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Abstract

We desctbe a new approach, called Strider, to Change and Configuration Management and
Support (CCMS). Strider is a black-box approach: without relying on specifications, it uses state
differencing to identify potential causes of differing program behaviors, uses state tracing to identify
actual, run-time state dependencies, and uses statistical behavior modeling for noise filtering. Strider
is a state-based amach: instead of linking vague, high level descriptions and symptoms to relevant
actions, it models management and support problems in terms of individual, named pieces of low
level configuration state and provides precisappings to user-friendlinformation through a
computer genomics database. We use troubleshooting of configuration failures to demonstrate that
the Strider approach redes problem complexity by several orders of magnitude, making root-cause
analysis possible.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Change and Configuration Management (CCM) refers to the task of monitoring
configuration changes and maintaining systein healthy configutéon states. Change
and Configuration Support (CCS) refers to the task of performing troubleshooting and
repairs to bring systems back to healthy confagion states, after configuration failures
have occurred.
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CCMS of conputer platforms with large install bases and large numbers of available
third-party software packages\eaproved tobe daunting taskslp]. Ideally, a white-
box approach could greatly simplify the tasks: the developers of every OS component and
ewvery application would accurdteand fully specify the set of configuration data that their
programs use, the health invariants that subsets of these configuration data must satisfy,
and the dependencies among the OS componadtagplications. Such information could
then be used to compose maawide dependency inforrtian andgolden configuration
staes R2] (or ideal states), in which all OS components and applications function
correctly.

In practice, there are several difficulties. First, the large number of possible hardware
and software combinations and their deperaes and iteractions make it difficult to
fully specify golden states for individual ashines because each miaehhas essentially
a unique, customized configuration. Also, studies have shown th2]] it is very
difficult to declare and maintaaccurate and conflict-free croagplication dependencies.
Second, as a user makes intended changes tmtifgyuration settings of her machine, the
machine’s configuration state moves from one good state to another, so there may not be a
golden state in which the machine must stay. Third, the “correct operations” of programs
are often defined with respect to user-expdcservices. An incorrect program behavior
perceived by one user may look perfectly fine to another user, so absolute goldenness is
sometimes hard to define. Finally, white-bgpecifications will not be available for the
majolity of existing legacy applications.

This motivates the Strider black-box approach to CCMS. In Strider, we use state
differencing (ordiffing) to identify deviations from known-good configuration state, use
state tacing to discover relevant, run-time state dependency information, and use statistical
behavior modeling for noise filtering. At the core of Strider i@mputer genomics
databasd10] that can accommodate specificationsdlaon white-box knowledge as well
as those derived from black-box experiments using state diffing and tracing.

The main contributions of Strider are as follows, which also serves as the outline of
the paper. First, we identify thre@trider principlesas the key to handling complexity
in CCMS: State-Based Analysis, Atlathe Mess ith the Mass and Complexity—Noise
Filtering. Applying these principles allows us to decompose seemingly intractable CCMS
problems into sub-problems, each of which is solved b§téder componentSecond,
we introduce Strider pocessesas conceptual uses of various combinations of the
Strider components to solve different problems, including troubleshooting, configuration
certification, and change audit.

Third, we describe theStrider toolkit that implements the Strider components.
Finally, we present the Strider troubleshooter that strings together components from the
toolkit to implement the troubleshooting process. We evaluate the performance of
the ftroubleshooter and discuss its limitations. To simplify our presentation, we
will focus our discussion on a particular type of important configuration data—the
Windows Registry 20], which provides hierarchical persistent storage for named, typed
entries. The principles and techniquese agenerally applicable to other types of
configuration stores and other platforms; we will discuss such applications at the end of the
paper.
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2. The Strider principles

We begin by describing the three Strider principles, and use troubleshooting of
configuration failures (i.e., errors resulting from mis-configuration) as the primary example
to illustrate problem decomposition.

2.1. State-based analysis

A configuration failure occurs when a program modifies a piece of configuration data
and, some time later, that same program or another program reads that modification and
experiences a persistent failure that cannot be repaired by application restart or machine
reboot. The failure can exhibit symptoms in the form of a program crash, program hang,
error dialog box, or simply not delivering user-expected service.

In particular, configuration problems caused by data sharing through persistent stores
present a great challenge. Such shared stores may serve many purposes: they may contain
system-wide resouaes that are naturally shared by gbipdications (e.g.the file system);
they may allow applications installed at different times to discover and integrate with each
other to provide a richer user experience; they may allow users to install new applications
to customize default handlers or appearanakeexiging applications; they may allow
individual applications to register with system services to reuse base functionalities; or
they may allow individual components to register with host applications that provide an
extensibility mechanism (e.g., toolbars in browsers).

Computer users (or support engineers) typically perfeympom-based analysiso
troubleshoot configuration problems. Based on their knowledge and past experiences with
similar problems, the users try to search the Web or a support-article database using search
strings constructed in an ad hoc way in an attempt to describe the symptoms. Such search
is highly imprecise and often results in a largember of irrelevant articles. Furthermore,
there is no guarantee that the repair actions suggested in these articles would actually
modify the configuration data relevant to the failure in question.

In Strider, we proposstate-based analysis the primary approach to troubleshooting.
Given a configuration failure, we represent it as a high dimensional state vector of all
configuration data. For example, Windows XP machines typically have around 200,000
Registry entries; a configuration failure due to a faulty entry can be represented as a
200,000-dimensional vector that contains the entry. The main challenge is to narrow down
the problem to that entry.

