
Linear Algebra and its Applications 436 (2012) 1312–1343

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

On the reproducing kernel of a Pontryagin space of vector

valued polynomials
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1. Introduction

1.1. By Baire’s category theorem, the Pontryagin spaceB in the title is necessarily finite dimensional

(see Remark 2.1 below) and hence is a reproducing kernel space. Indeed, if
(
B, [ · , · ]B ) is an n-

dimensional Pontryagin space of d × 1 vector polynomials and if B(z) is a d × n matrix polynomial

whose columns Bk(z), k ∈ {1, . . . , n}, form a basis of B, then the reproducing kernel of B is the d× d
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matrix polynomial in z and w∗ given by

K(z,w) = B(z)G−1B(w)∗, z,w ∈ C,

where G is the n × n Gram matrix associated with B(z), that is,

G = [gjk]nj,k=1, gjk = [Bk, Bj]B , j, k ∈ {1, . . . , n}
(see [3, Example 2.1.8] and the remark following it). The reproducing kernel of a reproducing kernel

space is unique but can often bewritten in variousways. In this paper we give necessary and sufficient

conditions under which K(z,w) above is a polynomial Nevanlinna kernel. This means that it can be

written in the form

K(z,w) = KM,N(z,w) := M(z)N(w)∗ − N(z)M(w)∗

z − w∗ , z,w ∈ C, z �= w∗,

where M(z) and N(z) are d × d matrix polynomials such that

M(z)N(z∗)∗ − N(z)M(z∗)∗ = 0 for all z ∈ C

and

rank
[
M(z) N(z)

] = d for at least one z ∈ C. (1.1)

If, in addition, the equality in (1.1) holds for all z ∈ C, then the Nevanlinna kernel KM,N(z,w) is called
a full Nevanlinna kernel.

The following theorem is the main result in this paper. It is proved in Section 4.

Theorem 1.1. Let B be a (finite dimensional) Pontryagin space of d × 1 vector polynomials. Denote by

SB the operator of multiplication by the independent variable in B and by Eα the operator of evaluation

at a point α ∈ C. Then the reproducing kernel of B is a polynomial Nevanlinna kernel if and only if the

following two conditions hold:

(A) The operator SB is symmetric in B.

(B) For some α ∈ C we have ran
(
SB − α

) = B∩ ker Eα .

In this case the reproducing Nevanlinna kernel is full if and only if the equality in (B) holds for all α ∈ C.

We think Theorem 1.1 is new, possibly even in the positive definite case, that is, the case where the

space B is a reproducing kernel Hilbert space of vector polynomials. In that case B in the theorem is a

special case of de Branges’ Hilbert spaces of entire functions. For scalar functions, see [12]; for vector

functions, see [13,14]. In particular, [14, Theorems 1–3] are closely related to Theorem 1.1. For results

on the indefinite scalar case we refer to the series of papers on Pontryagin spaces of entire functions

by Kaltenbäck andWoracek. More specifically, [26, Theorem 5.3] is closely related to Theorem 1.1 with

d = 1, [27, Proposition2.8] canbeused toobtain a scalar versionof Theorem1.2 below, and [26, Lemma

6.4] is linked with Theorem 5.1 in Section 5. The emphasis in this paper is on vector polynomials and

an indefinite setting.

1.2. In the proof of Theorem 1.1 we use the following result which shows that the condition (B)

in Theorem 1.1 completely determines the structure of Bas a linear space. We believe Theorem 1.2 is

also new, but closely related to results around [20, Proposition 2.3]. For the proof of Theorem 1.2 we

refer to Section 3.

Theorem 1.2. Let B be a finite dimensional linear space of d × 1 vector polynomials and let α ∈ C. The

equality

ran
(
SB − α

) = B∩ ker Eα (1.2)
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holds if and only if there exist nonnegative integersμ1, . . . , μd and a d× d matrix polynomial W(z)with

detW(α) �= 0 such that the space Bconsists of all vector polynomials of the formW(z)
[
p1(z) · · · pd(z)]�

where pj(z) runs through all scalar polynomials of degree strictly less than μj , j ∈ {1, . . . , d}. The matrix

W(z) can be chosen such that{
α ∈ C : detW(α) �= 0

} = {
α ∈ C : ran

(
SB − α

) = B∩ ker Eα

}
. (1.3)

It follows that the dimension of B in Theorem 1.2 is μ1 + · · · + μd. If the conditions (A) and (B) of

Theorem1.1 hold, then the numbersμ1, . . . , μd are the Forney indices of the blockmatrix polynomial[
M(z) N(z)

]
corresponding to the reproducing Nevanlinna kernel of B. Moreover, the defect numbers

of SB coincide with the cardinality of the set
{
j ∈ {1, . . . , d} : μj > 0

}
, see Remarks 4.1 and 4.3. This

offers a direct way of determining the dimension of the reproducing kernel space Bwith reproduc-

ing Nevanlinna kernel KM,N(z,w) and the defect numbers of SB from the block matrix polynomial[
M(z) N(z)

]
.

In the scalar case (d = 1) the space B in the above theorems is analogous to the so-called Szegö

space, in the Hilbert space setting defined and studied in [34,35] and in the Pontryagin space setting

in [1]. In the literature there are many papers characterizing special forms of the reproducing kernel

of a reproducing kernel space. Of those related to a reproducing kernel Pontryagin space we mention

[7, Section 6] and [2]. We refer to the references in these papers for papers dealing with the Hilbert

space case. The characterizations in these works are often in terms of a special identity to be satisfied

by the difference-quotient operator on the space. In some cases, such as in [2, Theorem 1.4] and

[12, Problems 51 and Theorem 23] the invertibility of K(z, z) for some values of z plays a role in

proving the asserted representation of the kernel K(z,w). We give in Section 6 some examples where

det K(z,w) = 0 for all z,w ∈ C, see Example 6.6 and Example 6.7.

1.3. A pair {M(z),N(z)} of d × d matrix functionsM(z) and N(z) is called a generalized Nevanlinna

pair if the functions aremeromorphic onC\R, the intersection of the domains of holomorphy hol (M)
of M(z) and hol (N) of N(z) is symmetric with respect to the real axis,

M(z)N(z∗)∗ − N(z)M(z∗)∗ = 0 for all z ∈ hol (M) ∩ hol (N), (1.4)

rank
[
M(z) N(z)

] = d for at least one z ∈ hol (M) ∩ hol (N), (1.5)

and the Nevanlinna kernel

KM,N(z,w) := M(z)N(w)∗−N(z)M(w)∗

z − w∗ , z,w ∈ hol (M) ∩ hol (N), z �= w∗ (1.6)

has a finite number of negative squares. Here, by a finite number of negative squareswe mean that the

set of numbers of negative eigenvalues counted according to multiplicity of the self-adjoint matrices

of the form[
x∗
j KM,N(zj, zi)xi

]n
i,j=1

with

n ∈ N, xi ∈ Cd, zi ∈ hol (M) ∩ hol (N), zi �= z∗j , i, j ∈ {1, . . . , n}
has amaximum. If thismaximum isκ , thenwe say that the pair and the kernel have κ negative squares.

If κ = 0 the adjective “generalized” is omitted; in that case the matrix functions are holomorphic at

least on C\R. The number of positive squares is defined in the same way. The pair and kernel are

called full if the equality in (1.5) holds for all z ∈ hol (M) ∩ hol (N). If a (generalized) Nevanlinna pair

{M(z),N(z)} is such that N(z) = Id, the d × d identity matrix, then it is identified with its first entry

M(z) and M(z) is a (generalized) Nevanlinna function.

Nevanlinna pairs and generalized Nevanlinna pairs have been used in interpolation and moment

problems (see [30,4,5,8]), the description of generalized resolvents (see [28]) and in the theory of
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boundary value problems with eigenvalue dependent boundary conditions (see [17,18,15,9]). Theo-

rem 1.1 arose in our study [10] of an eigenvalue problem for an ordinary differential operator in a

Hilbert space with boundary conditions which depend polynomially on the eigenvalue parameter. In

that paper we linearize the original problem by extending the Hilbert space with a finite dimensional

Pontryagin space of d × 1 vector polynomials. This paper concerns the structure of such spaces.

1.4. The Nevanlinna pair in a Nevanlinna kernel is not unique (see the paragraph before

Example 6.7) and if {M(z),N(z)} is a pair that determines the kernel, then the polynomial matrix

N(z) may be such that detN(z) = 0 for all z ∈ C. In Section 5 we prove that one can always choose

the pair so that detN(z) �≡ 0 and the rational generalized Nevanlinna matrix function N(z)−1M(z) is
essentially aQ-functionof the symmetric operator SB .We show that every self-adjoint extensionof SB

with nonempty resolvent set gives rise to a reproducing Nevanlinna kernel for the space B. The proof

of Theorem 1.1 given in Section 4 is geometric, the proof of the first if statement in Theorem 1.1 given

in Section 5 is analytic. The last two examples in Section 6, Example 6.6 and Example 6.7, also serve to

show that this analytic proof is constructive. In Section 6 we present three corollaries of Theorem 1.1

and four examples.

In Section 2 we fix the notation related to vector and matrix polynomials and we recall the Smith

normal form and the Forney indices of a matrix polynomial. Moreover, we prove some lemmas on

the structure of a degenerate subspace of a finite dimensional Pontryagin space, the defect numbers

of a simple symmetric relation in such a space and on polynomial Hermitian kernels. Although most

proofs in this paper are based onmethods from linear algebra, in the sequel we assume that the reader

is familiar with (i) Pontryagin spaces and (multi-valued) operators on such spaces such as symmetric

and self-adjoint relations (as in [24,19,11]), (ii) generalized Nevanlinnamatrix functions (as in [30,31])

and (iii) reproducing kernel Pontryagin spaces (as in [6, Chapter 1] and [3, Chapter 7]).

The notion of a Q-function of a simple symmetric operator in a Pontryagin space is recalled in

Section 5.

2. Notation and basic objects

2.1. The symbols N, R, and C denote the sets of positive integers, real numbers and complex num-

bers. For d ∈ N the vector space of all d×1 vectors is written asCd and Id stands for the d×d identity

matrix. The kth row of Id will be denoted by ed,k . For k ∈ {1, . . . , n} the subspace of Cd spanned by

ed,1, . . . , ed,k will be called a top coordinate subspace ofCd; itwill be denoted byCd
k . The corresponding

d × d projection matrix is denoted by Pd,k . We consider Cd
0 = {0} a top coordinate subspace spanned

by the empty set.

By Cd[z] we denote the vector space over C of all polynomials with coefficients in Cd. The space

Cd is identified with the subspace of all constant polynomials in Cd[z]. If d = 1 we simply write C[z]
and C. For f ∈ Cd[z]\{0} with

f (z) = a0 + a1z + · · · + anz
n

and for the zero polynomial 0 we define

degf = max
{
k ∈ {0, . . . , n} : ak �= 0

}
and deg0 = −∞.

Matrix polynomials are written as B(z),M(z),N(z), . . ., that is, with their argument z; we use the

bold face P(z), S(z), . . ., for d × 2d matrix polynomials. Vector polynomials are sometimes written

with and sometimes without their argument. The Fraktur alphabet A, B, C, H, . . . is used to denote

vector subspaces of Cd[z]. One exception to this is that L will be used for a subspace of C2d[z]. An
inner product on B is denoted by [ · , · ]B . In a vector space, the symbol ⊕ denotes the direct sum of

subspaces.

