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Abstract 

Guzman. F., The variety of Boolean semirings, Journal of Pure and Applied Algebra 78 (1992) 

253-270. 

The variety of Boolean semirings 39% is the variety generated by the two 2-element semirings. 

We find a complete set of laws for this variety, and show that it is equivalent to the category of 

partially Stone spaces. We get a detailed description of the finitely generated free Boolean 

semirings and a normal form for their elements. From this, a formula is obtained for the free 

spectrum. This formula relates the free spectra of &/?%r and cS.ir. the variety of bounded 

distributive lattices. Finally. we show that the relational degree of %#? is 3. 

Introduction 

Semirings were introduced by Vandiver in the middle 1930s by weakening the 

additive laws that define a ring. There are several definitions of semiring in the 

literature. They go from very weak ones, two semigroup operations related by 

distributive laws (see, e.g., [5]), to the one most commonly used in formal 

languages and automata theory (see [4] or [7]). The latter is the one we will use; 

the only thing missing (in order to be a ring) is the existence of additive inverses, 

and 0 is required to be absorptive for multiplication. 

There are a couple of papers in the literature that refer to Boolean semirings. 

The first one, [ll], deals with a very different notion of semiring. It takes the ring 

laws, deletes one distributivity and adds a weak form of commutativity; it is not 

even close to any of the usual definitions of semiring. The second one, [5], calls 

Boolean any semiring (two semigroup operations related by distributive laws) that 

satisfies the idempotent law x7 = X. In this paper we look at a different connection 

between Boolean rings and Boolean algebras (from which the former get their 
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name). The connection is through the algebras that generate the variety, and not 

through the laws. To parallel this connection, we consider the scmiring structures 

on the 2-element set, and call the variety generated by them, 9X%!, the variety of 

Boolean semirings. In Section I WC find a complete set of laws for BY%, see 

Theorem 1.5, that includes the idempotent law plus a law for addition. In the 

process we determine the subdirectly irreducible Boolean semirings, and find a 

3-element semiring S that generates the variety; see Theorem 1.7. This semiring S 

plays a crucial role in Sections 3 and 4. 

In Section 2 it is shown that the categories of Boolean semirings and partially 

complemented distributive lattices arc equivalent. Partially complemented distri- 

butive lattices are bounded distributive lattices with a principal order filter which 

is complemented; see Definition 2.3 and Corollary 2.5. We also get a Stone type 

representation theorem showing that the category of Boolean semirings is dual to 

the category of partially Stone spaces; see Definition 2.6 and Corollary 2.8. 

In Section 3 a description of free Boolean semirings is given, Theorem 3.7, and 

we then use this to get a formula for the free spectrum of the variety; see 

Corollary 3.8. This formula relates the free spectra of %Y9? and G&Y!, the variety 

of bounded distributive lattices. In Section 4 we get a normal form for the 

elements of the free Boolean semiring; see Theorem 4.2. We then show that the 

relational degree of S is 3; see Theorem 4.6. 

1. Boolean semirings 

Definition 1.1. A semiring is a type (O,O, 2,2) algebra (A;O, 1, +, .) that 

satisfies: 

(SRl) x + (y + z) = (x + y) + z, 

(SR2) x + 0 = x, 

(SR3) x + y = y + x, 

(SR4) I( yz) = (xy)z, 

(SR5) xl = x = Ix, 

(SR6) x(~~+z)=xy+xz; (x+y)z=xz+yz, 

(SR7) x0 = 0 = Ox. 

In other words, if a semiring fails to be a ring, it is by the absence of additive 

inverses. The smallest nontrivial (1 # 0) semiring must have at least 2 elements; in 

fact, on (0, 1) there are two semiring structures. We must have 

and the two structures correspond to 1 + 1 = 0 and 1 + 1 = 1. The first is the 



Boolean ring Zz and the second is the bounded distributive lattice reduct of the 

2-element Boolean algebra, that we will denote by B; this semiring is called the 

Boolean semiring in [7]. We will denote the variety generated by the two 

2-element semirings Zz and B by %Y%, and call it the variety of Boolean 

semirings. Observe that a Boolean semiring satisfies: 

(BSRl) 1+x+x= 1. 

(BSR2) x1 = X. 

Our first goal is to show that (SRl-6),(BSRl-2) is an equational basis for the 

variety %Y%? of Boolean semirings. We exclude (SR7) from this list since it is a 

consequence of (BSRI-2); set Lemma 1.2(a).(d). Let 1” = V(SRl-6,BSRl-2) 

denote the variety of algebras that satisfy (SRl-6) and (BSRl-2). When using 

(SRl-6) to prove facts about algebras in Y’, we will not mention these laws 

explicitly. 

Lemma 1.2. Let A E Y’und x,y E A. 

(a) x0 =0, 

(b) x + x + x = X, 

(c) y + xy + xy = y = y + yx + yx. 

(d) xy = yx. 

Proof. (a) Multiply (BSRl) by 0 on the right to get x0 + x0 = 0. Now multiply by 

x on the left and use (BSR2) to get x0 + x0=x0. Therefore, x0 = 0. 

(b) Multiply (BSRl) by x (on either side) and use (BSR2). 

(c) Multiply (BSRl) by y. 