To reduce the dimendonality to the level that can be handled by humans, we develop
mechanical techniques to exclude those entries that are irrelevant to the current failure, and
develop atistical techniques to filter out those entries that are relevant but less likely to
be the root cause. Once we narrow down the potential candidates to a small subset, we
perform a precise lookup in a computer gencsrdatabase for each entry in the subset
to identify potential fixes. Optionally, we can use the imprecise symptom descriptions at
this later stage to help rank the importané¢he candidates by matching the descriptions
against information retrieved from the database.

Given thename of a Registry entry, the genomics database answers the following two
questions:
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(1) What is the functio of this entry? This provides any higher level information that
can help users understand the function of the entry. It may associate the entry with the
application(s) or OS component(s) that areémhyaresponsible for updating it and therefore
can potentially be used to correct problemsszliby the entry. It may also identify the
entry as “noise” p] from the viewpoint of configuratiomanagement because the entry is
unlikely to cause configuration failures. (Labeling and filtering of noise will be discussed
in more detail when we introduce the third Strider principle.)

(2) Are there known problems associated with this enfrigia quickly points to support
articles on known problems caused by the gnifrany. Such information is useful for
troubleshooting, but it can also be applied to correct Registry problems before they cause
application failures.

The computer genomics database can be populated today through troubleshooting
experiences and black-box exjmaents (e.g., we have recorded the Registry access traces
of most of the Windows XP configuration actions), as well as through application-provided
specifications in the future.

2.2. Attackhe mess with the mass

Applying the first principle allows us to decompose the problem into three parts:
mechanical, statistical, and database. We now develop the second principle to provide
further decomposition of the mechanical part.

Every Windows XP machine starts with approximately 77,000 Registry entries from the
CD installation process. The majority of users are given the freedom and flexibility to grow
the Registry any way they want by configuring their machines differently and installing
different sets of applications. Such freedom and flexibility helped create a large install base,
but also ceated‘the mess™—every machine haa unique configuration and applications
on each machine can interact in a unique way. For example, the default handlers for
file extensbns or the behavior of an extensible browser may depend on the particular
combination of software components installed on a system. When a configuration failure
occurs, the lack of a golden state vector particular to the unique configuration at hand
typically presents a major obstacle to troubleshooting.

In Strider, we make the observation thali-gize, absolutely golden state vectors may
not be necessary for CCMS problems. When a program fails due to a configuration problem
on a particular machine at apigular time, it suffices to find a state vector either from
another machine or from the past on the same machine, where the program is/was working.
In the space domairithe mass” (i.e., the large install base) offers a high probability that
one can find a healthy machine fmoss-machine analysis. In the time domain, a periodic
state snpshot feature such as Windows XP System Rest@isedan often provide a good
state vector from the past for cross-time analysis.

Given agood state vector and a bad state vector, the mechanical part of Strider oper-
ates as follows. First, it performssate dffing operation on the two vectors to obtain a
sub-vector consisting of only the differences, which must capture the root cause for the
difference in program behavior. Second, it asks the user to re-execute the failed program
action and performstate tacingto record a sub-veot consisting of only those configura-
tion data that are actually used as input to the current failed execution. Finally, it intersects
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the two sib-vectors to identify those that are potential root-cause candidates for the current
failure. (An illustration of these three components is showhig 1) Preliminary results
from our experiments show that, since the diffing sub-vector and the tracing sub-vector are
mostly orthogonal, the number of candidates in the intersection is often several orders of
magnitude smaller than the full vector describing the bad state.

Once we have decomposed the mechanicalgi&trider into state diffing, state tracing,
and state intersection, we can utilize various combinations to further take advantage of the
mass. For example, if a good state vector is available both from the past on the same
machine and from one or more other machines, we can use multiple state diffing sub-
vectors in the intersection to further reduce the size of the candidate set. Similarly, if the
same application failure occurs on multiple machines, the state diffing and tracing sub-
vectors from all these machines can be irgetsd together to further narrow down the
candidate set. Even in situations where no state diffing sub-vector is available, intersecting
multiple traces may help eliminate non-deténistic parts of execution traces due to
other system activities and irrelevant to the deterministic application failure that is the
troubleshooting target. A caveat is warranted here: in order for these more elaborate
combinations to succeed, the root cause @& t¢bnfiguration failure must be a single
entry or a fixed set of entries that differ betan every sick/healthy pair. Fortunately, our
experience has been that such root causes are indeed responsible for many configuration
failures.

State diffing and state tracing distinguish Strider’s black-box approach from the white-
box approach: instead of relying orfall specificatiorof absolutely golden statgrovided
by software developers, we use state tracing to scope essentigéyrtat specification
of the portion of configuration state actually accessed by the code path taken by the failed
program execution, and use state diffing to take advantage ofjtiw“states relevant to
this failure’ available in $ate snapshots froné past and/or from other machines where
the pogram does not fail.

2.3. Complexity—noise filtering

An immediate concern about the mechanical part of Strider is that a large class of
Ragistry entries are both updated and read frequently, which means that they will appear
in both the diffing and tracing sub-vectoBecause of this, they will also appear in the
intersection with high probability, and thus they will consistently inflate the size of the final
candidate set. Timestamps, usage courdshes, seeds for random number generators,
window positions, and MRU (Most Recently Used)-related information are such examples.

In Strider, we make the observation that such “high frequency” entries should be
considered operational states’instead of the “configuration states” that we are mostly
interested in for troubleshooting configuration failures. If a machine has been healthy in the
presence of these high frequency updates, then when a configuration failure occurs, these
operational data are less likely to be the root cause. In contrast, configuration data that have
not changed often in the machine’s history bave changed recently since the application
was lasknown to be working are more likely to be the root cause. This leads to the concept
of state mnkingbased orinverse Change Frequency (ICRye assign each candidate in
the intersection a score that inversely depends on its change frequency, and prioritize the
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troubleshooting effort according to the scorakimg; optionally, entries with scores below

a threshold can be filtered out as noise and ignored. More sophisticated statistical analysis
techniques that additionally take into account abnormal data co®éa} fhould further
improve troubleshooting effectiveness.

