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Abstract

Non-degenerate cycle sets are equivalent to non-degenerate unitary set-theoretical solutions of the quan-
tum Yang–Baxter equation. We embed such cycle sets into generalized radical rings (braces) and study their
interaction in this context. We establish a Galois theory between ideals of braces and quotient cycle sets.
Our main result determines the relationship between two square-free cycle sets operating transitively on
each other.
© 2006 Elsevier Inc. All rights reserved.
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0. Introduction

The study of set-theoretical solutions of the quantum Yang–Baxter equation was initiated
by Drinfeld [2] and pursued by several authors [3–6,10–13]. In [12] we showed that left non-
degenerate unitary solutions are equivalent to cycle sets, i.e. sets X with a left invertible binary
operation satisfying the equation

(x · y) · (x · z) = (y · x) · (y · z).

We showed that finite cycle sets X give rise to (left and right) non-degenerate solutions and can
be naturally extended to the free abelian group Z(X). The above equation is then replaced by

(a + b) · c = (a · b) · (a · c).
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An abelian group A with a left distributive multiplication which makes A into a cycle set
satisfying the preceding equation is called a linear cycle set [12].

In this article, we show that linear cycle sets are closely related to radical rings. More precisely,
we prove that a linear cycle set A can be regarded as an abelian group with a right distributive
multiplication such that the circle operation

a ◦ b := ab + a + b

makes A into a group, the adjoint group A◦. Though A is neither left distributive nor associative,
it satisfies an equation (B2) which generalizes both conditions (see Definition 2). There is a
natural largest radical subring of A which coincides with A if A is left distributive. Another
equivalent description, due to [4], represents A as a module over the group A◦ such that A and
A◦ are related via a bijective 1-cocycle τ :A◦ → A. With regard to the property that A combines
two different equations or groups to a new entity, we call A a brace.

There is a module theory over braces, which will be developed, to some extent, in Sections 3
and 4. A sub-cycle-set X of a brace A which generates A as an abelian group will be called a
cycle base of A. For the analysis of X and A, ideals of A play an important part (see below). We
establish a kind of Galois theory for ideals of A in terms of partitions of X (Theorem 1).

Our main reason for introducing braces was to apply them to cycle sets and their correspond-
ing solutions of the quantum Yang–Baxter equation. A cycle set X is said to be square-free if
x ·x = x holds for all x ∈ X. In [12] we proved that every finite square-free cycle set X with more
than one element admits a decomposition, i.e. a non-trivial partition into left invariant sub-cycle-
sets. This result substantiated the conjecture [4,6] that the solutions of the quantum Yang–Baxter
equation corresponding to finite square-free cycle sets arise from binomial semigroups [5,6],
hence from quantum binomial algebras [6,9]. A new and much more general conjecture [5]
claims that every finite square-free cycle set X with more than one element has two different
elements x, y with equal left multiplication on X. The truth of this conjecture would imply that
every finite square-free unitary solution of the quantum Yang–Baxter equation is a multipermu-
tation solution in the sense of [4].

The use of braces leads to the following strategy to attack problems of that type. We start
with a non-degenerate cycle set X and embed it into a brace A so that X becomes a cycle base
of A. Then the inverse of the map x �→ y · x in X can be expressed by x �→ x + xy in A. So
the left multiplication of an element x ∈ X by y in X does not change x modulo A2. Hence
X decomposes unless A/A2 is cyclic. Moreover, X is square-free if and only if the elements
x ∈ X satisfy x2 = 0 in A. This sheds new light upon the decomposition theorem [12]. On the
other hand, the more general conjecture claims that a brace A with a finite square-free cycle base
admits a non-trivial socle

Soc(A) := {a ∈ A | ∀b ∈ A: ba = 0}.

This would be trivial if A is a radical ring. In general, however, the question is rather delicate. It
can be regarded as a nilpotency problem. However, there are at least two kinds of radical series
of A. To distinguish them, we set An+1 := A(An) and A(n+1) := (A(n))A for n ∈ N. It is fairly
easy to prove that the second series consists of right ideals, and that A(n) = 0 for some n if |A| is
a prime power. Nevertheless, this does not imply that Soc(A) is not zero. The latter would follow
if we could show that the first radical series ends up with 0. We will prove that An is an ideal
for all n, but it is indeed possible that the An stabilize at a non-zero ideal (see Example 2). The
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conjecture thus states that this cannot happen if A has a finite square-free cycle base X. By the
decomposition theorem [12], we can assume that A is a sum of two proper right ideals B and
C with cycle bases Y and Z forming a partition of X. By induction, we can further assume that
Bn = Cn = 0 for some n. So we are led to the question whether the powers ((BC)C · · ·)C and
((CB)B · · ·)B might stabilize at non-zero right ideals. By Theorem 1, this can be expressed in
terms of the sub-cycle-sets Y and Z of X.

Our main theorem (Theorem 2) deals with the case where Y and Z operate transitively on
each other. It states that the elements of Y and Z can be arranged as cycles, i.e. Y = {yi}i∈Z/mZ

and Z = {zj }j∈Z/nZ such that yi · zj = zj+1 and zj · yi = yi+1 for all i ∈ Z/mZ and j ∈ Z/nZ.
In the special case Y = Z, the square-free property implies that |Y | = |Z| = 1, which yields the
decomposition theorem [12]. Note that Theorem 2 does not give any information about the inter-
nal structure of Y and Z. By induction, however, we can assume that Y contains two elements y

and y′ with equal left multiplication on Y . Hence y and y′ operate in the same way on Y ∪ Z.
This proves the general conjecture for unions of two mutually transitive cycle sets.

