t) == Z’;:o (2")t”ansz on. However, we do not know whether the expression can be reduced to
a “simpler” (or “closed”) form, because it would appear to be difficult to simplify the sum Si(t) for
a general t € C (see [12] for the comment on Si(—1)). We remark that, on the other hand, it is well
known that Si(1) = —(2k — 1)By, for k# 1 and S1(1) = %

Example 3.6 (The case x = )(1(2)). We obtain the following results:

K =2k 2 4 6

. d. g,y @hd 1 2d 1 4d 3
Ly} ™19 20 5 ady * a@an ”
* 2)yd (=1)4Epq _2d

L (e} (219 el = -

From expression (3.13), it can be expressed as L%({4}%; {Xlz)}d) = Toq(—1)* /(2% (4d)!) where
Te(t) := k (2")t”E2nEzk 2on. We also note that Ty(1) = 22*1Ey (1) for k > 0 (see [12]).

Example 3.7 (The case x = x—4). We obtain the following results:

Kk=2k+1 1 3 5

Tdd—1) Ta@-1 Ta@—1)
d. d (-2 d =2 3 _3d =2 5(Lsg—1) . 5d
Ly (e} {x—a}) g% BT aar 25072 (5d)1 2

lda-n; 3
* (=12 Eq(3)
L3 (e} {x-a)) C02 FaD) - i,

Here, Ly is the Lucas number defined by the recursion equation L1 =1, L =3 and Ly =
Lg_q1 4+ Lg_y for d >3 (it can be shown that Ly = o + 8¢ where o = # and g = 1= */_) Note
that it is obtained in [6] that ¢ ({10}9) = 21%4+1 . 5(L104,5 + 1)1%/(10d + 5)!, and can be similarly
shown that L§({10}%; (X2 = 5(L1oa + 1%/ 24(10d)!).
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4. Summation formulae for the Bernoulli and Euler numbers
From Theorems 2.1 and 3.4, we immediately obtain the following corollary:

Corollary 4.1. It holds that

Bepy = (—1)T2794C e, )AZ, (k. x).  (41)

Z M( 1)t=ento Wl x)tu(X) ~

urd £ 26 Ny Go*

The above equation expresses many (non-trivial) relations among the generalized Bernoulli num-
bers. We here give several formulae involving the Bernoulli and Euler numbers.

Example4.2. let x =1 and x = X1(2)- Then, from expression (4.1), we have respectively

Z 8:‘2 (— 1)Z(M) B €g,(—1)k5’”A§)kd(2k, 1) 42)
7, 200 B = Sodaa 11— 201" '
Vi () 52k i 2
ey (DU TTLY @20 — 1)~2k _ eAG 2k ) (43)
ekl 260 " 22kd (2kd)!

These expressions show that both finite sums A%, ;(2k, 1) and A%, ,(2k, sz)) can be written as sums
of products of the Bernoulli numbers. On the other hand, putting d =1 and @ = e in expressions (4.2)
and (4.3), one can also see from definitions (3.8) and (3.9) that By, (k > 1) has the following expres-
sions in terms of the multinomial coefficients and the k-th root of unity:

(2k)! 3k I

B2 = 237 3101 2 211 +1,..., 2 + 1 C’Zl . (44)

" g >0 1 s e k

ny+--+m=k
1 2k Z ln,

Bu= oy 2o ( )4“ - (4.5)

2 2% —=1) >0 2n1, ..., 20

ny+---+n=k

Formula (4.4) was essentially obtained by Nakamura [23] (one can easily check that expression (4.4)
is equivalent to (2. 2) in [23]). Furthermore, putting k=1 and w = % in expression (4.2) (resp. (4.3))
and noting A3, (2, X ) (224 — 2)Byg (resp. A% 542, X12)) = E,q4), we obtain an expression for By
(resp. Eaq) (d > 1) in terms of a sum of products of the Bernoulli numbers:

1am)

