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a b s t r a c t

In this paper, the three-dimensional adaptive finite element modeling is presented for cohesive fracture
analysis of non-planer crack growth. The technique is performed based on the Zienkiewicz–Zhu error
estimator by employing the modified superconvergent patch recovery procedure for the stress recovery.
The Espinosa–Zavattieri bilinear constitutive equation is used to describe the cohesive tractions and dis-
placement jumps. The 3D cohesive fracture element is employed to simulate the crack growth in a non-
planar curved pattern. The crack growth criterion is proposed in terms of the principal stress and its
direction. Finally, several numerical examples are analyzed to demonstrate the validity and capability
of proposed computational algorithm. The predicted crack growth simulation and corresponding load-
displacement curves are compared with the experimental and other numerical results reported in
literature.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The simulation of crack propagation in continuum mechanics
by linear elastic fracture mechanics (LEFM) is well established
when the size of nonlinear zone at the crack tip is small compared
to the size of crack and the size of specimen (Bažant and Planas,
1998). If the size of fracture process zone is not negligible, the
cohesive zone modeling (CZM) approach has been developed as
one of the most effective techniques for nonlinear fracture pro-
cesses and is now widely implemented in finite elements. The
cohesive fracture model is able to adequately predict the behavior
of uncracked structures, including those with blunt notches. The
cohesive fracture element can be used to describe the cohesive
forces that occur when the bulk finite elements near the crack
tip zone are being pulled apart (Fig. 1). The implementation of
cohesive fracture model in crack propagation problems was ap-
plied from the early classical models of Dugdale (1960) for the
analysis of brittle materials and Barrenblatt (1962) for the analysis
of ductile materials. Willis (1967) compared these classic models
with the linear elastic model of Griffith (1920) and presented that
they are agreed when the cohesive forces act only on a short range.
Hillerborg et al. (1976) developed an appropriate numerical incor-
ll rights reserved.
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poration of cohesive zones into the finite element method intro-
ducing the concept of fracture energy for quasi-brittle materials.

The cohesive zone models are typically expressed as the func-
tions of normal and tangential traction–separation relationship.
There are various forms of traction–separation functions, such as
the polynomial and exponential equations. The polynomial and
exponential functions were first proposed by Needleman (1990)
using a characteristic length into the formulation. The polynomial
shaped traction separation law was modified by Tvergaard (1990)
to consider both the normal and tangential separation modes.
Tvergaard and Hutchinson (1992, 1996) proposed a trapezoidal
type of CZM to study the crack growth resistance in elastic-plastic
solids. Camacho and Ortiz (1996) used an adaptation of linear type
of CZM with an additional fracture criterion to simulate the multi-
ple crack growth along arbitrary paths under impact damage in
brittle materials. Nguyen et al. (2001) proposed a cohesive fracture
model based on the unloading-reloading hysteresis for fatigue
crack growth. Elices et al. (2001) proposed an inverse analysis pro-
cedure to determine the softening function of cohesive model and
applied the model to different materials; such as concrete, glassy
polymer and steel. Chandra et al. (2002) demonstrated that the
form of traction–separation equations for cohesive zone models
plays a critical role in determining the macroscopic mechanical re-
sponse of the system and is sometimes even more important than
the value of the tensile strength. Wnuk and Legat (2002) proposed
a cohesive zone model to describe the distribution of cohesive
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Fig. 1. Implementation of cohesive elements into the bulk FE elements.
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forces within the internally structured nonlinear zone using the
triaxiality parameter. Espinosa and Zavattieri (2003) proposed a
bilinear model to study the material micro-structures subjected
to quasi-static and dynamic loading. Song et al. (2006) presented
that the bilinear model reduces the artificial compliance in the
intrinsic cohesive zone model efficiently.

A key point in the modeling of crack growth is the accuracy of
numerical computation due to mesh discretization. In order to
overcome the limitations of initial discretisation and to represent
the arbitrary crack growth, the mesh adaptive procedure is an
appropriate technique. The accuracy of computed crack trajectory
is directly linked to the accuracy of numerical computation of local
parameters. Adaptive mesh technique can be efficiently used to
minimize the error with reasonable computational costs. Carranza
et al. (1997) applied the adaptive remeshing technique in the cohe-
sive zone model to present the quasi-static creep crack growth
within a moving-grid finite element model. Prasad and Krishna-
moorthy (2001) presented a mesh-adaptive strategy based on the
Zienkiewicz–Zhu error estimator to analyze the first fracture mode
in cement-based materials. Schrefler et al. (2006) developed an
adaptive finite element formulation for cohesive fracture zone,
which incorporates the solid and fluid phases together with a tem-
perature field. They simulated the solid behavior with a fully cou-
pled cohesive-fracture discrete model and applied a systematic
local remeshing of the domain and a corresponding change of fluid
and thermal boundary conditions. An adaptive finite element pro-
cedure was presented by Khoei et al. (2008, 2009) in modeling of
2D mixed-mode crack propagations via the modified superconver-
gent path recovery technique. Geißler et al. (2010) presented a new
algorithmic which allows an adaptive incorporation of the cohesive
elements depending on a crack growth criterion for structures with
low crack growth rates.