1. Fully retractible cycle sets

A set X with a binary operation X2 .−→ X is called a cycle set [12] if the left multiplication
σ(x) :y �→ x · y is invertible, and the equation

(x · y) · (x · z) = (y · x) · (y · z) (1)

holds for all x, y, z ∈ X. Thus σ defines a map

σ :X → S(X) (2)

into the group S(X) of permutations on X. If we introduce

yx := σ(x)−1(y), (3)

a cycle set X can be defined in terms of equations, namely, Eq. (1) together with

x · yx = (x · y)x = y. (4)

A morphism between cycle sets X,Y is defined to be a map f :X → Y which satisfies

f (x · y) = f (x) · f (y) (5)

for all x, y ∈ X. We call a cycle set X non-degenerate if the map x �→ x · x is bijective. For
example, this condition is satisfied when X is square-free, i.e. x · x = x for all x ∈ X. The
category of non-degenerate cycle sets will be denoted by Cyc.

In [12] we have shown that non-degenerate cycle sets X are in one-to-one correspondence
with set-theoretical solutions R of the quantum Yang–Baxter equation which are non-degenerate
and unitary. Let us briefly recall this correspondence. If X is given, we define R :X2 → X2 by

R(x, y) := (
xy, xy · y)

. (6)
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Then R satisfies the quantum Yang–Baxter equation

R12R13R23 = R23R13R12 (7)

and the unitarity condition

R21R = 1. (8)

Moreover R is non-degenerate, i.e. the component maps x �→ xy and y �→ xy · y are bijective. If
we apply a twist (x, y) �→ (y, x) to R, we get a map S which satisfies the braid relation

S12S23S12 = S23S12S23. (9)

In this way, the unitary solutions R of (7) correspond to the symmetric sets (X,S) in the sense
of [4].

Definition 1. A cycle set A with an abelian group structure will be called linear [12] if it satisfies
the following equations (∀a, b, c ∈ A):

a · (b + c) = a · b + a · c, (10)

(a + b) · c = (a · b) · (a · c). (11)

Remark. Equation (10) immediately gives a · 0 = 0. Hence, if we set a = b = 0, Eq. (11) turns
into 0 · c = 0 · (0 · c). Since every element can be written in the form 0 · c, we thus get

a · 0 = 0; 0 · a = a (12)

for all a ∈ A. Therefore, Definition 1 is equivalent to that of [12].

Note that Eq. (11) implies (1). The category of linear cycle sets with the obvious morphisms
will be denoted by LCyc. By [12, Proposition 9], every linear cycle set is non-degenerate.

Proposition 1. The forgetful functor LCyc → Cyc admits a left adjoint.

Proof. Let X be a non-degenerate cycle set. Consider the free abelian group Z(X) generated
by X. The left multiplication (2) in X admits a unique extension to a map X × Z(X) .−→ Z(X)

such that Eq. (10) is satisfied for all a ∈ X and b, c ∈ Z(X). By [12, Proposition 6], there is a
further extension Z(X) × Z(X) .−→ Z(X) which makes Z(X) into a linear cycle set. Moreover, the
embedding X ↪→ Z(X) is a morphism in Cyc, and every morphism X → A into a linear cycle set
A has a unique extension Z(X) → A in LCyc. This proves the proposition. �

For any cycle set X, the image σ(X) in S(X) admits an induced binary operation

σ(x) · σ(y) := σ(x · y), (13)
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and σ(X) is called the retraction of X (cf. [4, 3.2], [12, §6]). By [12, Proposition 10], the retrac-
tion σ(X) is non-degenerate if and only if X is non-degenerate. Thus any X ∈ Cyc gives rise to
a natural morphism

X � σ(X) (14)

in Cyc. If (14) is injective, we call X irretractible, otherwise retractible. If X is linear, then
Eq. (11) implies that (14) makes σ(X) into a linear cycle set such that (14) becomes a morphism
in LCyc. For any X ∈ Cyc, the retraction of Z(X) will be denoted by A(X). So the retraction of
X can be identified with the image of the cycle set morphism

X → A(X). (15)

In general, the retraction of X ∈ Cyc may be retractible. Therefore, we call X fully retractible
if some iterated retraction σn(X) is a singleton. Such cycle sets correspond to multipermutation
solutions [4] of Eq. (9).

2. Rings and braces

In this section, we turn our attention to linear cycle sets. We will show that they are closely
related to radical rings. First, let us rewrite the axioms (10)–(11) of a linear cycle set in terms of
the inverse operation ab . For this purpose, we introduce the binary operation

a ◦ b := ab + b. (16)

Proposition 2. Let A be an abelian group with a binary operation A × A
.−→ A, such that the

left multiplication admits an inverse (3). Then A is a linear cycle set if and only if the following
are satisfied:

(a + b)c = ac + bc, (17)(
ab

)c = ab◦c. (18)

Proof. Equation (10) is equivalent to b + c = (a · b + a · c)a . Replacing b by ba and c by ca ,
the latter equation turns into (17). To convert (11) into (18), replace b by ba and then c by (ca)b .
This gives (a + ba) · (cb)a = c, which is equivalent to (18). �
Remark 1. The abbreviation (16) does not only make Eq. (18) more appealing. If (17) is as-
sumed, Eq. (18) is equivalent to the associativity

(a ◦ b) ◦ c = a ◦ (b ◦ c). (19)

Proposition 3. For a linear cycle set A, the operation (16) defines a group structure on A.