(d) Using (BSR2) we have x + y = (X + y)’ = x2 + xy + yx + y’ = x + y + xy + 

yx. Substituting x)1 (rcsp. yx) for y we obtain, using (BSR2) and (c) to simplify, 

x + xy = x + xy + xxy + xyx = x + xyx and x + yx = x + yx + xyx + yxx = x + xyx 

and therefore x + xy = x + yx. Now substituting xyx for x, adding xyx on both 

sides, and using (BSR2) and (c) to simplify. yields xy = yx. 0 

Given A E 1’ and a E A, we define two binary relations on A as follows: 

x -(, y if and only if ax = ay , 

x -(’ y if and only if N + x + ax = a + y + ay 

The identity relation on A will be denoted by AA, or simply by A. 

Proposition 1.3. Let A E 3” and a E A. 

(a) -<, and -” are congruences on A, 

(b) -<, =it,,ifandonlyifa=l. 
(c) -_C( = A,, if and oniy if a = 0. 

Proof. (a) Clearly both -(, and -!’ are equivalence relations. Let us verify that 
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they preserve the operations. If x -,, y and ~1--(, u, then ax = ay and a~1 = au. 

Adding these equations we get a(x + u) = a( y + u) so x + u -(, y + u. Multiplying 

we get uxuu = ayuu and using Lemma 1.2(d) and (BSR2) gives axu = uyu, so 

xl4 -<, yu. 

If x -(I y and u -” u, then a + x + ax = a + y + uy and a + ~1+ au = a + u + au. 

Adding these two equations, adding a on both sides, and using Lemma 1.2(b) we 

getu+(x+u)+u(x+u)=u+(y+u)+u(y+u),sox+~~--”y+u.Nowifwe 

multiply the first equation by u, add a + au on both sides and use Lemma 1.2(c), 

we get a + xu + uxu = a + yu + uyu. Similarly, from the second equation we get 

a + uy + uuy = a + uy + uuy, and using Lemma 1.2(d) we get a + xu + axu = 

a + uy + uuy, so xu -(’ yu. 

(b) From (BSR2) we have a--_, 1, so ^‘I~, = A implies a = 1. The converse is 

trivial. 

(c) From (BSR2) and Lemma 1.2(a),(b) we have a -” 0, so -il = A implies 

a = 0. The converse is again trivial. 0 

Proposition 1.4. Zz and B ure the only subdirectly irreducible semirings in 7’. 

Proof. Clearly Z’? and B are subdirectly irreducible. Let A E Y” be subdirectly 

irreducible. Let u # b be elements of A such that for every congruence - # A we 

have a - b. If we had u,b # 1, then by Lemma 1.3(b), -c,,-h f A and therefore 

a -(, b and a-,, b, i.e. a” = ub and bu = b’. Using (BSR2) and Lemma 1.2(d) 

yields a = b, a contradiction. 

Without loss of generality assume b = 1. 

If we had a # 0, then by Proposition 1.3(c) -(( #A and therefore a -(’ 1, i.e. 

a + a + u2 = a + 1 + a. Using (BSR2), Lemma 1.2(b) and (BSRl) we get a = 1, a 

contradiction, so we must have a = 0. 

Suppose now that IAl > 2, and let c E A, c # 0,l. By Proposition 1.3(b) -c f A, 

so 0 -< 1, i.e. 0 = c, a contradiction. So A is a 2-element semiring, i.e. Z2 or 

B. q 

Based on Birkhoff’s theorem [l, p. 141, that a variety is generated by its 

subdirectly irreducibles we get the following consequences of the proposition. 

Theorem 1.5. (SRl-6) and (BSR-2) f orm an equational basis for the variety 

%‘Y% of Boolean semirings. 0 

Theorem 1.6. The variety 939% of Boolean semirings is a minimal cover of the 

variety of Boolean rings, and also of the variety of bounded distributive 

lattices. 0 

Boolean rings are characterized among rings by the law (BSR2), and (BSRI) 

is in fact a consequence of it. For semirings the laws (BSRl) and (BSR2) are 

independent. The semiring (0, h, l} with operations 
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satisfies (BSRl), but does not satisfy (BSR2). The semiring (0, h, l} with 

operations 

satisfies (BSR2), but does not satisfy (BSRl). 

The variety %‘Y% is generated by the 4-element Boolean semiring Zz X B. If 

F(n) denotes the free Boolean semiring on y1 generators, then IF(n)1 5 4”“. The 

next theorem yields a better bound. 

Theorem 1.7. The variety %‘.W? of Boolean semirings is generated by the 3-element 

semiring S = (0, h, l} with operations 

Proof. On one hand S is isomorphic to the subsemiring {(O,O), (0, l), (1,l)) of 

the product Zz x B, so S is a Boolean semiring. On the other hand S/0,,,, is 

isomorphic to B, and S/0,,.,, is isomorphic to Z,. 0 

Corollary 1.8. IF(n)/ 5 3’“. 0 

In Section 3 we will get a better bound; see Corollary 3.3. 

It also follows from Proposition 1.4 that a Boolean semiring is the subdirect 

product of a bounded distributive lattice and Boolean ring. We can give a precise 

description of this situation as follows: let (A; 0, 1, f, .) be a Boolean semiring. 

Leth=l+l,andforanyaEAleta=ha=a+aand~=h+a=l+l+a.Let 

A”={a”laEA} andA={ciIaEA}. 

Proposition 1.9. Let (A; 0, 1, +, .) be a Boolean semiring. 