Up to date, the most computational simulation of cohesive
crack propagation has been presented in two-dimensional cases,
and less numerical modeling has been reported in three-dimen-
sional crack propagation of cohesive zone models. Ortiz and Pan-
dolfi (1999) developed a three-dimensional finite-deformation
cohesive element based on the irreversible cohesive laws for track-
ing of dynamically growing cracks. Foulk et al. (2000) presented a
formulation for the three-dimensional cohesive zone model ap-
plied to a nonlinear finite element algorithm. Ruiz et al. (2001) pro-
posed the linear extrinsic cohesive formulation to simulate the
process of combined tension-shear damage and mixed-mode frac-
ture in dynamic loading. A viscosity-regularized continuum dam-
age constitutive model was applied by Areias and Belytschko
(2005) within the extended finite element formulation in the reg-
ularized crack-band model. Gasser and Holzapfel (2006) combined
the cohesive crack concept with the partition of unity finite ele-
ment method to predict the closed 3D crack surface based on a
two-step algorithm for tracking the crack path, where the predictor
step was used to define the discontinuity according to the non-lo-
cal failure criterion and the corrector step was employed to draw
the non-local information of existing discontinuity. The mixed
interface finite element method was introduced by Lorentz
(2008) for three-dimensional cohesive model to discretize the
crack paths, the degrees of freedom of which consist in the dis-
placement on both crack lips and the density of cohesive forces.
The model was used to enable an exact treatment of multi-valued
cohesive laws, such as the initial adhesion, contact conditions, pos-
sible rigid unloading, etc, without the penalty regularization.

In the present paper, a fully three-dimensional cohesive zone
model is developed and applied to simulate the non-planar crack
propagation problems. In order to reduce the discretization error
to an acceptable value, an adaptive finite element method is em-
ployed on the basis of weighted-SPR technique. The outline of
the paper is as follows; a three-dimensional interface model is pre-
sented in Section 2 in modeling of the cohesive zone behavior. This
section includes the bilinear traction–separation law in the cohe-
sive zone and its implantation in the FEM technique. Section 3
demonstrates the 3D crack propagation criterion to allocate the
cohesive zone elements in the appropriate directions. Section 4
presents the error control process using an effective statistical
technique. In Section 5, several practical and complex 3D crack
growth simulations are analyzed to illustrate the validity and accu-
racy of the proposed computational algorithm. Finally, Section 6 is
devoted to conclusion remarks.

2. Cohesive fracture model

In order to model the cohesive zone near the crack tip in finite
element formulation, the three-dimensional node-to-node cohe-
sive element is employed. The cohesive element is implemented
between the real crack tip and the fictitious crack tip where the
cohesive zone is separated from the uncracked zone. The cohesive
elements are inserted between the top and bottom nodal points to
monitor the surfaces of the fictitious crack. When the cohesive ele-
ments are constructed, appropriate integration points within the
cohesive element become active and the cohesive behavior is taken
into account. The cohesive behavior is mainly affected by the cohe-
sive parameters such as the cohesive strength and cohesive energy
fracture. A bilinear cohesive law is implemented in the cohesive
zone, which is described in the next section. The cohesive model
is applied into the FE context to obtain a general 3D formulation
for the stiffness matrix of cohesive zone elements. It is assumed
that no contact is occurred between the crack faces and the contact
between the crack faces was controlled during the crack
propagation.

2.1. Bilinear cohesive zone model

In this section, a bilinear traction–separation law is used to
model the cohesive zone behavior near the crack tip. This model
is originally proposed by Espinosa and Zavattieri (2003) and then
applied by Song et al. (2006) in 2D cohesive model. This model
can efficiently reduce the artificial compliance observed in the
cohesive zone. The initial slope of the cohesive law prevents the
conflict between the cohesive elements and the continuum body.
The descending part of the cohesive law simulates the softening
behavior due to the growth of voids. These two distinctive parts
are separated by a dimensionless displacement called as the criti-
cal separation kcr . The cohesive law is defined in the term of dimen-
sionless effective separation, given by

ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdn=dCÞ2 þ ðds=dCÞ2 þ ðdp=dCÞ2

q
ð1Þ

where dn is the normal separation and ds and dp are the tangential
separations in local coordinate system directions s and p. The local
axes n, s and p are the right-handed coordinate system at the



Fig. 2. The normal separation–traction cohesive law for different shear separations.

Fig. 3. The maximum cohesive normal traction diagram.
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cohesive zone. In above relation, dC denotes the ultimate separation
which is related to the stress free state and complete separation of
cohesive zone. This parameter is usually determined from the cohe-
sive fracture energy GC. These two parameters GC and dC can be re-
lated by the equilibrium between the area under the cohesive
stress-separation diagram and the cohesive fracture energy, i.e.

GC ¼
1
2
rCdC ð2Þ

where rC is a characteristic property of material in the cohesive
zone, which represents the cohesive strength. The cohesive strength
and cohesive fracture energy are two influential parameters which
control the response of the model in the cohesive zone and are usu-
ally determined from experimental results. Depending on the value
of effective separation ke, it may follow either the initial linear, or
the final softening part of the cohesive law. In the case of ke 6 kcr ,
the normal cohesive stress tn and the tangential cohesive stresses
ts and tp are linear functions of the corresponding normalized sepa-
rations defined as

tn ¼
rC

kcr

dn

dC

� �
; ts ¼

rC

kcr

ds

dC

� �
; tp ¼

rC

kcr

dp

dC

� �
ð3Þ

If the effective separation exceeds the critical separation, i.e.
ke > kcr , the cohesive zone follows the softening part and the cohe-
sive stress gradually vanishes while approaching to the unity. The
proportion between the normal and shear cohesive stresses de-
pends on the proportion between the normal and tangential sepa-
rations. Hence, the cohesive law in this case can be given as

tn ¼
rC

ke

1� ke

1� kcr

dn

dC

� �
; ts ¼

rC

ke

1� ke

1� kcr

ds

dC

� �
;

