Journal of Pure and Applied Algebra 78 (1992) 253-270 North-Holland 253 # The variety of Boolean semirings #### Fernando Guzmán Department of Mathematical Sciences, State University of New York, Binghamton, NY 13902-6000, USA Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain Communicated by P.T. Johnstone Received 7 May 1991 #### Abstract Guzmán, F., The variety of Boolean semirings, Journal of Pure and Applied Algebra 78 (1992) 253–270. The variety of Boolean semirings \mathcal{BSR} is the variety generated by the two 2-element semirings. We find a complete set of laws for this variety, and show that it is equivalent to the category of partially Stone spaces. We get a detailed description of the finitely generated free Boolean semirings and a normal form for their elements. From this, a formula is obtained for the free spectrum. This formula relates the free spectra of \mathcal{BSR} and \mathcal{SL} , the variety of bounded distributive lattices. Finally, we show that the relational degree of \mathcal{BSR} is 3. #### Introduction Semirings were introduced by Vandiver in the middle 1930s by weakening the additive laws that define a ring. There are several definitions of semiring in the literature. They go from very weak ones, two semigroup operations related by distributive laws (see, e.g., [5]), to the one most commonly used in formal languages and automata theory (see [4] or [7]). The latter is the one we will use; the only thing missing (in order to be a ring) is the existence of additive inverses, and 0 is required to be absorptive for multiplication. There are a couple of papers in the literature that refer to Boolean semirings. The first one, [11], deals with a very different notion of semiring. It takes the ring laws, deletes one distributivity and adds a weak form of commutativity; it is not even close to any of the usual definitions of semiring. The second one, [5], calls Boolean any semiring (two semigroup operations related by distributive laws) that satisfies the idempotent law $x^2 = x$. In this paper we look at a different connection between Boolean rings and Boolean algebras (from which the former get their Correspondence to: Professor F. Guzmán, Department of Mathematical Sciences, State University of New York, Binghamton, NY 13902-6000, USA. name). The connection is through the algebras that generate the variety, and not through the laws. To parallel this connection, we consider the semiring structures on the 2-element set, and call the variety generated by them, \mathcal{BSR} , the variety of Boolean semirings. In Section 1 we find a complete set of laws for \mathcal{BSR} , see Theorem 1.5, that includes the idempotent law plus a law for addition. In the process we determine the subdirectly irreducible Boolean semirings, and find a 3-element semiring S that generates the variety; see Theorem 1.7. This semiring S plays a crucial role in Sections 3 and 4. In Section 2 it is shown that the categories of Boolean semirings and partially complemented distributive lattices are equivalent. Partially complemented distributive lattices are bounded distributive lattices with a principal order filter which is complemented; see Definition 2.3 and Corollary 2.5. We also get a Stone type representation theorem showing that the category of Boolean semirings is dual to the category of partially Stone spaces; see Definition 2.6 and Corollary 2.8. In Section 3 a description of free Boolean semirings is given, Theorem 3.7, and we then use this to get a formula for the free spectrum of the variety; see Corollary 3.8. This formula relates the free spectra of \mathcal{BSR} and \mathcal{DL} , the variety of bounded distributive lattices. In Section 4 we get a normal form for the elements of the free Boolean semiring; see Theorem 4.2. We then show that the relational degree of S is 3; see Theorem 4.6. #### 1. Boolean semirings **Definition 1.1.** A semiring is a type (0,0,2,2) algebra $(A;0,1,+,\cdot)$ that satisfies: ``` (SR1) x + (y + z) = (x + y) + z, (SR2) x + 0 = x, (SR3) x + y = y + x, (SR4) x(yz) = (xy)z, (SR5) x1 = x = 1x, (SR6) x(y + z) = xy + xz; (x + y)z = xz + yz, (SR7) x0 = 0 = 0x. ``` In other words, if a semiring fails to be a ring, it is by the absence of additive inverses. The smallest nontrivial $(1 \neq 0)$ semiring must have at least 2 elements; in fact, on $\{0,1\}$ there are two semiring structures. We must have and the two structures correspond to 1+1=0 and 1+1=1. The first is the Boolean ring \mathbb{Z}_2 and the second is the bounded distributive lattice reduct of the 2-element Boolean algebra, that we will denote by **B**; this semiring is called *the Boolean semiring* in [7]. We will denote the variety generated by the two 2-element semirings \mathbb{Z}_2 and **B** by \mathcal{BSR} , and call it the *variety of Boolean semirings*. Observe that a Boolean semiring satisfies: ``` (BSR1) 1 + x + x = 1, (BSR2) x^2 = x. ``` Our first goal is to show that (SR1-6),(BSR1-2) is an equational basis for the variety \mathscr{BSR} of Boolean semirings. We exclude (SR7) from this list since it is a consequence of (BSR1-2); see Lemma 1.2(a),(d). Let $\mathscr{V} = V(SR1-6,BSR1-2)$ denote the variety of algebras that satisfy (SR1-6) and (BSR1-2). When using (SR1-6) to prove facts about algebras in \mathscr{V} , we will not mention these laws explicitly. **Lemma 1.2.** Let $A \in \mathcal{V}$ and $x, y \in A$. - (a) x0 = 0, - (b) x + x + x = x, - (c) y + xy + xy = y = y + yx + yx, - (d) xy = yx. **Proof.