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In this paper we prove parts of a conjecture of Herzog giving lower bounds on
the rank of the free modules appearing in the linear strand of a graded kth syzygy
module over the polynomial ring. If in addition the module is �n-graded we show
that the conjecture holds in full generality. Furthermore, we give lower and upper
bounds for the graded Betti numbers of graded ideals with a linear resolution and

Ž .a fixed number of generators. � 2002 Elsevier Science USA

INTRODUCTION

� �Let S � K x , . . . , x be the polynomial ring over a field K equipped1 n
Ž .with the standard grading by setting deg x � 1, and let M be a finitelyi

Ž .generated graded S-module. We denote by � M �i , i� j
Ž .dim Tor M, K the graded Betti numbers of M.K i i�j

Assume that the initial degree of M is d; i.e., we have M � 0 for i � di
linŽ . Ž .and M � 0. We are interested in the numbers � M � � M ford i i, i�d

i � 0. These numbers determine the rank of the free modules appearing in
the linear strand of the minimal graded free resolution of M. Let p �

� linŽ . 4 � �max i : � M � 0 be the length of the linear strand. In 13 Herzogi
conjectured the following:

Conjecture. Let M be a k th syzygy module whose linear strand has
length p. Then

p � klin� M �Ž .i ž /i � k

for i � 0, . . . , p.
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� � ŽThis conjecture is motivated by a result of Green 12 see also Eisenbud
� �.and Koh 8 that contains the case i � 0, k � 1. For k � 0 these lower

� � � �bounds were shown by Herzog 13 , and Reiner and Welker 16 proved
them for k � 1 for the case where M is a monomial ideal.

In this paper we prove the conjecture for k � 1. For k � 1 we get the
weaker result:

linŽ . lin Ž .If � M � 0 for p � 0 and M is a kth syzygy module, then � Mp p�1
� p � k.

We also show that the conjecture holds in full generality for finitely
generated �n-graded S-modules. The first three sections of this paper are
concerned with the question above.

Ž � �.In recent years many authors see, for example, 4, 14, 15 were
interested in the following problem: Fix a possible Hilbert function H for

Ž . � Ž .4a graded ideal. Let BB H be the set of Betti sequences � I , wherei, j
Ž .I 	 S is a graded ideal with Hilbert function H. On BB H we consider a

� Ž .4 � Ž .4 Ž . Ž .partial order: We set � I � � J if � I � � J for all i, j 
i, j i, j i, j i, j
Ž .�. It is known that BB H has a unique maximal element given by the

Betti sequence of the lex-segment ideal in the family of considered ideals.
Ž � �.In general there is more than one minimal element see 6 .

In Section 4 we study a related problem. We fix an integer d � 0 and
n � d � 1Ž . Ž . � Ž .40 � k � . Let BB d, k be the set of Betti sequences � I ,i, jd

Ž .where I 	 S is a graded ideal with d-linear resolution and � I � k.0, d
We show that, independent of the characteristic of the base field, there is

Ž .a unique minimal and a unique maximal element in BB d, k .
The author is grateful to Prof. Herzog for inspiring discussions on the

subject of the paper.

1. PRELIMINARIES ON KOSZUL COMPLEXES

Let K be a field, let V be an n-dimensional K-vector space with basis
� �x � x , . . . , x , and let S � K V be the symmetric algebra over V equipped1 n

Ž .with the standard grading by setting deg x � 1. Furthermore, let � �i
Ž .x , . . . , x be the graded maximal ideal of S and let 0 � M be a finitely1 n
generated graded S-module which is generated in nonnegative degrees, i.e.
M � 0 for i � 0.i

Consider a graded free S-module L of rank j which is generated in
degree 1 and let � L be the exterior algebra over L. Then � L inherits
the structure of a bigraded S-module. If z 
 �i L and z has S-degree k,

Ž . Žthen we give z the bidegree i, k . We call i the homological degree hdeg
. Ž .for short and k the internal degree deg for short of z.
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Ž .We consider maps � 
 L* � Hom L, S . Note that L* is again aS
Ž � �.graded free S-module generated in degree �1. It is well known see 5

Žthat � defines a graded S-homomorphism � : � L � � L of homologi-�

.cal degree �1.
Recall that if we fix a basis e , . . . , e of L, then �i L is the graded free1 j

S-module with basis consisting of all monomials e � e � ��� � e withJ j j1 i
� 4 � � � 4J � j � ��� � j 
 j � 1, . . . , j . One has1 i

i
Ž .� k , J

� e � ��� � e � �1 � e e � ��� e ��� � e ,Ž . Ž . ˆŽ . Ý� j j j j j j1 i k 1 k i
k�1