Remark 2.1. A Banach space with a countable Hamel basis is separable and hence, by [32], it is finite

dimensional. Since
{
zn : n ∈ {0} ∪ N

}
is a countable Hamel basis of C[z], the space Cd[z] and all
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its subspaces also have countable Hamel bases. Therefore any Pontryagin subspace of Cd[z] is finite
dimensional. In spite of this fact, to emphasize the finite dimensionality, we continue to speak of finite

dimensional Pontryagin subspaces of Cd[z].
We introduce some special subspaces ofCd[z]. Let n ∈ {0}∪N. The symbolCd[z]<n stands for the

set of all f ∈ Cd[z] such that degf < n. In particular, Cd[z]<1 = Cd and Cd[z]<0 = {0}. A subspace

Cof Cd[z] is called canonical if there exist nonnegative integers μk, k ∈ {1, . . . , d}, such that

C =
d⊕

k=1

(
C[z]<μk

)
ed,k

= {[p1(z) · · · pd(z)]� : pk(z) ∈ C[z], deg pk < μk, k ∈ {1, . . . , d}}.
The numbers μ1, . . . , μd will be called the degrees of C. Without loss of generality we can assume

that they are ordered: μ1 � · · · � μd � 0. Then a canonical subspace is uniquely determined by its

degrees. Clearly, the dimension of C is the sum of its degrees.

Next we introduce some useful operators on Cd[z]. By Pd,k , k ∈ {1, . . . , d}, we denote the natural

extension of Pd,k to Cd[z], by S : Cd[z] → Cd[z] the operator of multiplication by the independent

variable, that is,

(Sf )(z) = zf (z), f ∈ Cd[z],
and by Eα : Cd[z] → Cd the evaluation operator at the point α ∈ C:

Eα(f ) = f (α), f ∈ Cd[z].
It follows from the fundamental theorem of algebra that

ran
(
S − α

) = ker Eα. (2.1)

Awide class of operators onCd[z] is induced by d×dmatrix polynomials. IfM(z) is such a polynomial

we define the operator M : Cd[z] → Cd[z] by(
Mf
)
(z) = M(z)f (z), f ∈ Cd[z].

Clearly, MS = SM. A square matrix polynomial is unimodular if its determinant is identically equal to

a nonzero constant. If M(z) is a unimodular matrix polynomial we will call M a unimodular operator.

In this case M is a bijection and its inverse is also a unimodular operator.

2.2. In the sequel we use that any nonzero d × n matrix polynomial B(z) admits a Smith normal

form representation (see for example [22, Satz 6.3] or [25]):

B(z) = U(z)

⎡
⎣D(z) 0

0 0

⎤
⎦ V(z), (2.2)

where U(z) is a d× d unimodular matrix polynomial, V(z) is an n× n unimodular matrix polynomial

and the matrix in the middle is a d × n matrix in which, for some l ∈ {1, . . . ,min{d, n}}, D(z) is a

diagonal l × l matrix polynomial with monic diagonal entries: D(z) = diag
(
b1(z), . . . , bl(z)

)
such

that bi(z) is divisible by bi+1(z), i ∈ {1, . . . , l− 1}. Notice that rank B(α) = l if and only if b1(α) �= 0.

If for some z ∈ C the rank of B(z) is d (n, respectively), then l = d (l = n) and the zero block row

(column) in the matrix in the middle of the right hand side in (2.2) is not present.

Remark 2.2. The matrix in the middle of the right hand side in (2.2) is uniquely determined by B(z).
In this paper B(z) often is a matrix polynomial whose columns form a basis of a subspace Bof Cd[z].
Then for any d × n matrix polynomial B1(z) whose columns also form a basis of B, the middle term

of its Smith normal form is identical to that of B(z). Thus, the number l and the monic polynomials

bj(z), j ∈ {1, . . . , l}, above are uniquely determined by the subspace Bof Cd[z].
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2.3. Let S(z) be a d× 2d polynomial matrix. For j ∈ {1, . . . , d} let σj be the degree of the jth row of

S(z). By definition, a degree of a row is the degree of its transpose. Define S∞, the internal degree and

the external degree of S(z) by:

S∞ = lim
z→∞

⎡
⎢⎢⎢⎣
z−σ1 · · · 0

...
. . .

...

0 · · · z−σd

⎤
⎥⎥⎥⎦ S(z),

extdeg S(z) = σ1 + · · · + σd, and

intdeg S(z) = max{ degm(z) : m(z) is a d × d minor of S(z)}.
For a proof of the following theorem we refer to [33].

Theorem 2.3. Let P(z) be a d × 2d matrix polynomial with rank P(z) = d for all z ∈ C. Let S(z) be a

matrix polynomial in the family{
U(z)P(z) : U(z) unimodular

}
. (2.3)

The following statements are equivalent:

(a) extdeg S(z) = min
{
extdeg U(z)P(z) : U(z) unimodular

}
.

(b) rank S∞ = d.

(c) extdeg S(z) = intdeg S(z).
(d) S(z∗)∗ has the “predictable degree property”:

For every u(z) = [
u1(z) · · · ud(z)

]� ∈ Cd[z] we have

deg
(
S(z∗)∗u(z)

) = max
{
σj + deguj(z), j ∈ {1, . . . , d}}.

Amatrix polynomial S(z) in the family (2.3) satisfying the conditions (a)–(d) is called row reduced.

The multiset {σ1, . . . , σd} of row degrees for each row reduced matrix in the family (2.3) is the same.

Its elements are called the Forney indices of any of the matrices in the family (2.3), in particular of

P(z). We extend this definition to the case where the d × 2d matrix polynomial P(z) has full rank for

some z ∈ C. For that we use the following lemma which is a standard tool in system theory, see for

example [21].

Lemma 2.4. Let P(z) be a d × 2d matrix polynomial with rank P(z) = d for some z ∈ C. Then P(z)
admits the factorization:

P(z) = G(z)T(z) for all z ∈ C, (2.4)

where G(z) is a d × d matrix polynomial with detG(z) �≡ 0 and T(z) is a d × 2d matrix polynomial

with rank T(z) = d for all z ∈ C. This factorization is essentially unique, meaning that if also P(z) =
G1(z)T1(z) for all z ∈ C, where G1(z) and T1(z) have the same properties as G(z) and T(z), then for some

unimodular d × d matrix polynomial E(z): G1(z) = G(z)E(z)−1 and T1(z) = E(z)T(z), z ∈ C.

TheForney indicesofP(z) in the lemmaarebydefinition theForney indicesof thematrixpolynomial

T(z) in the factorization (2.4). By the second part of the lemma, this definition is independent of the

choice of the matrix G(z) in this factorization.

For convenience of the reader we give a proof of Lemma 2.4 based on the Smith normal form of a

matrix polynomial.

Proof of Lemma 2.4. LetP(z)have theSmithnormal form(2.2). Theassumptions imply that l = dand

that thematrix in themiddleof (2.2) is equal to
[
D(z) 0

]
. SetG(z) = U(z)D(z) andT(z) =

[
Id 0

]
V(z).

Then the factorization (2.4) holds and G(z) and T(z) have the properties mentioned in the lemma. To
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prove uniqueness we use the fact that, since T(z) and T1(z) have full rank for all z ∈ C, they have right

inverses, see [25]. These are 2d × d matrix polynomials S(z) and S1(z) such that T(z)S(z) = Id and

T1(z)S1(z) = Id for all z ∈ C. Define the matrix polynomials E(z) = T1(z)S(z) and F(z) = T(z)S1(z).
Then the equality G(z)T(z) = G1(z)T1(z) implies E(z) = G1(z)

−1G(z) and F(z) = G(z)−1G1(z),
hence E(z)F(z) = Id for all but finitely many z ∈ C. By continuity the last equality holds for all z ∈ C,

hence E(z) is unimodular and has the stated properties. �

2.4. The next two lemmas concern finite dimensional Pontryagin spaces. By the positive (negative)

index of a Pontryagin spaceKwemean the dimension of a maximal positive (negative) subspace ofK;

evidently, the dimension of K is equal to the sum of the indices.

Lemma 2.5. Let K be a Pontryagin space with positive and negative index equal to n. Let L be a subspace

of K with dimL = 2n − τ . If L contains a maximal neutral subspace of K, then L⊥ is the isotropic part of

L and L/L⊥ is a Pontryagin space with positive and negative index equal to n − τ .

Proof. Let N be a maximal neutral subspace contained in L. Since N⊥ = N , the inclusion N ⊆ L,
yieldsL⊥ ⊂ N ⊂ L. Therefore,L⊥ is the isotropicpart ofLanddimL⊥ = τ . LetL = L⊥+L−+L+ be

a pseudo-fundamental decomposition of L. SinceN is a neutral subspace of L, we have n = dimN �
τ + dimL±. Therefore

2n − τ = dimL = τ + dimL− + dimL+ � τ + n − τ + n − τ = 2n − τ.

This proves that dimL− = dimL+ = n − τ . �

Recall that a symmetric relation S in a Pontryagin spaceK is simple if S has no non-real eigenvalues

andK = span {ker(S∗ − z) : z ∈ C\R}. Belowmul S∗ stands for the multi-valued part of the adjoint

S∗ of S: mul S∗ = {g ∈ K : {0, g} ∈ S∗}.
Lemma 2.6. Let S be a simple symmetric relation in a finite dimensional Pontryagin space of dimension

n. Then the spaces mul S∗, ker S∗, and S∗ ∩ zI, z ∈ C, have the same dimension d′, say. In particular, the

defect numbers of S are both equal to d′. Furthermore, dim ranS = dim S = dim domS = n − d′ and
dim S∗ = n + d′.

Proof. First notice that by [9, Proposition 2.4] S is an operator and S has no eigenvalues. The following

statements are equivalent:

(a) dim
(
mul S∗) = d′.

(b) codim
(
dom S

) = d′.
(c) codim

(
ran(S − z∗)

) = d′ for all z ∈ C.

(d) dim
(
S∗ ∩ zI

) = d′ for all z ∈ C.

The relation (dom S)⊥ = mul S∗ implies the equivalence (a) ⇔ (b). The equivalence (b) ⇔ (c) fol-

lows from the fact that S − z∗ is one-to-one. By taking the orthogonal complements we obtain the

equivalence (c) ⇔ (d). Notice that (d) with z = 0 implies that d′ = dim
(
ker S∗). The equalities

n − d′ = dim domS = dim S = dim ranS follow from (b) and the fact that S is an injective operator.

Since dim S∗ = 2n − dim S the last equality follows. �

2.5. A d × d matrix function K(z,w) will be called a polynomial Hermitian kernel if it is a poly-

nomial of two variables z and w∗ and K(z,w)∗ = K(w, z), z,w ∈ C. This implies that the degree

of K(z,w) as a polynomial in z equals the degree of K(z,w) as a polynomial in w∗. If we denote this

common degree by p − 1, then K(z,w) can be expanded as

K(z,w) =
p−1∑
j=0

p−1∑
k=0

Ajkz
jw∗k, z,w ∈ C, (2.5)
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where Ajk, j, k ∈ {0, . . . , p − 1}, are d × d matrices. Since K(z,w) is a Hermitian kernel, the dp × dp

block matrix

A =

⎡
⎢⎢⎢⎣

A00 · · · A0,p−1

...
. . .

...

Ap−1,0 · · · Ap−1,p−1

⎤
⎥⎥⎥⎦ (2.6)

is self-adjoint. It also follows that the number of negative squares of K(z,w) equals the number of

negative eigenvalues of A and the number of positive squares of K(z,w) equals the number of positive

eigenvalues of A. The dimension of the reproducing kernel space corresponding to K(z,w) is the rank

of A. These observations are used in the proof of the following lemma.

Lemma 2.7. Let K(z,w) be a d × d matrix polynomial Hermitian kernel of degree p − 1. For q ∈ N set

Lq(z,w) = i (zq − w∗q)K(z,w), z,w ∈ C.

If q � p, then the positive and the negative index of the reproducing kernel Pontryagin space with kernel

Lq(z,w) are equal and coincide with the dimension of the reproducing kernel Pontryagin space with kernel

K(z,w).