tp ¼
rC

ke

1� ke

1� kcr

dp

dC

� �
ð4Þ

The above expression cannot be applied in the unloading phase.
If the cohesive zone is in the softening zone (ke > kcr) and the mod-
el is unloaded ( _ke 6 0), the above equation states that the cohesive
stress increases by decreasing the separation that is not acceptable
physically. In this case, Eq. (4) can be rewritten as

tn ¼
rC

kmax

1� kmax

1� kcr

dn

dC

� �
; ts ¼

rC

kmax

1� kmax

1� kcr

ds

dC

� �
;

tp ¼
rC

kmax

1� kmax

1� kcr

dp

dC

� �
ð5Þ

where kmax is the maximum effective separation, in which the cohe-
sive elements experience before unloading. Since the effective sep-
aration ke is affected by the normal and tangential separations, the
total effective separation can be decomposed into the normal effec-
tive separation kn and the tangential effective separation ks defined
as

kn ¼ dn=dC ; ks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðds=dCÞ2 þ ðdp=dCÞ2

q
ð6Þ

It is obvious from Eqs. (1) and (6) that the normal and tangential
effective separations can be related as

k2
e ¼ k2

n þ k2
s ð7Þ

Depending on the proportions between the normal and tangen-
tial separations, the cohesive stress-separation relation may take
different forms. For example the normal stress-separation relation
has the bilinear behavior when no shear separation is occurred in
the cohesive element. However, the occurrence of shear separation
causes the nonlinearity in the cohesive stress-separation relation-
ship. Fig. 2 illustrates the normal cohesive stress-separation rela-
tion at different shear separations. It can be observed from this
figure that the linear part is excluded when the effective shear
separation ks exceeds the critical separation kcr . Obviously, the
maximum normal cohesive stress reduces by increasing the pro-
portion of shear separation, since the proportion of normal separa-
tion decreases, and in contrast the shear cohesive stress increases.
Thus, there is a nonlinear interaction between the normal cohesive
stress and the shear separation. Fig. 3 presents this nonlinear rela-
tionship between the maximum normal cohesive stress and shear
separations in s and p directions.

Since the cohesive stress is related to the separation in cohesive
model, the cohesive stress must be differentiated with respect to
the separation in order to obtain the tangential modulus matrix
of material in cohesive zone. If ke 6 kcr , the cohesive material ma-
trix Cf can be obtained from Eq. (3) as

Cf ¼
Cnn Cns Cnp

Csn Css Csp

Cpn Cps Cpp

2
64

3
75 ¼

@tn
@dn

@tn
@ds

@tn
@dp

@ts
@dn

@ts
@ds

@ts
@dp

@tp

@dn

@tp

@ds

@tp

@dp

2
6664

3
7775 ¼

rC
kcrdC

0 0

0 rC
kcrdC

0

0 0 rC
kcrdC

2
664

3
775
ð8Þ

If ke > kcr , the components of cohesive material matrix can be
obtained from Eq. (4) as



Cf ¼
Cnn Cns Cnp

Csn Css Csp

Cpn Cps Cpp

2
64

3
75 ¼

� rC
dC ð1�kcrÞ 1� 1

ke
þ 1

k3
e
ðdn
dC
Þ2

� �
� rC

dC ð1�kcrÞ
1
k3

e

� �
dn
dC

� �
ds
dC

� �
� rC

dC ð1�kcrÞ
1
k3

e

� �
dn
dC

� �
dp

dC

� �
� rC

dC ð1�kcrÞ
1
k3

e

� �
ds
dC

� �
dn
dC

� �
� rC

dC ð1�kcrÞ 1� 1
ke
þ 1

k3
e
ðds
dC
Þ2

� �
� rC

dC ð1�kcrÞ
1
k3

e

� �
ds
dC

� �
dp

dC

� �
� rC

dC ð1�kcrÞ
1
k3

e

� �
dp

dC

� �
dn
dC

� �
� rC

dC ð1�kcrÞ
1
k3

e

� �
dp

dC

� �
ds
dC

� �
� rC

dC ð1�kcrÞ 1� 1
ke
þ 1

k3
e
ðdp

dC
Þ2

� �

2
66664

3
77775 ð9Þ
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Finally in the unloading phase, the matrix Cf can be obtained
from eq. (5) as

Cf ¼
Cnn Cns Cnp

Csn Css Csp

Cpn Cps Cpp

2
64

3
75

¼

rC
dC
ð1�kmax

1�kcr
Þ 1

kmax
0 0

0 rC
dC
ð1�kmax

1�kcr
Þ 1

kmax
0

0 0 rC
dC

1�kmax
1�kcr

� �
1

kmax

2
6664

3
7775 ð10Þ

It must be noted that for the non-cohesive regions, the standard
tangent modulus is employed in the stiffness matrix.