The same observation can be applied tossfrmachine analysi€learly, there are
classes of Registry entries that always edmtdifferent data on different machines; for
exampe, the data may be a function of computer names, user names, user security IDs,
Globally Unique IDs (GUIDs), hardware IDs, IP addresses, etc. These entries constitute
the “natural biological diversity” among machines and are less likely to be root causes of
configuration failures. These differencae much like the human genes that are simply
responsible for the natural diversity in human appearances and that are not thought to be
the cause of any genetic disease even though they frequently appear as genetic differences
between sick and healthy people.

In summary, the state-based approach starts with a large and complex problem: the
Registry ontains many entries, many of them changing. Fortunately, when we apply the
complexity—noise filtering principle, these sources of complexity tend to filter themselves
out, allowing us to focus on the fewer and siempRegistry entries that are most likely
to be significant. This again distinguishes Strider's black-box approach from the white-
box approach: instead of relying on a specification of operational data versus configuration
data, we use behavior monitoring and statistimatleling to derive thisidtinction. Similar
statistical techniquesan also be used to predict potential failures by analyzing a large
number of state vectors and flagging those that deviate from the “normal majority” as
problematic ones that require special attention.

We note that, for any Registry entry that Strider filters out as noise, one can always
construct a counterexample in which the entry is in fact the root cause; such a trade-
off between false negatives and false positives is inherent in any statistical techniques.
Our empirical results so far have indicated that noise filtering is essential for dealing with
complexities and it allows successful troulilesting of a large class of failures. We will
discuss the limitations of noise filteig in more d&ail in a later section.

3. The Strider processes

Applying the three Strideprinciples allows a decomposition of the troubleshooting
problem into five Strider components: state diffing, state tracing, state intersection, state
ranking, and the computer genomics database. In this paper, we use the term “Strider
process” to refer to a conceptual use of some or all of the Strider components as building
blocks in a specific way for a specific type of CCMS problem.

Fig. lillustrates the Strider process for troabhooting. In the narrow-down phase, the
state diffing result and the failed application trace are intersected to produce a candidate
sd, which is then ranked and filtered by the state ranking module. As more and more
troubleshooter reports are gathered, entries that are known to cause failures can be
emphasized and entries that have repeatguhgared in the reports false positives can
be de-emphasized.
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Fig. 1. The Strider process for troubleshooting.

In the solution-query phase, a genomiegabase lookup is performed for each entry
in the candidate set, to yitlone or more of the following three types of information:

(1) support articles that describe known fixes of problems related to the entry; (2) a user
interface for performing configuration agtis that can potentially correct the data content
of the entry; and (3) information about the application that owns this entry.

We net describe two other Strider processes for different CCMS problems
to demonstrate the flexibility provided bgtrider's componentized approach. The
“configuration certification” process addresses an important CCMS scenario. In this
scenario, we would like to answer the question of whether an operational machine still
conforms to a certified configuration and so is eligible for product support service. The
Strider pocess would involve state diffing beden the operational machine and a certified
machine, followed by noise filtering of knowentries unrelated to certification. State
ranking with an adjustable threshold could provide a trade-off between the time spent in
determining the conformance and the time wasted in providing support for non-conforming
machines falsely determined to be in comfi@nce. The genomics database could store
information regarding commonly installed, unsupported hardware or software to speed up
the determination of non-conformance.

Next we desche the “change audit” process. Iretlcenario targeted by this process,
we would like to answer questions in the form oftiat has changed on my machine
since last weeK?This Strider process wuld involve always-on state tracing of all write
operations with always-on noise filtering to control the size of the audit file. (State tracing
captures the additional information of which process in what context made the changes,
information which is typically not availablfrom state diffing.) State ranking would
distinguish significant configuration changes from the lesser ones. The genomics database
would store mapping information that transkgeoups of changes into higher level, user-
friendly descriptions for better presentation.



150 Y-M. Wang et al. / Science of Cquter Programming 53 (2004) 143-164

4. The Strider toolkit

We have implemented the full functionality tifie first three Strider components in the
Strider toolkit. A limited form of the state ranking component and part of the computer
genomics database are also included in the toolkit.

The state diffing tool by default takes two System Restore checkpoints as input and
produces an XML file containing Registry entries that exist in both checkpoints but have
different data as well as those that exist in only one of the checkpoints. System Restore is
a dandard feature on Windows XP machines. It automatically saves a checkpoint of the
Registry, selected files, and other configuration stores approximately every 24 hours. The
number of available checkpoints depends on the maximum amount of disk space allocated
for System Restore, which is set to 12% of each hard drive by default.

The tool also supports diffing of only selected Registry hives. For example, if a
configuration failure occurs under one usecount but does not occur under another user
account on the same machine, then the root cause cannot reside in machine-wide Registry
hives. Diffing only the per-user hives of the two users takes less time and reduces the
number of false positives in the report.

The state tracing tool is implemented as a kernel-mode driver that, by default, intercepts
and records every Registry call made by any application or OS component. It supports
Include and Exclude filters for logging only those trace lines that contain or do not contain,
respectively, specific sub-strings. It also supports efficient logging of only certain call
types; for example, it can perform always-on logging of only write-related call types to
provide a comprehensive change audit.