Proof. While Eq. (17) trivially implies that 0c = 0, Eq. (12) yields a0 = a. Hence

0 ◦ a = a ◦ 0 = a. (20)
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By Eq. (16), we have (a · (−a)) ◦ a = (a · (−a))a + a = −a + a = 0. Hence

(−(a · a)
) ◦ a = 0, (21)

which gives a = a0 = a(−a·a)◦a . Therefore, Eq. (18) implies that a · a = a−(a·a), which yields
a ◦ (−(a · a)) = a−(a·a) − a · a = 0. �
Remark 2. Equation (16) can be interpreted as a bijective 1-cocycle from (A,◦) to A (see
[4, 2.4]).

Now we proceed one step further and replace ab by a multiplication.

Definition 2. Let A be an abelian group with a multiplication A × A → A. We call A a brace if
the following are satisfied for all a, b, c ∈ A.

(B1) (a + b)c = ac + bc.
(B2) a(bc + b + c) = (ab)c + ab + ac.
(B3) The map x �→ xa + x is bijective.

At first glance, (B2) looks like a cross between associativity and left distributivity. In fact,
together with

(B4) a(b + c) = ab + ac,

the axioms (B1) and (B2) just state that A is an associative ring (without 1).
There is another, less obvious, interpretation of (B2). As for an ordinary ring, let us introduce

the circle operation

a ◦ b := ab + a + b. (22)

Proposition 4. Let A be an abelian group with a right distributive multiplication. A is a brace if
and only if A is a group with respect to the circle operation (22).

Proof. Using (B1), a direct calculation shows that the associativity of (22) is equivalent to (B2).
Moreover, (B1) implies that 0c = 0 for all c ∈ A. Assume now that A is a brace. Inserting
b = c = 0 in (B2) yields (a0)0 + a0 = 0. Hence a0 = 0 by virtue of (B3). Thus every brace
satisfies

0a = a0 = 0, (23)

which is equivalent to 0 ◦ a = a ◦ 0 = a. Now (B3) implies that every a ∈ A has a unique left
inverse a′ with respect to (22). Hence a′ ◦ a ◦ a′ = 0 ◦ a′ = a′ ◦ 0, which gives a ◦ a′ = 0. Thus
we have shown that A is a group with respect to (22), when A is a brace. Now the converse is
trivial. �

Recall that an associative ring is said to be a radical ring if it is a group with respect to the
circle operation (22). So we get
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Corollary. A brace A is left distributive if and only if it is a radical ring.

Next we show that braces are equivalent to linear cycle sets via

ab = ab + a. (24)

Proposition 5. Equation (24) establishes a one-to-one correspondence between braces and lin-
ear cycle sets.

Proof. This follows from Proposition 2 and Remark 1. �
Note, in particular, that by virtue of (24), the circle operation (22) of a brace coincides with

the operation (16) of the corresponding linear cycle set. Therefore, all operations and concepts
for linear cycle sets apply to braces as well. For example, it makes sense to speak of a retractible
brace. In the sequel, the transfer of terminology between linear cycle sets and braces will be
assumed without further notice.

For an associative ring R, the circle operation (22) gives rise to a semigroup with neutral
element 0, the adjoint monoid of R.

Definition 3. Let A be a brace. The group A◦ := (A,◦) will be called the adjoint group of A. An
abelian group M together with a monoid morphism from A◦ to the adjoint monoid of End(M)op

will be called an A-module.

Explicitly, this means that there is a right operation

M × A → M (25)

such that

(x + y)a = xa + ya, (26)

x(a ◦ b) = (xa)b + xa + xb, (27)

x0 = 0 (28)

holds for x, y ∈ M and a, b ∈ A. In particular, Definition 2 together with Eq. (23) shows that
A itself is an A-module. The category of A-modules, with additive maps respecting the opera-
tion (25) as morphisms, will be denoted by Mod(A).

Remark 1, and Eq. (27) as a consequence of Definition 3, give two rather different interpreta-
tions of (B2). A third interpretation comes from the fact that every A-module M can be regarded
as a right A◦-module via

M × A◦ → M; (x, a) �→ xa + x, (29)

and vice versa. This follows by a straightforward calculation. Therefore, the analogue of (B3)
holds for modules over braces, too. Hence we have an equivalence of categories

Mod(A) ≈ Mod -A◦ (30)



160 W. Rump / Journal of Algebra 307 (2007) 153–170
which shows that Mod(A) is an abelian category. In particular, the endomorphisms of any mod-
ule M over a brace A form an associative ring with 1, denoted by EndA(M). The concepts of
submodule, factor module, sum and intersection of submodules, carry over to Mod(A) without
change. As usual, the submodules of A will be called right ideals. (Since A need not be left dis-
tributive, there is no similar concept of left ideal.) By Eq. (27), every element x of an A-module
M generates a submodule xA + Zx, consisting of the finite sums xa1 + · · · + xar + nx with
a1, . . . , ar ∈ A and n ∈ Z. By lack of the left distributivity (B4), this description cannot be sim-
plified, in general.

A map f :A → B between braces will be called a morphism if f respects addition and multi-
plication. The image f (A) of a morphism f is always a subbrace of B , that is, a subset which is
closed under addition and multiplication. A subbrace I of A will be called an ideal if ab and ba

belong to I whenever a ∈ I and b ∈ A. The kernel of any morphism between braces is an ideal,
and each ideal arises in this way. In fact, every ideal I of a brace A gives rise to a morphism
A → A/I onto the factor brace A/I := {a + I | a ∈ A}. To see that A/I is well-defined, we
have to verify that a(x + c) − ac ∈ I whenever x ∈ I and a, c ∈ A. Since I is an A◦-submodule
of A, we can write x in the form x = bc + b with a unique b ∈ I . Now the assertion follows
immediately by (B2).