2.2. Finite element implementation

In order to derive the stiffness matrix of three-dimensional
cohesive element, the bilinear cohesive model described in the pre-
ceding section is implemented in the framework of finite element
method. The derivation of stiffness matrix of cohesive element is
similar to the stiffness matrix of contact friction element, in which
the contact constitutive relation must be replaced by the cohesive
material matrix Cf given in relations (8)-(10). The cohesive element
includes two surfaces with distinctive nodal points, which are ini-
tially coincident. The displacement field of the cohesive element
may be linear, or higher order. Fig. 4 presents an eight-noded linear
cohesive element. To obtain the stiffness matrix of cohesive ele-
ment in global coordinate system, we need to relate the global dis-
placement vector to the local separation vector. The vector of
relative displacements between two homologous points can be ob-
tained from the displacement fields associated to the element faces
(top and bottom) as

d ¼ utop � ubot ð11Þ

where d ¼ h dn ds dp iT and u ¼ hun us up iT . A local co-ordinate
system is established at a point on the cohesive element by obtain-
ing the vector normal to the element surface using the cross-prod-
uct of two vectors as
Fig. 4. An eight-noded cohesive element.
n ¼ 1
A

@x
@n

@y
@n

@z
@n

8>><
>>:

9>>=
>>;�

@x
@g
@y
@g
@z
@g

8>><
>>:

9>>=
>>; ð12Þ

where n and g are the natural coordinates in the plane of cohesive
element, and A is the length of vector normal to the cohesive ele-
ment surface that represents the unit mapped area of the plane of
cohesive element. The derivatives in relation (12) are coefficients
of the Jacobian matrix of the co-ordinate transformation. The two
tangent vectors can be formed by s = h1,0,0iT � n and p = s � n. If
the direction of n is exactly in the x-direction then s can be obtained
by s = h0,1,0iT � n.

The relative displacements of relation (11) can be therefore
written using the standard iso-parametric shape functions of the
cohesive element as

d ¼ RTðNtop �utop � Nbot �ubotÞ ð13Þ

or

d ¼ RTf�Nbot Ntop g
�ubot

�utop

( )
� Bf �u ð14Þ

where R = hn,s,pi and Nbot = Ntop = hN1I,N2I,N3I,N4Ii.
The stiffness matrix of three-dimensional cohesive fracture ele-

ment can be therefore evaluated similar to the standard finite ele-
ment manner, in which for the numerical integration of cohesive
element, the integration over the domain can be replaced by the
integration over the iso-parametric coordinates n and g as

Kf ¼
Z n¼þ1

n¼�1

Z g¼þ1

g¼�1
BT

f Cf Bf detJdndg ð15Þ

where det J denotes the determinant of the Jacobian matrix. The
cohesive material matrix Cf is defined in relations (8)-(10). For the
linear eight-noded cohesive element, the stiffness matrix is a
24 � 24 matrix corresponding to the three degrees-of-freedom de-
fined at each nodal point.

3. Crack propagation criteria

There are basically two types of crack tips in the crack growth of
cohesive fracture mechanics; the real crack tip and the fictitious
crack tip. The real crack tip is the point that separates the stress
free zone from the cohesive stress zone, while the fictitious crack
tip is the point that separates the cohesive zone from the un-
cracked zone. In two-dimensional fracture mechanics, the crack
surface may be straight or curved, however – in three-dimensional
crack growth, the crack surface may be straight, curved, planar, or
non-planar. Hence, the fracture behavior associated with three-
dimensional crack growth depends on both the crack front curva-
ture and the crack surface curvature. There are various numerical
techniques proposed in the literature for tracking the 3D non-pla-
nar crack path. The level set method is a numerical approach in
modeling the motion of interfaces that was recently adopted by
Moës et al. (2002) to model the 3D crack propagation. The method
uses the signed distance function to describe the crack-tip and
crack surfaces. In this technique, two advance vectors are defined



Fig. 5. Three-steps procedure of data transferring operator; nodal point, � Gauss points.

Fig. 6. The 3PB specimen with symmetric edge crack. The geometry and boundary
conditions.
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on the basis of failure criterion to determine the new position of
the crack-tip. A global tracking algorithm was proposed by Oliver
et al. (2004) for tracking 3D cracks, in which the discontinuity path
inside the finite element was implemented at a pure element level.
Gasser and Holzapfel (2006) proposed a local algorithm which is
characterized by recursively cutting elements using a two-step
algorithm for tracking 3D crack paths.

In this study, a direct criterion is employed based on the maxi-
mal principal stress, originally proposed by Bouchard et al. (2003),
to validate the technique in 3D non-planar crack growth. In this
criterion, the maximum principal stresses and their axes are eval-
uated at the nearest integration points to the crack tip. The direc-
tion of crack propagation is perpendicular to the vector obtained
by the weighted average of each direction with respect to the dis-
tance between the integration point and the crack tip. In 3D crack
growth, this vector is not unique and is constructed on the basis of
two other principal directions. The target vector is the weighted
combination of two principal vectors corresponding to the mini-
mum and mid-stresses. The weighting parameter of each vector
can be obtained according to the corresponding principal stress.
Consider the maximum, minimum and mid-stresses are repre-
sented by rmax, rmin and rmid, respectively, and their correspond-
ing principal vectors by u1, u2 and u3, the propagation vector can
be defined as

v ¼ rminu2 þ rmidu3 ð16Þ

The above vector determines the direction of crack propagation
at each step, however – the length of crack growth depends on the
desired accuracy of simulation at each increment, and can be as-
sumed as a small value if the kinking of the crack has a large value.
The propagation vector must be determined at each nodal point of
the crack front. This vector can be used to connect the old fictitious
crack tip to the new fictitious crack tip in order to construct the
new crack front. The space between the old and new crack fronts
is then modeled by the cohesive fracture elements. It must be
noted that this algorithm results in the fictitious crack tip where
the cohesive zone is separated from the uncracked zone and the
real crack tip moves when the relative displacement exceeds the
critical displacement dC.