The state intersection tool uses a generic tree data structure to maintain a set of
hierarchical names. It can take multiple state diffing files and/or multiple state tracing files
as input. Each state entry in each of the input files is inserted into the tree and marked by
the ID of its source file. Entries that are marked by the IDs of all input files are reported
in the intersection result. As we extend the functionality of the state diffing and tracing
tools beyond Registry to include other configuration stores such as files and application-
specific XML configuration files, the sameatd structure can be used to compute the
intersection.

Ideally, on each machine runnitige Strider tool, the statranking component should
compute the ICF scores based on a customized “change frequency dictionary” for the local
machine because each machimednfigured and used in a different way and so the change
behavior of configuration state may be diffeteBuilding such a customized dictionary
at troubleshooting time would not be feasibkchuse it would involve invoking the state
diffing operation on every pair of consecutive checkpoints, which could take several hours
(with five minutes per pair in today’s implementation).

Currently, we include a “statidictionary” in the Strider executable and use the static
scores in the dictionary for all state rangi operations. The dictionary was built from
analyzing the change frequencies on the main desktop machine of one of the authors.
Our troubleshooting experience so far has indicated that such a dictionary appears to be
effective in ranking commonly updated Registry entries, but may miss many application-
or machine-specific changes. We plan to replace it with another one built from multiple
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machines to increase its coverage and makedre represatative. In the long run, we
would like to have an always-on Windows service running on every machine, continuously
updating a local, customized dictionary.

As an optimization, well-known Registry eigs and sb-hierarchies that change very
frequently and/or repeatedly appear as false positives in troubleshooting reports are filtered
out in a keywod-based noise filteringtep inserted ght before the intersection; it is
invoked &fter the intersection code reads an entry from an input file and before it inserts
the entry into the tree structure. A secahdeshold-based noise filteringtep is invoked
after the intersection: it grays out entries with ICF scores below the (conservative) default
threshold, which corresponds to a change fremyeof 10% in the static dictionary. In
addition to the ICF rankingorder rankingis also applied to assign more weight to
entries that appear earlier in the trace, based on the intuition that later part of the trace
may simply be a result of execution divergence caused by a bad value of an earlier
entry.

Currently, part of the state-to-app/action mapping information of the genomics database
is built into the executable. In a one-time experiment, we performed all commonly used
Windows XP configuration actions and recorded their corresponding Registry update
operations using the tracing tool. The reverse mappings can then be used to provide state-
to-action mappings at troubleshooting time. As more state-to-app mapping information is
obtained through experiments and actual troubleshooting experience, we plan to build a
Web servte for entering and querying such information. The same Web service will also
be used to implement the support-article lookup part of the genomics database, which is
currently compiled as a list on a Web page with pointers into a trouble-ticket database and
a aupport-article database.

5. Experimental results

Clearly, the Strider approach would not work if the following worst case were the norm:

a largepercentage of the Regiry entries change every day and a large percentage of them
are used by every application action, resulting in a large candidate set that no human could
reasonably handle.

We preent empirical results in this section to show that the above worst case is not the
norm. We first present measurements of Registry change frequencies from five machines to
study the typical size of the state diffing set. Then we present results from troubleshooting
experiments to evaluate the effectiveness of additional state tracing, intersection, and
ranking.

We use he ten cases lisd below in our gperiments. They were all real-world failures
that troubled some users. To allow parametrized experiments, we reproduced these failures
on machines in our group and ran Strider to produce the results. We used configuration
user interface (e.g, Control Panel appletsjrject the failures whenever possible, and
used direct editing of the Registry for the remaining cases. All the chosen machines
were desktop machines used by their ovenar a daily basis. This is important because
they would exhibit “regular” Registry change behaviors; using test machines from our
lab (that have little installation/configuran activity) would have produced better but
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invalid results. We also study the sensitivity of the results with respect to the choice of
machines to inject the failures. Preliminary results from cross-machine troubleshooting are
also dscussed.

1. SystemsRestore: no available checkpoints are diaped because the calendar control
object cannot be started due to a missing Registry entry.

2. JPG: right-clicking on a JPG image and choosing ®end To — Mail Recipient
option no longer offer the resize option dialog box due to a missing Registry entry.

3. Outlook: user is always asked upon exiting Outlook whether she wants to permanently
delge all emails in the Deleted Items folder, due to a hard-to-find setting.

4. Printing: printing to a duplex-named printer always produces single-sided printing,
due to a hard-to-find setting.

5. |E Passwords: Internet Explorer (IE) browser no longer offers to automatically save
passwords; the option to re-enable the feature is difficult to find.

6. Media Player: Windows Media PlayefOpen URL” function would fail if the
EnableAutodial Registry entry is changed from 0 to 1 on a corporate desktop.

7. IM: MSN Instant Messenger (IM) would significantly slow down if the firewall client
is disabled on a corporate desktop.

8. |E Proxy: IE ona machine with a corporate proxy setting would fail when the machine
is connected to a home network.

9. |IE Offline: IE “Work Offline” option may be automatically turned on without user
knowledge; the user would then be presehwith a cached offline page instead of the
default start page when launching IE.

10. Taskbar: IE windows would be unexpectedly grouped under the Windows Explorer
taskbar group, due to the addition of a Registry entry.

5.1. Registry change behavior

The common perception of the Windows Registry is that it contains an enormous
amount of undocumented configuration infotioa that is accessed frequently by various
applications and OS components. To our knowledge, the study that we present in this
section is the first quantitative study of Registry change behavior. In addition to providing
insights for the troubleshooting problem, the study should serve as a useful guide for the
general CCM community as well.