** (a) Multiply (BSR1) by 0 on the right to get x0 + x0 = 0. Now multiply by x on the left and use (BSR2) to get x0 + x0 = x0. Therefore, x0 = 0. - (b) Multiply (BSR1) by x (on either side) and use (BSR2). - (c) Multiply (BSR1) by y. - (d) Using (BSR2) we have $x + y = (x + y)^2 = x^2 + xy + yx + y^2 = x + y + xy + yx$. Substituting xy (resp. yx) for y we obtain, using (BSR2) and (c) to simplify, x + xy = x + xy + xxy + xyx = x + xyx and x + yx = x + yx + xyx + yxx = x + xyx and therefore x + xy = x + yx. Now substituting xyx for x, adding xyx on both sides, and using (BSR2) and (c) to simplify, yields xy = yx. \square Given $A \in \mathcal{V}$ and $a \in A$, we define two binary relations on A as follows: $$x \sim_a y$$ if and only if $ax = ay$, $x \sim^a y$ if and only if $a + x + ax = a + y + ay$. The identity relation on A will be denoted by Δ_A , or simply by Δ . **Proposition 1.3.** Let $A \in \mathcal{V}$ and $a \in A$. - (a) \sim_a and \sim^a are congruences on A, - (b) $\sim_a = \Delta_A$ if and only if a = 1, - (c) $\sim^a = \Delta_A$ if and only if a = 0. **Proof.** (a) Clearly both \sim_a and \sim^a are equivalence relations. Let us verify that they preserve the operations. If $x \sim_a y$ and $u \sim_a v$, then ax = ay and au = av. Adding these equations we get a(x + u) = a(y + v) so $x + u \sim_a y + v$. Multiplying we get axau = ayav and using Lemma 1.2(d) and (BSR2) gives axu = ayv, so $xu \sim_a yv$. If $x \sim^a y$ and $u \sim^a v$, then a + x + ax = a + y + ay and a + u + au = a + v + av. Adding these two equations, adding a on both sides, and using Lemma 1.2(b) we get a + (x + u) + a(x + u) = a + (y + v) + a(y + v), so $x + u \sim^a y + v$. Now if we multiply the first equation by u, add a + au on both sides and use Lemma 1.2(c), we get a + xu + axu = a + yu + ayu. Similarly, from the second equation we get a + uy + auy = a + vy + avy, and using Lemma 1.2(d) we get a + xu + axu = a + vy + avy, so $xu \sim^a yv$. - (b) From (BSR2) we have $a \sim_a 1$, so $\sim_a = \Delta$ implies a = 1. The converse is trivial. - (c) From (BSR2) and Lemma 1.2(a),(b) we have $a \sim^a 0$, so $\sim^a = \Delta$ implies a = 0. The converse is again trivial. \square **Proposition 1.4.** \mathbb{Z}_2 and **B** are the only subdirectly irreducible semirings in \mathcal{V} . **Proof.** Clearly \mathbb{Z}_2 and **B** are subdirectly irreducible. Let $A \in \mathcal{V}$ be subdirectly irreducible. Let $a \neq b$ be elements of A such that for every congruence $\sim \neq \Delta$ we have $a \sim b$. If we had $a, b \neq 1$, then by Lemma 1.3(b), $\sim_a, \sim_b \neq \Delta$ and therefore $a \sim_a b$ and $a \sim_b b$, i.e. $a^2 = ab$ and $ba = b^2$. Using (BSR2) and Lemma 1.2(d) yields a = b, a contradiction. Without loss of generality assume b = 1. If we had $a \neq 0$, then by Proposition 1.3(c) $\sim^a \neq \Delta$ and therefore $a \sim^a 1$, i.e. $a + a + a^2 = a + 1 + a$. Using (BSR2), Lemma 1.2(b) and (BSR1) we get a = 1, a contradiction, so we must have a = 0. Suppose now that |A| > 2, and let $c \in A$, $c \ne 0,1$. By Proposition 1.3(b) $\sim_c \ne \Delta$, so $0 \sim_c 1$, i.e. 0 = c, a contradiction. So A is a 2-element semiring, i.e. \mathbb{Z}_2 or **B**. \square Based on Birkhoff's theorem [1, p. 14], that a variety is generated by its subdirectly irreducibles we get the following consequences of the proposition. **Theorem 1.5.** (SR1-6) and (BSR-2) form an equational basis for the variety \mathcal{BSR} of Boolean semirings. \square **Theorem 1.6.** The variety \mathcal{BSR} of Boolean semirings is a minimal cover of the variety of Boolean rings, and also of the variety of bounded distributive lattices. \square Boolean rings are characterized among rings by the law (BSR2), and (BSR1) is in fact a consequence of it. For semirings the laws (BSR1) and (BSR2) are independent. The semiring $\{0, h, 1\}$ with operations satisfies (BSR1), but does not satisfy (BSR2). The semiring $\{0, h, 1\}$ with operations satisfies (BSR2), but does not satisfy (BSR1). The variety \mathcal{BSR} is generated by the 4-element Boolean semiring $\mathbb{Z}_2 \times \mathbf{B}$. If F(n) denotes the free Boolean semiring on n generators, then $|F(n)| \le 4^{4^n}$. The next theorem yields a better bound. **Theorem 1.7.** The variety \mathcal{BSR} of Boolean semirings is generated by the 3-element semiring $S = \{0, h, 1\}$ with operations **Proof.** On one hand S is isomorphic to the subsemiring $\{(0,0),(0,1),(1,1)\}$ of the product $\mathbb{Z}_2 \times \mathbf{B}$, so S is a Boolean semiring. On the other hand $S/\theta_{h,1}$ is isomorphic to \mathbf{B} , and $S/\theta_{0,h}$ is isomorphic to \mathbb{Z}_2 . \square **Corollary 1.8.** $$|F(n)| \le 3^{3''}$$. \Box In Section 3 we will get a better bound; see Corollary 3.3. It also follows from Proposition 1.4 that a Boolean semiring is the subdirect product of a bounded distributive lattice and Boolean ring. We can give a precise description of this situation as follows: let $(A; 0, 1, +, \cdot)$ be a Boolean semiring. Let h = 1 + 1, and for any $a \in A$ let $\tilde{a} = ha = a + a$ and $\hat{a} = h + a = 1 + 1 + a$. Let $\tilde{A} = \{\tilde{a} \mid a \in A\}$ and $\hat{A} = \{\hat{a} \mid a \in A\}$. **Proposition 1.9.** Let $(A; 0, 1, +, \cdot)$ be a Boolean semiring. (a) $(\tilde{A}; 0, h, +, \cdot)$ is a bounded distributive lattice and the map $\tilde{a}: A \to \tilde{A}$ given by $a \mapsto \tilde{a}$ is a surjective homomorphism. - (b) $(\hat{A}; h, 1, +, \cdot)$ is a Boolean ring and the map $\hat{A}: A \to \hat{A}$ given by $a \mapsto \hat{a}$ is a surjective homomorphism. - (c) The map $A \to \hat{A} \times \hat{A}$ given by $a \mapsto (\tilde{a}, \hat{a})$ is one-to-one. - (d) The 3 maps in (a), (b) and (c) give the only decomposition of A as a subdirect product of a bounded distributive lattice and a Boolean ring. **Proof.