3. Radical series and socle series of a brace

Let A be a brace. For an A-module M , define

MA :=
{

n∑
i=1

xiai

∣∣∣∣ xi ∈ M, ai ∈ A

}
. (31)

By virtue of (26) and (27), this is a submodule of M . In particular, we set A(1) := A, and
A(n+1) := (A(n))A. This gives a descending sequence of right ideals

A ⊃ A(2) ⊃ A(3) ⊃ · · · , (32)

which need not be ideals, in general (see Example 2 below).
If A is an associative ring, and M ∈ Mod(A), then MI is a submodule for any ideal I . For an

arbitrary brace A, this is also true, but not at all obvious.

Proposition 6. Let A be a brace, and M ∈ Mod(A). For any ideal I of A,

MI :=
{

n∑
i=1

xiai

∣∣∣∣ xi ∈ M, ai ∈ I

}

is a submodule of M .

Proof. Let x ∈ M , a ∈ I , and b ∈ A be given. It suffices to show that (xa)b ∈ MI . By Eq. (27),
we have (xa)b = x(a ◦ b) − xa − xb. Thus we have to show that x(a ◦ b) − xb ∈ MI . Let b′ be
the inverse of b in A◦. Then b′b + b′ + b = 0. Hence
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c := b′ ◦ a ◦ b = (b′a + b′ + a) ◦ b = (b′a + b′ + a)b + (b′a + b′ + a) + b

= (b′a + a)b + (b′a + a) ∈ I.

So we get x(a ◦ b) − xb = x(b ◦ c) − xb = (xb)c + xc ∈ MI . �
Proposition 6 shows, in particular, that the product JI of a right ideal J with an ideal I is

a right ideal. In contrast to ordinary module theory, JI need not be an ideal when I and J are
ideals (see Example 2 below). However, Proposition 6 implies the following

Corollary. Let I be an ideal of a brace A. Then AI is an ideal.

Therefore, we define the radical series

A ⊃ A2 ⊃ A3 ⊃ · · · (33)

of a brace A by A1 := A, and An+1 := A(An). By the preceding corollary, the radical series
consists of ideals. Note that A2 = A(2).

Dually, we define the socle series of A by Soc0(A) = 0 and

Socn+1(A) := {
x ∈ A | ∀a ∈ A: ax ∈ Socn(A)

}
, (34)

for all n ∈ N. Instead of Soc1(A), we also write Soc(A).

Proposition 7. The socle series of a brace A consists if ideals. The factor brace A/Soc(A) is
isomorphic to the retraction of A.

Proof. Let us first prove the equivalence

c ∈ Soc(A) ⇔ ∀a ∈ A: a(b + c) = ab (35)

for any b ∈ A. Assume that c ∈ Soc(A). Then (B2) yields a(b + c) = a(bc + b + c) = (ab)c +
ab + ac = ab. Conversely, let the right-hand condition of (35) be satisfied. Then c = db + d for
a unique d ∈ A. Hence ab = a(b + db + d) = (ad)b + ad + ab, which gives (ad)b + ad = 0
for all a ∈ A. Thus ad = 0 for all a ∈ A, i.e. d ∈ Soc(A). So we have proved the implication c ∈
Soc(A) ⇒ d ∈ Soc(A) for any b ∈ A. Therefore, Soc(A) is invariant under the adjoint group A◦.
In particular, this shows that Soc(A) is invariant under right multiplication. Hence d ∈ Soc(A)

implies that c ∈ Soc(A), which completes the proof of (35). Now (35) also shows that Soc(A)

is an additive subgroup of A. Hence Soc(A) is an ideal. By induction, it follows that the socle
series consists of ideals.

To prove the remaining assertion, we note that two elements a, b ∈ A are mapped to the
same element in the retraction σ(A) if and only if a · x = b · x holds for all x ∈ A. Since left
multiplication is invertible, the latter equation is equivalent to xa = xb . By Eq. (24), this can be
written as xa = xb. Therefore, Eq. (35) implies that A/Soc(A) is isomorphic to the retraction
of A. �



162 W. Rump / Journal of Algebra 307 (2007) 153–170
Table 1
111 100 011 010 101 001 110

111 0 0 0 0 0 0 0
100 110 0 001 111 110 111 001
011 110 0 001 111 110 111 001
010 110 111 110 0 001 111 001
101 110 111 110 0 001 111 001
001 0 111 111 111 111 0 0
110 0 111 111 111 111 0 0

Example 1. Let R be an associative ring with 1, and let A be a right (unital) R-module. Assume
that μ :A → R× is a homomorphism from the additive group of A into the unit group of R such
that

μ
(
aμ(b)

) = μ(a) (36)

holds for all a, b ∈ A. Then it is readily verified that the multiplication

ab := a
(
μ(b) − 1

)
(37)

makes A into a brace. For example, consider the group ring A = (Z/nZ)[Cn] of a cyclic group
Cn = 〈c〉 of order n, where n = 0 stands for the infinite cyclic group, and put R := A. Then

μ

(∑
nic

i

)
:= c

∑
ni (38)

defines a morphism μ which satisfies (36). Hence A becomes a brace with

A2 = Soc(A) = Kerμ. (39)

Example 2. Let A be a three-dimensional vector space over the prime field F2. The elements
of A can thus be represented as {0,1}-words of length 3. We introduce a multiplication on the
abelian group A by Table 1 (the line and column of 000 are omitted).