We sudied the Registry from two perspectives. First, we looked at the aggregate
change behavior of the Registry over a long period of time, ranging from 77 to 84
days. (These numbers are roughly determined by the number of available System Restore
checkpoints per machine.) Next, we looked at the daily behavior of the Registry over the
same observational period. We expect that Strider troubleshooting will most frequently
be applied to a good checkpoint and a bad checkpoint that are close together in time, and
therefore we expect the daily behavior of the Registry to be a good guide to the performance
of the state diffing parmf the Srider toolkit.

The machines in our study consisted of four developer workstations and one knowledge
worker’s machine, each of them in daily uség. 2 shows theRegistry change statistics
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Machine | Number of Registry | Days Observed | % Never Changed | % Operational | % Remaining
Values
1 139,458 84 95.3% 2.6% 2.1%
2 213,574 84 90.4% 1.9% 1.7%
3 232,890 84 89.6% 5.6% 4.8%
4 237.622 71 79.3% 1.2% 19.5%
5 200,812 84 86.8% 1.9% 11.3%

Fig. 2. Registry change statistics.

we observed across the five machines over ghdrety of the observational periods.
We present the number of Registry values at the end of the period for each machine—
these vary from just under 140,000 to almost 240,000.

On four of the five machines (#1, #2, #3, and #5), only 4.7%—13.2% of the Registry ever
changed. Applying the noise filtering techniques (i.e., keyword-based filtering and change
frequency threshold-based filtering by excluding any Registry entry that changed more than
10 times during the period) to these machines yielded that the number of Registry changes
that were classified as non-operational and sepiidlly configuration-related ranged from
2.1%to 11.3%.

On machine #4, 20.7% of the Registry changed. Looking at this machine’s history
in more detail, we found that the majority of the changes were due to a single large
installation: on this one day,6% of the Registry changed. If we exclude this single large
installation when calculating the Registchhange percentage, we find that the changes
drop to around 4% of the total Registry size. This number suggests that if we needed to
troubleshoot this machine, state diffing of any pair of checkpoints on the same side of the
large installation (i.e., either both beforelmsth after) would likely result in a number of
potentially significant entries that is comparable to the number found by state diffing on
one of the machines with a small change petage over the entire period. If the state
diffing period must cover the large installation, then we need to rely on the intersection
component to reduce the complexity, which will be discussed shortly.

Now we turnour attention to the daily behavior of the Registfig. 3 illustrates the
daily behavior across all five machinesedause checkpoints may be taken for multiple
reasons (by the users manually, by System Resdwvare installers or to installations,
or by System Restore service periodically), we were careful to ensure that we only included
one checkpoint per 24-hour bucket in our analysis. Therefore the diff sizes sh&ign
correspond to a gap of slightly more than 24 hours on average. The spike in machine #4’s
diff size due to the single large installation (mentioned in the previous paragraph) is clearly
visible near the beginning of the observational period.

Across all five machines, the median numbg&changing Registry values on any given
day is 302. After applying the Strider noise filtering, the median number drops to only
29. This demonstrates the additional power of noise filtering when applied to changes
between checkpoints taken on consecutive days. This has the following simple explanation:
although the percentage of operational Registry entries as shokig.i@ may seem low
(between 1% and 6%), these entries charfgagliently and so appeared much more often



=
a1
N

Y-M. Wang et al. / Science of Cgmter Programming 53 (2004) 143-164

1000000

" Total
100000 ———— - — ~— -~ — = = =t = ‘- =°< Raw Diff

10000 Noise Filtered (Keyword
+Frequency <= 10)

1000

5
>
>
>
—2
>
J

=
=
=
E

LAAYITA
LV VY T NP LN WY

84 Days
(a) Machine #1

Number of Registry Values

1000000

100000

10000 |

1000

100 1

Number of Registry Values

104

1

84 Days
(b) Machine #2
1000000

100000 -
10000 1
1000 4

10

Number of Registry Values

|
84 Days

(c) Machine #3

Fig. 3. Registry daily changewith and without noise filtering.

in daily diff results. Noise filtering effectivglidentifies these entries, which comprise a
large portion of any daily diff, as unlikelto reflect significant configuration changes.

5.2. Same-machine, cross-time troubleshooting

5.2.1. Troubleshooting effectiveness
Fig. 4a) and (b) present our experimental results on the effectiveness of Strider trou-
bleshooting for the ten cases, all with checkpoints that are approximately seven days apart.
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Fig. 3. (continued)

Along the horizontal axis, “Registry Size” is the average number of Registry values of the
two checkpoints; “Diff” is the number of Registry values in the state diffing result; “In-
tersection” is the total number of Registry wak appearing in the report, which consist of

all the entries in the intersection of keyword-filtered diff and trace; “ICF” excludes those
entries in the report whose ICF scores are below the default threshold; “Rank” is the order
ranking of the root cause ihe ICF-filtered list.

The effect of each step in the Strideotibleshooting process is evident from the
figures. Typically, state diffing reduces the dimensionality by two orders of magnitude
(from 200,000 to roughly around 2,000) and diff—trace intersection reduces it by another
two orders of magnitude (from 2,000 to below 20). Even in the three cases where state
diffing could provideonly one-order-of-magnitude redian because the seven-day period
covered some significant installation evetitg intersection still effectively brought down
thenumber of candidates to below 20.