(4 (2; 0, h, +, .> IS a bounded distributive lattice and the map - : A -+ A given 
by a H a” is a surjective homomorphism. 



(b) (A;h,1,+,~)isaBooleanringundthemap ^:A+Agivenbya~6isa 

surjective homomorphism. 

(c) The mup A + A X A given by a H (a”, k!) is one-to-one. 

(d) The 3 maps in (a), (b) and (c) give the only decomposition of A us a 

subdirect product of a bounded distributive luttice and a Boolean ring. 

Proof. (a) 6=hO=O, ‘i=hl=h. x=h(a+b)=ha+hb=a”+b”, and a”b”= 

hahb = hab = 2. so _ is a surjcctive homomorphism. and A” is a Boolean 

semiring. To see that A” is a bounded distributive lattice we must verify the 

idempotent law for +, and the two absorption laws. 

a”+u”=a==hha=ha=a”, 

a”((u”+b”)=G+a”h”=a+a+nb+ab 

=a+a=u” by Lemma 1.2(c) 

(b) 8= h + O= h, i = h + 1 = 1 by Lemma 1.2(b), 6 + 6 = h + a + h + b = 

h + a + b = &?% since h + h = h by Lemma 1.2(b), and i6 = (h + a)(h + b) = 

h + ha + hb + ab = h + ab = a% since 12 + ha = h by (BSRl). So A is a surjective 

homomorphism, and a is a Boolean semiring. To see that A is a Boolean ring it 

suffices to show the existence of additive inverses. 

G+fi=h+a+h+u=h+u+u=h=6 by(BSR1). 

(c) If a”= b” and i = 6. i.c. ha = hb and h + a = h + b, then a = a + a + a = 

ha + a = (h + a)a = (h + b)a = ha + ba and similarly b = hb + ah. Therefore, a = 

6. 

(d) Parts (a), (b) and (c) show that A is a subdirect product of A” and a. 

Suppose now that L is a bounded distributive lattice, R a Boolean ring and 

4 : A-+ L x R a one-to-one homomorphism of semirings, such that 4, = 

~,o~:A~Land~,=~~~~:A-jR are surjective. Observe first that_keL((“) = 

,HI,,, and ker(“) = H,,,,, In both cases the inclusion ’ > ’ is clear since h = 1 and 

0 = h. Let us show the other inclusion. If a” = 6. i.e. ha = hb. then a = a + ha = 

la + hb, and b = ha + lb, so (a, b) E Bt,,, If li = 6, i.e. h + a = h + b, then 

a = a + hu = a(a + h) = u(b + h) = ab + ha + Ob and b = ub + Oa + hb, so 

(a, b) E H,,.,,. 
Now 4,(h) = 4,(l) + 4,(l) = 4,(l) by idempotency in L, and WC have I$,,, & 

ker(4,). Therefore. there is a homomorphism 4, : A” + L such that 4, = $, o-. 

Similarly q&(h) = q/r2( 1) + &( 1) = 0 = q&(O) since R has characteristic 2, and 

Ho.,7 C ker(+,). So there is a homomorphism & : A * R such that & = I,& 0 ̂ . We 

now claim that $, and & are isomorphisms. They are surjective since 4, a$ & 

are so. Suppose $,(a”) = $,(6”). Then ~$,(a”) = $,(a=) = 4,(a”) = $,(h”) = 4,(b) = 

4,(b), &(a”) = $,(L) = &(h + ha) = &(h) = &(6) = 4,(O), and similarly &(b”) = 
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4,(O), so ($(a”) = 4(b”), and we must have a”= 6, i.e. 4, is one-to-one. Suppose 

&(6) = 6(i). Then &(i) = &(i) = &l,(b) = i&(i) = i&(j) = &,(6), 4,(i) = 
(cl,(i) = $l(h(h + a)) = G,(h) = $,(?) = 4,(l), and similarly c#J,(~) = 4,(l), so 

+(6) = 4(g), and we must have 6 = 6, i.e. I,& is one-to-one. 0 

Observe that A” and a are not subsemirings of A. Everything works except that 

the ‘one’ of A” is not 1 but h, and the ‘zero’ of a is not 0 but h. 

In the language of [5] we get the following corollary: 

Corollary 1.10. Let A E 2E@2. Then A is a bounded distributive lattice D of 

Boolean rings (A<” / a E D) without unit. 

Proof. Let D be a bounded distributive lattice and B a Boolean ring such that A 
is a subdirect product of D and B. For each LY E D, let ACY = {(a, 6) E A}. It is 

clear that A,, is a sub-(+, .)-algebra of A. isomorphic to a subring (possibly 

without unit) of B. The rest of the statement is easy to check. See [5] for 

definitions. 0 

2. Partially complemented distributive lattices 

The equivalence between the categories of Boolean rings and Boolean algebras, 

gives a characterization of Boolean rings as distributive lattices with some 

additional structure. In view of Propositions 1.4 and 1.9, it is natural to expect a 

similar result for Boolean semirings. We will obtain two such results in Theorems 

2.1 and 2.4. In the first, the additional structure is a unary operation; in the 

second it is a constant. From these theorems we easily obtain a Stone type 

representation theorem which says that the category of Boolean semirings is dual 

to a category of spaces that we call partially Stone. 

We will not mention bounded distributive lattice laws explicitly in the proofs. 