� � Ž . ��Ž . 4 �where for F, G 
 n we set � F, G � f , g : f � g, f 
 F, g 
 G and
where e indicates that e is to be omitted from the exterior product.ĵ jk k� � � Ž . � Ž .Denote by e , . . . , e the basis of L* with e e � 1 and e e � 0 for1 j i i i k

j Ž .�k � i. To simplify notations we set � � � . Then � � Ý � e � , andi e � k�1 � k ki

we have the following:

LEMMA 1.1. Let z, z 
 � L be bihomogeneous elements, f 
 S and˜
�, � 
 L*. Then

Ž .i f� � � ,� f�

Ž .ii � � � � � ,� � ���

Ž .iii � �� � 0,� �

Ž .iv � �� � �� �� ,� � � �

Ž . Ž . Ž . Ž .hdegŽ z . Ž .v � z � z � � z � z � �1 z � � z .˜ ˜ ˜� � �

ŽProof. The proof consists of straightforward calculations most of them
� �.are done in 5 .

We fix a graded free S-module L of rank n for the rest of the paper.
Ž . � �Let e � e , . . . , e be a basis of L with deg e � 1 for i 
 n , and � 
 L*1 n i

Ž . � � Ž .with � e � x for i 
 n . For j � 1, . . . , n let L j be the graded freei i
Ž Ž . .submodule of L generated by e , . . . , e . Then K j, M , � is the Koszul1 j

Ž . Ž .complex of x , . . . , x with values in M where K j, M � � L j � M1 j S
Ž .and � is the restriction of � � id to � L j � M. We denote by� S M S

Ž . Ž .H j, M the homology of the complex K j, M , and the homology class of
Ž . � �a cycle z 
 K j, M will be denoted by z . If it is clear from the context,

Ž . Ž . Ž . Ž .we write K j instead of K j, M and H j instead of H j, M .
Ž . Ž . Ž .Notice that K j � 0 for k � 0 and that H n � Tor K , M arei i�k i i

isomorphic as graded K-vector spaces. One has the following exact se-
Ž � �.quence see 5 :

��� � H j � H j � 1 �1 � H j � 1 � H j � ��� .Ž . Ž . Ž . Ž . Ž .i�1 i i i
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The following observation is crucial for the rest of the paper. For a
Ž .homogeneous element z 
 K j we can write z uniquely as z � e �i k

Ž .� z � r , and e divides none of the monomials of r .k z k z

Ž . Ž .LEMMA 1.2. Let z 
 K j be a homogeneous cycle of bidegree i, l .i
Ž . � � Ž .Then � z is for all k 
 n a homogeneous cycle of bidegree i � 1, l � 1 .k

Proof. The proof follows from 1.1.

In the sequel we need the following:

� 4 Ž .LEMMA 1.3. Let p 
 0, . . . , n and t 
 �. Suppose that H j � 0p p�l
for l � �1, . . . , t � 1. Then

Ž . Ž .i H j � 1 � 0 for l � �1, . . . , t � 1,p p�l

Ž . Ž . Ž .ii H j � 1 is isomorphic to a submodule of H j ,p p�t p p�t

Ž . Ž .iii H j � 0 for l � �1, . . . , t � 1 and i � p, . . . , j.i i�l

Ž . � 4Proof. We prove i by induction on l 
 �1, . . . , t � 1 . If l � �1
Ž .there is nothing to show because H j � 1 � 0 for l � 0. Now letp p�l

l � �1 and consider the exact sequence

��� � H j � 1 � H j � 1 � H j � ��� .Ž . Ž . Ž .p� l�1 p�l p�lp p p

Ž .By the induction hypothesis H j � 1 � 0, and by the assumptionp p�l�1
Ž . Ž .H j � 0 we get that H j � 1 � 0.p p�l p p�l

Ž .For l � t the exact sequence of the Koszul homology together with i
yields

0 � H j � 1 � H j � ��� ,Ž . Ž .p� t p�tp p

Ž .which proves ii .
Ž . � �We show iii by induction on j 
 n . The case j � 1 is trivial, and for

j � 1 and i � p the assertion is true by assumption. Now let j � 1, i � p
and consider

��� � H j � 1 � H j � H j � 1 � ��� .Ž . Ž . Ž .i� l i�l i�1�li i i�1

Ž . Ž . Ž .By i and the induction on j we get that H j � 1 � H j � 1i i�l i�1 i�1�l
Ž .� 0. Hence H j � 0.i i�l