The ICF threshold-based noise filtering provided additional help for the three cases with
more than 10 dnies in the intersection (ifig. 4(b)): it reduced the numbers from 17, 15,
and 13to 14, 11, and 7, respectively. The fimaking summarizes the overall effectiveness
of Strider troubleshooting: the actual root cause was identified as the number 1 candidate in
six of the ten cases, as number 2 in two cases, and as number 3 in one case. The root-cause
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Fig. 4. Same-machine, cross-time troubleshooting effectiveness.

rank for the IE Proxy case was 14, which would require more manual analysis effort to
filter out the false positives. We are currently investigating ways to group together relevant
final entries to aid manual analysis.

5.2.2. Sensitivity analysis

We performed additional experiments to study the sensitivity of the troubleshooting
resuts to variation in the machine being examined and the time interval of the diff. We
let the time between the good checkpoint and the bad checkpoint vary among 3, 7, and 14
days. We varied the machine under consideration across all five machines in our study, and
we examined four cases: System Restore (case 1), JPG (case 2), Media Player (case 6), and
IM (case 7). The final ranking results are presentefign 5.

We found the Strider troubleshooter to be robust to both factors being studied, although
varying the ctors did have some impact. In three of the four cases, the choice of machine
affected the root-cause ranking, although the final rank remains number 3 or better in every
case. In the case of machine #5 with case 6, we found that varying the offset in time from
7 to 14 days caused the rocduse rank to drop from 1 to 2.
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System Restore (case 1) | JPG (case 2) | Media Player (case 6) IM (case 7)
Machine #1 | 3 days 1 3 days 1 3 days | 3 days 1
7 1 7 1 7 1 7 1
14 1 14 1 14 1 14 1
Machine #2 | 3 days 2 3 days 1 3 days 1 3 days 1
7 2 7 1 7 1 7 1
14 2 14 1 14 1 14 1
Machine #3 | 3 days 2 3 days 1 3 days 2 3 days 3
7 2 7 1 7 2 7 3
14 2 14 1 14 2 14 3
Machine #4 | 3 days 2 3 days 1 3 days 1 3days | N/A
7 2 7 1 7 1 7 N/A
14 2 14 1 14 1 14 N/A
Machine #5 | 3 days 2 3 days 1 3 days 1 3 days 1
7 2 7 1 7 1 7 1
14 2 14 1 14 2 14 1

Fig. 5. Sensitivity analysis of same-machine, sstime troubleshooting. (Numbers are final root-cause
ranks.)

5.3. Cross-machine troubleshooting

Although the current version of the Strider toolkit is primarily targeted at same-machine,
cross-time troubleshooting, we have conducted some preliminary experiments and found
that it can be useful for cross-machine troubleshooting as well. We used the same ten cases,
but with checkpoints from two different machines: the configuration failure was introduced
into one machine to make the target prograction fail, while the ame action succeeded
on the other one.

Fig. 6 shows the results. First, we observe that the current state diffing tool is less
effective in the cross-machine scenario; it reduced the number of entries by about two
thirds, in contrast with the two orders of magnitude in the same-machine case. There
are at least two factors that contributed to this: (1) different machines can simply have
very different sets of installed programs; (2) theame” Registry entries can appear
to be different on different machinesstause their names cairt machine-specific
information. We are currently investigating a set of mapping rules to eliminate the
latter.

Fortunately, the intersection operation remained effective and reduced the number to
below 100 in all cases. The ICF noise filtering is only slightly useful for half of the cases
because the static dictionary built from ssdime diffing analysis may not be suitable
for the cross-machine scenario. We expdt a separate dictionary based on cross-
machine diffing analysis of each Registry entry among a large number of checkpoints
would improve the filtering.

The final step of applying the order ranking heuristics was still mostly effective: in eight
of the ten cases, the root cause ranked number 10 or better. But for the IM case and the IE
Proxy case, the root cause ranked 36 and 33, respectively.
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Fig. 6. Preliminary results of crogsachine troubleshooting effectiveness.

6. Discussions and futurework

In this section, we discuss additional issues and factors that can potentially impact
the dfectiveness of Strider troubleshooting and were not covered by our performance
evaluatons presented in the previous section. We also discuss several types of problems for
which the current version of Strider cannotsassfully provide diagnosis, and we outline
our future work directed at addressing these problems. In general, the challenge is to ensure
that the mechanical operations capture the root cause, to understand the limitations of our
current noise filtering techniques, and then to further exploit the mass to facilitate the final
step of pot-cause analysis.

Capturing the root cause

In most cases, it is fairly clear which apgation’s execution should be traced. For
example, in the Media Player case, we trasehplayer.exe; in the IM case, we traced
msmsgs.exe. Per-process traces were used for all the cases except for the “Taskbar” case, in
which traces for both iexplore.exe (IE) and exyar.exe (Windows Explorer) were included
because it was difficult to determine frothe symptom which one was the offending
application.
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Although they usually achieve good root-causeking, per-process traces capture only
“direct dependencies” (i.e., Registry accessmde by the target process) and may miss
the root cause contained in “indirect dependencies”. For example, in a case where a pop-
up stopper designed to stop pop-up ads intedavith the normal operations of a Web site,
the root-cause Registry entry was accessenh faseparate process, rather than from the
browser process itself. We plan to enhanceédstrwith process dependency tracking so
that it can capture indirect dependenciedwitt resorting to using all-process traces.

In addition to indirect dependencies, yashronous dependensiegpose another chal-
lenge. Strider implicitly assumes that theot-cause entry must be accessed synchronously
during the user-selected time interval for state tracing. However, it is possible that the
traced application had readethoot-cause entry before the tracing was started. For ex-
ample, while in most of the ten cases the application actions that the user should trace
were well defined and did coaih the root causes, the remiig cases required tracing of
application launching as well as the application action that led to the observed failure.