Proof. Write K(z,w) in the form (2.5) and denote by A the matrix (2.6). We calculate the coefficients

of the matrix polynomial Lq(z,w) for q � p:

Lq(z,w) = izq
p−1∑
j=0

p−1∑
k=0

Ajkz
jw∗k − iw∗q

p−1∑
j=0

p−1∑
k=0

Ajkz
jw∗k

=
p−1∑
j=0

p−1∑
k=0

iAjkz
q+jw∗k +

p−1∑
j=0

p−1∑
k=0

(−i)Ajkz
jw∗(q+k)

=
q+p−1∑
j=0

p−1∑
k=0

iA(j−q)kz
jw∗k +

p−1∑
j=0

q+p−1∑
k=0

(−i)Aj(k−q)z
jw∗k

=
q+p−1∑
j=0

q+p−1∑
k=0

(
iA(j−q)k − iAj(k−q)

)
zjw∗k,

where we set Ajk = 0 whenever j < 0 or k < 0 or j > p − 1 or k > p − 1. In other words, the

2d(p + q) × 2d(p + q) self-adjoint matrix formed by the coefficients of Lq(z,w) is given by

B =

⎡
⎢⎢⎢⎢⎣
0 0 −iA

0 0 0

iA 0 0

⎤
⎥⎥⎥⎥⎦ ,

where the 0 in the center is a d(q − p) × d(q − p) matrix. With

E = 1√
2

⎡
⎢⎢⎢⎣
Idp 0 iIdp

0 Id(q−p) 0

iIdp 0 Idp

⎤
⎥⎥⎥⎦
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we have EE∗ = Id(q+p) and

E∗BE = E∗

⎡
⎢⎢⎢⎣
0 0 −iA

0 0 0

iA 0 0

⎤
⎥⎥⎥⎦ E =

⎡
⎢⎢⎢⎣
A 0 0

0 0 0

0 0 −A

⎤
⎥⎥⎥⎦ .

Therefore the rank of B is twice the rank of A. Moreover, B has equal numbers of positive and negative

eigenvalues. Since the positive and negative index of the reproducing kernel Pontryagin space with

kernel Lq(z,w) coincide with the number of positive and negative eigenvalues of B the lemma is

proved. �

A polynomial reproducing Nevanlinna kernel introduced in the Introduction is a polynomial Her-

mitian kernel. Since in the proof of Theorem 1.1 the polynomials in a Nevanlinna pair never appear

separate we adopt the following equivalent definition of a polynomial Nevanlinna kernel: A d × d

matrix function K(z,w) is called a polynomial Nevanlinna kernel if it can be represented as

P(z)Q−1P(w)∗ = i (z − w∗)K(z,w) for all z,w ∈ C, (2.7)

whereQ is a 2d×2d self-adjointmatrixwith d positive and d negative eigenvalues and P(z) is a d×2d

matrix polynomial such that P(z) has rank d for some z ∈ C. With

Q = Q1 :=
⎡
⎢⎣ 0 −iI

d

iI
d

0

⎤
⎥⎦ and P(z) = [

M(z) N(z)
]

(2.8)

the definition in the Introduction is obtained from the newone. The assumptions onQ imply that there

exists a constant invertible matrix T such that Q = TQ1T
∗. Now, if we write P(z)T = [

M(z) N(z)
]
,

we have K(z,w) = KM,N(z,w). Since P(z) is a polynomial, the condition that rank P(z) = d for some

z ∈ C implies that rank P(z) = d for all but finitely many z ∈ C. A polynomial Nevanlinna kernel will

be called a full Nevanlinna kernel if P(z) can be chosen such that rank P(z) = d for all z ∈ C.

3. Proof of Theorem 1.2

3.1. Let Bbe a vector subspace of Cd[z]. By SB we denote the range restriction of S to B, that is,

dom SB = B∩ S−1
B,

(
SB f

)
(z) = zf (z), f ∈ dom SB .

In graph notation this means:

SB = {{f , g} : f , g ∈ B, g(z) = zf (z) for all z ∈ C
}
.

By (2.1), for α ∈ C we have

ran
(
SB − α

) = (
S − α

)(
B∩ S−1

B
) ⊆ ran

(
S − α

) ∩ B = B∩ ker Eα. (3.1)

The reverse inclusion is equivalent to the implication

f ∈ B, α ∈ C, f (α) = 0 ⇒ f (z) = (z − α)g(z) for some g ∈ dom SB .

In some cases this implication does not hold. For example, it does not hold for any α ∈ C in the space

B ⊂ C2[z] given by

B =
⎧⎨
⎩
⎡
⎣ a0 + a2z

2

b0 + b1z

⎤
⎦ : a0, a2, b0, b1 ∈ C

⎫⎬
⎭ .
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Indeed, Bcontains
[
z2 −α2 z−α

]�
which is 0 at z = α, but Bdoes not contain

[
z+α 1

]�
. That the

implication, or equivalently, equality in (3.1) holds, is characterized in terms of canonical subspaces of

Cd[z] in Theorem 1.2 in the Introduction. This section is devoted to the proof of this theorem.

Let B(z) be a d × nmatrix polynomial whose columns form a basis for B, n = dimB. Then, as will

be shown in the proof of Theorem 1.2, the sets in (1.3) are equal to
{
α ∈ C : b1(α) �= 0

}
, where b1(z)

is the scalar polynomial in the Smith normal form (2.2) of B(z). We will first prove Theorem 1.2 for the

case where the sets in (1.3) are equal to C, see Theorem 3.4 below. In this case W(z) is unimodular.

The proof of Theorem 3.4 is based on the following three lemmas.

Lemma 3.1. Let Bbe a finite dimensional subspace of Cd[z] such that

ran
(
SB − α

) = B∩ ker Eα for all α ∈ C.

If dom SB ⊆ B′ ⊆ B, then ran
(
SB ′ − α

) = B′ ∩ ker Eα for all α ∈ C.

Proof. Let f ∈ B′ ∩ ker Eα . Then f ∈ B ∩ ker Eα = ran
(
SB − α

)
, that is, f = Sg − αg for some

g ∈ domSB ⊆ B′. From f , g ∈ B′ we infer g, Sg ∈ B′. Hence g ∈ dom SB ′ and f = (SB ′ − α)g. This
proves B′ ∩ ker Eα ⊆ ran

(
SB ′ − α

)
. Since the reverse inclusion is obvious, the lemma is proved. �

Lemma 3.2. Let Bbe an n-dimensional subspace of Cd[z]. Then
B∩ ker Eα = {0} for all α ∈ C (3.2)

if and only if there exists a unimodular operator W such that B = WCd
n, where Cd

n is a top coordinate

subspace of Cd.

Proof. If n = 0, the statements are trivial with W(z) = Id. From now on we assume n � 1. If B(z) is
any d × nmatrix polynomial whose columns form a basis of B, then, clearly,{

α ∈ C : rank B(α) = n
} = {

α ∈ C : B∩ ker Eα = {0}}. (3.3)

Assume (3.2). Let B(z) be a d × n matrix polynomial whose columns form a basis of B. By (3.3),

for all α ∈ C the rank of B(α) is n and n � d. Hence B(z) admits the Smith normal form (see (2.2)):

B(z) = U(z)
[
In 0

]�
V(z), where U(z) and V(z) are unimodular. Define

W(z) = U(z)

⎡
⎢⎣V(z) 0

0 Id−n

⎤
⎥⎦ . (3.4)

Then W(z) is a unimodular d × d matrix polynomial and from B(z) = W(z)
[
In 0

]�
it follows that

B = WCd
n. This proves the only if statement.

To prove the if statement, assume that there exists a d×d unimodularmatrix polynomialW(z) such

thatB = WCd
n, whereCd

n is a top coordinate subspace ofCd. Then the columns ofB(z) = W(z)
[
In 0

]�
form a basis of B and the rank of B(α) is n for all α ∈ C. The equality (3.2) follows from (3.3). �

Lemma 3.3. LetBbe an n-dimensional subspace ofCd[z] and letCbe a canonical subspace ofCd[z]with

degrees μ1 � · · · � μd � 0 of which k are positive. Assume C + SC ⊆ Band

B∩ ker Eα ⊆ C + SC for all α ∈ C. (3.5)

Then there exists a unimodular operator W which acts as the identity on C + SC and is such that

B = W
(
Cd

m + C + SC
)
, (3.6)

where m = n − (μ1 + · · · + μd)(� 0).
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Notice thatCd
m +C+ SC is a canonical subspace. Ifm � k, thenCd

m +C+ SCcoincides with C+ SC

andW = Id.

Proof. If C = {0} the statement follows from Lemma 3.2. From now on we assume C �= {0}. Then
μ1 > 0, consequently k ∈ {1, . . . , d} and Cd

k ⊆ C. We consider two cases: k = d and k < d.

(i) Assume k = d. ThenCd ⊆ C ⊆ B. Let f ∈ B. It can bewritten as f (z) = f (0)+ zh(z) = f (0)+
(Sh)(z). Then Sh = f − f (0) ∈ B. Since

(
Sh
)
(0) = 0, by (3.5) we get Sh ∈ B∩ ker E0 ⊆ C+ SC,

which implies f = f (0)+Sh ∈ C+SC. That is,B = C+SC. In this casem = d andwithW = Id
the lemma is proved.

(ii) Assume k < d. If C+ SC = B, then (3.6) holds withW = Id andm = k, implying that Cd
m ⊆ C.

From now onwe assume that C+ SC is a proper subspace of B. Recall that Pd,k is the coordinate

projection. A trivial, but important observation is

Eα

(
C + SC

) = Cd
k = ran Pd,k for all α ∈ C. (3.7)

Letα ∈ C be arbitrary and let f ∈ Bbe such that (Id−Pd,k)f (α) = 0. By (3.7), there exists a p ∈ C+SC

such that p(α) = Pd,kf (α), hence

(f − p)(α) = (Id − Pd,k)f (α) + Pd,kf (α) − p(α) = 0,

that is, f − p ∈ ker Eα . Since also f − p ∈ B, (3.5) implies f − p ∈ C + SC. Thus both p and f − p

belong to C + SC, implying that f ∈ C + SC. We have proved the implication:

f ∈ B, α ∈ C and (Id − Pd,k)f (α) = 0 ⇒ f ∈ C + SC. (3.8)

Let L0 be a subspace of Bbe such that

(
C ⊕ SC

) ∩ L0 = {0} and B = (
C ⊕ SC

)⊕̇L0.

The dimension of L0 is

j = n − (
μ1 + · · · + μd + k

) � 1.

Let B0(z) be a d × j matrix polynomial whose columns form a basis of L0. Decompose B0(z) as

B0(z) =
⎡
⎢⎣B0,t(z)
B0,b(z)

⎤
⎥⎦ ,

where B0,t(z) is a k × jmatrix polynomial and B0,b(z) a (d − k) × j matrix polynomial. We will prove

that

rank B0,b(α) = rank(Id − Pd,k)B0(α) = j for all α ∈ C. (3.9)

The first equality is trivial. To prove the second let α ∈ C be arbitrary and x ∈ Cj be such that

(Id − Pd,k)B0(α)x = 0. Set f (z) = B0(z)x. Then f ∈ L0 and (Id − Pd,k)f (α) = 0. By (3.8), f ∈ (C+ SC
)

∩ L0, consequently f = 0, that is, B0(z)x = 0 for all z ∈ C. Since the columns of B0(z) form a basis

of L0, this implies x = 0. This proves (3.9). Hence j � d − k. If j = d − k, the (d − k) × (d − k)
matrix polynomialWb(z) := B0,b(z) is unimodular. If j < d−kwe can extend B0,b(z) to a unimodular

(d− k) × (d− k)matrix polynomial (also denoted by)Wb(z) with detWb(α) �= 0 in the same way as

the matrix B(z) was extended to W(z) in (3.4) by the means of the Smith normal form. In both cases

the first j columns of Wb(z) are the columns of B0,b(z).
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LetWt(z) be the k× (d− k)matrix obtained from the k× jmatrix B0,t(z) by adding d− k− j zero

columns on the right. Define the d × d matrix polynomial W(z) by

W(z) =
⎡
⎢⎣ Ik Wt(z)

0(d−k)×k Wb(z)

⎤
⎥⎦ .