224 (24)! 1 (=1t Bay,
Bad =~ (22 _2) Z Zz. 20w l_[ (ZMM.J)! ’ (4.6)
ukd “H j=1 17
i m
1 (=1) _ Bay;
Eoq = 2%42d)! T 0@* -1 L 47
2 ( ) Z mn 26w l—[( )1_[ (ZI_L])' ( )
uHd j=1 j=1

Formula (4.6) was obtained by Ohno in [26].
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Example 4.3. Let x = x_4. Then, formula (4.1) yields

1 . K
gy (DI IR — ) e )T AL (kL xa)

2K o] Expio—1Bipe = AT (cd). (4.8)

2

z
u-d w

Similarly to expressions (4.4) and (4.5), putting d =1 and w = e and writing k = 2k + 1, we see from
expression (3.12) that Ey, (k > 0) can be written as

k
ZL)k Z ( 2k +1 )(_‘1)%212,;r n(n— 1);2_1”1 (49)
5 " . .
2k +1)2 Mo 1 50 ni, ..., Nk41
np+-+ngpp1=2k+1
5. Special values at non-positive integers
It has been shown that, in some special cases, L3(s1,...,5q4; X1,---, Xqg) €an be continued mero-

morphically to the whole space C? and has possible singularities on sy =1 and ZIJ<:1 Sd—k+1 € Zg;
for j=2,3,...,d. (See [3,21,32] when x; =1 for all j, and [1] when 1, ..., xq are of the same con-
ductor. One can also obtain more precise information about the singularities from these references.)
Hence, in such cases, it is easy to see that L%(s1,...,Sq; X1, .., Xa) also admits a meromorphic con-
tinuation to C? with the same possible singularities since Ly can be expressed in terms of L3, for
1 <d’ <d. In this section, we study a special value, called a central limit value, of Lg’(sl, ey Sds {X}d)
at s =--- =54 = —k where k = 2k+e()x) is a non-negative integer. Since it is seen that such a point
is a point of indeterminacy of the function, to define the value, we have to choose the limiting pro-
cess of (s1,...,54) > (—k,...,—k) (for more precise details, see [2,3]). Here, the central limit values
(LY (s1, ..., 5d; X1, ... Xa) are defined by

c .
(LY) (515 -+ Sd5 X1 -+ Xd) ::lslg%Lg’(m+8,...,sd+8;X1,...,Xd).

We then obtain the following results, which give generalizations of the formulae for ¢; obtained in
[17, Corollary 2(ii)].

Theorem 5.1.
(i) For N > 1, it holds that
d_1\d(% —1)
Lw c {O}d, X(N) d — Sw( ]) (d) (N N (5])
) (0 (V)= | -
(1) (=20 ™)) =0 ke, (52)
(ii) If x is non-principal, then, for k = 2k +e(x) > 0, we have (L$)€ ({—k}%; {x}¢) = 0.

Proof. We start from the equation ) 2, s(d”Lg’({s}d; 0Dt = exp(se Zn>1 %L(ns; x™t"), which is
obtained from expressions (2.2) and (2.5). Note that this is valid for any s € C unless (s,...,s) is a

singularity of LY. Hence, using the formula L(—«, x) = — BZ%X, we have

N d. fod\,d _ Buit1.xm 5
dgogw(Ld) (1= )% ()9t _exp< wzn(nk—{—l) ) (5.3)
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We first assume that x is not principal. Then, noting (nk + 1) +e(x™) =2nk +e(x)) +1=1
(mod 2) (here we have used the identity e(x™) =ne(x) (mod 2)), we have Byyq,yn =0 for all
n>1 because By y =0if m+e(x) =1 (mod 2). This implies that the right-hand side of Eq. (5.3) is
identically equal to €% =1, whence the claim (ii) follows.