To study the effect of less-experienced Strider users always using the longer traces
(i.e., since application launch) to avoid missing the root cause, we performed further
experiments by replacing ¢haction-only traces with the longer traces in cases 1, 3, 4,

5, and 6. This would drop the root-cause ranking from (2, 1, 1, 1, 2) to (3, 12, 1, 9, 17),
respectively, which is still acceptable but ynegequire significantly more troubleshooting
effort depending on whether the additional false positives are easy to filter manually. Our
long-term direction is to develop efficient, always-on tracing and logging to relieve users
of the responsibility of specifying when to start and stop tracing.

Similarly, users may specify incorrect good states due to either incorrect memory or
latencies between state corruption and application failure. This would cause the state
diffing results and thus the intersection to miss the root cause. A near-term solution is
to encourage users to be conservative in selecting good states. Our long-term direction
is to develop statistical techniques thatt@matically analyze multiple good and bad
checkpoints to relieve users of the burden.

Limitations ofnoise filtering

As discussed previously, statistical heméques such as Inverse Change Frequency
ranking for filtering out false positives naturally introduce the possibility of false negatives.
Although it is difficult to provide conclusive arguments that noise filtering does not
introduce significant false negatives without a large number of failure cases, our experience
has shown that it works well in practice andstdlowed successful root-cause analyses of
tens of cases.

We now desribe several types of problems that could potentially defeat Strider’s current
noise filtering strategy. Our plan is to refine the filtering rules as we encounter false
negatives, and rdsit the design if we gain concrete evidence that a significant number
of real-world root causes actually fafito the false-negative category.

o Usage counters: for example, the behavior of a trial software package may change
when its usage count exceeds a certain threshold.

o Window positions: for example, a corrupted entry that is supposed to remember the
last position of an application window may cause display problems.
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o MRU and cache-related information: for example, “last server connected” may be
the root cause of a client application failuftast file opened” may cause a document
processing program to fail upon launch; a cached Web page may cause undesirable
behavior in a browser.

o Per-session data: same application data may be updated on a per-session basis and
have dependencies on the current environment; failures may occur when a user tries
to restore sch per-session data. Current Strider noise filtering would have mistakenly
filtered outsuch data.

o Data coupling: a shgle Registry entry may contain both operational data and
configuration data. For example, we have encountered a case where Word was used
as the default email editor for Outlook and a certain document navigation option could
not be turned off. The option was, unfortunately, controlled by some Registry entries
containing binary blobs of data, and thesedsinblobs apparently contained operational
data as well and so had low ICF scores. Thesties were incorrectly filtered out as
noise originally (i.e., grayed out in the report), but later determined to contain the root
cause through further investigation. Once a false negative is discovered, the change
frequency dictionary built in to the Strider executable is updated to assign the entry a
very high score, reflecting the fact that thetey has been identified as the root cause of
an actual configuration failure.

Exploiting the mass

The four orders of magnitude in dimensionality reduction typically achieved by the
mechanical steps of Strider was a significant starting point for us for handling the
complexity of Registry problems. However, we have encountered cases in which ICF noise
filtering and order ranking failed to offerétfinal reduction of another order of magnitude
and the users were left with tens of candidateistegigate. In some cross-machine cases,
the final reports still contained hundreds ohdalates and root-cause analysis remained
very difficult.

We plan to address this challenge by further exploiting the mass. We are collecting a
large number of Registry snapshots in our “GeneBank” and plan to generalize the diff-
based techniques to statistical analyses across multiple snapshots. In particular, root-cause
candidates containing data that clearly deviate from the “normal majority” will be ranked
higher. We are also enhancing the tracing and noise-filtering techniques to enable always-
on logging and analysis on a large number of machines for building and reporting known-
good behavioral models.

7. Beyond the Windows Registry

Although we have focused on troubleshooting Windows Registry-related problems, the
Strider tetiniques are generally applicable to anyrslaa persistent configuration store on
any operating system platform.

We are currently extending the Strider implementation to provide troubleshooting of
configuration problems due to changes in files and directories/folders. The implementation
will utilize the file change log information from System Restore to detect which files
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have been changed, use a filter driver to trace which files are being accessed as part
of an application action, reuse the tree structure for computing the intersection, use file
change frequency for state ranking, and rely on information from the genomics database
to identify directories containing tempoydifiles asknown noise, to provide mappings of
which files belong to which applications or OS components, and to point to support articles
documenting known problems with certain files.

Similar techngues can also be applied to Unix machines. Unix configuration generally
appears in files under /etc/. For example, usmount information is in /etc/passwd, the IP
address of the DNS server is in /etc/resolv.conf, and the many parameters for the X server
are typically in /etc/X11/. Although many configuration files are used by a single program
or OS facility, quite a few well-known configuration files are shared by multiple programs
and so are subject to similar configuration problems as those in the Window Registry.

The most notable example is /etc/mailcap, which contains a system-wide mapping
from MIME types to commands for handling them. Any software that displays or edits
a paticular type of MIME file may want to install entries in the mailcap file, so that other
programs can use it to display or edit that file type. Therefore, applications that can handle
common file types could write conflicting entries into the mailcap configuration file.

Another example is /etc/inetd.conf. Ratliean having a separate daemon for each type
of connection (for example, finger, telnet, rlogin, rsh, smtp, ftp) listening on its own port
for incoming connections, the meta-daemon inetd listens on all the ports and starts an
instance of the appropriate daemon on dedhas each connection comes in. Each of the
individual daemons is required to add an entry to inetd.conf when it is installed and remove
that entry upon uninstallation. If two daemons use the same port, their entries in inetd.conf
may conflict [L4].