2. LOWER BOUNDS FOR BETTI NUMBERS
OF GRADED S-MODULES

In this section M is always a finitely generated graded S-module which
Ž .is generated in degrees � 0. For 0 � z 
 K j we writei

z � m e � m eÝJ J I I
� �I
 n , I�J
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with coefficients in M, and where e is the lexicographic largest monomialJ
� � � 4of all e with m � 0. Recall that for I, J 
 n , I � i � ��� � i ,I I 1 t

� 4J � j � ��� � j e � e if either t � t� or t � t�, and there exists a1 t � I l e x J
Ž .number p with i � j for l � p and i � j . We call in z � m e thel l p p J J

� 4 � �initial term of z. Furthermore, for I � i � ��� � i 
 n we write1 t
� � � � ��� �� .I i i1 t

� 4 � 4 Ž .LEMMA 2.1. Let p 
 0, . . . , j , r 
 0, . . . , p , and 0 � z 
 K j bep
Ž . � �homogeneous with in z � m e . Then for all I 
 J with I � r the elementsJ J

Ž . Ž .� z are K-linearly independent in K j . In particular, if z is a cycle, thenI p�r
� Ž . � � 4� z : I 
 J, I � r is a set of K-linearly independent cycles.I

Ž Ž ..Proof. This follows from the fact that in � z � m e . Induction onI J J�I
� 4 Ž .r 
 0, . . . , p proves that all � z are cycles if z is one.I

� � Ž .LEMMA 2.2. Let p 
 j , t 
 �, and z 
 K j . Assume thatp p�t
Ž .H j � 0 for l � �1, . . . , t � 1.p�1 p�1�l

Ž . Ž . Ž .i If p � j and � z � � y for some y, then there exists z such that˜j
Ž . Ž . Ž .z � z � � r and � z � 0. In particular, z 
 K j � 1 , and if z is a cycle,˜ ˜ ˜j p

� � � �then z � z .˜
Ž . Ž . Ž .ii If p � j and � z � � y for some y, then z � 0. In particular, ifj

� Ž .� Ž .z � 0 is a cycle, then we always ha�e 0 � � z 
 H j .j p�1 p�1�t

Ž .Proof. We proceed by induction on t 
 � to prove i . If t � 0, then
Ž . Ž .y 
 K j � 0, and so � z � 0. Thus we choose z � z.˜p p�t�1 j

Ž . Ž . Ž .Let t � 0 and assume that � z � � y . We see that � y is a cyclej j
because

0 � � � z � � � y � �� � y .Ž . Ž . Ž .Ž .Ž . Ž .j j j j

Ž . Ž . Ž .But � y 
 K j . Since H j � 0, it follows thatj p�1 p�1�t�1 p�1 p�1�t�1
Ž . Ž .� y � � y� is a boundary for some element y�. By the inductionj

Ž . Ž . Ž .hypothesis we get y � y � � r � such that � y � 0. Note that � y �˜ ˜ ˜j
Ž . Ž .� y � � z . We definej

z � z � � e � y � z � x y � e � � z .Ž .˜ ˜ ˜Ž .j j j j

Then

� z � � z � x � y � � e � � z � e � � �� zŽ . Ž . Ž . Ž . Ž . Ž .˜ ˜j j j j j j j j j j

� � z � � z � 0,Ž . Ž .j j

Ž .and this proves i .
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Ž .If p � j, we see that z � me for some m 
 M, and therefore � z � 0� j � j
if and only if z � 0.

Ž .We prove ii by induction on t 
 �. For t � 0 there is nothing to show.
Ž . Ž .Let t � 0 and assume � z � � y . By the same argument as in the proofj

Ž . Ž . Ž .of i we get � y � � y� for some y�. The induction hypothesis impliesj
y � 0, and then z � 0.

� 4 Ž .LEMMA 2.3. Let p 
 0, . . . , j , t 
 �, and 0 � z 
 K j . Assumep p�t
Ž . � 4 Žthat H j � 0 for l � �1, . . . , t � 1 and let q 
 0, . . . , j . If z 
 K jp p�l p

. Ž . Ž . Ž .� q 
 K j and � y � z in K j for some element y, then therep� t p p�t
Ž . Ž . Ž .exists an element y 
 K j � q such that � y � z in K j � q .˜ ˜p�1 p�1�t�1

� 4Proof. We prove the assertion by induction on j for all q 
 0, . . . , j .
For j � 0 and j � 0, q � 0, there is nothing to show. Let j � q � 0. Write

Ž . Ž .y � e � � y � r . Since 0 � � z andj j y j

z � � y � � e � � y � r � x � y � e � � � y � � r ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .j j y j j j j y

Ž .we see that � y is a cycle and therefore a boundary by the assumptionj
Ž . Ž .that H j � 0. By Lemma 2.2 we may assume that y 
 K j � 1 . Byp p�t�1

Ž . Žthe induction hypothesis we find the desired y in K j � q � K j � 1 �˜
Ž ..q � 1 .