Then A is a brace with A2 = {0,111,001,110} = A3, A(3) = {0,111}, A(4) = 0, and trivial
socle. Hence A cannot be a ring. Note that, while A(2) is always an ideal, A(3) is not an ideal in
this example. Since A(3) = (A2)A, this also shows that the product of two ideals need not be an
ideal. The adjoint group A◦ is of dihedral type. It can be generated, e.g., by c = 011 (order 4)
and s = 100 (order 2) with s ◦ c ◦ s ◦ c = 0.

Next we will give a combinatorial description of brace ideals.

Definition 4. Let A be a brace. A subset X of A will be called a cycle base if X is invariant under
A◦ and X generates A as an abelian group.

Since X generates A◦, the invariance under A◦ can be replaced by the condition that X is a
sub-cycle-set of A. For example, A itself is a cycle base of A. On the other hand, every non-
degenerate cycle set X is a cycle base of Z(X). By Definition 4, the adjoint group A◦ of a brace
A operates on each cycle base of A, and by Proposition 7, the kernel of this operation is Soc(A).
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Definition 5. Let X be a set. By Π(X) we denote the set of partitions of X, i.e. collections P

of pairwise disjoint non-empty subsets of X such that
⋃

P = X. If x, y ∈ X belong to the same

Y ∈ P , we also write x
P∼ y. For P,P ′ ∈ Π(X), we call P a refinement of P ′ and write P � P ′

if x
P∼ y implies x

P ′∼ y. Note that Π(X) is a complete lattice with join

∨
i∈I

Pi =
{⋂

i∈I

Yi

∣∣∣ Yi ∈ Pi,
⋂
i∈I

Yi �= ∅
}
. (40)

Let A be a brace with cycle base X. Every subgroup H of A◦ gives rise to a partition P(H)

such that x, y ∈ X belong to the same Y ∈ P(H) if and only if y = xa + x for some a ∈ H . By
Eq. (18), it follows that P(H) is a partition. Conversely, every P ∈ Π(X) defines a subgroup

I (P ) := {
a ∈ A | ∀Y ∈ P : Ya = Y

}
(41)

of A◦, where Ya := {ya + y | y ∈ Y }.
Every partition P ∈ Π(X) satisfies Soc(A) ⊂ I (P ), and

P
(
I (P )

) =
∨{

P ′ ∈ Π(X) | I (P ′) = I (P )
}
. (42)

Similarly, if H is a subgroup of A◦, then I (P (H)) is the largest subgroup H ′ of A◦ which
satisfies P(H ′) = P(H).

Definition 6. Let X be a cycle set, and let P ∈ Π(X) be a partition. We define P to be normal if
the equivalence

x
P∼ y ⇔ z · x P∼ z · y (43)

holds for all x, y, z ∈ X. If, in addition,

x
P∼ y ⇒ x · z P∼ y · z (44)

holds in X, we call P an ideal of X.

Remark. If P ∈ Π(X) is normal, the implication (44) is equivalent to

x
P∼ y ⇒ zx P∼ zy. (45)

In fact, by virtue of (43), the conclusion of (44) is equivalent to z
P∼ (y · z)x . Now (45) follows if

we substitute z by zy .

Note that any morphism f :X → Y of cycle sets defines an ideal P of X such that x
P∼ y ⇔

f (x) = f (y). Conversely, every ideal P of a cycle set X gives rise to a cycle set X/P with
underlying set P and the induced operation. Thus if Y,Z ∈ P with y ∈ Y and z ∈ Z are given,
then Y · Z is the unique element of P that contains y · z.
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Theorem 1. Let A be a brace with a cycle base X.

(a) A subgroup N ⊃ Soc(A) of A◦ is normal if and only if P(N) is normal.
(b) A subgroup I ⊃ Soc(A) of A◦ is an ideal of A if and only if P(I) is an ideal of X such that

the cycle set X/P (I) is non-degenerate.
(c) If P ∈ Π(X) is an ideal with X/P non-degenerate, then I (P ) is an ideal of A.

Proof. In what follows, let b′ denote the inverse of an element b ∈ A◦. We show first that an
ideal I of A is a normal subgroup of A◦. The equation

a ◦ b = ab + b (46)

shows that I is a subgroup of A◦. If a ∈ I and b ∈ A◦, then ba + a ∈ I can be written in the form
ba + a = cb + c with a unique c ∈ I . Hence b ◦ a = ba + a + b = cb + c + b = c ◦ b. This shows
that I is a normal subgroup of A◦.

(a) The condition that P(N) is normal states that xb P (N)
∼ (xa)b holds for all x ∈ X and a ∈ N ,

i.e. there is an element c ∈ N with (xa)b = (xb)c . By Eq. (18), the latter equation is equivalent
to x(a ◦ b) = x(b ◦ c). Since X generates A as an abelian group, this means that a ◦ b and b ◦ c

belong to the same residue class modulo Soc(A). Hence Soc(A) ⊂ N implies that the condition
reduces to b′ ◦ a ◦ b ∈ N for all a ∈ N and b ∈ A◦.

(b) By virtue of (a), we can assume that I is a normal subgroup of A◦, so that P := P(I) is a
normal partition. Let us show first that I is an ideal of A if and only if I is invariant under A◦.
The necessity is trivial. Conversely, let I be A◦-invariant. By Eq. (46), we infer that I is an
additive subgroup of A. The invariance of I under left multiplication follows by the equation

b ◦ a ◦ b′ = (ba + a)b
′

(47)

obtained in the proof of Proposition 6.
Next we analyse (45) under the assumption that P is normal. With y := xa for some a ∈ I , the

implication (45) says that for x, z ∈ X and a ∈ I , there exists an element c ∈ I with (zx)c = zxa
.