** (a) $\tilde{0} = h0 = 0$, $\tilde{1} = h1 = h$, $\tilde{a+b} = h(a+b) = ha + hb = \tilde{a} + \tilde{b}$, and $\tilde{a}\tilde{b} = hahb = hab = \tilde{a}\tilde{b}$, so \tilde{a} is a surjective homomorphism, and \tilde{A} is a Boolean semiring. To see that \tilde{A} is a bounded distributive lattice we must verify the idempotent law for +, and the two absorption laws. $$\tilde{a} + \tilde{a} = \tilde{\tilde{a}} = hha = ha = \tilde{a}$$, $\tilde{a}(\tilde{a} + \tilde{b}) = \tilde{a} + \tilde{a}\tilde{b} = a + a + ab + ab$ $= a + a = \tilde{a}$ by Lemma 1.2(c). (b) $\hat{0} = h + 0 = h$, $\hat{1} = h + 1 = 1$ by Lemma 1.2(b), $\hat{a} + \hat{b} = h + a + h + b = h + a + b = a + b$ since h + h = h by Lemma 1.2(b), and $\hat{a}\hat{b} = (h + a)(h + b) = h + ha + hb + ab = h + ab = ab$ since h + ha = h by (BSR1). So \hat{a} is a surjective homomorphism, and \hat{A} is a Boolean semiring. To see that \hat{A} is a Boolean ring it suffices to show the existence of additive inverses. $$\hat{a} + \hat{a} = h + a + h + a = h + a + a = h = \hat{0}$$ by (BSR1). - (c) If $\tilde{a} = \tilde{b}$ and $\hat{a} = \hat{b}$, i.e. ha = hb and h + a = h + b, then a = a + a + a = ha + a = (h + a)a = (h + b)a = ha + ba and similarly b = hb + ab. Therefore, a = b. - (d) Parts (a), (b) and (c) show that A is a subdirect product of \tilde{A} and \hat{A} . Suppose now that L is a bounded distributive lattice, R a Boolean ring and $\phi: A \to L \times R$ a one-to-one homomorphism of semirings, such that $\phi_1 = \pi_1 \circ \phi: A \to L$ and $\phi_2 = \pi_2 \circ \phi: A \to R$ are surjective. Observe first that $\ker(\tilde{\ }) = \theta_{h,1}$ and $\ker(\hat{\ }) = \theta_{0,h}$. In both cases the inclusion ' \supseteq ' is clear since $\tilde{h} = \tilde{1}$ and $\hat{0} = \hat{h}$. Let us show the other inclusion. If $\tilde{a} = \tilde{b}$, i.e. ha = hb, then a = a + ha = 1a + hb, and b = ha + 1b, so $(a,b) \in \theta_{h,1}$. If $\hat{a} = \hat{b}$, i.e. h + a = h + b, then a = a + ha = a(a + h) = a(b + h) = ab + ha + 0b and b = ab + 0a + hb, so $(a,b) \in \theta_{0,h}$. Now $\phi_1(h) = \phi_1(1) + \phi_1(1) = \phi_1(1)$ by idempotency in L, and we have $\theta_{h,1} \subseteq \ker(\phi_1)$. Therefore, there is a homomorphism $\psi_1 : \tilde{A} \to L$ such that $\phi_1 = \psi_1 \circ \tilde{A} = 0$. Similarly $\phi_2(h) = \phi_2(1) + \phi_2(1) = 0 = \phi_2(0)$ since R has characteristic 2, and $\theta_{0,h} \subseteq \ker(\phi_2)$. So there is a homomorphism $\psi_2 : \hat{A} \to R$ such that $\phi_2 = \psi_2 \circ \hat{A} = 0$. We now claim that ψ_1 and ψ_2 are isomorphisms. They are surjective since ϕ_1 and ϕ_2 are so. Suppose $\psi_1(\tilde{a}) = \psi_1(\tilde{b})$. Then $\phi_1(\tilde{a}) = \psi_1(\tilde{a}) = \psi_1(\tilde{a}) = \psi_1(\tilde{b}) = \psi_1(\tilde{b}) = \psi_1(\tilde{b}) = \psi_2(\tilde{b}) \psi_2$ $\phi_2(0)$, so $\phi(\tilde{a}) = \phi(\tilde{b})$, and we must have $\tilde{a} = \tilde{b}$, i.e. ψ_1 is one-to-one. Suppose $\psi_2(\hat{a}) = \psi_2(\hat{b})$. Then $\phi_2(\hat{a}) = \psi_2(\hat{a}) = \psi_2(\hat{a}) = \psi_2(\hat{b}) = \psi_2(\hat{b}) = \phi_2(\hat{b})$, $\phi_1(\hat{a}) = \psi_1(\tilde{a}) = \psi_1(h(h+a)) = \psi_1(h) = \psi_1(\tilde{1}) = \phi_1(1)$, and similarly $\phi_1(\hat{b}) = \phi_1(1)$, so $\phi(\hat{a}) = \phi(\hat{b})$, and we must have $\hat{a} = \hat{b}$, i.e. ψ_2 is one-to-one. \Box Observe that \tilde{A} and \hat{A} are not subsemirings of A. Everything works except that the 'one' of \tilde{A} is not 1 but h, and the 'zero' of \hat{A} is not 0 but h. In the language of [5] we get the following corollary: **Corollary 1.10.** Let $A \in \mathcal{BSR}$. Then A is a bounded distributive lattice D of Boolean rings $(A_{\alpha} \mid \alpha \in D)$ without unit. **Proof.** Let D be a bounded distributive lattice and B a Boolean ring such that A is a subdirect product of D and B. For each $\alpha \in D$, let $A_{\alpha} = \{(\alpha, b) \in A\}$. It is clear that A_{α} is a sub- $(+,\cdot)$ -algebra of A, isomorphic to a subring (possibly without unit) of B. The rest of the statement is easy to check. See [5] for definitions. \square #### 2. Partially complemented distributive lattices The equivalence between the categories of Boolean rings and Boolean algebras, gives a characterization of Boolean rings as distributive lattices with some additional structure. In view of Propositions 1.4 and 1.9, it is natural to expect a similar result for Boolean semirings. We will obtain two such results in Theorems 2.1 and 2.4. In the first, the additional structure is a unary operation; in the second it is a constant. From these theorems we easily obtain a Stone type representation theorem which says that the category of Boolean semirings is dual to a category of spaces that we call partially Stone. We will not mention bounded distributive lattice laws explicitly in the proofs. **Theorem 2.1.** (a) Let $(A; 0, 1, +, \cdot)$ be a Boolean semiring. Define operations $$x \wedge y = xy$$, $x \vee y = x + y + xy$, $\tilde{x} = 1 + x$. Then $(A; 0, 1, \wedge, \vee)$ is a bounded distributive lattice and $\bar{}$ satisfies: (L1) $$x \vee \bar{x} = 1$$, (L2) $$x \wedge \bar{x} = x \wedge \bar{1}$$. Moreover, we can recover the original operations by: $x + y = (x \vee y) \wedge (\bar{x} \vee \bar{y})$. (b) Let $(A; 0, 1, \land, \lor)$ be a bounded distributive lattice and $\bar{}$ a unary operation on A satisfying (L1–2). Define operations $$x + y = (x \lor y) \land (\bar{x} \lor \bar{y}),$$ $$xy = x \land y.$$ Then $(A; 0, 1, +, \cdot)$ is a Boolean semiring and $\bar{x} = 1 + x$, $x \lor y = x + y + xy$. **Proof.** (a) By Theorem 1.7 it suffices to check for the semiring S. Checking this is a trivial exercise. It should be noted that the lattice of S is given by 0 < h < 1. (b) Before we prove this part let us establish some properties of -. **Lemma 2.2.