Ž .LEMMA 2.4. Let t 
 �. If � M � 0 for l � �1, . . . , t � 1n�1, n�1�l
Ž . Ž .and � M � 0, then there exists a basis e of L and a cycle z 
 K nn, n�t n n�t

such that

Ž . � � Ž .i z 
 H n is not zero,n n�t

Ž . � Ž .� Ž .ii � z 
 H n are K-linearly independent for i � 1, . . . , n.i n�1 n�1�t

Ž .In particular, � M � n.n�1, n�1�t

Ž .Proof. Let e be an arbitrary basis of L. Since � M � 0 theren, n�t
Ž . � � Ž .exists a cycle z 
 K n with 0 � z 
 H n . Furthermore,n n�t n n�t

Ž .H n � 0 for l � �1, . . . , t � 1. In this situation we have z � men�1 n�1�l � n�
for some socle element m of M, and we want to show that every equation

n n

0 � � � z � � � z with � 
 KŽ . Ž .Ý Ýi i i i i
i�1 i�1

� �implies � � 0 for all i 
 n . Assume there is such an equation where noti
all � are zero. After a base change we may assume that Ýn � � � � .i i�1 i i n
We get

0 � � z ,Ž .n

Ž .contradicting Lemma 2.2 ii .
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� � Ž .THEOREM 2.5. Let t 
 � and p 
 n . If � M � 0 for l �p�1, p�1�l
Ž .�1, . . . , t � 1 and � M � 0, then there exists a basis e of L and ap, p�t

Ž .cycle z 
 K n such thatp p�t

Ž . � � Ž .i z 
 H n is not zero,p p�t

Ž . � Ž .� Ž .ii � z 
 H n are K-linearly independent for i � 1, . . . , p.i p�1 p�1�t

Ž .In particular, � M � p.p�1, p�1�t

Ž . Ž .Proof. We have H n � 0 because � M � 0. Choose 0 � hp p�t p, p�t
Ž . Ž .
 H n . We prove by induction on n that we can find a basis e of L np p�t

Ž .and a cycle z 
 K n representing h such that every equationp p�t

p p

0 � � � z � � � z with � 
 KŽ . Ž .Ý Ýi i i i i
i�1 i�1

implies � � 0 for all i. The cases n � 1 and n � 1, p � n were shown ini
Lemma 2.4.

Let n � 1 and p � n. Assume that there is a basis e and such an
� �equation for a cycle z with z � h where not all � are zero. After a basei

Ž . p � Ž .�change of L n we may assume that Ý � � � � . Then 0 � � z , andi�1 i i n n
Ž . Ž .therefore � z � � y for some element y. By Lemma 2.2 we can find ann

� � � � Ž .element y such that y � z and y 
 K n � 1 . Now Lemma 1.3˜ ˜ ˜ p p�t
guarantees that we can apply our induction hypothesis to y, and we find a˜

� � � � Ž .base change l � l , . . . , l of e , . . . , e , z � y in H n � 1˜ ˜1 n�1 1 n�1 p p�t
Ž . � Ž .� Ž .with respect to the new basis such that � z 
 H n � 1 are˜i p�1 p�1�t

ŽK-linearly independent for i � 1, . . . , p. By Lemma 1.3 we have H n �i
. Ž .1 
 H n for i � p � 1, p. Then z is the desired cycle because˜i� t i i�t

� � � � Ž .z � z in H n .˜ p p�t

The Castelnuovo�Mumford regularity for a finitely generated graded
Ž . � Ž .S-module 0 � M is defined as reg M � max j 
 � : � M � 0 fori, i�j

4 � 4 Ž . Ž�some i 
 � . For k 
 0, . . . , n we define d M � min j 
k
Ž . 4 � Ž .4.� : � M � 0 � reg M . We are interested in the numbersk , k�j

k , linŽ . Ž . 0, linŽ . linŽ .� M � � M for i � k. Note that � M � � M . Ifi i, i�d ŽM . i ik
Ž .0 � 	 M is the kth syzygy module in the minimal graded free resolutionk
Ž � � . Ž .of M see 7 for details , then we always have � M �i, i� j