This means that for x ∈ X and a ∈ I , there are c ∈ I and s ∈ Soc(A) with x ◦c = s+xa . The latter
equation says that (s +xa)◦x′ ∈ I , i.e. t ◦xa ◦x′ ∈ I for some t ∈ Soc(A). As Soc(A) ⊂ I , this is
equivalent to xa ◦ x′ ∈ I . Since xa ◦ x′ = (xa + x)x′ + xa + x + x′ = (xa)x

′
, we have shown that

P is an ideal if and only if (xa)x
′ ∈ I holds for x ∈ X and a ∈ I . Here it makes no difference if

we replace a by a′. Now Eq. (46) yields (xa′)x′ ◦x ◦a = (xa′ +x)◦a = xa′ ◦a = x +a = ax′ ◦x,
whence (xa′)x′ = ax′ ◦ x ◦ a′ ◦ x′. Therefore, P is an ideal if and only if ax′ ∈ I for all a ∈ I and
x ∈ X.

Now we assume that P is an ideal. Consider the cycle base −X := {−x | x ∈ X}. Since
(−x)a = −(xa), the partition of I with respect to −X is −P := {−Y | Y ∈ P }. Moreover, the
equation −x = (x′)x implies that x′ ∈ −X for all x ∈ X. Let us show that −P is an ideal of −X

if and only if X/P is non-degenerate. By Definition 6, −P is an ideal if and only if

∀x, y, z ∈ X: x
P∼ y ⇒ z(−x)′ P∼ z(−y)′ . (48)

Let us show that (48) is equivalent to

∀x, y, z ∈ X: x
P∼ y ⇒ (−x)′ P∼ (−y)′. (49)
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Assume that x
P∼ y. If (48) holds, then (−x)′ = x(−x)′ P∼ x(−y)′ P∼ y(−y)′ = (−y)′. The converse

follows by Definition 6. If we replace x by −x′ and y by −y′, then (49) becomes

∀x, y, z ∈ X: x · x P∼ y · y ⇒ x
P∼ y

since −x′ = x · x. So we have shown that −P is an ideal if and only if X/P is non-degenerate.
Therefore, the preceding paragraph implies that P is an ideal with X/P non-degenerate if and
only if ax′ ∈ I and a(−x)′ ∈ I for all a ∈ I and x ∈ X. Since X generates the adjoint group A◦,
the latter condition exactly states that I is invariant under A◦, i.e. an ideal of A.

(c) Let P ∈ Π(X) be an ideal of X. Assume that a ∈ I (P ). For x ∈ X and b ∈ A, this implies

that (xb)a
P∼ xb . Hence xb◦a◦b′ P∼ x, which shows that I (P ) is a normal subgroup of A◦. So it

remains to prove that I (P ) is A◦-invariant. This means that xab P∼ x holds for a ∈ I (P ), x ∈ X,

and b ∈ A. By Eq. (46), ab ◦ b′ = a + b′. Therefore, we have to show that xa+b′ P∼ xb′
holds for

a ∈ I (P ), x ∈ X, b ∈ A. By induction, it suffices to prove the equivalence

∀x ∈ X: xa′ P∼ xb′ ⇔ ∀x ∈ X: xa′+y P∼ xb′+y (50)

for a, b ∈ A and y ∈ X. Note that the left-hand side of (50) is equivalent to ∀x ∈ X: xa P∼ xb .

Assume that this condition is satisfied. By (44), this yields xya P∼ xyb
for all x ∈ X. Since a′+y =

ya ◦ a′, we infer that

xa′+y = xya◦a′ P∼ xyb◦a′ P∼ xyb◦b′ = xb′+y

holds for all x ∈ X. The reverse implication follows by a similar argument as in (b), replacing X

by −X. �
Let us apply Theorem 1 to a brace A with a finite square-free cycle base X. Then the main

result of [12] can be expressed by the implication

∣∣P(A)
∣∣ = 1 ⇒ |X| = 1. (51)

For any ideal I of A, the ideal AI is generated, as an abelian group, by the differences x − y

with x
P(I)∼ y. Thus AI merely depends on the partition P(I).

As mentioned in the introduction, there is a new conjecture [5] which claims that every finite
square-free cycle set X is fully retractible. In terms of braces, this means that the socle series of
any brace A with a finite square-free cycle base reaches A. Equivalently, the conjecture claims
that the radical series of A reaches 0, i.e. there is no ideal I �= 0 of A with AI = I . If we express
this again in terms of X, we arrive at a new version of the conjecture which states that there is
no non-trivial partition P of X which satisfies (43) and (44) such that any pair x, x′ ∈ X with

x
P∼ x′ is connected by a sequence x = x0, x1, . . . , xn = x′ in X with yi · xi−1 = zi · xi for some

y1, . . . , yn, z1, . . . , zn ∈ X with yi
P∼ zi .

Our main result (Theorem 2) implies that such a partition P must be trivial if |P | � 2.



166 W. Rump / Journal of Algebra 307 (2007) 153–170
4. Simple modules

Let A be a brace, and let R be an associative ring with 1. Assume that M ∈ Mod(A) admits
a left operation R × M → M which makes M into a left R-module. Then we call M an (R,A)-
bimodule if

(rx)a = r(xa) (52)

holds for x ∈ M,r ∈ R, and a ∈ A. We call S ∈ Mod(A) simple if S has exactly two submodules.
The analogue of Schur’s lemma holds for simple A-modules, that is, D := EndA(S) is a skew-
field. So S becomes a (D,A)-bimodule. Since SA is a submodule of S, we have either SA = S

or SA = 0. In the latter case, we call S trivial. If A is a radical ring, all simple A-modules are
trivial since A = RadA (see [8, p. 9, Theorem 2]).