4. Error estimation and adaptive remeshing

The accuracy in numerical analysis of finite element solution
strongly depends on the quality of FE mesh. In crack growth simu-
lation, the mesh refinement takes an important role to capture the
local parameters accurately where the stress concentration occurs.
The objective of adaptive technique is to obtain a mesh which is
optimal in the sense that the computational costs are minimal un-
der the constraints, and the error of finite element solution is
acceptable within a certain limit. In addition, the remeshing proce-
dure ensures that the new boundary and resulting discontinuity is
taken into account properly in the represented model independent
of previous discretization. Since the exact solution of state vari-
ables is not available, the recovered solution can be used instead
of the exact solution and approximate the error as the difference
between the recovered values and those obtained directly from
the finite element solution. In order to obtain an improved solu-
tion, the nodal smoothing procedure is performed using the
weighted superconvergent patch recovery (WSPR) technique, pro-
posed by Moslemi and Khoei (2009) to simulate the crack growth
in cohesive fracture zone. The concept of superconvergence is that,
at some points, the rate of convergence is higher than those of
other points. Zienkiewicz and Zhu (1992) presented that the Gauss
integration points of isoparametric elements are superconvergent.
In WSPR technique, it is assumed that the nodal values belong to a
polynomial expansion of the same complete order p, which is valid
over an element patch surrounding the particular assembly node.
Thus, the recovered stress can be obtained as a polynomial with
unknown coefficients for each component as

r�i ¼ a0 þ a1xþ a2yþ a3zþ � � � þ anzn

¼ h1; x; y; z; . . . ; zniha0; a1; a2; a3; . . . ; aniT ¼ Pa ð17Þ

where P contains the appropriate polynomial terms and a is a set of
unknown parameters. The unknown vector a can be determined by
performing a least square fit of r�i to the existing data of finite ele-
ment solution at the Gauss quadrature points of elements patch for
considered vertex node. In the WSPR technique, the weighting
parameters are assumed for the sampling points of the patch, which
results in more realistic recovered values at the nodal points, partic-
ularly near the crack tip and boundaries. Hence, if we have n sam-
pling points in the patch with the coordinates (xk,yk,zk) the error
function F can be written as



Fig. 7. Adaptive mesh refinements in 3PB specimen with symmetric edge crack at different loading steps; (a–d) Initial uniform meshes, (e–h) adapted meshes.
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FðaÞ ¼
Xn

k¼1

wk½r�i ðxk; yk; zkÞ � r̂iðxk; yk; zkÞ�2

¼
Xn

k¼1

wk½Pðxk; yk; zkÞa� r̂iðxk; yk; zkÞ�2 ð18Þ
where r̂i is the stress component derived by the finite element solu-
tion at each Gauss quadrature point of the patch and n is the num-
ber of sampling points. In above relation, wk denotes the weighting
parameter at each sampling point which reflects the effect of dis-
tance between the recovered nodal point and the sampling point.
Thus, we define the weighting parameter wk = 1/rk, with rk denoting
the distance of each sampling point from the vertex node which is
under recovery. Minimizing the error function F(a) results in

a ¼
Xn

k¼1

w2
kPT

k Pk

 !�1Xn

k¼1

w2
kPT

k r̂iðxk; yk; zkÞ ð19Þ

Based on above procedure, the recovered values r�i can be ob-
tained at each nodal point. The error can be therefore approxi-
mated by er � e�r ¼ r� � r̂, in which er denotes the exact error
and e�r indicates the estimated error. Since the pointwise error be-
comes locally infinite in critical points, such as point load, the error
estimator can be replaced by a global parameter using the L2 norm
of error defined as

kerk ¼ kr� � r̂k ¼
Z

X
ðr� � r̂ÞTðr� � r̂ÞdX

� �1
2

ð20Þ
4.1. Adaptive mesh refinement

In adaptive mesh refinement, the L2 norm of each element is a
more desirable quantity to optimize the mesh. The global error
norm can be achieved by using the sum square root of elements er-
ror norm, i.e. kerk2 ¼

Pm
i¼1kerk2

i , with i denoting the element con-
tribution and m the total number of elements. In order to
normalize the value of error norm, the L2 norm is divided to the
state variable, such as the stress norm. Thus, the overall percentage
error can be defined by h ¼ kerk=kr̂k . This relative error norm can
be used in the mesh refinement procedure. Since the total error
permissible must be less than a certain value, it is a simple matter
to search the design field for a new solution in which the total error
satisfies this requirement. In fact, after remeshing each element



Fig. 9. The contours of stress distribution in 3PB specimen at the final loading step;
(a) stress rx, (b) stress ry, (c) stress sxy (all dimensions in MPa).

Fig. 10. The variations of vertical reaction with CMOD in 3PB specimen with
symmetric edge crack.

Fig. 11. The variation of cohesive traction with prescribed displacement at different
points from the initial crack tip.

Fig. 12. The 3PB specimen with an eccentric crack; geometry and boundary
conditions.

Fig. 13. The 3PB specimen with an eccentric crack; (a) A comparison between the
crack trajectory obtained by the proposed computational model (white) and those
of experimental and numerical results (blue, green and red) reported by Song et al.
(2006).
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must obtain the same error and the overall percentage error must
be less than the target percentage error, i.e.

h 6 haim ¼
kerkaim

jr̂k ð21Þ

The size of elements in the new mesh depends on the relative
error and the rate of convergence. The rate of convergence of stan-
dard elements is proportional to the order of shape functions. In
the case of singular problem, such as the linear fracture analysis
(LEFM), it is proportional to the order of singularity. However, in
the cohesive fracture analysis, the stress field is not singular and
the rate of convergence is proportional to the order of shape func-
tions. Thus, if h represents the size of element and k denotes the
rate of convergence, the new element size can be obtained as

ðhiÞnew ¼
ðkerkiÞaim

ðkerkiÞold

� �1=k

ðhiÞold ð22Þ
After indicating the size of elements from Eq. (21), a mesh sat-
isfying the requirements will be finally generated by an efficient
mesh generator which allows the new mesh to be constructed
according to a predetermined size. In order to prevent the mesh
generation difficulties due to very small and large elements, the
element size is limited by an upper and a lower bound, i.e.
�hmin 6 ðhiÞnew 6

�hmax. The cohesive surfaces would be preserved



Fig. 14. Adaptive mesh refinements in 3PB specimen with an eccentric crack at different loading steps; (a–d) initial uniform meshes, (e–h) adapted meshes.
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Fig. 15. The variation of estimated error with crack length during adaptive mesh
refinement in 3PB specimen with an eccentric crack.