In addition, ill-written Unix applications may modify the environment variables in
a user’s .cshr configuration file for their own operations. Such practices may result in
conflicts in environment variables. When these conflicts result in faulty application
executions, users typically resort to application reinstallation to repair the problem. Strider
troubleshooting can help identify the root cause to potentially provide a less disruptive
repair and avigl future occurrences of the same problem.

8. Related work

The body of work related to systems management through specification is quite large
[2,3,9,151823]. The general approach is to provide languages and tools to allow
developers or system administrators to specify “rules” of proper system behavior and
configuration for monitoring, and “actionsb tcorrect any detected lack of compliance
with a given rule to enable the system to converge with the specified requirements.
Strider @mplements the specification-based approach by adopting a black-box approach
to dismver ungecified rules of proper system operation and gradually build up a genomics
database of known-good requirements and known-bad issues.

Burgess 4,6] proposed a general “diffing” concept of adaptive, statistical, long-term
anomaly detection for systems managemehich is implemented into the configuration
agent systenefenginefor the Unix environment. The Strider Inverse Change Frequency
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ranking applies a similar concept to the Windows environment. Specifically, a “statistical
quantifier” in the summary form of chandgeequency is maintaied for each Registry
entry to approximately characterize its “normal” behavior; operational data exhibiting
long-term, high frequency behavior is then de-emphasized at troubleshooting time even
though it appears in the state diffing result. The garbage collection operation of System
Restore defies a natural sliding window for Strider; contributions from data changes
corresponding to the past, garbage-collected period are degraded to allow the ranking
algorithm to adapt to progressive behavioral changes due to newly installed software or
changes in user usage patterns.

Strider’s basic approach of classifyinfpanges as unimportant (noise) or important
based on their statistical properties is in thmeaspiit as the statistical mechanics section
of Burgess’s paper on Computer Immunolo@y. [In contrast to his work on Computer
Immunology, we have not explored self-repairing behavior. We made this choice for two
reasons. First, the current focus of Strideron desktop machines, for which reliable
measures of normality are harder to obtain compared to the case for heavily loaded
saver machines running widely used services, as was similarly observé}l iBdcond,
the “state” considered by Strider consisfs‘raw” pieces of configuration data, such as
a Regstry entry, as opposed to the “resource usage variables” commonly used in the
literature. It is more difficult to define anomalies and invoke self-repairing actions in the
former category because most of the change®nfiguration data are likely to have been
intentional; they should be considered potential anomalies only when the user complains
about the system or an application no longer delivering user-expected services.

Gossips 13 provides an extensible, object-oriented framework for monitoring
distributed systems in an IT environment. Each Gossips process running on a participating
client gathers and analyzes system stalated data, and reports any interesting state
changes to a central server. By including@mrdine, Gossips could be extended into an
automated repair tool. Although Gossips also maintains a knowledge base of known
problems indexed by state-related information, the “states” refer to the condition of a
system or service (such a®rking/broken, which are quite different from the lower level,
more precise “configuration data” statin the Strider genomics database.

In a recent position paper, Redstone et &b] [desribed a vision of an automated
problem diagnosis system that automatically captures aspects of a computer's state,
behavior, and symptoms necessary to characterize the problem, and matches such
information against problem reports stored in a structured database. In the Strider
project, we have focused on developing actual root-cause analysis technologies for
configuration failures by using state diff and trace information to characterize them.
Symptom descriptions are used as seconddoynmation and are still provided by the user
because many Registry-related “problems” caty be defined againstser expectation.

An earlier version of Strider provided automatic search of support database for high
ranking root-cause candidate®]; but we have observed that such an approach can only
be effective after a large number of suppoticdes are written in a structured, machine-
readable format and statén the geomics database.

The concept of problem identification as deviant behavior from a “normal majority” by
applying statistical techniques to a large number of samples has emerged in several areas in
recent years. Engler et alLl]] de<ribed techniques that autatically extract correctness
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rules from the source code itself (rather than the programmers) and flag deviations, and
that use statistical ranking to prioritize the inspection effort. Liblit et BF] proposed a
sanpling infrastructure for gathering information about a large number of actual program
executions experienced by a user community, based on which predicate guessing and
elimination are used to isolate deterministic bugs and statistical modeling is used to isolate
non-deterministic errors by identifying correlation between behaviors and failures. Apap
et al. [1] presented dost-based intrusion detection system that builds a model of normal
Ragistry behavior through training and showed that anomaly detection against the model
can identify malicious activities with relatively high accuracy and low false positive rate.
The PinPoint root-cause analysis framewofkdppies data clustering analysis to a large
number of multi-tier request—response traces tagged with perceived success/failure status
to determine the subset of components that are most likely to be the cause of failures.

9. Summary

We have proposed the Strider state-based approach to Change and Configuration
Management and Support, and built and evaluated a system based on this approach. The
approach allows a decomposition of compfawblems into five Stder components that
can be used as building blocks in various scergaitn the context obur primary example,
troubleshooting of configuration failures, we have demonstrated that combining the black-
box techniques of state differencing, tracingtersection, and ranking can effectively
narrow down the list of root-cause candidates for many real-world cases. As we continue
to build up the competr genomics database, where we provide precise mappings from
configuration state items to their known functions and/or problems, more knowledge will
be captured in a structured format, enablingremore eféctive root-cause analysis. Our
future work includes providing differencing and tracing of more types of configuration
state to increase coverage, collecting a large number of state snapshots and program traces
to enable advanced statistiGaalysis and reduce Strider's dependence on manual steps,
and evolving the current Strider toolkit for troubleshooting into a systems management
framework for self-monitoring and self-healing.
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