Then W(z) is unimodular and W(z)ed,k+l, l = 1, . . . , j, are the columns of the matrix B0(z). The

operator W acts as the identity on C + SC andWCd
m = Cd

k + L0, where

m = k + j = k + n − (
μ1 + · · · + μd + k

) = n − (
μ1 + · · · + μd

)
.

Hence W
(
Cd

m + C + SC
) = Cd

k + L0 + C + SC = B. �

Theorem 3.4. Let Bbe a finite dimensional subspace of Cd[z]. The equality
ran
(
SB − α

) = B∩ ker Eα for all α ∈ C (3.10)

holds if and only if there exist a d × d unimodular matrix polynomial W(z) and a canonical subspace C of

Cd[z] such that B = WC.

Proof. We first prove the if statement. To prove (3.10) it suffices to show that

B∩ ker Eα ⊆ ran(SB − α).

Let f ∈ B∩ker Eα . Then f (α) = 0 and f = Wg for some g ∈ C. SinceW is unimodular, g(α) = 0. Since

C is canonical, the polynomial g(z)/(z − α) belongs to C. Therefore f (z)/(z − α) = W(z)
(
g(z)/(z −

α)
) ∈ B, hence f ∈ ran(SB − α).
We prove the only if statement by induction on the dimension of B. Assume (3.10). The theorem is

obviously true if dimB = 0. Lemma 3.2 implies that it is true if dimB = 1 for then B ∩ Eα = {0}.
Let n ∈ N and state the inductive hypothesis:

If A is a subspace of Cd[z] with dimA < n and such that

ran
(
SA − α

) = A ∩ ker Eα for all α ∈ C, (3.11)

then there exists a unimodular d × d matrix polynomial operator F(z) such that FA is a canonical

subspace of Cd[z].
Let B be a finite dimensional subspace of Cd[z] such that (3.10) holds and dimB = n. Then

A = dom SB is a proper subspace of B. Therefore dimA < n. If A = {0}, then B ∩ ker Eα =
ran
(
SB −α

) = {0} and the theorem follows from Lemma 3.2. Nowwe assumeA �= {0}. By Lemma 3.1

the subspaceAsatisfies (3.11). By the inductivehypothesis thereexists aunimodularmatrixpolynomial

F(z) such that D := FA is a canonical subspace of Cd[z]. Since F and S commute we have D = FA =
F dom SB = dom SFB , hence D + SD ⊆ UB. To apply Lemma 3.3 to FBwe need to verify (3.5). Let

f ∈ B be such that (Ff )(α) = 0. Then f (α) = 0 and, by (3.10), there exists a g ∈ dom SB = A such

that f = SBg − αg ∈ A+ SA. Therefore, Ff ∈ D+ SD, which verifies (3.5). Lemma 3.3 applied to FB

yields that there exists a unimodular operator U such that U−1FB is a canonical subspace of Cd[z].
This proves the theorem withW = F−1U. �

3.2. The following lemma will be used to deduce Theorem 1.2 from Theorem 3.4.

Lemma 3.5. Let B be an n-dimensional subspace of Cd[z] and let B(z) be a d × n matrix polynomial

whose columns form a basis of B. Let l be the size of the square diagonal matrix in the Smith normal form

(2.2) of B(z). Then{
α ∈ C : ran(SB − α) = B∩ ker Eα

} = {
α ∈ C : rank B(α) = l

}
(3.12)
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if and only if the set on the left hand side is nonempty. In this case dim ran SB = dimB− l.

Proof. The only if statement follows from the fact that the set on the right hand side in (3.12) is

nonempty. Before proving the if statement we show

dim ran SB � dimB− l. (3.13)

For all α ∈ C we have ran(SB − α) ⊆ B∩ ker Eα , and hence

dim ran SB = dim ran(SB − α) � dim(B∩ ker Eα) = dimB− rank B(α).

Consequently, l = maxα∈C rank B(α) � dimB− dim ran SB . This proves (3.13).

To prove the if statement assume that α0 ∈ C is in the set on the left hand side of (3.12). Then

equality holds in (3.13). Indeed, this follows from

dimB− l � dim ran SB

= dim ran(SB − α0)

= dim
(
B∩ ker Eα0

)
= dimB− rank B(α0)

� dimB− l.

This proves the last statement in the lemma. Now the equality (3.12) follows from the following

sequence of equivalences which hold for all α ∈ C:

rank B(α) = l ⇔ dim(B∩ ker Eα) = dimB− l

⇔ dim(B∩ ker Eα) = dim ran SB

⇔ dim(B∩ ker Eα) = dim ran(SB − α)

⇔ ran(SB − α) = B∩ ker Eα. �

Proof of Theorem 1.2. We first prove the if statement. It suffices to prove the inclusion B∩ ker Eα ⊆
ran(SB − α), as the reverse inclusion always holds. Let f ∈ B ∩ ker Eα . Then f (α) = 0 and f = Wg

with g ∈ C. SinceW(α) is invertible, g(α) = 0. As C is canonical, the polynomial h(z) = g(z)/(z−α)
belongs to C. ThereforeW(z)h(z) ∈ Band (x − α)W(z)h(z) = f (z), which implies f ∈ ran(SB − α).

To prove the only if statement, assume that (1.2) holds for α = α0. Let B(z) be a d × n matrix

polynomial whose columns form a basis of B. Let

B(z) = U(z)

⎡
⎣D(z) 0

0 0

⎤
⎦ V(z)

be the Smith normal form (2.2) of B(z) where D(z) is an l × l diagonal matrix with nonzero diagonal

entries. Now define the space B1 ⊂ Cd[z] as the span over C of the columns of

B1(z) = U(z)

⎡
⎣Il 0

0 0

⎤
⎦ V(z).

Set

F(z) = U(z)

⎡
⎣D(z) 0

0 Id−l

⎤
⎦U(z)−1.
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Then B = FB1 and det F(α0) �= 0. Moreover, since

{α ∈ C : det F(α) �= 0} = {α ∈ C : rank B(α) = l}
and by Lemma 3.5, (1.3) holds for F(z). From det F(α0) �= 0 it follows that

ran(SB − α0) = B∩ ker Eα0
⇒ ran(SB1

− α0) = B1 ∩ ker Eα0
.

Since rank B1(α) = l for all α ∈ C, Lemma 3.5 implies that

ran(SB1
− α) = B1 ∩ ker Eα for all α ∈ C.

By Theorem 3.4, there exists a unimodular matrix U(z) such that C = U−1B1 is a canonical subspace

ofCd[z], hence B = WCwithW = FU. Finally, (1.3) holds, because U is unimodular and F(z) satisfies
(1.3). �

3.3. Theorem 1.2 can also be formulated in terms of matrix polynomials:

Theorem 3.6. LetBbe an n-dimensional subspace ofCd[z], n � 1. Let B(z) be a d×nmatrix polynomial

whose columns form a basis of B. Let b1(z) and l be as in the Smith normal form (2.2) of B(z). Then
l + dim dom SB = dimB if and only if there exist

(a) a d × d matrix polynomial W(z) whose determinant has the same zeros as b1(z),
(b) nonnegative integers m and δ0 � δ1 � · · · � δm with δ0 + · · · + δm = n and

(c) an invertible n × n constant matrix T

such that

B(z) = W(z)
[
Pδ0 Pδ1z · · · Pδmz

m
]
T for all z ∈ C, (3.14)

where Pδ stands for the d × δ matrix: Pδ =
[
Iδ 0

]�
.

Proof. For all α ∈ C we have ker(SB − α) ⊆ B∩ kerEα . For all α ∈ C with b1(α) �= 0 we have

l + dim dom SB = dim ran
(
Eα|B )+ dim ran(SB − α)

� dim ran
(
Eα|B )+ dim(B∩ kerEα)

= dimB

and equality holds if and only if ker(SB − α) = B∩ kerEα .

To prove the only if statement, assume l + dim dom SB = dimB. Then we can apply Theorem 1.2:

There exist a matrix polynomial W(z) satisfying (a) and a canonical subspace C of Cd[z] such that

B = WC. Let μ1 � · · · � μd be the degrees of C. Since n � 1, we have μ1 � 1. setm = μ1 − 1 and

δj = #{i ∈ {1, . . . , d} : μi > j}, j ∈ {0, . . . ,m}.
Then the equality in (b) holds. Since the columns of thematrix

[
Pδ0 · · · Pδmz

m
]
form a basis for C, there

exists a matrix T satisfying (c) such that (3.14) holds.

To prove the if statement, we note that (a)–(c) and (3.14) imply that B = WCwith C as above, and

hence Theorem 1.2 can be applied and together with the if and only if statement at the beginning of

the proof yield that l + dim dom SB = dimB. �

Remark 3.7. Denote by (Sj)B the range restriction of Sj to B. Then in item (b) of Theorem 3.6: m is

the nonnegative integer with
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{0} = dom(Sm+1)B � dom(Sm)B

and

δj = dim dom(Sj)B − dim dom(Sj+1)B , j ∈ {0, . . . ,m}.
Moreover, if we set δ−1 = d, then the numbers

μk = 1 + max
{
j ∈ {−1, 0, . . . ,m} : δj � k

}
, k ∈ {1, . . . , d}, (3.15)

are the degrees of the canonical space W−1B. In the next section we will see that if B ⊂ Cd[z] is a
Pontryagin spacewhich satisfies the conditions (A) and (B) of Theorem1.1, then the numbers (3.15) are

the Forney indices of amatrix polynomial P(z) in a representation (2.7) of the Nevanlinna reproducing

kernel K(z,w) of B; see Remark 4.3.

4. Proof of Theorem 1.1

4.1.We divide the proof of Theorem 1.1 in two parts. In the first part we prove the if statements and

in the second part we prove the only if statements. In the first part we will need characterizations of

the defect numbers of the operator SB ofmultiplication by the independent variable in the Pontryagin

space Bwhich are collected in the following remark.

Remark 4.1. Clearly, SB has no eigenvalues and for any subset � of C containing more than d ×
max{deg f : f ∈ B} elements we have ∩w∈� ran(SB − w∗) = {0} or, equivalently,

B = span
{
ker(S∗

B − w) : w ∈ �
}
.

Now assume (A) of Theorem 1.1. Then, by the above observations, SB is a simple symmetric operator

and hence its defect numbers coincide and are equal to the codimension of ranSB , see Lemma 2.6. It

follows from Lemma 3.5 that the defect numbers of SB are also equal to the integer l introduced in

Remark 2.2. Hence l ∈ {1, . . . ,min {d, n}}, where n = dimB. Now also assume (B) of Theorem 1.1.

Then l can be characterized in a differentway. Indeed, by Theorem 1.2, there exist a canonical subspace

C ⊆ Cd[z]with degreesμ1 � · · · � μd � 0 and a d×dmatrix polynomialW(z)with detW(α) �= 0

such that B = WC. Since, by Lemma 2.6, we have n − l = dimdomSB = dimranSB and since

multiplication by z and by W(z) commute, l is uniquely determined by the inequalities:

μ1 � · · · � μl � 1 and μl+1 = · · · = μd = 0. (4.1)

Proof of the if statements in Theorem 1.1. Assume (A) and (B). We show that B has a reproducing

Nevanlinna kernel in steps (i)–(iv). In step (v) we prove the last if statement in the theorem.

(i) By Theorem 1.2 there exist a canonical subspace C ⊆ Cd[z] with degrees μ1 � · · · � μd � 0

and a d × d matrix polynomial W(z) with detW(α) �= 0 such that B = WC. Then, by Remark 4.1,

the defect numbers of the symmetric operator SB are both equal to l, where l is determined by the

inequalities (4.1). It follows that the elements of B are of the form:

f (z) ∈ B ⇒ f (z) = W(z)

⎡
⎣x(z)

0

⎤
⎦ , (4.2)

where x(z) is an l×1 vector polynomial and 0 denotes the zero vector of size (d− l)×1. Let n = dimB

and let B(z) be a d×nmatrix polynomial whose columns form a basis ofB. LetG be the corresponding

Gram matrix and write the reproducing kernel K(z,w) of B as K(z,w) = B(z)G−1B(w)∗, z,w ∈ C.