Fig. 16. The variations of vertical reaction with CMOD in 3PB specimen with an
eccentric crack.
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in the geometry of problem by two concordant surfaces, and the
new cohesive elements would be adjusted to these surfaces
according to the mesh density. In the nonlinear FE analysis, such
as cohesive zone model, the new mesh must be used starting from
the end of previous load step since the solution is history-depen-
dent in nonlinear problems. Thus, the state and internal variables
need to be mapped from the old finite element mesh to the new
one. The data transfer between the old and new meshes is one of
the most challenging parts of nonlinear analysis. It is important
that the transfer of information from the old to new meshes is
achieved with minimum discrepancy in equilibrium and constitu-
tive relations (Khoei et al., 2007). It must be noted that the data
transfer operator would produce some numerical diffusions, how-
ever – it was shown by Zienkiewicz and Zhu (1992) that the imple-
mentation of the superconvergant points minimizes this numerical
diffusion. In the present study, the data transfer operators devel-
oped by Gharehbaghi and Khoei (2008) and Khoei and Ghareh-
baghi (2009) in 3D large plasticity deformations is applied based
on the superconvergent patch recovery (SPR) technique.

4.2. Data transfer operator

In order to map the state and internal variables from the old fi-
nite element mesh to the new one, the process of data transfer is
carried out in three steps. Consider that a state array
Kold

n ¼ ðuold
n ; eold

n ;rold
n Þ denote the values of displacement, strain ten-



Fig. 17. The variation of cohesive traction with prescribed displacement at different
points from the initial crack tip.

Fig. 18. The contours of stress distribution in 3PB specimen with an eccentric crack
at the final loading step; (a) stress rx, (b) stress ry, (c) stress sxy (all dimensions in
MPa).

Fig. 19. The tension–torsion specimen with center through crack. The geometry
and boundary conditions.
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sor and stress tensor at time tn for the mesh Mh. Also assume that
the estimated error of the solution Kold

n respects the prescribed cri-
teria, while these are violated by the solution Kold

nþ1. In this case, a
new mesh MH is generated and a new solution Knew

nþ1 is computed
by evaluating the stress tensor rnew

n for a new mesh MH at time step
tn. In this way, the state array K̂new

n ¼ ðunew
n ;rnew

n Þ is constructed,
where K̂ is used to denote a reduced state array. It must be noted
that the state array K̂ characterizes the history of the material and
provides sufficient information for computation of a new solution
Knew

nþ1 . The aim is to transfer the internal variables ðrnÞold
G stored at

the Gauss points of the old mesh Mh to the Gauss points of new
mesh MH. The transfer operator T1 between meshes Mh and MH

can be defined as
ðrnÞnew
G ¼ T1 ½ðrnÞold

G � ð23Þ

The variables ðrnÞold
G specified at Gauss points of the mesh Mh

are transferred by the operator T1 to each point of the domain X,
in order to specify the variables ðrnÞnew

G at the Gauss points of
new mesh MH. The operator T1 can be constructed by a suitable
projection technique, such as the superconvergent patch recovery
method.

In order to obtain the continuous values of stress tensor (rn)old,
the Gauss point components ðrnÞold

G are projected to nodal points to
evaluate the components ðrnÞold

N . In this study, the projection of the
Gauss point components to the nodal points is carried out using
the weighted-SPR technique, as described in previous section.
The nodal components of the stress tensor ðrnÞold

N for the mesh
Mh are then transferred to the nodes of the new mesh MH resulting
in components ðrnÞnew

N . The components of stress tensor at the
Gauss points of the new mesh MH, i.e. ðrnÞnew

G are finally obtained
by using the interpolation of the shape functions of the new finite
elements. In this procedure, the local coordinates are used to inter-
polate the variables from the nodes of mesh Mh to the nodes of
mesh MH. The three steps of the data transfer procedure are illus-
trated schematically in Fig. 5.
5. Numerical simulation results

In order to illustrate the accuracy and efficiency of proposed
adaptive mesh strategy in the three-dimensional cohesive crack
model described in preceding sections, several practical examples
are analyzed numerically. Two benchmark examples are chosen
to evaluate the performance of adaptive FE strategy for the cohe-
sive crack growth in a bending beam with symmetric and eccentric
edge cracks. The next two examples include the 3D crack growth
with complex geometries, in which the crack growth produces
the non-planar curved crack front and crack surfaces. The ten-
noded tetrahedral elements are employed for the finite element
meshes together with the four Gauss–Legendre quadrature points
for the numerical integration. The eight-noded cohesive elements
are applied for the cohesive fracture zone in successive crack
growth steps. In all numerical examples, the behavior of bulk
material is assumed to be the linear elastic. In the simulation of
crack growth and evaluation of cohesive tractions, the maximum
principal stress criterion is employed to determine the crack
growth direction. In addition, various uniform and adaptive mesh
refinements are implemented to evaluate the estimated error and



Fig. 20. Adaptive mesh refinements in the tension–torsion specimen with center through crack at different loading steps; (a–d) initial uniform meshes, (e–h) adapted
meshes.