** Let A be a bounded distributive lattice with a unary operation $\bar{}$ that satisfies (L1–2). Let $x, y \in A$. - (a) $\bar{1} \leq \bar{x}$. - (b) If $x \le y$, then $\bar{y} \le \bar{x}$. - (c) $\bar{x} \wedge \bar{\bar{x}} = \bar{1}$. - (d) $x \wedge (\bar{x} \vee y) = x \wedge (\bar{1} \vee y)$. - (e) $\bar{x} = x \vee \bar{1}$. - (f) $\bar{\bar{x}} = \bar{x}$. - (g) $\bar{x} \vee \bar{y} = \bar{x} \vee y$. - (h) $\overline{x \wedge y} = \overline{x} \vee \overline{y}$. - (i) $\overline{x \vee y} = \overline{x} \wedge \overline{y}$. **Proof.** (a) Using (L1–2) and lattice laws we have $\bar{x} = \bar{x} \lor (x \land \bar{x}) = \bar{x} \lor (x \land \bar{1}) = (\bar{x} \lor x) \land (\bar{x} \lor \bar{1}) = \bar{x} \lor \bar{1}$. - (b) If $x \le y$, then from (L1) $1 = x \lor \bar{x} = (x \land y) \lor \bar{x} = y \lor \bar{x}$. From (L2) we get $\bar{x} \lor (y \land \bar{y}) = \bar{x} \lor (y \land \bar{1})$. Distributing and using $y \lor \bar{x} = 1$ and (a) we get $\bar{x} \lor \bar{y} = \bar{x}$. - (c) Follows at once from (L2) and (a). - (d) Follows from (L2). - (e) Using (a), (d) and (L1) we have $x \wedge \bar{x} = x \wedge (\bar{x} \vee \bar{1}) = x \wedge (\bar{x} \vee \bar{x}) = x$, so $x \leq \bar{x}$. Using now this, (c) and (L1) we get $x \vee \bar{1} = x \vee (\bar{x} \wedge \bar{x}) = x \vee \bar{x} = \bar{x}$. - (f), (g) follow at once from (e) and (a). - (h) From (b) we get $\bar{x} \leq \overline{x \wedge y}$ and $\bar{y} \leq \overline{x \wedge y}$ so $\bar{x} \vee \bar{y} \leq \overline{x \wedge y}$. From (L1) we get $(x \wedge y) \vee (\bar{x} \vee \bar{y}) = 1$. Using these two facts, (a) and (L1-2), $\overline{x \wedge y} = \overline{x \wedge y} \wedge ((x \wedge y) \vee (\bar{x} \vee \bar{y})) = (x \wedge y \wedge \bar{1}) \vee (\bar{x} \vee \bar{y}) = \bar{1} \vee \bar{x} \vee \bar{y} = \bar{x} \vee \bar{y}$. - (i) Like in (h), from (b) we get $\overline{x \vee y} \leq \overline{x} \wedge \overline{y}$. From (L2) we get $(x \vee y) \wedge (\overline{x} \wedge \overline{y}) = (x \vee y) \wedge \overline{1}$. Using these two facts, (a) and (L1), $\overline{x \vee y} = \overline{x \vee y} \vee ((x \vee y) \wedge (\overline{x} \wedge \overline{y})) = \overline{x} \wedge \overline{y}$. \square **Proof of Theorem 2.1(b).** By (L1), $\bar{0} = 1$, so $x + 0 = (x \vee 0) \wedge (\bar{x} \vee \bar{0}) = x \wedge 1 = x$. Clearly + is commutative. For associativity of + we have $$(x + y) + z$$ $$= (((x \lor y) \land (\bar{x} \lor \bar{y})) \lor z)$$ $$\land (((\bar{x} \land \bar{y}) \lor (\bar{x} \land \bar{y})) \lor \bar{z}) \quad (\text{Lemma 2.2(h),(i)})$$ $$= (x \lor y \lor z) \land (\bar{x} \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{x} \lor \bar{z})$$ $$\land (\bar{x} \lor \bar{y} \lor \bar{z}) \land (\bar{y} \lor \bar{x} \lor \bar{z}) \land (\bar{y} \lor \bar{y} \lor \bar{z})$$ $$= (x \lor y \lor z) \land (\bar{x} \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{y} \lor \bar{z}) \land (\bar{y} \lor \bar{x} \lor \bar{z}) \quad (\text{L1})$$ $$= (x \lor y \lor z) \land (\bar{x} \lor \bar{y} \lor z)$$ $$\land (\bar{x} \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor \bar{z}), \quad (\text{Lemma 2.2(g)})$$ $$x + (y + z)$$ $$= (y + z) + x$$ $$= (y \lor z \lor x) \land (\bar{y} \lor \bar{z} \lor x) \land (\bar{y} \lor z \lor \bar{x}) \land (y \lor \bar{z} \lor \bar{x}).$$ For distributivity $$xy + xz$$ $$= ((x \land y) \lor (x \land z)) \land (\bar{x} \lor \bar{y} \lor \bar{x} \lor \bar{z}) \quad \text{(Lemma 2.2(h))}$$ $$= x \land (y \lor z) \land (\bar{x} \lor \bar{y} \lor \bar{z})$$ $$= x \land (y \lor z) \land (\bar{1} \lor \bar{y} \lor \bar{z}) \quad \text{(Lemma 2.2(d))}$$ $$= x \land (y \lor z) \land (\bar{y} \lor \bar{z}) \quad \text{(Lemma 2.2(a))}$$ $$= x(y + z).$$ Finally, using Lemma 2.2(a), $1 + x = (1 \lor x) \land (\bar{1} \lor \bar{x}) = 1 \land \bar{x} = \bar{x}$, and $$x + y + xy$$ $$= x(1 + y) + y$$ $$= x\bar{y} + y$$ $$= ((x \wedge \bar{y}) \vee y) \wedge (\bar{x} \vee \bar{y} \vee \bar{y}) \quad \text{(Lemma 2.2(h))}$$ $$= (x \wedge \bar{y}) \vee y \quad \text{(L1)}$$ $$= x \vee y \quad \text{(L1)} \quad \Box$$ The fact that $\bar{0}=1$, together with Lemma 2.2(h),(i), almost makes $\bar{1}$ an Ockham operation in the sense of [10]. It fails because in general $\bar{1} \neq 0$. Also note that if $x \vee y = 1$, then using Lemma 2.2(e),(i) and (L1) we have $\bar{y} = y \vee \bar{1} =$ $(\bar{x} \wedge \tilde{y}) = (y \vee \bar{x}) \wedge (y \vee \bar{y}) = y \vee \bar{x}$ and therefore $\bar{x} \leq \bar{y}$. This fact together with (L1) almost makes \bar{x} a dual pseudo-complement. These failures of \bar{x} come from looking at it in the wrong setting. In fact, when restricted to an appropriate subset of A, \bar{x} is a complement. - **Definition 2.3.** A partially complemented distributive lattice is an algebra $(A; 0, 1, h, \vee, \wedge)$ such that $(A; 0, 1, \vee, \wedge)$ is a bounded distributive lattice, $h \in A$, and $([h, 1]; h, 1, \vee, \wedge)$ is a complemented distributive lattice, i.e. a Boolean algebra where $[h, 1] = \{a \in A \mid h \leq a\}$. - **Theorem 2.4.** (a) Let $(A; 0, 1, \vee, \wedge)$ be a bounded distributive lattice and \bar{a} unary operation satisfying (L1–2) in Theorem 2.1(a). Then $(A; 0, 1, \bar{1}, \vee, \wedge)$ is a partially complemented distributive lattice, and $\bar{x} = (x \vee \bar{1})'$, where ' denotes the complement in $[\bar{1}, 1]$. - (b) Let $(A; 0, 1, h, \vee, \wedge)$ be a partially complemented distributive lattice and define $\bar{x} = (x \vee h)'$, where ' denotes the complement in [h, 1]. Then \bar{x} satisfies (L1-2), and $h = \bar{1}$. - **Proof.