By (B), this representation implies that for eachw ∈ C which belongs to the set in (3.12) the columns

of K(z,w) span an l-dimensional subspace of B, in formula:

dim
{
K( · ,w)x : x ∈ Cd} = l whenever w ∈ {α ∈ C : rank B(α) = l

}
. (4.3)
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(ii) In the following we use graph notation in the space B⊕ B. The operator SB is identified with its

graph in B ⊕ B and its adjoint S∗
B is the orthogonal complement of SB in B ⊕ B equipped with the

Lagrange inner product[[{f , g}, {p, q}]] = −i
([g, p]B − [f , q]B ), {f , g}, {p, q} ∈ B⊕ B.

Let w ∈ C, x ∈ Cd and {f , Sf } ∈ SB be arbitrary. Then[[{f , Sf }, {K(·,w)x,w∗K(·,w)x}]] = −i
([
Sf , K(·,w)x

]
B

− [
f ,w∗K(·,w)x

]
B

)
= −i

(
x∗(Sf )(w) − wx∗f (w)

)
= 0

andhence
{{K(·,w)x,w∗K(·,w)x} : x ∈ Cd

} ⊆ S∗
B ∩(w∗I) for allw ∈ C. According to the definition

of defect number (see [9, p. 369]) and by (4.3), it follows that for allw ∈ {α ∈ C\R : rank B(α) = l
}

{{K(·,w)x,w∗K(·,w)x} : x ∈ Cd} = S∗
B ∩ (w∗I), (4.4)

because for such w’s both sets have dimension l. Consider the subspace

L0 := span
{{K(·,w)x,w∗K(·,w)x} : w ∈ C, x ∈ Cd} (4.5)

of S∗
B . Since SB has no eigenvalues, the generalized von Neumann formula given in [9, Theorem 3.7]

implies that for d + 1 distinct points w0, . . . ,wd from the set
{
α ∈ C : Imα > 0, rank B(α) = l

}
we have

S∗
B = SB + S∗

B ∩ (w∗
0 I) +

d∑
j=1

S∗
B ∩ (wjI).

Combined with (4.4) and (4.5) this yields SB + L0 ⊆ S∗
B ⊆ SB + L0, and hence

S∗
B = SB + L0. (4.6)

(iii) Let
(
B1, [ · , · ]B1

)
be the reproducing kernel Pontryagin space whose kernel is

L1(z,w) = i (z − w∗)K(z,w), z,w ∈ C.

We claim that its positive and negative index are l. To prove the claim we consider the operator

T : (S∗
B , [[ · , · ]]) → B1 defined by T

({f , g}) = Sf − g, {f , g} ∈ S∗
B , and show that it is a partial

isometry onto B1 with null space kerT = SB . The last equality is easy to verify. That ran T = B1

follows from (4.6) as it implies (with w ∈ C and x ∈ Cd):(
T
({K(·,w)x,w∗K(·,w)x}))(z) = (z − w∗)K(z,w)x = −iL1(z,w)x.

That T is isometric follows from (4.6), the symmetry of SB and the equalities (with w, v ∈ C and

x, y ∈ Cd):[[{
K(·,w)x,w∗K(·,w)x

}
,
{
K(·, v)y, v∗K(·, v)y}]]

= −i
([
w∗K(·,w)x, K(·, v)y]

B
− [

K(·,w)x, v∗K(·, v)y]
B

)
= i
(
v − w∗)y∗K(v,w)x

= y∗L1(v,w)x

= [−iL1(·,w)x, −iL1(·, v)y]B1

=
[
T
({K(·,w)x,w∗K(·,w)x}), T({K(·, v)y, v∗K(·, v)y})]

B1

.

The claim now follows because
(
S∗

B/SB , [[ · , · ]]) is a Pontryagin space with positive and negative

index l (see [9, Theorem 2.3(c)]) and T establishes a unitary mapping between this space and B1.
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(iv) Let B1(z) be a d × 2l matrix polynomial whose columns form a basis of B1, and let Q1 be the

corresponding 2l × 2l Gram matrix. Then Q1 is self-adjoint and, by the claim proved in (iii), has l

positive and l negative eigenvalues. Let B2(z) be the d × 2(d − l) matrix polynomial defined by

B2(z) = W(z)

⎡
⎣ 0 0

Id−l Id−l

⎤
⎦ ,

where the zero matrices are of size l × (d − l). Define the d × 2d matrix polynomial P(z) by P(z) =[
B1(z) B2(z)

]
and the 2d × 2d block diagonal matrix Q by

Q =
⎡
⎢⎣Q1 0

0 Q2

⎤
⎥⎦ , where Q2 =

⎡
⎢⎣ 0 iId−l

−iId−l 0

⎤
⎥⎦ .

Then Q is self-adjoint and has d positive and d negative eigenvalues. We claim that

(I) rank P(z) = d for some z ∈ C and

(II) P(z)Q−1P(w)∗ = i(z − w∗)K(z,w) for all z,w ∈ C.

We prove (I): The inclusion B1 = T(S∗
B) ⊆ B+ SBand (4.2) imply that there exists an l × 2l matrix

polynomial X(z) such that

B1(z) = W(z)

⎡
⎣X(z)

0

⎤
⎦ ,

where now 0 stands for the (d − l) × 2l zero matrix. The complex number α satisfying (B) belongs to

the sets in (3.12) and (1.3) and hence

rank X(α) = rank B1(α)
= dim EαB1

= dim span
{
L1(α,w)x : w ∈ C, x ∈ Cd}

= dim span
{
i(α − w∗)K(α,w)x : w ∈ C, x ∈ Cd}

= dim span
{
K(α,w)y : w ∈ C, y ∈ Cd}

= dim EαB

= rank B(α)
= l.

The equality

P(z) = W(z)

⎡
⎣X(z) 0 0

0 Id−l Id−l

⎤
⎦

implies that rank P(α) = d. This proves (I). We prove (II):

P(z)Q−1P(w)∗ = B1(z)Q−1
1 B1(w)∗ + B2(z)Q−1

2 B2(w)∗

= L1(z,w) + W(z)

⎡
⎣ 0 0

Id−l Id−l

⎤
⎦
⎡
⎣ 0 iId−l

−iId−l 0

⎤
⎦
⎡
⎣0 Id−l

0 Id−l

⎤
⎦W(w)∗

= i(z − w∗)K(z,w).

Items (I) and (II) show that K(z,w) is a polynomial Nevanlinna kernel for B. This completes the proof

of the if statement.
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(v) If (B) holds for all α ∈ C, then, by Theorem 3.4,W(z) is unimodular and the proof of (I) shows that

then rank P(z) = d for all z ∈ C. �

4.2. In the proof of the only if statements in Theorem 1.1 we use the following lemma.

Lemma 4.2. Let Q be a self-adjoint 2d × 2d matrix with d positive and d negative eigenvalues. Let P(z)
be a d × 2d matrix polynomial such that

(a) P(z)Q−1P(z∗)∗ = 0 for all z ∈ C,

(b) rank P(z) = d for all z ∈ C, and

(c) P(z) is row reduced and has row degrees σ1, . . . , σd, assumed ordered so that σ1 � · · · � σd and

σ1 = deg P(z) =: p.
Equip C2d[z]<p with the inner product

[f , g]Q =
p−1∑
j=0

b∗
p−1−jQ

−1aj, f (z) =
p−1∑
j=0

ajz
j, g(z) =

p−1∑
j=0

bjz
j, aj, bj ∈ C2d,

and consider the following subspace of C2d[z]<p :

Lp = span

⎧⎨
⎩

p−1∑
k=0

zp−1−kw∗kP(w)∗x : w ∈ C, x ∈ Cd

⎫⎬
⎭ .

Then the orthogonal complement of Lp in (C2d[z]<p, [ · , · ]Q) is

L
⊥
p =

{
f (z) ∈ C2d[z]<p : f (z) = P(z∗)∗u(z) with u(z) ∈ Cd[z]

}
. (4.7)

It is the isotropic part ofLp andLp/L
⊥
p is a Pontryagin spacewith positive and negative indexσ1+· · ·+σd.

Proof. For an element f (z) = ∑p−1
j=0 ajz

j ∈ C2d[z]<p the following equivalences hold:

f (z) ∈ L
⊥
p ⇔

⎛
⎝p−1∑

k=0

w∗ka∗
k

⎞
⎠Q−1P(w)∗ = 0 for all w ∈ C,

⇔ P(z)Q−1f (z) = 0 for all z ∈ C,

⇔ f (z) = P(z∗)∗uz for some uz ∈ Cd and all z ∈ C.

The last equivalence follows from (a) and (b). To prove that the vector uz depends polynomially on z

we use that the Smith normal form (2.2) of P(z) is given by: P(z) = U(z)
[
Id 0

]
V(z), where U(z) and

V(z) are unimodular matrices. Then

f (z) = P(z∗)∗uz = V(z∗)∗
⎡
⎣Id
0

⎤
⎦U(z∗)∗uz ⇒ uz = V(z∗)−∗ [

Id 0
]
U(z∗)−∗f (z)

and the right hand side belongs to Cd[z]. This proves (4.7).
Since P(z∗)∗ has full rank for every z ∈ C, it acts as an injection on Cd[z], therefore

dimL
⊥
p = dim

{
u(z) ∈ Cd[z] : deg

(
P(z∗)∗u(z)

)
< p

}
. (4.8)

The number on the right hand side can be expressed in terms of the Forney indices of P(z). Indeed,
since P(z) is row reduced, it has the “predictable degree property” (see Theorem 2.3):

deg
(
P(z∗)∗u(z)

) = max
{
σj + deguj(z) : j ∈ {1, . . . , d}}.
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Consequently, the space on the right hand side of in (4.8) equals

{
u(z) ∈ Cd[z] : deguj(z) < p − σj, j ∈ {1, . . . , d}},

whose dimension is dp − (
σ1 + · · · + σd

)
. Hence dimL⊥

p = dp − (
σ1 + · · · + σd

)
and

dimLp = dimC2d[z]<p − dimL
⊥
p = dp + (

σ1 + · · · + σd

)
.

To prove the last two statements of the lemmawe apply Lemma 2.5 with n = dp and τ = dp− (σ1 +
· · · + σd). The assumptions about Q in the lemma readily imply that C2d[z]<p is a 2dp-dimensional

Pontryagin space with negative index dp. It remains to construct a maximal neutral subspace of

C2d[z]<p which is contained in Lp. We begin with the subspace H = ranH, where the operator

H : Cd[z] → C2d[z] maps u(z) ∈ Cd[z] into the polynomial part of P
(
1/z∗

)∗
u(z). For example, if

P(z) is written as:

P(z) = P0 + zP1 + · · · + zpPp,

then for k ∈ {0} ∪ N and x ∈ Cd

H
(
zkx
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k∑
j=0

zjP∗
k−jx if k < p,

zk−p
p∑

j=0

zjP∗
p−jx if p � k.

These formulas imply thatH is neutral in
(
C2d[z]<p, [ · , · ]Q). Indeed, for k,m ∈ {0}∪N and x, y ∈ Cd

we have

[
H
(
zkx
)
,H
(
zmy

)]
Q

=
min{k,m}∑

j=0

y∗Pp−1−m+jQ−1P∗
k−jx = ∑

i+j=p−1−m+k
i,j∈{0,...,p}

y∗PiQ−1P∗
j x

and the last expression equals 0 because the assumption (a) is equivalent to∑
j+k=n

j,k∈{0,...,p}

PjQ−1P∗
k = 0 for all n ∈ {0, . . . , 2p}.

Since, by (b), P0 = P(0) has full rank, H is degree preserving and hence injective. Therefore, dimH =
dp = (1/2) dim

(
C2d[z]<p

)
and H is maximal neutral.