Theorem 2.1. (a) Let (A; 0, 1, +, .) be a Boolean semiring. Define operations 

xr\y=xy, 

xvy=x+y+xy, 

x=1+x. 

Then (A; 0, 1, A, v) is a bounded distributive lattice and - satisfies: 

W) xvX=l, 

(~2) xAx=xAi. 
Moreover, we can recover the original operations by: x + y = (x v y) A (X v j). 



(b) Let (A; 0, 1, A, v) be a bounded distributive lattice and -a unary operation 

on A satisfying (Ll-2). Define operations 

x + y = (x v y) A (X v jq ) 

xy=xAy. 

Then (A;O.l,+;)isa Booleansemiringand~=l+x,xvy=x+y+xy. 

Proof. (a) By Theorem 1.7 it suffices to check for the semiring S. Checking this is 

a trivial exercise. It should be noted that the lattice of S is given by 0 < h < 1. 

(b) Before we prove this part let us establish some properties of -. 

Lemma 2.2. Let A be a bounded distributive lattice with a unary operation - that 

satisfies (Ll-2). Let x,y E A. 
(a) 15 X. 

(b) Zfx my, then y5.C. 

(c) x/Yx=i. 

(d) x A (X v y) = x A (i v y). _ 
(e) <=.rvi. 
(f) x=x. 

(g) xvy=xvy. 

(h) x A y = X v y. 

(i) x v y = X A j. 

Proof. (a) Using (Ll-2) and lattice laws we have x = x v (x A 2) = i v (x A ?) = 

(2 V X) A (2 V i) = i V i. 

(b) If x 5 y. then from (Ll) 1 = x v X = (x A y) v i = y v i. From (L2) we get 

xv(y~y)=xv(y/\i).Distributingandusingyvx=land(a)wegetxvy= 

x. 

(c) Follows at once from (L2) and (a). 

(d) Follows from (L2). 

(e) Using (a), (d) and (Ll) we havexAX3=xA((Xvi)=xA(XvX)=x, so 

x5x. Usingnow this.(c) and (Ll) WegetXVi=XV(xAx)=xVx=x. 

(f), (g) follow at once from (e) and (a). 

(h) From (b) we get X 5 x A y and y 5 x A y so X v y 5 x A y. From (Ll) we 
- ~ 

get (x A y) v (i v y) = 1. Using these two facts, (a) and (Ll-2), x A y = x A y A 

((X A y) V (2 V j)) = (X A y A 1) V (2 V y) = i V i V 7 = i V j. 

(i) Like in (h), from (b) we get x v y 5 X A 9. From (L2) we get (x v y) A 

(.?A 7) =(x v y) A i. Using these two facts, (a) and (Ll), xVy=m v 

((X V y) A (i A 9)) = J? A 9. 0 

Proof of Theorem 2.1(h). By (Ll), 0 = 1, so x + 0 = (x v 0) A (i v 0) =x A 1 =x. 

Clearly + is commutative. For associativity of + we have 
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= (((x ” Y> A (2 ” 7)) ” z> 
A (((X A j) v (x A y)) v Z) (Lemma 2.2(h),(i)) 

= (X V y V 2) A (i V y V 2) A (i V i V 2) 

A(iVjV~)A(~V&t)A(jV~V~) 

=(XVyVZ)A(iVy V,? A XV;Vt)A(jhiV?) (Ll) ) (- 

= (X V y V 2) A (i V j V 2) 

A (Xv y v 2) A (X v r v 2) , (Lemma 2.2(g)) 

x+(y+z) 

=(y+z)+x 

For distributivity 

xy + x2 

= ((x A y) v (x A 2)) A (X v y v xv 2) (Lemma 2.2(h)) 

=XA(yVZ)A(.fVjV.?) 

=XA(yVZ)A(iVyVi) (Lemma 2.2(d)) 

=XA(yVZ)A(yV?) 

=x(y+z). 

(Lemma 2.2(a)) 

Finally, using Lemma 2.2(a), 1 + x = (1 v x) A (? v X) = 1 A X = X, and 

x+y+xy 

=x(1 +y)+y 

=xy+y 

= ((x A j) v y) A (i v T v 9) (Lemma 2.2(h)) 

= (X A 9) V y W) 

=xvy. (Ll) 0 

The fact that 6 = 1, together with Lemma 2.2(h),(i), almost makes - an 

Ockham operation in the sense of [lo]. It fails because in general i # 0. Also note 

that if x v y = 1, then using Lemma 2.2(e),(i) and (Ll) we have F= y v i = y v 
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(X A y) = (y v X) A ( y v 7) = y v X and therefore X 5 y. This fact together with 

(Ll) almost makes - a dual pseudo-complement. These failures of - come from 

looking at it in the wrong setting. In fact, when restricted to an appropriate subset 

of A, - is a complement. 

Definition 2.3. A partially complemented distributive lattice is an algebra 

(A; 0, 1, h, v, A) such that (A; 0, 1, v, A) is a bounded distributive lattice, 

h E A, and ([h, 11; h, 1, v, A) is a complemented distributive lattice, i.e. a 

Boolean algebra where [h, l] = {a E A 1 h 5 a}. 

Theorem 2.4. (a) Let (A; 0, 1, v, A) be a bounded distributive lattice and - a 

unary operation satisfying (Ll-2) in Theorem 2.1(a). Then (A; 0, 1, 7, v, A) is a 

partially complemented distributive lattice, and X = (x v i)‘, where ’ denotes the 

complement in [i, 11. 