We next let x = Xl(N ). Note that

B (N)yn = B = 1_[ (1 — pm_l) “Bm  (meZxo). (5.4)

m,(xq m, x, ‘
p:pmne
p

Therefore, writing x = 2k for k € N in Eq. (5.3) and using Bjpk+1 = 0, one similarly obtains Eq. (5.2).
To prove Eq. (5.1), we further set k =2k =0 in Eq. (5.3). When N > 2, since B, (x ™y = 0 by Eq. (5.4),
WAL

we obtain the claim. On the other hand when N =1, since B; = %, the right-hand side of Eq. (5.3)

can be written as
Ew 1, Ew fw > d % d
exp(—7 > —t ) :exp(TIog(l - t)) =1-0%¥=) (-1 (d )t )
n>1 d=0
This shows the claim. O

Remark 5.2. By employing a “renormalization procedures” in quantum fields theory, one can also
define values of multiple zeta functions at non-positive integers. For further details, see [5,13,14,20]
and references therein.

6. Concluding remarks
6.1. Multiple zeta functions attached to the Schur functions

It may be interesting to find a function ¢ (s1, ..., sq) for a partition A i-d such that {44 = {7 and
@) = ¢4 Recall that {d‘({s}d) =eg(n~°) and ;‘5({5}‘1) =hg(n~5) where n=5 = (175,275, ...). Therefore,

since s(qa) =eq and sy = hg where s, is the Schur function attached to A (see [19]), such a function
) can be regarded as a “multiple zeta function attached to s,”:

Find! ———| &(s1,...,5q4)
-7 A T~
_ < =ad : =)~
£3(s1, ..., 84) 51="';=5d:5 £q(s1.--- 5a)
\

S]=--=83=5

&.(s)9) = su(m™)

S]=---=84=S5

£3({s}) =eq(n ) gr({s}) =hg(m™)

Question 6.1. For a fixed A, are there any relations (such as a sum formula or a duality) among the
values ¢, (kq,...,kq), which interpolate the relations for gé”(lq, o kg)?
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6.2. Alternating multiple zeta functions

Let
. . (=M ... (=1)™d 1
g“j"(s],...,sd):z Z W=L§)(Sl,--w$d§{‘/’2} ),
(my,....mg)el? 1 d
where @f (m) := ¢§™ for 1 <a < N. This is an alternating analogue of {’(s1,...,sq). When w =,

the values at positive integers and their relations have been studied in [6,8]. Similarly to the proof
of Theorem 2.1, using expression (2.1) with the specialization x;, = (—1)"n~%, we get the following
expressions of ;;’({5}‘1) in terms of a sum over partitions of d (note that this series also converges for
s=1):

ltel ——pu, o
e (=D T @0 — D

& (1)) =Z{—’”‘

}(logZ)ml(“) >3§(M]) ﬂme\’

Zy 28(pe)—t(to)— (el —ILtol)
uHd
(DI 1)
¢ (12k)%) = (— 1)’“122’“1{2 N ST szu}nz"dean"d (k € N).

uHd

These follow from the identities L(1; (p;) = —log2 and

22/<;LJ . .
. —7_4“(21(# ) if w;isodd,
L<zkuj;<<o;>“l>=[ g Sy i
s k) otherwise.
Furthermore, since []no,(1 — ‘pZ(")t =11, ey ) [T (1 — (& LyZky—=¢w  then,
’ n=1 n=1 (zn 1)2k n=1 n2k

upon using formulae (3.2), (3.3) and (3.16), we have

eg (~DMFDAG 2k, ¢)) 2kd

¢ (12ky) = 22kd((2d + 1 — &,)k)!

) (6.1)

where {AY (2k, (pz)}n>g is defined by A2n+1 (2k, (p;) =0 and

2n+ (1 =€,k )
1) ._
on(2k. @) == p§q>:0 (2p,2q+(1 _F )k>§2k 5p (2K, X1™) A (2K, 1).

p+q=n
Formula (6.1) can be straightforwardly obtained from (35) in [6].
6.3. A higher-rank generalization

Let s;j € C and fj; be arithmetic functions for 1 <i<rand 1< j <d. Write S = (s;;) and F = (fj;)
(r x d matrices). We introduce the following “hlgher-rank multiple L-function:

AQS P = Y nfu(mm frim)