** (a) Let $x \in [\bar{1}, 1]$, then by (L1) $x \vee \bar{x} = 1$ and by (L2) $x \wedge \bar{x} = x \wedge \bar{1} = \bar{1}$, so \bar{x} is the complement of x in $[\bar{1}, 1]$. Therefore, $(A; 0, 1, \bar{1}, \vee, \wedge)$ is a partially complemented distributive lattice. Now for any $x \in A$, $x \vee \bar{1} \in [\bar{1}, 1]$, so using Lemma 2.2(i),(e) $(x \vee \bar{1})' = \bar{x} \vee \bar{1} = \bar{x} \wedge \bar{1} = \bar{x}$. - (b) For any $x \in A$, $\bar{x} \ge h$ so we have $1 = (x \lor h) \lor (x \lor h)' = x \lor h \lor \bar{x} = x \lor \bar{x}$. Clearly $\bar{1} = 1' = h$, so $\bar{1} = (x \lor h) \land (x \lor h)' = (x \lor h) \land \bar{x} = (x \land \bar{x}) \lor (h \land \bar{x}) = (x \land \bar{x}) \lor \bar{1}$, and we get $x \land \bar{x} \le \bar{1}$; since $x \land \bar{x} \le x$, we get $x \land \bar{x} \le x \land \bar{1}$. $x \land \bar{1} \le x \land \bar{x}$ follows from $\bar{1} \le \bar{x}$. \Box - **Corollary 2.5.** The category of Boolean semirings is equivalent to the category of partially complemented distributive lattices. **Proof.** Theorems 2.1 and 2.4 establish the bijection between objects. But it is clear that a function $f: A \rightarrow B$ is a homomorphism of Boolean semirings if and only if it is a homomorphism of partially complemented distributive lattices. \Box Recall that a Stone space is a coherent, Hausdorff space. The Stone representation theorem gives a 1–1 correspondence between distributive lattices and coherent spaces, with Boolean algebras corresponding to Stone spaces. We refer the reader to [6] for notation, definitions and basic facts on coherent and Stone spaces. However we need to mention explicitly the following: if A is a distributive lattice, $\mathrm{Idl}(A)$ denotes the lattice of ideals of A, and $X = \mathrm{pt}(\mathrm{Idl}(A))$ the set of prime filters of A. If $I \in \mathrm{Idl}(A)$, let $\varphi(I) = \{ p \in X \mid p \cap I \neq \emptyset \}$. Then $\mathcal{T} = \{ \varphi(I) \mid I \in \mathrm{Idl}(A) \}$ is a topology on X which makes it into a coherent space, and φ is an isomorphism of lattices between $\mathrm{Idl}(A)$ and \mathcal{T} (see [6, Chapter II]). - **Definition 2.6.** We say that (X, Y) is a partially Stone space if X is a coherent space, Y a compact open subspace of X, and X Y is Hausdorff. Given (X_1, Y_1) and (X_2, Y_2) partially Stone spaces, and a function $f: X_1 \to X_2$, we say that f is a map of partially Stone spaces if f is continuous, $f^{-1}\langle Y_2 \rangle = Y_1$, and $f|_{Y_1}: Y_1 \to Y_2$ is coherent. - **Theorem 2.7.** (a) Let A be a partially complemented distributive lattice. Let $X = \operatorname{pt}(\operatorname{Idl}(A))$, and $Y = \{ p \in X \mid h \in p \} = \varphi(\downarrow \{h\})$. Then (X, Y) is a partially Stone space. - (b) Let (X, Y) be a partially Stone space. Let $A = K\Omega(X)$ be the lattice of compact open subspaces of X. Then $(A; \emptyset, X, Y, \cup, \cap)$ is a partially complemented distributive lattice. - **Proof.** (a) By the Stone representation theorem, X is a coherent space and $Y = \varphi(\downarrow\{h\})$ is a compact open subset. Let $p,q \in X Y$ with $p \neq q$. Suppose $p \not\subseteq q$ and choose $a \in A$ such that $a \in p$ and $a \not\in q$. Since $a \vee \bar{a} = 1 \in q$ and q is prime, we must have $\bar{a} \in q$. Let $U = \varphi(\downarrow\{a\})$, $V = \varphi(\downarrow\{\bar{a}\})$. Then U and V are open neighborhoods of p and q respectively, and $U \cap V = \varphi(\downarrow\{a\}) \cap \varphi(\downarrow\{\bar{a}\}) = \varphi(\downarrow\{a\} \cap \downarrow\{\bar{a}\}) = \varphi(\downarrow\{a \wedge \bar{a}\}) =$ - (b) By the Stone representation theorem $K\Omega(X)$ is a distributive lattice. For $U \in K\Omega(X)$ let $\bar{U} = (X U) \cup Y$. Then \bar{U} is compact and $U \cup \bar{U} = X$, $U \cap \bar{U} = U \cap Y$, so it remains to be seen that \bar{U} is open. Let $x \in \bar{U}$; if $x \in Y$, then Y is an open neighborhood of x contained in \bar{U} . But if $x \not\in Y$, then for each $y \in U Y$ let U_y and V_y be open neighborhoods of x and y respectively, such that $(U_y Y)$ and $(V_y Y)$ are disjoint. Then $U Y \subseteq \bigcup_{y \in U Y} V_y$ and since U Y is compact, there are y_1, \ldots, y_n such that $U Y \subseteq V_{y_1} \cup \cdots \cup V_{y_n}$. Let $W = U_{y_1} \cap \cdots \cap U_{y_n}$. Then W is an open neighborhood of x and for any $w \in W$, if $w \not\in Y$, then $w \in U_{y_i} Y$, so $w \not\in V_{y_i} Y$ and $w \not\in V_{y_i}$. It then follows that $w \not\in U$, and therefore $W \subset \bar{U}$. \square - **Corollary 2.8.** The category of Boolean semirings is dual to the category of partially Stone spaces. - **Proof.** If $f: A \to B$ is a homomorphism of partially complemented distributive lattices, then by the Stone representation theorem $f^*: \operatorname{pt}(\operatorname{Idl}(B)) \to \operatorname{pt}(\operatorname{Idl}(A))$, $q \mapsto f^{-1}\langle q \rangle$ is a coherent map. Moreover, $(f^*)^{-1}\langle \varphi(\downarrow \{h_A\}) \rangle = (f^*)^{-1}\langle \{p \mid h_A \in p\} \rangle = \{q \mid h_A \in f^*(q)\} = \{q \mid f(h_A) \in q\} = \{q \mid h_B \in q\} = \varphi(\downarrow \{h_B\})$, so f^* is a map of partially Stone spaces from $(\operatorname{pt}(\operatorname{Idl}(B)), \varphi(\downarrow \{h_B\}))$ to $(\operatorname{pt}(\operatorname{Idl}(A)), \varphi(\downarrow \{h_A\}))$. - Conversely, let $f: X_1 \to X_2$ be a map of partially Stone spaces from (X_1, Y_1) to (X_2, Y_2) . If U is compact open in X_2 , then $U Y_2$ is compact open in $X_2 Y_2$ and $U \cap Y_2$ is compact open in Y_2 . $f^{-1}\langle U \rangle$ is open and $f^{-1}\langle U \rangle = f^{-1}\langle U Y_2 \rangle \cup$ $f^{-1}\langle U\cap Y_2\rangle$. Since $f|_{Y_1}$ is coherent, $f^{-1}\langle U\cap Y_2\rangle$ is compact, and since $f|_{X_1-Y_1}:X_1-Y_1\to X_2-Y_2$ is a map of Hausdorff spaces it is coherent so $f^{-1}\langle U-Y_2\rangle$ is