(b) Let (A; 0, 1, h, v, A) be a partially complemented distributive lattice and 
define X = (x v h)‘, where ’ denotes the complement in [h, 11. Then - satisfies 
(Ll-2), and h = 7. 

Proof. (a) Let x E [j, 11, then by (Ll) x~.a?=landby(L2)xr\Y=xr\l=i,so 

X is the complement of x in [j, 11. Therefore, (A; 0, 1, 1, v, A) is a partially 

complemented distributive lattice. NOW= for any x E A, x v i E [i, 11, so using 

Lemma 2.2(i),(e) (x v i)' = xvi = X A 1 = X A 1 = X. 

(b) For any x E A, X P h so we have 1 = (x v h) v (x v h)’ = x v h v X = x v X. 

Clearly i = 1’ = h, so i = (x v h) A (x v h)’ = (x v h) A .i = (x A i) v (h A X) = 

(x A X) v i, and we get x A X 5 i; since x A X 5 x, we get x A X 5 X A i. X A i 5 

x A X follows from i 5 X. 0 

Corollary 2.5. The category of Boolean semirings is equivalent to the category of 

partially complemented distributive lattices. 

Proof. Theorems 2.1 and 2.4 establish the bijection between objects. But it is 

clear that a function f : A* B is a homomorphism of Boolean semirings if and 

only if it is a homomorphism of partially complemented distributive lattices. 0 

Recall that a Stone space is a coherent, Hausdorff space. The Stone representa- 

tion theorem gives a l-l correspondence between distributive lattices and coher- 

ent spaces, with Boolean algebras corresponding to Stone spaces. We refer the 

reader to [6] for notation, definitions and basic facts on coherent and Stone 

spaces. However we need to mention explicitly the following: if A is a distributive 

lattice, Idl(A) denotes the lattice of ideals of A, and X = pt(Idl(A)) the set of 

prime filters of A. If I E Idl(A), let q(l) = { p E X 1 p n I # O}. Then 9 = 

{q(l) 1 I E Idl(A)} is a topology on X which makes it into a coherent space, and cp 

is an isomorphism of lattices between Idl(A) and .Y (see [6, Chapter II]). 
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Definition 2.6. We say that (X, Y) is a partially Stone space if X is a coherent 

space, Y a compact open subspace of X, and X - Y is Hausdorff. Given (X,, Y,) 

and (X2, Yz) partially Stone spaces, and a function f : X, + X2, we say that f is a 

map of partially Stone spaces if f is continuous, f -I( Y?) = Y,, and f Iy, : Y, + Y2 

is coherent. 

Theorem 2.7. (a) Let A be a partially complemented distributive lattice. Let 

X = pt(Idl(A)), and Y = {p E X ( h E p} = cp( J{ h}). Then (X, Y) is a partially 

Stone space. 
(b) Let (X, Y) be a partially Stone space. Let A = KR(X) be the lattice of 

compact open subspaces of X. Then (A; 0, X, Y, U, fl) is a partially com- 

plemented distributive lattice. 

Proof. (a) By the Stone representation theorem, X is a coherent space and 

Y = cp(&{h}) is a compact open subset. Let p,q E X - Y with p # q. Suppose 

p~qandchooseaEAsuchthatuEpanduflq.Sinceuva=lEqandqis 

prime, we must have a E q. Let U = cp(J{u}), V= cp(J{C}). Then U and V are 

open neighborhoods of p and q respectively, and U f’ V = cp( & { a}) f? cp( 1 {a}) = 

cp(J{u> n J(4) = (p(J{u A 4) = cp(J{a A h}) C &J(h)) = Y, SO U - Y and V- 
Y are disjoint open neighborhoods of p and q in X - Y, and X - Y is Hausdorff. 

(b) By the Stone representation theorem KR(X) is a distributive lattice. For 

UEKfl(X)letU=(X-U)UY.ThenUiscompactandUUfl=X,UflU= 

U n Y, so it remains to be seen that u is open. Let x E 0; if x E Y, then Y is an 

open neighborhood of x contained in 0. But if x 9 Y, then for each y E U - Y let 

Ux and v\. be open neighborhoods of x and y respectively, such that (r/, - Y) and 

(V, - Y) are disjoint. Then U - Y C U,,,_,V, and since U - Y is compact, 

there are y,, . , y,, such that U - Y C v,, u . . . U vv,,. Let W = U,., fI . . . fl U!,,. 
Then W is an open neighborhood of x and for any w E W, if w g Y, then 

w E U,., - Y, so w @V,, - Y and w @V, . It then follows that w $ U, and therefore 

WC6 0 

Corollary 2.8. The category of Boolean semirings is dual to the category of 

partially Stone spaces. 