Table 1
The number of elements and nodal points of initial and adapted meshes in the tension–torsion specimen with center through crack at various steps.

Loading step Uniform mesh Refined mesh

Number of nodes Number of elements Number of nodes Number of elements

Step 1 767 361 6034 3642
Step 2 2523 1354 9598 5926
Step 3 2836 1528 23482 14856
Step 4 3316 1725 17139 10740
Step 5 3344 1818 25214 15723

Fig. 21. The variation of estimated error with crack length during adaptive mesh
refinement in the tension–torsion specimen with center through crack.
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mesh refinement procedure. In all examples, the results are com-
pared with those reported in literature.
5.1. Three point bending beam with symmetric edge crack

In the first example, a simply supported beam with an edge
notch at the mid plane is numerically analyzed. This example is
chosen to demonstrate the performance of proposed adaptive
strategy together with the cohesive zone model for a benchmark
problem. The beam is constructed using the asphalt concrete and
has a vertical edge crack, as shown in Fig. 6. The beam has the
length of 376 mm, height of 100 mm and thickness of 75 mm.
The initial notch is 19 mm at the center of bottom edge of the
beam. A prescribed displacement is gradually exerted to the center
of top edge of the beam until the failure of the beam happens. The
material properties of the beam and the cohesive zone parameters
are chosen as follows; E = 14.2 GPa, m = 0.35, rc = 3.56 MPa and
Gc = 344 J/m2. The value of non-dimensional critical displacement
is chosen as kcr ¼ 0:04. This specimen was simulated by Song
et al. (2006) and Khoei et al. (2009) using the 2D FE modeling to
validate the performance of their cohesive model.

The adaptive mesh refinement process is carried out in this
example using the weighted SPR technique for the target error of
15%. In Fig. 7, the successive mesh refinements are shown during
the crack growth simulation at different loading steps using the
uniform and adapted mesh refinements. As can be expected, the
crack grows symmetrically until the ultimate failure of the beam.
Obviously, the cohesive behavior near the fictitious crack zone re-
sults in the high value of estimated error, and consequently a very
dense mesh is produced at this region. In Fig. 8, the variation of er-
ror estimator h is shown for the uniform and adapted meshes.
Clearly, the adaptive mesh refinements result in a uniform esti-
mated error and converge to the prescribed target error. In Fig. 9,
the contours of stress distribution rx, ry and sxy are presented at
the final loading step. The effect of cohesive tractions at the crack
edges is obvious in these contours. The variation of vertical reac-
tion is plotted with crack mouth opening displacement (CMOD)
in Fig. 10. It shows a good agreement between the predicted



Fig. 22. The contours of stress distribution at final step of loading in the tension–torsion specimen; (a) stress sxy, (b) stress sxz, (c) stress syz (all dimensions in MPa).
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Fig. 23. The variations of tensile and torsion reactions with initial crack tip opening
in the tension–torsion specimen with center through crack.
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Fig. 24. The variations of total cohesive traction with crack opening at different
points from the initial crack tip in the tension–torsion specimen.

Fig. 25. The inclined penny-shaped crack; problem definition.
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simulation and those reported by Song et al. (2006) and Khoei et al.
(2009) using 2D FE modeling. Fig. 11 presents the variation of
cohesive traction with prescribed displacement at different points
from the initial crack tip. The consecutive curves imply the gradual
movement of softening zone in the model.

5.2. Three point bending beam with an eccentric crack

In the second example, the 3D cohesive crack simulation is per-
formed for the beam of previous example, in which the crack is
considered at 65 mm from the center of the beam. The geometry
and boundary conditions of the beam are given in Fig. 12. In con-
trast to the first example, the mixed mode crack propagation is
activated in this example and the crack kinking occurs. The mate-
rial properties of the beam and the cohesive parameters are similar
to the previous example. This beam was simulated by Song et al.
(2006) using the 2D FE modeling, and was shown that the crack
propagates to the center of the beam. In Fig. 13, the crack trajectory
is shown together with the deformed shape of the beam using the
proposed 3D computational model. A comparison of crack trajec-
tory can be observed between the current simulation and those
of experimental and numerical results reported by Song et al.
(2006). The successive mesh refinements are performed during
the crack propagation process, as shown in Fig. 14. In this figure,
the initial and refined meshes are shown at various loading steps.
As can be expected, the cohesive zone is refined with dense mesh
to capture the high stress gradients at this region. The variation of



Fig. 26. Adaptive mesh refinements in the inclined penny-shaped crack at different loading steps; (a–c) initial uniform meshes, (d–f) adapted meshes.

Fig. 27. The variation of estimated error with crack length during adaptive mesh
refinement in the inclined penny-shaped crack.
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error estimator h with crack length is shown in Fig. 15 for the uni-
form and adapted meshes. The effect of adaptive mesh refinements
at different crack lengths is obvious in this figure.