Define the mapping R : C2d[z]<p → C2d[z]<p by (Rf )(z) = zp−1f (1/z). Then R is unitary with

respect to [ · , · ]Q and hence N := RH is also a maximal neutral subspace of
(
C2d[z]<p, [ · , · ]Q). The

proof of the lemma is complete if we show that N ⊆ Lp. For that we consider the polynomials of the

form

2p−1∑
k=0

zkw∗kx, w ∈ C, x ∈ Cd. (4.9)

From

P

(
1

z∗
)∗
⎛
⎝2p−1∑

k=0

zkw∗kx
⎞
⎠ =

2p−1∑
j=0

⎛
⎝ 1

zj

2p−1∑
k=0

zkw∗k
⎞
⎠ P∗

j x
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and

1

zj

2p−1∑
k=0

zkw∗k =
j−1∑
k=0

w∗k

zj−k
+ w∗j

p−1∑
k=0

zkw∗k +
2p−1−j∑
k=p

zkw∗(k+j)

we obtain

H

⎛
⎝2p−1∑

k=0

zkw∗kx
⎞
⎠ =

p−1∑
k=0

zkw∗kP(w)∗x + higher order terms. (4.10)

Since the space Cd[z]<2p is spanned by polynomials in (4.9), each element of Cd[z]<p is also a sum

of polynomials in (4.9). As H is degree preserving, the polynomials in H = H
(
Cd[z]<p

)
have degrees

< p and therefore they have the form (4.10) with zero higher order terms. Thus

H ⊂ span

⎧⎨
⎩

p−1∑
k=0

zkw∗kP(w)∗x : w ∈ C, x ∈ Cd

⎫⎬
⎭

and N = RH ⊆ Lp. This proves Lemma 4.2. �

Proof of the only if statements in Theorem 1.1. Assume that the reproducing kernel of B is a poly-

nomial Nevanlinna kernel K(z,w):

i (z − w∗)K(z,w) = P(z)Q−1P(w)∗ for all z,w ∈ C, (4.11)

whereQ is a self-adjoint 2d×2dmatrixwith d positive and d negative eigenvalues and P(z) is a d×2d

matrix polynomial with rank P(z) = d for some z ∈ C. Note that (4.11) implies (a) of Lemma 4.2:

P(z)Q−1P(z∗)∗ = 0 for all z ∈ C. (4.12)

We prove (A) and (B) in the steps (i)–(iv), in step (v) we prove the last only if statement in the theorem.

(i) In this step we prove (B) under the assumption that (b) and (c) of Lemma 4.2 hold. Denote by Bp

the reproducing kernel Pontryagin space with kernel

Lp(z,w) = i (zp − w∗p)K(z,w) =
⎛
⎝p−1∑

k=0

zp−1−kw∗k
⎞
⎠ P(z)Q−1P(w)∗, z,w ∈ C.

Then

Bp = span

⎧⎨
⎩P(z)Q−1

p−1∑
k=0

zp−1−kw∗kP(w)∗x : w ∈ C, x ∈ Cd

⎫⎬
⎭

and

[
P(z)Q−1f , P(z)Q−1g

]
Bp

=
p−1∑
k=0

(
v∗(p−1−k)P(v)∗y

)∗
Q−1

(
w∗kP(w)∗x

)
,

where

f (z) =
p−1∑
k=0

zp−1−kw∗kP(w)∗x, g(z) =
p−1∑
k=0

zp−1−kv∗kP(v)∗y.

Comparing this inner productwith the one defined in Lemma 4.2, we find that P(z)Q−1 considered

as a multiplication operator maps Lp ⊂ C2d[z]<p isometrically onto Bp and its null space is L⊥
p (see

the second of the three equivalences in the beginning of the proof of Lemma 4.2). Hence, dimBp =
2(σ1 + · · · + σd) and the positive and the negative index of Bp equal σ1 + · · · + σd. According to
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Lemma2.7,we have dimB = σ1+· · ·+σd. The spaceBis spanned by the columns ofK(z,w),w ∈ C
and for j ∈ {1, . . . , d} thedegreeof the jth rowofK(z,w)as apolynomial in z is equal tomax

{
0, σj−1

}
.

ThereforeB ⊆ ⊕d
j=1

(
C[z]<σj

)
ed,k . Since both spaces have dimension σ1+· · ·+σd, equality prevails:

B0 =
d⊕

j=1

(
C[z]<σj

)
ed,k. (4.13)

This implies (B).

(ii) In this step we prove (A) under the assumption that (b) and (c) of Lemma 4.2 hold. Set

M(z) =

⎡
⎢⎢⎢⎣
z−σ1 · · · 0

...
. . .

...

0 · · · z−σd

⎤
⎥⎥⎥⎦ .

Then P∞ = limz→∞ M(z)P(z) and by (4.12) we have

P∞Q−1P∗∞ = lim
z→∞M(z)P(z)Q−1P(z∗)∗D(z∗)∗ = 0. (4.14)

Since P∞ has full rank, (4.14) implies that the linear span of the columns of P∗∞ is a maximal neutral

subspace of
(
C2d, [ · , · ]Q) and this span coincides with the null space of P∞Q−1. We claim that for

a ∈ C2d

P(z)a ∈ B ⇔ P∞a = 0. (4.15)

Toprove the claimassumefirst thatP(z)a ∈ B. From (4.13)we see that thedegree of the jth entry of the

vector polynomial P(z)a is strictly less than σj, j ∈ {1, . . . , d}. Hence P∞a = limz→∞ M(z)
(
P(z)a

) =
0.As to the converse, first notice that by the definition of P∞ the rowdegrees of thematrix polynomial

P0(z) = P(z)−M(z)−1P∞ are strictly less than σj, j ∈ {1. . . . , d}. By (4.13) we have that P0(z)a ∈ B

for all a ∈ C2d. Now assume P∞a = 0. Then

P(z)a = P0(z)a + M(z)−1P∞a = P0(z)a ∈ B.

This completes the proof of (4.15).

Consider f ∈ B. Since B is finite dimensional it can be written as

f (z) =
m∑
i=1

K(z,wi)xi, m ∈ N, wi ∈ C, xi ∈ Cd, i ∈ {1, . . . ,m}. (4.16)

The next sequence of equivalences follows from (4.15) and the observation after (4.14):

f ∈ dom SB ⇔ Sf ∈ B

⇔
m∑
i=1

(z − w∗
i )K(z,wi)xi ∈ B

⇔ P(z)Q−1

⎛
⎝ m∑

i=1

P(wi)
∗xi

⎞
⎠ ∈ B

⇔ P∞Q−1

⎛
⎝ m∑

i=1

P(wi)
∗xi

⎞
⎠ = 0

⇔
m∑
i=1

P(wi)
∗xi = P∗∞x for some x ∈ Cd.
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Let f ∈ Bbe given by (4.16) and let g ∈ Bbe of the form

g(z) =
n∑

j=1

K(z, vj)yj, n ∈ N, vj ∈ C, yj ∈ Cd, j ∈ {1, . . . , n}.

Assume that f , g ∈ dom SB . Then there exist x, y ∈ Cd such that

m∑
i=1

P(wi)
∗xi = P∗∞x and

m∑
i=1

P(vi)
∗yi = P∗∞y

and using the reproducing kernel property of K(z,w) we have

[
Sf , g

]
B

− [
f , Sg

]
B

=
n∑

j=1

m∑
i=1

vjy
∗
j K(vj,wi)xi −

⎛
⎝ m∑

i=1

n∑
j=1

wix
∗
i K(wi, vj)yj

⎞
⎠∗

=
n∑

j=1

m∑
i=1

vjy
∗
j K(vj,wi)xi −

m∑
i=1

n∑
j=1

w∗
i y

∗
j K(vj,wi)xi

=
n∑

j=1

m∑
i=1

(
vj − w∗

i

)
y∗
j K(vj,wi)xi

= −i

n∑
j=1

m∑
i=1

y∗
j P(vj)Q−1P(wi)

∗xi

= −i

⎛
⎝ n∑

j=1

y∗
j P(vj)

⎞
⎠Q−1

⎛
⎝ m∑

i=1

P(wi)
∗xi

⎞
⎠

= −i y∗P∞Q−1P∗∞x

= 0.

This proves that SB is symmetric.

(iii) In this step we only assume (b) of Lemma 4.2: rank P(z) = d for all z ∈ C. Then there is a

unimodular d × d matrix polynomial U(z) such that S(z) = U(z)P(z) is row reduced with ordered

row degrees σ1 � · · · � σd. Then U is an isometry from B onto the reproducing kernel Pontryagin

space Cwith kernel

−i
S(z)Q−1S(w)∗

z − w∗ . (4.17)

According to what has already been proved in (i)

UB = C =
d⊕

j=1

(
C[z]<σj

)
ed,k.

Thus B = U−1C and, by Theorem 3.4, (B) holds for all α ∈ C. According to part (ii) of this proof, SUB

is symmetric, hence SB = U−1SUBU is also symmetric, that is, (A) holds.

(iv) Finally we prove that (A) and (B) hold if rank P(z) = d for some z ∈ C as in the beginning of

this proof. In that case there exist a d × d matrix polynomial G(z) with det G(z) �≡ 0 and a d × 2d

matrix polynomial S(z) with rank S(z) = d for all z ∈ C such that P(z) = G(z)S(z) for all z ∈ C,

see Lemma 2.4. If by Awe denote the reproducing kernel space with Nevanlinna kernel (4.17), then,

by what has been proved in (iii), the operator SA is symmetric and for almost all α ∈ C we have
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ran(SA − α) = A∩ ker Eα . Now (A) and (B) follow since the multiplication operator G corresponding

to G(z) is an isomorphism from Aonto B.

(v) The last only if statement in the theorem follows from step (iii) above and Theorem 3.4. �

Remark 4.3. Assume that B ⊂ Cd[z] is a Pontryagin space which satisfies the conditions (A) and (B)

of Theorem1.1. Then, by Theorem1.1, there is a generalizedNevanlinna pair {M(z),N(z)} such that the

d × 2d matrix polynomial P(z) = [M(z)N(z)] provides a representation (2.7), with Q given by (2.8),

for the Nevanlinna reproducing kernel K(z,w) of B. In addition, by Theorem 1.2 there is a canonical

subspace C such that B = WC for some d × d matrix polynomialW(z) with detW(z) �≡ 0. The proof

of Theorem 1.1 and Lemma 2.4 show that the multiset of the Forney indices of P(z) coincides with the

multiset of the degrees of C. This implies that the Forney indices are independent of the Nevanlinna

representation (2.7) of the kernel K(z,w). In the special casewhen the defect numbers of SB are equal

to d this fact can also be proved directly by using [23, Theorem 1.3]. In view of Remark 4.1, this remark

substantiates the observations about the Forney indices and the defect numbers after Theorem 1.2 in

the Introduction.

5. Q -functions

5.1. LetM(z)be a generalizedNevanlinna d×dmatrix function anddenote byL(M) the reproducing
kernel Pontryagin space with reproducing kernel KM(z,w) = KM,Id(z,w). By [16, Theorem 2.1], the

operator S in L(M) of multiplication by the independent variable is a simple symmetric operator with

equal defect numbers and its adjoint is given by

S∗ = span
{{KM( · ,w∗)x,wKM( · ,w∗)x} : x ∈ Cd,w ∈ hol (M)

}
= {{f , g} ∈ L(M)2 : ∃ x, y ∈ Cd such that g(z) − zf (z) ≡ x − M(z)y

}
.

It follows that for all w ∈ hol (M)

ker(S∗ − w) = {
KM( · ,w∗)x : x ∈ Cd} = ran E∗

w,

where Ew is considered as a mapping Ew : L(M) → Cd. Taking orthogonal complements we see that

ran(S − α) = L(M) ∩ ker Eα, α ∈ hol (M).