Let S be a simple A-module. Then pS is a submodule for any rational prime p. If pS = S

for all p, then S is torsion-free and divisible as an abelian group. Hence S can be regarded as a
(Q,A)-bimodule. Otherwise, there is exactly one p with pS = 0, and S is an (Fp,A)-bimodule.
Thus any simple A-module S is a vector space over some prime field F . We call charS := charF
the characteristic of S.

Proposition 8. Let A be a brace with |A| = pn for a rational prime p. Then every simple
A-module S of characteristic p is trivial.

Proof. By (29), S can be regarded as a module over the group algebra FpA◦. Since A◦ is a
p-group, S is trivial as an A◦-module (see [1, Lemma 3.14.1]). This means that xa + x = x for
all x ∈ S and a ∈ A. Hence S is trivial as a module over the brace A. �
Corollary. Let A be a brace with |A| = pn for a rational prime p. Then A(n+1) = 0.

Proof. For any i ∈ {1, . . . , n}, there is a submodule M of A(i) such that A(i)/M is simple. Hence
A(i+1) ⊂ M . By induction, this yields A(n+1) = 0. �

The following example shows that Proposition 8 does not hold for arbitrary finite braces.

Example 3. Let A := {0,1,2,3,4,5} be the additive group of the ring Z/6Z. Consider the group
homomorphism μ :A → (Z/6Z)× = {1,5} which maps {0,2,4} to 1 and {1,3,5} to 5. Then A

becomes a brace by Example 1, with multiplication (37) depicted by Table 2. Table 3 displays
the circle operation of A. Here A◦ is isomorphic to the symmetric group S3, generated by c := 2
and s := 3, such that c ◦ c ◦ c = s ◦ s = s ◦ c ◦ s ◦ c = 0. Moreover, A2 = {0,2,4} = A(3) is
a non-trivial simple A-module of characteristic 3. Note also that {2,3,4} is a square-free cycle
base of A.

Table 2
1 2 3 4 5

1 4 0 4 0 4
2 2 0 2 0 2
3 0 0 0 0 0
4 4 0 4 0 4
5 2 0 2 0 2

Table 3
◦ 1 2 3 4 5
1 0 3 2 5 4
2 5 4 1 0 3
3 4 5 0 1 2
4 3 0 5 2 1
5 2 1 4 3 0
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5. Square-free cycle sets

We have seen in Section 1 (15) that every non-degenerate cycle set X admits a natural mor-
phism

ρ :X → A(X) (53)

into a brace A(X), such that the retraction ρ(X) of X is a cycle base of A(X). The subgroup
of S(X) generated by σ(X) can be identified with the adjoint group A(X)◦. Thus if X is finite,
A(X) is finite, too. The square-free property (see Section 1) of ρ(X) means that x2 = 0 holds for
all x ∈ ρ(X). So the term “square-free” translates well into the language of braces. Note that a
cycle set is square-free if and only if its one-element subsets are sub-cycle-sets.

Let A be a brace. The torsion part tA of A as an abelian group is a right ideal, and tA admits
a primary decomposition

tA =
∐

p prime

Ap (54)

into right ideals Ap . Assume that A is finite. Then the p-components Ap are Sylow subgroups
of A◦, and A = A2 ◦ A3 ◦ A5 ◦ · · · . By Hall’s theorem [7], this implies that A◦ is solvable. Note
that the natural projection pr :A � Ap need not be a morphism of cycle sets.

For an element a ∈ A, and n ∈ N, we denote the n-fold product a ◦ · · · ◦ a by a◦n and extend
this notation to n ∈ Z such that a◦(−n) ◦ a◦n = 0.

We say that a cycle set X operates on a set Z via a map X × Z → Z given by (x, z) �→ x · z
if the maps z �→ x · z are bijective and Eq. (1) holds for x, y ∈ X and z ∈ Z. The maps z �→ x · z
generate a subgroup of S(Z). If this permutation group is transitive, the operation of X on Z

will also be called transitive. A non-empty cycle set X is said to be decomposable [12] if it
admits a non-trivial partition X = Y � Z with x · y ∈ Y and x · z ∈ Z for all x ∈ X,y ∈ Y, z ∈ Z,
otherwise indecomposable. We agree that the empty cycle set is decomposable. Note that for any
decomposition X = Y � Z of cycle sets, Y and Z operate on each other.

Definition 7. We call a cycle set X with a decomposition X = Y �Z a bi-cycle if Y = {yi}i∈Z/mZ

and Z = {zj }j∈Z/nZ such that yi · zj = zj+1 and zj · yi = yi+1 for all i ∈ Z/mZ and j ∈ Z/nZ.

For example, every element x of a square-free cycle set X gives rise to a permutation σ(x) of
X which yields a decomposition of X into (finite or infinite) cycles. Let Cx(y) denote the cycle
which contains y. Then [12, Proposition 3], implies that for every pair of different elements
x, y ∈ X, the cycles Cy(x) and Cx(y) are disjoint, and that Cy(x) � Cx(y) is a bi-cycle.

Now we are ready to state our main result which generalizes Theorem 1 of [12].

Theorem 2. Let X be a square-free cycle set with two finite sub-cycle-sets Y and Z such that Y

and Z operate transitively on each other. Then y · z = y′ · z holds for all y, y′ ∈ Y and z ∈ Z.

We need the following lemmata.

Lemma 1. Let A be a brace, and let a ∈ A be an element with a2 = 0. Then

a◦n = na (55)
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holds for all n ∈ Z.