In Fig. 16, the variation of vertical reaction with CMOD is com-
pared with that obtained for 2D crack propagation by Khoei et al.
(2009). A little discrepancy observed in this figure can be justified
by the fact that in 3D crack simulation, the nodes of cohesive ele-
ments along the thickness may undergo various separations. In
Fig. 17, the variations of cohesive traction with prescribed
Table 2
The number of elements and nodal points of initial and adapted meshes in the inclined p

Loading step Uniform mesh

Number of nodes Number of elem

Step 0 540 294
Step 1 1432 890
Step 2 2638 1611
Step 3 3611 2269
displacement are plotted at different points from the initial crack
tip. Obviously, the cohesive forces increase during the crack prop-
agation at the crack tip, and then decrease due to the softening
behavior. A comparison between Figs. 11 and 17 presents that
the cohesive elements in the current example are collapsed at ear-
lier stages, which is because of the contribution of shear separation
in cohesive elements. Finally, the contours of stress distribution rx,
ry and sxy are shown in Fig. 18 at the final loading step. Different
cohesive fracture behaviors can be observed in this figure; the
cohesive elements above the crack tip display the linear behavior,
the cohesive elements around the crack tip represent the softening
behavior, and the cohesive elements below the crack tip are com-
pletely separated and present the zero stress values.
5.3. The tension–torsion specimen with center through crack

The next example is of a rectangular beam with center through
crack, which is simultaneously subjected to the tension and torsion
loadings. This example is chosen to demonstrate the effectiveness,
robustness and accuracy of computational algorithm in the com-
plex 3D non-planar crack propagation. The length of the beam is
90 mm and its cross section is a 30 mm square. There is a pre-exis-
tent through crack at the mid-span of the beam with 15 cm width.
The beam is fixed at one end and subjected to the torsion and ten-
sion at the other end by applying the prescribed displacements.
The geometry and boundary conditions of the problem are shown
in Fig. 19. This example was modeled by Krysl and Belytschko
enny-shaped crack at various steps.

Refined mesh

ents Number of nodes Number of elements

12912 8781
21697 14979
7566 4970
24371 16847
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Fig. 28. The variations of cohesive traction with crack opening at different points
from the initial crack tip in the inclined penny-shaped crack.

Fig. 29. The contours of stress distribution at final step of loading in the inclined penny-
stress syz (all dimensions in MPa).
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(1999) using the element-free Galerkin method coupled with the
standard finite element method.

In Fig. 20, the trajectory of crack propagation is depicted at dif-
ferent loading steps using the uniform and adaptive mesh refine-
ments. These results demonstrate that there is a good agreement
between the predicted crack path using the proposed computa-
tional algorithm and those reported by Krysl and Belytschko
(1999). The properties of various mesh refinements are given in Ta-
ble 1 for various loading steps. In Fig. 21, the effect of adaptive
strategy can be observed on the estimated error at different crack
growth. Obviously, the adaptive mesh refinements result in a re-
duced estimated error and converge to the prescribed target error.
In Fig. 22, the contours of stress distribution sxy, syz and szx are pre-
sented at the final loading step. It has been observed that the ten-
sion is dominant in this example, and the torsion displays the shear
cohesive tractions. The variations of tensile and torsion reactions
with the initial crack tip opening are plotted in Fig. 23. Also plotted
in Fig. 24 are the variations of total cohesive traction with pre-
scribed displacement at various points from the initial crack tip.
shaped crack; (a) stress rx, (b) stress ry, (c) stress rz, (d) stress sxy, (e) stress sxz, (f)
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5.4. Inclined penny-shaped crack

The last example consists of an inclined penny-shaped crack in
a cube with the dimension of 50 mm. The cube is subjected to a
uniform tensile prescribed displacement along the top and bottom
surfaces. The initial crack has a radius of 18 mm, which is located
at the center of cube by the angle of 45� with the vertical axis, as
shown in Fig. 25. This example illustrates the mixed-mode crack
propagation, in which all three modes can be observed. In order
to control the error of the solution, the adaptive FE mesh refine-
ment is carried out to generate the optimal mesh at various loading
steps. The weighted superconvergent patch recovery technique is
used with the aim error of 10%. In Fig. 26, the successive mesh
refinements are shown during the crack growth simulation at dif-
ferent loading steps using the uniform and adaptive mesh analyses
for one-half of the specimen. The adaptive mesh refinement proce-
dure reduces the estimated error considerably, as shown in Fig. 27.
The number of elements and noded of uniform and adapted
meshes are given in Table 2. Fig. 28 presents the variation of cohe-
sive traction with prescribed displacement at different points from
the initial crack tip. Since the crack mouth opening displacement
does not reach its critical value, the corresponding cohesive forces
do not vanish, as shown in this figure. Finally, the contours of stress
distribution rx, ry, rz, sxy, sxz and syz are shown in Fig. 29 at the fi-
nal loading step.

6. Conclusion

In the present paper, the three-dimensional cohesive fracture
model of non-planer crack growth was presented using the adap-
tive finite element technique. The 3D cohesive fracture element
was developed to simulate the crack propagation in the mixed-
mode non-planar curved crack growth. The adaptive finite element
technique was implemented through the following three stages;
an error estimation, an adaptive mesh refinement, and data trans-
ferring. The technique was performed based on the Zienkiewicz–
Zhu error estimator using the modified superconvergent patch
recovery procedure. The Espinosa–Zavattieri bilinear constitutive
equation was employed to evaluate the cohesive tractions and dis-
placement separations. The crack propagation criterion is used in
terms of the principal stress and its direction. Finally, in order to
demonstrate the validity and capability of proposed computational
algorithm, several practical examples were analyzed numerically.
Two benchmark examples were chosen to evaluate the perfor-
mance of adaptive FE strategy for the cohesive crack growth in a
bending beam with symmetric and eccentric edge cracks. The next
two examples were chosen to illustrate the capability of 3D crack
growth in the non-planar curved crack front in complex geome-
tries. The predicted crack growth simulation and corresponding
load-displacement curves were compared with the experimental
and other numerical results reported in literature. It is shown
how the proposed adaptive mesh refinement technique can reduce
the value of estimated error considerably in simulation of three-
dimensional cohesive crack growth problems.
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