compact. Therefore, $f^{-1}\langle U\rangle$ is compact, and f is coherent. By the Stone representation theorem $f^*:K\Omega(X_2)\to K\Omega(X_1),\ U\mapsto f^{-1}\langle U\rangle$ is a homomorphism of distributive lattices. Moreover, $f^*(Y_2)=f^{-1}\langle Y_2\rangle=Y_1$, so f^* is a homomorphism of partially complemented distributive lattices from $(K\Omega(X_2);\emptyset,X_2,Y_2,\cup,\cap)$ to $(K\Omega(X_1);\emptyset,X_1,Y_1,\cup,\cap)$. Finally, under the isomorphism $\alpha: A \to K\Omega(\operatorname{pt}(\operatorname{Idl}(A))), a \mapsto \varphi(\downarrow\{a\})$ we have $\alpha(h) = \varphi(\downarrow\{h\})$, so α is an isomorphism of partially complemented distributive lattices from $(A; 0, 1, h, \vee, \wedge)$ to $(K\Omega(\operatorname{pt}(\operatorname{Idl}(A))); \emptyset, \varphi(A), \varphi(\downarrow\{h\}), \cup, \cap)$. Under the homeomorphism $\beta: X \to \operatorname{pt}(\operatorname{Idl}(K\Omega(X))), x \mapsto \{U \mid x \in U\}$ we have $x \in Y$ iff $Y \in \beta(x)$ iff $\beta(x) \cap \downarrow \{Y\} \neq \emptyset$ iff $\beta(x) \in \varphi(\downarrow\{Y\})$. So $\beta(Y) = \varphi(\downarrow\{Y\})$, and β is an isomorphism of partially Stone spaces from (X, Y) to $(\operatorname{pt}(\operatorname{Idl}(K\Omega(X))), \varphi(\downarrow\{Y\}))$. \square Given a coherent space X, and subspaces Y_1, Y_2 such that (X, Y_1) and (X, Y_2) are partially Stone spaces, it is clear that $(X, Y_1 \cap Y_2)$ is also a partially Stone space. However there is not necessarily a smallest Y such that (X, Y) is a partially Stone space. Consider an infinite set X with the cofinite topology. For any cofinite $Y \subset X$, (X, Y) is a partially Stone space. ## 3. Free spectrum In this section we will give a description of the free Boolean semirings, and obtain some bounds for the size of the finitely generated free Boolean semirings. In Corollary 1.8 we already have an upper bound. Let X be a set, S the Boolean semiring $\{0, h, 1\}$ with the operations given in Theorem 1.7, and B the sublattice $\{0, 1\}$ of S. Let S^X (resp. B^X) denote the set of all functions from X to S (resp. B). Let $[S^X \to S]$ (resp. $[B^X \to S]$) denote the semiring of all functions from S^X (resp. B^X) to S under pointwise operations. We embed X in $[S^X \to S]$ as follows: if $x \in X$, let x also denote the projection map onto the xth coordinate, i.e. if $\sigma \in S^X$, then $x(\sigma) = \sigma(x)$. We can identify the free Boolean semiring generated by X, $F_{\mathcal{BFA}}(X)$ with the subsemiring of $[S^X \to S]$ generated by X. **Lemma 3.1.** Let X be a set, $x \in X$, $f \in F_{\mathcal{BFR}}(X)$ and let $\sigma_1, \sigma_2, \sigma_3 \in S^X$ be such that $\sigma_1(x) = 0$, $\sigma_2(x) = h$, $\sigma_3(x) = 1$, and for $y \neq x$, $\sigma_1(y) = \sigma_2(y) = \sigma_3(y)$. Then (*) $$f(\sigma_2) = f(\sigma_1) + f(\sigma_2) + f(\sigma_3).$$ **Proof.** By induction on f. If f = x we have h = 0 + 1 + 1. If $f = y \in X - \{x\}$, or if f is the constant function 0 or 1, it follows from Lemma 1.2(b). If f, g satisfy (*), so do f + g and fg. \square For $f \in [S^X \to S]$ let $f|_{B^X}$ be the restriction of f to B^X . **Proposition 3.2.** Let X be a set. The map $F_{\mathcal{BFR}}(X) \rightarrow [B^X \rightarrow S]$, $f \mapsto f|_{B^X}$ is one-to-one. **Proof.** Let $f,g \in F_{\mathscr{B}\mathscr{I}\mathscr{B}}(X)$, be such that $f|_{B^X} = g|_{B^X}$. It is clear that there is a finite $Y \subseteq X$ such that $f,g \in F_{\mathscr{B}\mathscr{I}\mathscr{B}}(Y)$, so without loss of generality, we may assume that X is finite. Let $\sigma \in S^X$, $k = |\sigma^{-1}\langle \{h\}\rangle|$, and $m = 3^k$. By Lemma 3.1 there are $\sigma_1, \ldots, \sigma_m \in B^X$ such that $f(\sigma) = f(\sigma_1) + \cdots + f(\sigma_m)$ and $g(\sigma) = g(\sigma_1) + \cdots + g(\sigma_m)$. Since $f(\sigma_i) = f|_{B^X}(\sigma_i) = g|_{B^X}(\sigma_i) = g(\sigma_i)$, $f(\sigma) = g(\sigma)$. \square Corollary 3.3. $2^{2^n} \le |F_{\mathcal{BFR}}(n)| \le 3^{2^n}$. **Proof.** The first inequality follows from Theorem 1.6 since the free Boolean ring on n generators has cardinality 2^{2^n} . The second inequality follows from Proposition 3.2. \square From this point on, we will identify $F_{\mathcal{BFM}}(X)$ with the subsemiring of $[B^X \to S]$ which is the image of the map in Lemma 3.2. Let X be a set and $I \subseteq B^X$. We say that I is a *lower subset* of B^X if $\sigma \in I$ and $\tau \leq \sigma$ imply $\tau \in I$. When X is finite, the free bounded distributive lattice generated by X, $F_{\mathscr{DY}}(X)$ is the sublattice of $[B^X \to B]$ generated by X when embedded via the projection maps, and it is isomorphic to the lattice of lower subsets of B^X [3, p. 61]. This isomorphism maps each lower subset of B^X to the characteristic function of its complement. In other words: **Theorem 3.4.** Let X be a finite set, and $f: B^X \to B$. $f \in F_{\mathcal{I}\mathcal{I}}(X)$ iff $f^{-1}(\{0\})$ is a lower subset of B^X . \square By enlarging the codomain, we can view any $f \in F_{x,y}(X)$ as a map $f: B^X \to S$. **Proposition 3.5.** Let X be a set. $F_{\mathcal{GF}}(X) \subseteq F_{\mathcal{BFR}}(X)$ when both are viewed as subsets of $[B^X \to S]$. **Proof.** $F_{\mathscr{LF}}(X)$ is the bounded sublattice of $[B^X \to S]$ generated by X. By Theorem 2.1 and Corollary 3.2, $F_{\mathscr{BFR}}(X)$ is the bounded sublattice with $\bar{}$ of $[B^X \to S]$ generated by X. \Box From Theorem 3.4 and Proposition 3.5 we get the following corollary. **Corollary 3.6.** Let X be a finite set and $f: B^X \to S$. If $f^{-1}(\{0\})$ is a lower subset of B^X and $f^{-1}(\{h\}) = \emptyset$, then $f \in F_{\mathcal{MAM}}(X)$. We now obtain a necessary and sufficient condition for $f: B^X \to S$ to belong to $F_{\mathcal{B}\mathcal{F}\mathcal{R}}(X)$. **Theorem 3.7.