Proof. If f : A + B is a homomorphism of partially complemented distributive 

lattices, then by the Stone representation theorem f * : pt(Idl(B)) -+ pt(Idl(A)), 

q-f-‘(q) is a coherent map. Moreover, (f*)~‘(~(l{h,})) = (f*)-‘({p 1 

h&p)) = {slk,Ef*(d) = {df(k,)~d = {dh,W = cp(&JLso 
f * is a map of partially Stone spaces from (pt(Idl(B)), p(J{hR})) to (pt(Idl(A)), 

cp(k%J)). 
Conversely, let f : X, -+ X2 be a map of partially Stone spaces from (X, , Y, ) to 

(X2, Y2). If U is compact open in X,, then U - Y2 is compact open in X2 - Y, and 

Un Y2 is compact open in Y2. f-‘(U) is open and f-‘(U)=f-‘(U- Y2)U 



f-‘(un Y2). Since fl y, is coherent, f-‘( U n Y,) is compact, and since 

fix-., : X1 - Y, -j X2 - Y, is a map of Hausdorff spaces it is coherent so 

f-‘( U - Y,) is compact. Therefore, f-‘(U) . IS compact, and f is coherent. By 

the Stone representation theorem f* : Kfl(X2)-, KR(X,), U +-+f-’ (U) is a 

homomorphism of distributive lattices. Moreover, f”( Y,) = S-’ ( Y2) = Y,, so f* 

is a homomorphism of partially complemented distributive lattices from 

(Kfl(X>;pl, X2, Yz, U, n) to (Kfl(X,);0, X,, Y,, U, n). 
Finally, under the isomorphism Q : A-t KR(pt(Idl(A))), a H cp(&{a}) we have 

a(h) = cp(&q), so CY is an isomorphism of partially complemented distributive 

lattices from (A; 0, 1, h, v, A) to (Ko(pt(Idl(A))); 0, q(A), cp(i{h}), U, n). 
Under the homeomorphism p : X+pt(Idl(K0(X))). XH {U / x E U} we have 

xEYiff YE/?(x)iffP(x)nJ{Y}#P)iffP(x)Ecp(J,{Y}). Sop(Y)=cp(J{Y}), 

and p is an isomorphism of partially Stone spaces from (X, Y) to 

(pt(Idl(KR(X))), cp(J{Y))). •I 

Given a coherent space X, and subspaces Y, , Y2 such that (X, Y, ) and (X, Yz) 

are partially Stone spaces, it is clear that (X, Y, n Y,) is also a partially Stone 

space. However there is not necessarily a smallest Y such that (X, Y) is a partially 

Stone space. Consider an infinite set X with the cofinite topology. For any cofinite 

Y c X, (X, Y) is a partially Stone space. 

3. Free spectrum 

In this section we will give a description of the free Boolean semirings, and 

obtain some bounds for the size of the finitely generated free Boolean semirings. 

In Corollary 1.8 we already have an upper bound. 

Let X be a set, S the Boolean semiring (0, h, 1) with the operations given in 

Theorem 1.7, and B the sublattice (0, l} of S. Let Sx (resp. BX) denote the set of 

all functions from X to S (resp. B). Let [Sx+ S] (resp. [BX+ S]) denote the 

semiring of all functions from Sx (resp. BX) to S under pointwise operations. We 

embed X in [Sx * S] as follows: if x E X, let x also denote the projection map 

onto the xth coordinate, i.e. if u E Sx, then x(a) = a(x). We can identify the free 

Boolean semiring generated by X, FA:,/.fi(X) with the subsemiring of [Sx+ S] 

generated by X. 

Lemma 3.1. Let X be a set, x E X, f E F,,,,# (X) and let a,,a,,u, E Sx be such 

that a,(x) =O, a?(x) = h, u3(x) = 1, and for y#x, a,(y) = a,(y) = m3(y). Then 

(*I f(%) = f(a,) + f(v3) + f(si) . 

Proof. By induction on f. 



The vuriety of Boolean semirings 265 

Iff=xwehaveh=O+l+l.Iff=yEX-{x}, or if f is the constant function 

0 or 1, it follows from Lemma 1.2(b). 

If f, g satisfy (*), so do f + g and fg. 0 

For f E [Sx-+ S] let flex be the restriction off to BX. 

Proposition 3.2. Let X be a set. The map F,,,,,(X)-+[B*+,S], f~fl,,~ is 

one-to-one. 

Proof. Let f,gE F,8:J,fl(X), be such that fl,.~ = g],x. It is clear that there is a 

finite Y c X such that f,g E F!d.‘fti(Y), so without loss of generality, we may 

assumethatXisfinite.LetaESX,k=Icr-’({h})l,andm=3”.ByLemma3.1 

there are (T,, . , a, E BX such that f(v) =f((~,) + . . . +f(a,,,) and g(a) = 

g(a,) + . . . + d4. Since .fk,> =fln4d = sl&d = d0 f(4 = df4. 0 

Corollary 3.3. 2’” 5 / F,,,,fi (n)l 5 3”‘. 

Proof. The first inequality follows from Theorem 1.6 since the free Boolean ring 

on n generators has cardinality 2’“. The second inequality follows from Proposi- 

tion 3.2. c7 

From this point on, we will identify F,fi,,:,(X) with the subsemiring of [BX+ S] 

which is the image of the map in Lemma 3.2. 

Let X be a set and I c BX. We say that I is a lower subset of BX if u E I and 

7 5 u imply T E I. 

When X is finite, the free bounded distributive lattice generated by X, F,,(X) 

is the sublattice of [BX + B] generated by X when embedded via the projection 

maps, and it is isomorphic to the lattice of lower subsets of BX [3, p. 611. This 

isomorphism maps each lower subset of BX to the characteristic function of its 

complement. In other words: 

Theorem 3.4. Let X be afinite set, andf : BX+ B. f~ F,,y(X) ifff~‘({O}) is a 

lower subset of BX. 0 

By enlarging the codomain, we can view any f E F,,(X) as a map f : BX+ S. 