Proof. This follows immediately from the equation (na) ◦ a = (na)a + na + a = n(a2) + na +
a = (n + 1)a. �

To state the next lemma, we use the following abbreviation. Let G be a group which operates
on a set X. We write g ∼ h for two elements g,h ∈ G if there is some x ∈ X such that gnx = hnx

holds for all n ∈ Z.

Lemma 2. Let G be a finite p-group acting transitively on a set X. Assume that G admits a
generating subset S such that for any pair s, t ∈ S, there exists a sequence s = s0 ∼ s1 ∼ · · · ∼
sn = t in S. Then sx = tx holds for all s, t ∈ S and x ∈ X.

Proof. There is nothing to prove if |X| � 1. Therefore, assume that |X| > 1. Then there is a
normal subgroup N of G with |N | = p. Hence G/N acts transitively on the set X/N of N -
orbits. By induction, we can assume that the residue classes s + N with s ∈ S all act in the
same way on X/N . Since this action is transitive, X/N is a cycle, i.e. X/N = {Xi | i ∈ Z/mZ}
with sXi = Xi+1. In particular, this implies that |X1| = · · · = |Xm|. If |X1| = 1, we are done.
Otherwise, |N | = p implies that |Xi | = p for all i. Consider two elements s, t ∈ S. If s ∼ t , there
is some x ∈ X with snx = tnx for all n ∈ Z. Therefore, s−1t acts trivially on X/N . Since G

is a p-group, the action of s−1t on Xi is either trivial or a p-cycle. Assume that x ∈ Xi . Then
s−1tx = x, which shows that s−1t is trivial on Xi . Furthermore, we get s(sj−ix) = t (tj−ix) with
sj−ix = tj−ix ∈ Xj , for any j ∈ Z/mZ. Hence s−1t acts trivially on all of X. Since every pair
s, t ∈ S is related by a chain s ∼ s1 ∼ · · · ∼ t in S, the proof is complete. �
Lemma 3. Let A be a finite brace with a square-free cycle base X. Assume that A◦ operates
transitively on a set Z, such that each pair x, x′ ∈ X is connected by a sequence x = x0 ∼ x1 ∼
· · · ∼ xn = x′ in X. Then xz = x′z holds for all x, x′ ∈ X and z ∈ Z.

Proof. For A = 0, the lemma is trivial. Otherwise, we choose a minimal normal subgroup
N �= {1} of A◦. Since A◦ is solvable, N is an elementary abelian p-group for some rational
prime p. Hence N ⊂ Ap . By assumption, A◦/N operates transitively on the set Z/N of N -orbits
in Z, and the connectivity condition of the lemma holds for A◦/N and Z/N instead of A◦ and Z.
Therefore, by induction, we can assume that Z/N = {Zi}i∈Z/mZ and xZi = Zi+1 for all x ∈ X

and i ∈ Z/mZ. If |A| = q · |Ap|, then p � q , and Ap = qA. Hence qX is a cycle base of Ap .
Since N ⊂ Ap , the orbits of the adjoint group A◦

p define a partition of Z/N . As a cycle base,
qX generates the group A◦

p , and by Lemma 1, we have qX = X◦q . Therefore, A◦
p divides Z into

d := gcd(n, q) equally distributed parts Z′
1, . . . ,Z

′
d , where

Z′
i :=

n/d⋃
j=1

Zi+jd .

Thus A◦
p operates transitively on each Z′

i , and Lemma 1 shows that any sequence x0 ∼ x1 ∼
· · · ∼ xn in X gives rise to a sequence qx0 ∼ qx1 ∼ · · · ∼ qxn in qX with respect to a fixed Z′

i .
So Lemma 2 implies that (qx)z = (qx′)z for all x, x′ ∈ X and z ∈ Z. In particular, this shows that
each element of qX operates transitively on Z′ , for any i ∈ {1, . . . , d}. Consequently, each x ∈ X
i
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operates transitively on Z. Therefore, two elements x, x′ ∈ X with x ∼ x′ satisfy xz = x′z for all
z ∈ Z. Since each pair x, x′ ∈ X is connected by a chain x ∼ · · · ∼ x′, the lemma is proved. �
Proof of Theorem 2. Consider the cycle set morphism ρ′ :Y ↪→ X → A(X). Then ρ′(Y ) is
a cycle base of some right ideal A of A(X). By assumption, A◦ operates transitively on Z.
Let y, y′ ∈ Y be given. Since Z operates transitively on Y , there are finite sequences y =
y0, y1, . . . , yn = y′ in Y and z1, . . . , zn ∈ Z such that zi · yi−1 = yi for all i ∈ {1, . . . , n}. By
[12, Proposition 3], this implies that ρ′(y0) ∼ ρ′(y1) ∼ · · · ∼ ρ′(yn). Thus Lemma 3 applies,
which completes the proof. �

As a first consequence, we get

Corollary 1. Let X be a finite square-free cycle set with a decomposition X = Y � Z such that
Y and Z operate transitively on each other. Then X is a bi-cycle.

Proof. Theorem 2 implies that Z = {zi}i∈Z/mZ with y · zi = zi+1 for all y ∈ Y and i ∈ Z/mZ.
By symmetry, this shows that X is a bi-cycle. �

As a second special case of Theorem 2, we get the main result of [12].

Corollary 2. Let X �= ∅ be a finite square-free cycle set which operates transitively on itself.
Then X is a singleton.

Proof. By Theorem 2, the retraction of X is trivial, and every element x ∈ X operates transitively
on X. Hence X = Cx(x) = {x}. �
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