** Let X be a finite set and $f \in [B^X \to S]$. $f \in F_{\mathscr{BYA}}(X)$ iff $f^{-1}(\{0\})$ is a lower subset of B^X . **Proof.** (\Rightarrow) By induction on f. If f is one of the constants 0 or 1, then $f^{-1}(\{0\})$ is either empty or B^X which are lower subsets of B^X . If $f = x \in X$, and $\tau \le \sigma \in f^{-1}(\{0\})$, then $f(\tau) = \tau(x) \le \sigma(x) = f(\sigma) = 0$, so $f(\tau) = 0$ and $\tau \in f^{-1}(\{0\})$. Let $f, g \in F_{\mathcal{BLA}}(X)$ and suppose $f^{-1}(\{0\})$, and $g^{-1}(\{0\})$ are lower subsets of B^X . From the operation tables of S in Theorem 1.7 we see that $(f+g)^{-1}(\{0\}) = f^{-1}(\{0\}) \cap g^{-1}(\{0\})$, and $(fg)^{-1}(\{0\}) = f^{-1}(\{0\}) \cup g^{-1}(\{0\})$, which are again lower subsets of B^X . (\Leftarrow) By induction on $|f^{-1}(\{h\})|$. If $|f^{-1}\langle\{h\}\rangle|=0$, then by Corollary 3.6 $f\in\mathcal{F}_{\mathcal{B}\mathcal{I},\mathcal{B}}(X)$. If $|f^{-1}\langle\{h\}\rangle|>0$, let $\sigma\in f^{-1}\langle\{h\}\rangle$, and let $g:B^X\to S$ be given by $g(\tau)=f(\tau)$ if $\tau\neq\sigma$, and $g(\sigma)=1$. Since $|g^{-1}\langle\{h\}\rangle|<|f^{-1}\langle\{h\}\rangle|$, and $g^{-1}\langle\{0\}\rangle=f^{-1}\langle\{0\}\rangle$, by induction $g\in F_{\mathcal{B}\mathcal{I},\mathcal{B}}(X)$. Moreover, by Corollary 3.6, the maps $u,v:B^X\to S$ given by $$u(\tau) = \begin{cases} 1 & \text{if } \tau \ge \sigma, \\ 0 & \text{otherwise}, \end{cases} \quad v(\tau) = \begin{cases} 1 & \text{if } \tau > \sigma, \\ 0 & \text{otherwise}, \end{cases}$$ are also in $F_{\mathscr{AHA}}(X)$. We claim that f = g + u + v. In fact, $g(\sigma) + u(\sigma) + v(\sigma) = 1 + 1 + 0 = h = f(\sigma)$. If $\tau > \sigma$, since $f^{-1}(\{0\})$ is a lower subset of B^X and $f(\sigma) = h \neq 0$, then $f(\tau) \neq 0$. Therefore, $g(\tau) + u(\tau) + v(\tau) = f(\tau) + 1 + 1 = f(\tau) + h = f(\tau)$. But if $\tau \not\geq \sigma$, then $g(\tau) + u(\tau) + v(\tau) = f(\tau) + 0 + 0 = f(\tau)$. Therefore, $f = g + u + v \in F_{\mathcal{B}\mathcal{F},\mathcal{B}}(X)$. \square **Corollary 3.8.** When we identify $F_{\varphi \varphi}(n)$ with the set of lower subsets of B^n , $$|F_{\mathscr{B}\mathscr{G}\mathscr{R}}(n)| = \sum_{I \in F_{\mathscr{L}\mathscr{T}}(n)} 2^{|I|}.$$ **Proof.** Let I be a lower subset of B^n and let I' denote its complement. There are $2^{|I'|}$ elements $f \in F_{\mathcal{A}(I),\emptyset}(n)$ such that $f^{-1}\langle \{0\} \rangle = I$. \square Let $l_{n,k}$ denote the number of lower subsets of B^n of size k; these numbers are denoted by $L_k(n)$ in [8]. Let $p_n(x) = \sum_{k=1}^{2^n} l_{n,k} x^k$. Then $p_n(1) = |F_{\mathcal{F}\mathcal{F}}(n)|$ and $p_n(2) = |F_{\mathcal{F}\mathcal{F}\mathcal{F}}(n)|$. It should be noted that the problem of determining $|F_{\mathcal{F}\mathcal{F}}(n)|$ | Table 1 | | | |---------|-------------------------|----------------------------------------------------------------------------| | n | $F_{\varphi\varphi}(n)$ | $F_{{\scriptscriptstyle{\mathscr{B}}}{:}{\mathscr{E}}{:}{\mathscr{R}}}(n)$ | | 0 | 2 | 3 | | 1 | 3 | 7 | | 2 | 6 | 35 | | 3 | 20 | 775 | | 4 | 168 | 319107 | | 5 | 7581 | 42122976711 | | 6 | 7828354 | $5.1496265927 \times 10^{20}$ | (Dedekind's problem) is a difficult one, and the values are known for $n \le 7$ [2]. The previous remarks suggest that the problem for $|F_{\mathscr{A}\mathscr{I}\mathscr{R}}(n)|$ is about as difficult as Dedekind's problem. We have computed the values for $n \le 6$, see Table 1. Corollary 3.9. $\log_2 |F_{\mathcal{R} \neq \mathcal{R}}(n)| \sim 2^n$. **Proof.** From Corollaries 3.3 and 3.8 we have $2^{2^n} \leq |F_{\mathscr{BFH}}(n)| \leq 2^{2^n} |F_{\mathscr{LF}}(n)|$ and therefore $2^n \leq \log_2 |F_{\mathscr{HFH}}(n)| \leq 2^n + \log_2 |F_{\mathscr{LF}}(n)|$. But from [12] for any $\delta > 0$, $\log_2 |F_{\mathscr{LF}}(n)| \leq 2^n n^{-1/2 + \delta}$ for n large enough. \square ## 4. Normal form and relational degree In this section we obtain a normal form for the elements of $F_{ABBA}(X)$. **Definition 4.1.** Let X be a set, and $F_{\mathcal{BFM}}(X)$ the free Boolean semiring generated by X. - (a) A monomial is a product of elements of X. We denote by M the set of all monomials. Observe that $1 \in M$; it is the empty product. - (b) A *polynomial* is a sum of monomials. Observe that 0 is a polynomial, the empty sum. By (SR6), any element of $F_{\mathcal{BSFM}}(X)$ can be written as a polynomial. By (BSR2) and Lemma 1.2(d) any monomial can be written without repeated factors. In fact, M can be identified with the set of finite subsets of X, by mapping each finite subset of X to the product of its elements. This correspondence is order reversing, i.e. $m \le m'$ iff $m' \subseteq m$, for any $m,m' \in M$. By Lemma 1.2(b) a polynomial can be written without repeating any monomial more than twice, and m+m=hm where h=1+1. Moreover, if the monomial m appears in a polynomial t and $m' \in M$ is such that $m' \le m$, then by Lemma 1.2(c) m+m'+m'=m and t can be written so that m' does not appear more than once. **Theorem 4.2.** Any $t \in F_{\mathcal{BSR}}(X)$ can be written in a unique way as $$t=\sum_{m\in M}t_mm\;,$$ where $t_m \in \{0, h, 1\}$ satisfies: - (i) $t_m \neq 0$ for finitely many m's, and - (ii) $t_{m'} = h, m' < m \Rightarrow t_m = 0.$ **Proof.