S” Srj
(ml,...md) e 19 j=1 Myj oMMy
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where m/ = (myj,....,my) eN for 1< j<dand I C (N"? is defined by

o . { {(m!,....omH e m <...<ml} (w=o),
T et mh e ) m! <o <ml) (@ =),
Here, we are employing the lexicographic order on N'. Namely, (m1,...,m;) > (nq,...,n;) if my > ny,

or m; =n; and my > ny, or my =ny, My =ny and ms > n3, and so on. Clearly, 11§ = I“’ and 1Ly =LJ.
As for the case r =1, we write r;“d (S) as rL‘”(S 1)).

By induction on d, it is shown that the function L (S; F) can be expressed as a polynomial
in Ly (t1,... . ta: g1,.... 8r) for 1< d < d where t; is a sum of s;; and g is a product of fj;. For
example, we see that

LY (Gin)s (fin) =] [ LGins fin),

i=1

r  p-1 r
rLg)((sij);(fij))=Z/l_[L(Sil+5i2;filfiZ)LE(SplvspZ;prpr) H L(sits fin)L(si2; fi2)-

p=1 i=1 i=p+1

Here, the prime ' means that we replace e by w in the summand for p =r. Hence, if f;; are bounded
for all i, j, then we see from the expression of rLg’ in terms of Lii‘i that the series rLg’(S; F) converges
absolutely for Re(s1;) > 1 for 1 < j <d —1 and Re(s;;) > 1 otherwise.

Question 6.2. Are there any relations among the values -¢’((kij)), which are generalizations of the
relations for r =1?

Let us denote by {xi,...,x}% the r x d matrix (xij) such that xjj =--- =xjg =% for 1<
i <r. Let x; be a Dirichlet character modulo N; and k; = «j(ki, x) = 2ki + e(x;) for 1 <i<r.
Though the function L7 is not new in the above sense, one can calculate the special values

rL‘L;’({/q, s L {x1,..., Xr}d) by our first method. In fact, we finally can obtain the following propo-
sition:

Proposition 6.3. Let |« | := k1 + - - - + k. Then, we have

TL(C;)({K17 . 7Kr}d; {X17 cy Xr}d)

P &9 (_ 1yt —Xisen () T W Koz )T (Xi) ~

e zkdi £ (=1 = I ,L<Nl QLACOT S TR
ud Z i=1 n(Xi)

In particular, for k1, ..., kr € Nwith |k| :=kq + - - - + kr, it holds that

(- 1)”3(M)
rCf({ZkL...,Zkr}d):(—1)'kd22kld{zZ S l_[B w2k ¢ Qe
i ;

ud

Proof. Replacing the variable x, by x; ; -~-x;r in (2.2), we have

Zez)v%(y)td: 1_[ (1—x}l]...x;rt)7 Z {Z HPM }td, (6.3)

d=0 Ny, ity= d=0 ud 21 i
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where y = (x,]” ~~~xf7r)n1“_,,n,>1 (we also arrange the variables in y in the lexicographic order with

X in (6.3), we see that the

respect to (ny,...,n;)) and &' = (x, Jn,>1. Then, specializing xi, = x;(n;)n;

left-hand side of Eq. (6.2) is equal to Z;u—d i—;‘ [T, ]_[ji(:’ﬁ)L(K,-uj; Xi“j). Therefore, one can obtain
Eq. (6.2) by following the same approach as in the proof of Theorem 2.1. O

Remark 6.4. From expression (6.2), we see that

LY (Ko 1ys - Ko} Xo (s - oy Xo)?) = 1LY (k1o o k) s oo xe )

for any 0 € &, where &; is the symmetric group of degree r.

Remark 6.5. It appears to be difficult to evaluate the values rLg)({/ﬁ, k)Y {x1,...» Xr}d) forr>2
by using the second method of the present study (that is, by using the expansions (3.16) of trigono-
metric functions). This is because the generating function obtained from (6.3) for these values is a
“multiple” infinite product.
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