Thus (A) and (B) of Theorem 1.1 hold. Moreover, [16, Theorem 2.1] and its proof imply that there is a

constant invertible d × d matrix T such that

TM(z)T∗ = M0 +
⎡
⎣M̂(z) 0

0 0

⎤
⎦ ,

where M0 is a constant self-adjoint d × d matrix and, if the defect numbers of S are denoted by l,

M̂(z) is a generalized Nevanlinna l× lmatrix function which is a Q-function for S. The theorem below

concerns a converse implication. But first we recall the notion of a Q-function.

Let S be a simple symmetric operator in a Pontryagin space Kwith defect numbers equal to l. Let A

be a self-adjoint extension of S inKwith a nonempty resolvent set ρ(A). Letμ ∈ ρ(A)\R and define a

function 	μ : Cl → K such that it is a linear bijection from Cl onto ker(S∗ − μ). Finally, for z ∈ ρ(A)

define the defect mappings 	z : Cl → K by

	z =
(
I + (z − μ)(A − z)−1

)
	μ, z ∈ ρ(A).

Then 	z is a bijection from Cl onto ker(S∗ − z),

K = span {	zc : z ∈ ρ(A) ∩ (C\R), c ∈ Cl} (5.1)
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and, by the resolvent identity,	∗
w	z = 	∗

z∗	w∗ ,w, z ∈ ρ(A). A Q-function for S is by definition an l× l

matrix function that satisfies the equation

Q(z) − Q(w)∗

z − w∗ = 	∗
w	z, z,w ∈ ρ(A). (5.2)

Clearly, Q(z) depends on the choice of the pair {A, 	z} and if this choice has to bementioned explicitly

we shall say thatQ(z) is aQ-function for S associatedwith thepair {A, 	z}.Q(z) is uniquelydetermined

up to an additive constant self-adjoint d × d matrix Q0:

Q(z) = Q0 − i Imμ 	∗
μ	μ + (z − μ∗)	∗

μ	z, Q0 = Q∗
0 .

From (5.1) and the defining relation (5.2) it follows that Q(z) is a generalized Nevanlinna l × l matrix

functionwith κ negative squareswhere κ is the negative index of the Pontryagin spaceK; in particular

Q(z)∗ = Q(z∗). Q-functions in an indefinite setting were introduced and studied by Krein and Langer

[28,29].

5.2. The following theorem shows that the Nevanlinna pair {M(z),N(z)} of matrix polynomials

M(z) and N(z) in Theorem 1.1 can be chosen such that detN(z) �≡ 0 and such that N(z)−1M(z) is

essentially the Q-function for SB . As before, by L(Q) we denote the reproducing kernel space with

reproducing kernel given by (5.2).

Theorem 5.1. LetBbe a finite dimensional Pontryagin subspace ofCd[z] for which the conditions (A) and

(B) of Theorem 1.1hold. Denote by l ∈ {1, . . . d} the equal defect numbers of the symmetric operator SB . Let

Q(z) be an l× l matrix Q-function for SB . Then there is a d×dmatrix polynomial N(z)with det N(z) �≡ 0

such that M(z) = N(z) diag (Q(z), 0) is a d × d matrix polynomial and B = N (L(Q) ⊕ {0}). In
particular, {M(z),N(z)} is a Nevanlinna pair of matrix polynomials and KM,N(z,w) is the reproducing

kernel of B.

Proof. Assume (A) and (B) of Theorem 1.1. By Theorem 1.2 there is a d× dmatrix functionW(z) with

detW(z) �≡ 0 such that B = WC, where C is a canonical subspace of Cd[z]. By Remark 4.1 the defect

numbers of the symmetric operator SB are both equal to l with l � d. We consider two cases: l = d

and l < d.

(i) l = d. Let Q(z) be the Q-function for SB associated with the pair {A, 	z}, where A is a self-adjoint

extension of SB and the defect mappings 	z are defined above with l = d. Since SB is simple, the

mapping

f �→ g with f (z) = 	∗
z∗	w∗ x, g(z) = (	w∗x) (z), x ∈ Cd, w ∈ ρ(A),

can be extended by linearity to a unitary mapping U from L(Q) onto B. That U is isometric follows

from [
	∗
w	z x, 	∗

v	z y
]
L(Q) = y∗	∗

w	v x = y∗	∗
v∗	w∗ x = [	w∗x, 	v∗y]B , x, y ∈ Cd.

We claim that U is the operator of multiplication by a d× dmatrix function. To prove the claimwe

use the equality B = WC. Since the defect numbers of SB are equal to d, the degrees of C are all � 1

(see Remark 4.1) and hence the d columns of W(z) belong to B and are linearly independent over C.

We denote by 	∗
z∗W the d × d matrix function defined by

(	∗
z∗W)x = 	∗

z∗(Wx), x ∈ Cd, z ∈ ρ(A).

We show that its inverse exists for z ∈ � := ρ(A) ∩ {z ∈ C : detW(z) �= 0}. Suppose there is an

x ∈ Cd such that
(
	∗
z∗W

)
x = 0. Then for all y ∈ Cd

0 = [(
	∗
z∗W

)
x, y

]
Cd = [

	∗
z∗(Wx), y

]
Cd = [

Wx, 	z∗y
]
B

,
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hence Wx ∈ ker(S∗
B − z∗)⊥ = ran(SB − z) = B ∩ Ez . That is, W(z)x = 0 and it follows that x = 0.

This proves that (	∗
z∗W)−1 is well defined for all z ∈ �. We set N(z) = W(z)(	∗

z∗W)−1. Clearly,

detN(z) �≡ 0. We have shown that U coincides with multiplication by N(z) if we have proved that

N(z)	∗
z∗	w∗x = (	w∗x) (z), x ∈ Cd, w ∈ ρ(A), z ∈ �,

or, equivalently, that with y(z,w, x) := W(z)−1 (	w∗x) (z) ∈ Cd

	∗
z∗	w∗x = 	∗

z∗ (Wy(z,w, x)) , x ∈ Cd, w ∈ ρ(A), z ∈ �.

But this equality holds, since 	∗
z∗ (ran(SB − z)) = {0} and

	w∗x − Wy(z,w, x) ∈ B∩ Ez = ran(SB − z).

This completes the proof of the claim that U is multiplication by N(z). It follows from [6, Theorem

1.5.7] and its proof that the formula for the kernel K(z,w) of B is given by

K(z,w) = N(z)
Q(z) − Q(w)∗

z − w∗ N(w)∗

and hence B = NL(Q).
It remains to show that M(z) = N(z)Q(z) and N(z) are matrix polynomials. Since the elements

of the space B are polynomials, the matrix function z �→ K(z,w) is a matrix polynomial, hence the

matrix function

M(z) − N(z)Q(w)∗ = N(z)Q(z) − N(z)Q(w)∗ = (z − w∗)K(z,w)N(w)−∗

is a matrix polynomial in z. Thus if N(z) is a matrix polynomial, then so is M(z). It remains to show

that N(z) is a polynomial. For this we note that the above formula implies that for x ∈ Cd

N(z)
Q(μ∗) − Q(w)∗

μ∗ − w∗ x = (z − μ∗)K(z, μ)N(μ)−∗ − (z − w∗)K(z,w)N(w)−∗

μ∗ − w∗ x.

The right hand side is a matrix polynomial in z and hence it follows from the equality that N(z) is a

matrix polynomial if we can show that

Cd = span
{
	∗

μ	w∗x : w ∈ ρ(A) ∩ (C\R), x ∈ Cd}.
To prove this equality we argue by contradiction and suppose it is not true. Then there is a nonzero

vector x ∈ Cd orthogonal to the set on the right hand side, that is,

[
	w∗y, 	μx

]
B

= 0, w ∈ ρ(A) ∩ (C\R), y ∈ Cd.

Since SB is simple and 	μ is injective, we find that 	μx = 0 and that x = 0, which contradicts the

choice of the nonzero vector x.

(ii) l < d. Then C = C1 ⊕ {0}, where C1 is a canonical subspace of Cl[z] of which the degrees are all

� 1. Using the relation B = W (C1 ⊕ {0}) we equip C1 with an indefinite inner product that makes

W an isomorphism. Then SB and SC1
are isomorphic: SC1

= WSBW−1, hence SC1
is symmetric and

has defect numbers equal to l. Thus (A) holds and it is not difficult to verify that also (B) holds on C1.

Finally, since Q(z) is the Q-function for SB associated with the pair {A, 	z}, Q(z) is the Q-function

for SC1
associated with the pair {W−1AW,W−1	z}. This all shows that we may apply part (i) of this

proof (with W(z) = Il): there exists an l × l matrix polynomial N1(z) with detN1(z) �≡ 0 such that

N1(z)Q(z) is an l × l matrix polynomial and C1 = N1L(Q). It follows that if

N(z) = W(z) diag (N1(z), Id−l),

then detN(z) �≡ 0, N(z) diag (Q(z), 0) is a d × d matrix polynomial and B = N (L(Q) ⊕ {0}). �
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6. Corollaries and examples

In the next corollary we extend Theorem 1.1 to finite dimensional Pontryagin spaces of rational

vector functions. A rational Nevanlinna kernel is a kernel of the form KM,N(z,w) as in (1.6), in which

M(z) and N(z) are rational d × d matrix functions satisfying (1.4) and (1.5).

Corollary 6.1. Let B be a finite dimensional Pontryagin space of rational d × 1 vector functions and let

� ⊂ C be the finite set of all the poles of the functions inB. Denote by SB the operator of multiplication by

the independent variable inBand by Eα the operator of evaluation at a pointα ∈ C. Then the reproducing

kernel of B is a rational Nevanlinna kernel if and only if the following two conditions hold:

(a) The operator SB is symmetric in B.

(b) For some α ∈ C\� we have ran
(
SB − α

) = B∩ ker Eα .

Proof. Assume (a) and (b). Let q(z) be the monic scalar polynomial of minimal degree such that

B′ := {q(z)f (z) : f ∈ B} consists of polynomials. Equip B′ with the Pontryagin space inner product

that makes the mapping q : B → B′ of multiplication by q(z) a unitary mapping. Then items (A) and

(B) of Theorem 1.1 hold for B′. Hence B′ has a polynomial reproducing Nevanlinna kernel KM,N(z,w).
It follows that Bhas reproducing kernel KM/q,N/q(z,w).

Now assume KM,N(z,w) is a rational reproducing Nevanlinna kernel of B. Let r(z) be a polyno-

mial such that r(z)M(z) and r(z)N(z) are polynomials and hence form a polynomial Nevanlinna pair

{r(z)M(z), r(z)N(z)}. Then KrM,rN(z,w) is a polynomial reproducing Nevanlinna kernel of the space

B′′ := {r(z)f (z) : f (z) ∈ B} equipped with the inner product that makes multiplication by r(z) an
isomorphism from Bonto B′′. Since the elements of B′′ are polynomials, we can apply Theorem 1.1 to

conclude that items (A) and (B) hold for the space B′′. Since multiplication by r(z) and by z commute,

(A) implies (a). By Theorem 1.2 and (1.3), the equality

ran
(
SB ′′ − α

) = B
′′ ∩ ker Eα (6.1)

holds for all but finitely many α ∈ C. Choose α ∈ C\� such that (6.1) is valid. Then for this α item

(b) holds. �

Corollary 6.2. Let (B, [ · , · ]B) be a finite dimensional Pontryagin subspace ofCd[z]whose reproducing

kernel is a Nevanlinna kernel determined by a generalized Nevanlinna pair. Let J be a fundamental sym-

metry on B. Then the Hilbert space (B, [J · , · ]B) has a reproducing Nevanlinna kernel determined by a

Nevanlinna pair if and only if SB is symmetric in this space.

The corollary follows from Theorem 1.1, because condition (B) is independent of the topology

on B.

Example 6.3. Consider the subspace Bof C2[z] spanned by the columns of the matrix

B(z) =
⎡
⎣1 z z2 0

0 0 0 1

⎤
⎦

and equipped with the inner product [ · , · ]B so that

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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is the Gram matrix associated with B(z): G = [B, B]B . The spectral decomposition of G is G = UJU∗
with unitary matrix

U = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
√

2

−1 1 0 0

0 0
√

2 0

1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ and J =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ .

It follows that (B, [ · , · ]B) is a Pontryagin space with positive index 3 and negative index 1. The

equality [BU, BU]B = J defines a fundamental decomposition of Bwith corresponding fundamental

symmetry J determined by J BU = BUJ. In the Hilbert space inner product [ · , · ]J := [J · , · ]B we

have [BU, BU]J = J2 = In and hence [B, B]J = In. The operator SB is symmetric in the Pontryagin

space (B, [ · , · ]B), but not in the Hilbert space (B, [ · , · ]J ). Since B is a canonical subspace of

C2[z], Theorem 1.2 implies that Theorem 1.1 (B) holds in B. Hence, according to Theorem 1.1, the

Pontryagin space (B, [ · , · ]B) has a reproducing Nevanlinna kernel, whereas the reproducing Hilbert

space (B, [ · , · ]J ) does not have a reproducing Nevanlinna kernel. �

Corollary 6.4. Let Bbe a finite dimensional Pontryagin subspace of Cd[z] whose reproducing kernel is a

Nevanlinna kernel. LetB0 be a Pontryagin subspace ofB. Then the reproducing kernel ofB0 is a Nevanlinna

kernel if and only if for some α ∈ C we have ran
(
SB0

− α
) = B0 ∩ ker Eα .

The corollary follows from Theorem 1.1, because the hypothesis implies that SB0
, being a subset of

SB , is symmetric in B0, that is, that (A) holds for SB0
.

Example 6.5. Consider the Hilbert subspace

B0 = span

⎧⎨
⎩
⎡
⎣1
0

⎤
⎦ ,

⎡
⎣z2
0

⎤
⎦
⎫⎬
⎭

of the space B in Example 6.3. Then for arbitrary α ∈ C we have

ran
(
SB0

− α
) = {0} and B0 ∩ ker Eα = span

⎧⎨
⎩
⎡
⎣z2 − α2

0

⎤
⎦
⎫⎬
⎭ .

Thus the condition ran
(
SB0

− α
) = B0 ∩ ker Eα does not hold for any α ∈ C. Hence Corollary 6.4

implies that the reproducing kernel of B0, which is calculated to be

K(z,w) =
⎡
⎣1 + z2w∗2 0

0 0

⎤
⎦ , z,w ∈ C,

is not a Nevanlinna kernel. This fact can be verified using [23, Theorem 1.3]. First observe that for all

z,w ∈ C we have

(z − w∗)K(z,w) = M(z)N(w)∗ − N(z)M(w)∗ = [
M(z) N(z)

] ⎡⎣ N(w)∗

−M(w)∗

⎤
⎦ ,

where

N(z) =
⎡
⎣1 z2

0 0

⎤
⎦ and M(z) = zN(z), z ∈ C.
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Now [23, Theorem 1.3 and Section 4] imply that for any 2 × 2 matrix polynomials M1(z) and N1(z)
such that

(z − w∗)K(z,w) = [
M1(z) N1(z)

] ⎡⎣ N1(w)∗

−M1(w)∗

⎤
⎦ , z,w ∈ C, (6.2)

there exists a 4 × 4 invertible matrix S such that[
M1(z) N1(z)

] = [
M(z) N(z)

]
S, z ∈ C.

Hence (6.2) yields that rank
[
M1(z) N1(z)

] = 1 for all z ∈ C. Consequently K(z,w) is not a Nevanlinna
kernel.Using the sameresults from[23]onecanalso showthat the scalar reproducingkernelK(z,w) =
1 + z2w∗2 of the Hilbert space with orthonormal basis {1, z2} is not a Nevanlinna kernel. �

We end the paper with two examples in which detK(z,w) ≡ 0. These examples also show that the

proof of Theorem 5.1 is constructive.

Example 6.6. Consider the space Bwith reproducing kernel

K(z,w) =
⎡
⎢⎢⎣

0 0 −1

0 0 −w∗
−1 −z 0

⎤
⎥⎥⎦ .

We show that, even though det K(z,w) ≡ 0, the kernel is a Nevanlinna kernel. We follow the proof of

the first part of Theorem 5.1 and construct two Nevanlinna pairs that determine K(z,w). The space B

is spanned by the columns of the 3 × 4 matrix polynomial

B(z) =
⎡
⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 z

⎤
⎥⎥⎦ .

It follows that B is a canonical subspace of C3[z] with degrees 1, 1 and 2. The Grammatrix associated

with B(z) is given by

G = [B, B]B =
⎡
⎣ 0 −I

−I 0

⎤
⎦ ,

hence B is a Pontryagin space with positive and negative index 2. The operator of multiplication by z

on B is given by

SB =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
B

⎡
⎢⎢⎢⎢⎢⎣
0

0

a

0

⎤
⎥⎥⎥⎥⎥⎦ , B

⎡
⎢⎢⎢⎢⎢⎣
0

0

0

a

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

: a ∈ C

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

It is easy to see that (A) and (B) of Theorem 1.1 are satisfied. The defect numbers of SB are both equal

to 3, see Remark 4.1. The Q-function of SB associated with the self-adjoint extension

A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
B

⎡
⎢⎢⎢⎢⎢⎣
a

0

b

0

⎤
⎥⎥⎥⎥⎥⎦ , B

⎡
⎢⎢⎢⎢⎢⎣
0

c

0

d

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

: a, b, c, d ∈ C

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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of SB (which is multi-valued and has a nonempty resolvent set) and the defect mappings 	z : C3 →
ker(S∗ − z) defined by

	z =
(
I + (z − i)(A − z)−1

)
	i = B

⎡
⎢⎢⎢⎢⎢⎢⎣

i/z 0 0

i 0 0

0 i/z 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

is

Q(z) = Q0 +

⎡
⎢⎢⎢⎣

0 1/z iz

1/z 0 0

−iz 0 0

⎤
⎥⎥⎥⎦ , Q0 = Q∗

0 .

We find that X(z) = Y(z)Q(z) and Y(z) = (
	∗
z∗ I
)−1

form a full generalized Nevanlinna pair of matrix

polynomials:

X(z) = Y(z)Q0 +

⎡
⎢⎢⎢⎣
−i 0 0

iz 0 0

0 −i z2

⎤
⎥⎥⎥⎦ and Y(z) =

⎡
⎢⎢⎢⎣

0 −iz 0

0 0 −1

−iz 0 0

⎤
⎥⎥⎥⎦

such that K(z,w) = KX,Y (z,w) and
[
X(z) Y(z)

]
is row reduced with Forney indices 1, 1 and 2, which

is in accordance with Remark 4.3.

The Q-function associated with the self-adjoint operator extension A of SB and defect mappings

	z defined by

AB = B

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , 	z = B

⎡
⎢⎢⎢⎢⎢⎢⎣

−1/z2 0 0

−1/z 0 0

0 i/z 0

0 −(z − i)/z2 i/z

⎤
⎥⎥⎥⎥⎥⎥⎦

is given by

Q(z) = Q1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−iz2 + z − i

z2

−i

z

iz2 + z + i

z2
0 0

i

z
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q1 = Q∗
1 .

Again we find thatM(z) = N(z)Q(z) and N(z) = (
	∗
z∗ I
)−1

are matrix polynomials:

M(z) = N(z)Q1 +

⎡
⎢⎢⎢⎣
z 0 0

1 0 0

0 −iz2 + z − i −iz

⎤
⎥⎥⎥⎦ , N(z) =

⎡
⎢⎢⎢⎣
0 −iz z + i

0 0 −iz

z2 0 0

⎤
⎥⎥⎥⎦

which form a full generalized Nevanlinna pair such that K(z,w) = KM,N(z,w) and
[
M(z) N(z)

]
is

row reduced with Forney indices 1, 1 and 2. �
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TwogeneralizedNevanlinna pairs {X(z), Y(z)} and {M(z),N(z)} of d×dmatrix polynomials define

the sameNevanlinnakernel if one is a J-unitary transformationof theother, that is, if theyare connected

via the formulas

M(z) = X(z)A + Y(z)C, N(z) = X(z)B + Y(z)D,

where A, B, C and D are constant d × d matrices such that if we set

U =
⎡
⎣A B

C D

⎤
⎦ and J =

⎡
⎣ 0 iId

−iId 0

⎤
⎦ ,

then U is J-unitary: UJU∗ = J. The pairs {X(z), Y(z)} and {M(z),N(z)} in Example 6.6 (with arbitrary

constant self-adjoint matrices Q0 and Q1) are connected via a J-unitary transformation. The following

example shows that the converse of the foregoing statement does not hold.

Example 6.7. Consider the Nevanlinna pair {X(z), Y(z)} given by

X(z) = diag (z, 0, z2), Y(z) = diag (0, z, z).

Then the space Bwith reproducing kernel KX,Y (z,w) = diag (0, 0, zw∗) is a 1-dimensional Hilbert

space: it is spanned by B(z) =
[
0 0 z

]�
and the corresponding Gram matrix is G = [B, B]B = 1.

Note that det X(z) ≡ 0, det Y(z) ≡ 0 and P(z) := [
X(z) Y(z)

]
does not have full rank at z = 0:

P(0) = 0. We show that the pair {X(z), Y(z)} can be replaced by a Nevanlinna pair {M(z),N(z)} such
that detN(z) �≡ 0.

Since P(z) does not have full rank for all z ∈ C, to calculate the Forney indices we must first apply

Lemma 2.4. We write P(z) as P(z) = G(z)T(z) with

G(z) =

⎡
⎢⎢⎢⎣
0 0 z

0 z 0

z 0 0

⎤
⎥⎥⎥⎦ , T(z) =

⎡
⎢⎢⎢⎣
0 0 z 0 0 1

0 0 0 0 1 0

1 0 0 0 0 0

⎤
⎥⎥⎥⎦ .

Since T(z) has full rank for all z ∈ C and is row reduced, the Forney indices ofP(z) are those of T(z) and
they are μ1 = 1, μ2 = μ3 = 0. This fits in well with the observations after Theorem 1.2 indicating

that dimB = 1 and the defect numbers of the symmetric operator SB = {{0, 0}} are both equal to 1.

We follow part (ii) of the proof of Theorem 5.1 and write B = W (C1 ⊕ {0}) with

W(z) =

⎡
⎢⎢⎢⎣
0 0 1

0 1 0

z 0 0

⎤
⎥⎥⎥⎦

and C1 = C. We make the multiplication operator W an isometry when C is equipped with the

Euclidean inner product. Then SC1
= {{0, 0}} is symmetric. The defect subspaces ker(S∗

C1
− z) all

coincide with C and A is a self-adjoint extension of SC1
if and only if A = Am, the operator of multi-

plication by m, m ∈ R, or A = Arel = {{0, c} : c ∈ C
}
. Since C1 is a Hilbert space, all self-adjoint

operators and relations have a nonempty resolvent set. Choose μ ∈ C\R, γ ∈ C\{0} and define

	μ : C → ker(S∗
C1

− μ) = C by 	μx = γ x, x ∈ C. Then the Q-function q(z) of SC1
associated with

{A, 	z} is given by

q(z) = q0 +
⎧⎪⎪⎨
⎪⎪⎩

|m − μ|2|γ |2
m − z

if A = Am,

|γ |2z if A = Arel,
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where q0 is an arbitrary real number, and

(
	∗
z∗1
)−1 =

⎧⎪⎪⎨
⎪⎪⎩

m − z

γ ∗(m − μ∗)
if A = Am,

1

γ ∗ if A = Arel.

We find that KX,Y (z,w) = KM,N(z,w) with matrix polynomials

M(z) = N(z)

⎡
⎢⎢⎢⎣
q(z) 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ and N(z) = W(z)

⎡
⎢⎢⎢⎣
(
	∗
z∗1
)−1

0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎦ .

It is easy to see that the Nevanlinna pairs {X(z), Y(z)} and {M(z),N(z)} are not related via a J-unitary

transformation. �
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