** Condition (i) simply says that the right-hand side is a polynomial. Observe that (ii) is equivalent to $t_m \neq 0$, $m' < m \Rightarrow t_{m'} \neq h$, and we have just shown that any $t \in F_{\mathscr{BFM}}(X)$ can be written as a polynomial satisfying this condition. For uniqueness let $t = \sum t_m m$ and $s = \sum s_m m$ where $\{t_m\}$ and $\{s_m\}$ satisfy (i) and (ii), and at least some $t_m \neq s_m$. The set of finite subsets of X has the descending chain condition, so M has the ascending chain condition. Let m_0 be maximal in $\{m \mid t_m \neq s_m\}$. Without loss of generality we can assume $t_{m_0} \neq 0$. Let $\sigma: X \to S$ be given by $$\sigma(x) = \begin{cases} 1 & \text{if } m_0 \le x ,\\ 0 & \text{otherwise } . \end{cases}$$ Observe that for any $m \in M$, $m(\sigma) = 1$ if $m_0 \le m$, and $m(\sigma) = 0$ otherwise. So we have $$t(\sigma) = \sum_{m \in M} t_m m(\sigma) = \sum_{m \geq m_0} t_m m(\sigma) = \sum_{m \geq m_0} t_m = t_{m_0} + \sum_{m > m_0} t_m$$ and by the choice of m_0 , $$s(\sigma) = s_{m_0} + \sum_{m > m_0} s_m = s_{m_0} + \sum_{m > m_0} t_m$$. If $t_{m_0} = 1$, then $s_{m_0} \neq 1$ and for any $a \in S$, $t_{m_0} + a \neq s_{m_0} + a$. In particular, $t(\sigma) \neq s(\sigma)$. If $t_{m_0} = h$, then by (ii) $t_m = 0$ for any $m > m_0$ and $t(\sigma) = t_{m_0} \neq s_{m_0} = s(\sigma)$. Therefore, $t \neq s$. \square If we identify $t \in F_{\mathscr{BFR}}(X)$ with the function $M \to S$, $m \mapsto t_m$, then condition (ii) says that $f^{-1}(\{h\})$ is an antichain and the lower subset under it is mapped to 0. For X finite, condition (i) always holds, and we get another proof of Corollary 3.8. **Definition 4.3.** Let A be an algebra, l a cardinal, ρ an l-ary relation on A and $f: A^n \to A$ an n-ary operation. (a) We say that f preserves ρ if $a_1, \ldots, a_n \in \rho$ imply $f(a_1, \ldots, a_n) \in \rho$, where f is applied componentwise on the l-tuples, i.e. $f(a_1, \ldots, a_n)_j = f(a_{1,j}, \ldots, a_{n,j})$. - (b) We say that ρ is a *classifying relation* for A if $\{f \mid f \text{ preserves } \rho\}$ is the clone of polynomials over A, cl(A). - (c) The least l such that there is an l-ary classifying relation for A is called the relational degree of A. - (d) If $(\sigma_1, \sigma_2, ...)$ is an *l*-tuple of *n*-tuples of *A*, then $(\sigma_1, \sigma_2, ...)^t$ denotes the *n*-tuple of *l*-tuples of *A* given by $(\sigma_1, \sigma_2, ...)_{i,j}^t = (\sigma_1, \sigma_2, ...)_{j,i}^t$. Therefore, $f(\sigma_1, \sigma_2, ...)^t = (f(\sigma_1), f(\sigma_2), ...)$. The main theorem in [9] shows that the relational degree is well defined for any algebra. For a finite algebra it is at most \aleph_0 , and a 3-element algebra is more likely to have infinite relational degree. We will show that S has relational degree 3. From Lemma 3.1 and Theorem 3.7 one easily gets the following corollary: **Corollary 4.4.** $f: S^n \to S$ is in cl(S) iff f satisfies (*) in Lemma 3.1 and $f^{-1}\langle \{0\} \rangle$ is a lower subset of S^n . \square **Proposition 4.5.** The 3-ary relation $\rho = \{(0,0,0), (0,h,h), (h,h,h), (1,1,h), (0,h,1), (h,h,1), (1,1,1)\}$ is a classifying relation for S. **Proof.** cl(S) preserves ρ since it is a subsemiring of S^3 (it is in fact $F_{\mathscr{BFA}}(1)$). Suppose now that $f: S^n \to S$ preserves ρ . If $\sigma_1, \sigma_2, \sigma_3 \in S^n$ are like in (*) in Lemma 3.1, then $(\sigma_1, \sigma_2, \sigma_3)^t \in \rho^n$ and therefore $(f(\sigma_1), f(\sigma_2), f(\sigma_3)) \in \rho$. It is now easy to verify that $f(\sigma_2) = f(\sigma_1) + f(\sigma_3) + f(\sigma_3)$. If $\tau \le \sigma \in S^n$ are such that $f(\sigma) = 0$, let $\mu = \tau + \sigma + \sigma$. It is easy to see that $(\tau, \mu, \sigma)^t \in \rho^n$ and therefore $(f(\tau), f(\mu), f(\sigma)) \in \rho$. Since $f(\sigma) = 0$ we must have $f(\tau) = 0$. So $f^{-1}(\{0\})$ is a lower subset of S^n . By Corollary 4.4, f is in cl(S). \square **Theorem 4.6.** The relational degree of S is 3. **Proof.** By Proposition 4.5 we have that relational degree of $S \le 3$. Suppose $\rho' \subseteq S^2$ is a classifying relation for S. Then ρ' is a subsemiring of S^2 . We will denote any $f: S \to S$ by the triple (f(0), f(h), f(1)). We will show that there is $f: S \to S$ which preserves ρ' but is not in cl(S). Consider two cases: - (i) If $(1, h) \in \rho'$, then $(h, 1) = (1, h) + (1, 1) \in \rho'$ and (1, h, 1) preserves ρ' . But $(1, h, 1) \not\subseteq \rho = F_{\mathcal{BFM}}(1)$, and therefore $(1, h, 1) \not\subseteq \operatorname{cl}(S)$. - (ii) If $(1, h) \not\in \rho'$, then we must have $\rho' \subseteq \{(0, 0), (h, h), (1, 1), (0, h), (h, 0)\}$ and (0, 0, 1) preserves ρ' but $(0, 0, 1) \not\in \operatorname{cl}(S)$. \square # Acknowledgment The author would like to thank Tom Head for suggesting the work on this topic, and the Department of Mathematics of the Universitat Autònoma de Barcelona for their support. #### References - [1] R. Balbes and P. Dwinger, Distributive Lattices (University of Missouri Press, Columbia, MO, 1974). - [2] J. Berman and P. Köhler, Cardinalities of finite distributive lattices, Mitt. Math. Sem. Giessen 121 (1976) 103–124. - [3] G. Birkhoff, Lattice Theory (American Mathematical Society, Providence, RI, 1979). - [4] S. Eilenberg, Automata, Languages and Machines (Academic Press, New York, 1974). - [5] J.L. Galbiati and M.L. Veronesi, Sui Semianelli di Boole, Istit. Lombardo Accad. Sci. Lett. Rend. A 114 (1980) 73–88. - [6] P.T. Johnstone, Stone Spaces (Cambridge University Press, Cambridge, 1982). - [7] W. Kuich and A. Salomaa, Semirings, Automata, Languages (Springer, Berlin, 1986). - [8] G. Markowsky, The level polynomials of the free distributive lattices, Discrete Math. 29 (1980) 275–285. - [9] I. Rosenberg, A classification of universal algebras by infinitary relations, Algebra Universalis 1 (1972) 350–354. - [10] H.P. Sankappanavar, Heyting algebras with a dual lattice endomorphism, Z. Math. Logik Grundlag. Math. 33 (1987) 565–573. - [11] N.V. Subrahmanyan, Boolean semirings, Math. Ann. 148 (1962) 395-401. - [12] K. Yamamoto, Logarithmic order of free distributive lattice, J. Math. Soc. Japan 6 (1954) 343–353.