Proposition 3.5. Let X be a set. F,,(X) c F,,,,#(X) when both are viewed as 

subsets of [BX+ S]. 

Proof. F,,Y(X) is the bounded sublattice of [BX-, S] generated by X. By 

Theorem 2.1 and Corollary 3.2, F,,,, (X) is the bounded sublattice with - of 

[ BX-+ S] generated by X. 0 
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From Theorem 3.4 and Proposition 3.5 we get the following corollary. 

Corollary 3.6. Let X be a jinite set and f : BX + S. If f ’ ( (0) ) is a lower subset 

ofBXandf-‘({h})=0, thenfEF,,,,(X). 

We now obtain a necessary and sufficient condition for f : BX-, S to belong to 

F,,,(X). 

Theorem 3.7. Let X be a finite set and f E [ BX + S]. f E FA:,,9 (X) iff f ’ ( (0) ) is 

a lower subset of BX. 

Proof. (+) By induction on f. 
If f is one of the constants 0 or 1, then f _’ ((0)) is either empty or BX which 

are lower subsets of BX. If f = x E X, and 7 5 v E f -’ ((0))) then f(T) = 7(x) 5 

cr(x)=f((+)=O, so f(T)=0 and TEf-‘((0)). Let f.gEF,,,,(X) and suppose 

f -‘( {0}), and g-‘( (0)) are lower subsets of BX. From the operation tables 

of S in Theorem 1.7 we see that (f + g)p’({O}) = f -‘({O}) ng-‘({0}), and 

(fg)p’({O}) =fm’({O}) Ug-'({0}), which are again lower subsets of Bx. 

(+) By induction on Ifm’({h})l. 

If If -‘({h})l =O, th en by Corollary 3.6 f E9,.,,(X). If If-‘({h})l>O, let 

aEfp’({h}), and let g: BX -+ S be given by g(T) = f(T) if 7 # cr, and g(a) = 1. 

Since Igm’({h})l<lfm’({h})l, and gm’({O})=fm’({O}). by induction gE 

F&,.$(X). Moreover, by Corollary 3.6, the maps u,u : BX+ S given by 

are also in F,,,,,fl(X). We claim that f = g + u + U. 
Infact,g(fl)+U(rr)+u(u)=l+l+O=h=f(cr). IfT>a,sincef-‘((0)) isa 

lower subset of BX and f(g) = h # 0, then f(T) #O. Therefore, g(T) + U(T) + 

U(T) = f(T) + 1 + 1 = f(T) + h = f(T). But if T$(a, then g(T) + U(T) + U(T) = f(T) + 

O+O=f(T). Therefore,f=g+u+uEF,,:,,,(X). 0 

Corollary 3.8. When we identify F,,(n) with the set of lower subsets of B”, 

IF,4,,(n)l = C 2”’ 
IEF,,(“) 

Proof. Let I be a lower subset of B” and let I’ denote its complement. There are 

2”” elements f E F!,,,,(n) such that f -’ ((0)) = 1. 0 

Let I,,,, denote the number of lower subsets of B” of size k; these numbers are 

denoted by L,(n) in [8]. Let p,,(x)= ci’1, l,,,k.xx. Then p,,(l)= IF,,,(n)1 and 

p,,(2) = IF,4:,,,(n)l. It should be noted that the problem of determining (F,,(n)1 
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n F,,(n) F,,,(n) 

0 2 3 
1 3 7 
2 6 35 
3 20 77s 
4 16X 319107 
5 7581 12122976711 
6 7828353 5.139626SY27 x 10” 

(Dedekind’s problem) is a difficult one, and the values are known for n 5 7 [2]. 

The previous remarks suggest that the problem for IF,,,,,(n)/ is about as difficult 

as Dedekind’s problem. We have computed the values for n 5 6, see Table 1. 

Corollary 3.9. log, 1 F,, a (n)l - 2”. 

Proof. From Corollaries 3.3 and 3.8 we have 2”’ 5 IF,,,.(n)l 5 22”/Fi/Y(n)l and 

therefore 2” 5 log, 1 F,8,,fl (n)l52” + log,IFclY(n)l. But from [12] for any 6 >O, 

logz]F,,.(n)l 52”n~“‘+S for II large enough. 0 

4. Normal form and relational degree 

In this section we obtain a normal form for the elements of F,,,(X). 

Definition 4.1. Let X be a set. and F,,,:, (X) the free Boolean semiring generated 

by X. 

(a) A monomial is a product of elements of X. We denote by M the set of all 

monomials. Observe that 1 E M; it is the empty product. 

(b) A polynomial is a sum of monomials. Observe that 0 is a polynomial, the 

empty sum. 

By (SR6), any element of F,/3,,,-11(X) can be written as a polynomial. By (BSR2) 

and Lemma 1.2(d) any monomial can be written without repeated factors. In fact, 

M can be identified with the set of finite subsets of X, by mapping each finite 

subset of X to the product of its elements. This correspondence is order reversing, 

i.e. m 5 m’ iff m’ & m, for any m,m’ E M. By Lemma 1.2(b) a polynomial can be 

written without repeating any monomial more than twice, and m + m = hm where 

h = 1 + 1. Moreover, if the monomial m appears in a polynomial t and m’ E M is 

such that m’ 5 m, then by Lemma 1.2(c) m + m’ + m’ = m and t can be written so 

that m’ does not appear more than once. 
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Theorem 4.2. Any t E F,,,(X) can be written in a unique way as 

t= C tmm, 
,TlEM 

where t,, E (0, h, l} satisjies: 

(i) t, # 0 for finitely many m’s, and 

(ii) t,, = h, m’ < m 3 t,, = 0. 

Proof. Condition (i) simply says that the right-hand side is a polynomial. Observe 

that (ii) is equivalent to t,, # 0, m’ < m 3 t,,,. # h, and we have just shown that 

any t E Fs,,(X) can be written as a polynomial satisfying this condition. 

For uniqueness let t = c t,,m and s = c s,,,m where {t,,,} and {s,,,} satisfy (i) 

and (ii), and at least some t, f s,. The set of finite subsets of X has the 

descending chain condition, so M has the ascending chain condition. Let m,, be 

maximal in {m 1 t,, # s,~}. Without loss of generality we can assume t,,, # 0. Let 

(T : X+ S be given by 

w(x) = 
1 ifm,,lx, 

0 otherwise . 

Observe that for any m E M, m(m) = 1 if m,, 5 m, and m(a) = 0 otherwise. So we 

have 

t(a) = C t,,,m(a) = C t,,m(fl) = C t,, = t,,(, + C fin 
ITIEM m zm,, m 'm,, m > rn(, 

and by the choice of m,,, 

s(a) = S,,) + c s,, = Sr?,() + c tn, 
m>mll m s-m,, 

If t,,, = 1, then s,~,) # 1 and for any a E S, t,,,, + a # s,,,,, + a. In particular, 

r(a) # s(a). 

If t,,, = h, then by (ii) t,,, = 0 for any m > m,, and t(a) = t,,,, # s,,, = s(c). 

Therefore, t # s. 0 

If we identify t E F,,,@(X) with the function M - S, m - t,,, then condition 

(ii) says that f -l{(h)) 1s an antichain and the lower subset under it is mapped to 

0. For X finite, condition (i) always holds, and we get another proof of Corollary 

3.8. 

Definition 4.3. Let A be an algebra, 1 a cardinal, p an I-ary relation on A and 

f : A”-+ A an n-ary operation. 

(a) We say that f preserves p if a,, . . . , a, E p imply f(a,, . . , a,) E p, where f 

is applied componentwise on the l-tuples, i.e. f(a,, . , a,,), = f(a ,,,, . . , a,,,,). 
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(b) We say that p is a classifying relation for A if { f 1 f preserves p} is the clone 

of polynomials over A, cl(A). 

(c) The least I such that there is an 1-ary classifying relation for A is called the 

relational degree of A. 

(d) If (a,, ~21, . . .) is an I-tuple of n-tuples of A, then (c, , uz, . . .)’ denotes the 

n-tuple of I-tuples of A given by (a,, a?, . . .):,, = (CT,, a,, . .),,;. Therefore, 

f(ff,? fl21, . . 4’ = (f(fl,), f(%>, . . .>. 

The main theorem in [9] shows that the relational degree is well defined for any 

algebra. For a finite algebra it is at most h‘,,, and a 3-element algebra is more 

likely to have infinite relational degree. We will show that S has relational degree 3. 

From Lemma 3.1 and Theorem 3.7 one easily gets the following corollary: 

Corollary 4.4. f : S”+ S is in cl(S) ifffsatisfies (*) in Lemma 3.1 andf-‘( (0)) 
is a lower subset of S”. q 

Proposition 4.5. The 3-ary relation p = { (0, 0, O), (0, h, h), (h, h, h), ( 1, 1, h), 

(0, h, I), (h, h, I), (171, I)> 1s a classifying relation for S. 

Proof. cl(S) preserves p since it is a subsemiring of S” (it is in fact F,flTf,fi(l)). 

Suppose now that f : S” - S preserves p. If (T, ,“>,a, E S” are like in (*) in 

Lemma 3.1, then (o,, q, a,)‘Ep” and therefore (f(o,), f(cr?), f(cr3))Ep. It is 

now easy to verify that f(q) = f(v,) + f(q7) + f(a,). 
If T 5 (T E S” are such that f(a) = 0, let p = 7 + u + u. It is easy to see that 

(T, p, a)’ E p’ and therefore (f(T), f(p), f(v)) E p. Since f(a) = 0 we must have 

f(7)=0. Sof-‘((0)) ’ 1 is d ower subset of S”. By Corollary 4.4, f is in cl(S). 0 

Theorem 4.6. The relational degree of S is 3. 

Proof. By Proposition 4.5 we have that relational degree of S 5 3. 

Suppose p’ c S2 is a classifying relation for S. Then p’ is a subsemiring of S2. 

We will denote any f : S+ S by the triple (f(O), f(h), f(1)). We will show that 

there is f : S-S which preserves p’ but is not in cl(S). Consider two cases: 

(i) If (1, h) E p’, then (h, 1) = (1, h) + (1,l) E p’ and (1, h, 1) preserves p’. 

But (I, h, I)@p = F.iA:/M(I), and therefore (1, h, l)~cl(S). 

(ii) If (1, h)@p’, th en we must have P’ C ((0, O), (h, h), (I, I), (0, h), (h, 0)) 
and (0, 0,l) preserves p’ but (O,O, 1) @cl(S). 0 
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