Ž Ž .. k , linŽ . lin Ž Ž ..� 	 M for i � k. Therefore � M � � 	 M fori�k , i�k�j�k k i i�k k
Ž Ž .. Ž .these i. Observe that d 	 M � d M � k.0 k k

� 4 k , linŽ .COROLLARY 2.6. Let k 
 0, . . . , n . If � M � 0 for some p � k,p
then

� k , lin M � p.Ž .p�1
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linŽ . 1, linŽ .For the numbers � M and � M we get more precise results.i i
� �The next result was first discovered in 13 .

� 4 linŽ .THEOREM 2.7. Let p 
 0, . . . , n . If � M � 0, thenp

plin� M �Ž .i ž /i

for i � 0, . . . , p.

Proof. The proof follows from Lemma 2.1 and the fact that there are
Ž .no non-trivial boundaries in K n .i i�d ŽM .0

To prove lower bounds for � 1, lin we use slightly different methods. Leti
� � Ž . � �S � K x , . . . , x . We fix a basis e of L such that � e � x for all i 
 n1 n i i

for the rest of this paper. For a 
 �n we write x a � x a1 ��� x an and call it1 n
a monomial in S. Let F be a graded free S-module with free homoge-
neous basis g , . . . , g . Then we call x ag a monomial in F for a 
 �n and1 t i

� �i 
 t . Let � be an arbitrary degree refining term order on F with
Ž � � .x g � ��� � x g � g see 7 for details . For a homogeneous element1 i n i i

Ž .f 
 F we set in f for the maximal monomial in a presentation of f. Note�

Ž . Ž .that we also defined in z for some bihomogeneous z 
 K n .

LEMMA 2.8. Let M 	 F be a finitely generated graded S-module and let
Ž . Ž .0 � z be a homogeneous cycle of K n, M with z � Ý m e , in z � m e .1 j� i j j i i

Ž . Ž .Then there exists an integer j � i with 0 � in m � in m . In particular,� j � i
m and m are K-linearly independent.i j

Proof. We have

0 � � z � m x � m x .Ž . Ýi i j j
j�i

Hence there exists an integer j � i and a monomial a of m withj j
Ž .in m x � a x because all monomials have to cancel. Assume that� i i j j

in m � in m .Ž . Ž .� i � j

Then

in m x � in m x � in m x � a xŽ . Ž . Ž .� i i � i j � j j j j

is a contradiction. Therefore

in m � in m .Ž . Ž .� i � j
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LEMMA 2.9. Let M 	 F be a finitely generated graded S-module, p 

� 4 Ž .0, . . . , n , and let 0 � z be a homogeneous cycle of K n, M with z �p

Ž . � 4Ý m e , in z � m e . Assume that I � 1, . . . , p . Then there existJ , � J ��p J J I I
� �distinct numbers j , . . . , j 
 n such that j � p � k � 1 for k � 1, . . . , p1 p k

and

in m � in m � ��� � in m ,Ž .Ž . Ž .� J � J � Jp p�1 0

� 4where J � I and J � 1, . . . , p � k, j , . . . , j for k � 1, . . . , p.0 k 1 k

Proof. We construct the numbers j and the sets J with the desiredk k
� 4properties by induction on k 
 0, . . . , p . For k � 0 we set J � I. Let0

0 � k � p. Assume that J is constructed. Then we apply Lemma 2.8 tok�1

� z where in � z � m eŽ . Ž .Ž .�1, . . . , p�k , j , . . . , j 4 �1 , . . . , p�k , j , . . . , j 4 J p�k�11 k�1 1 k�1 k�1

Ž .and find j � p � k � 1 such that in m �k � �1, . . . , p�k , j , . . . , j 4� � j 41 k�1 k
Ž .in m . We see that j � j for i � 1, . . . , k � 1 because these e do� J k i jk� 1 i

Ž .not appear with non-zero coefficients in � z . This con-�1, . . . , p�k , j , . . . , j 41 k�1

cludes the proof.

COROLLARY 2.10. Let M 	 F be a finitely generated graded S-module,
� 4 Ž .p 
 0, . . . , n , and let 0 � z be a homogeneous cycle of K n, M withp

z � Ý m e . Then there exist p � 1 coefficients m of z, which areJ , � J ��p J J J
K-linearly independent.

Proof. The proof follows from Lemma 2.9 because the coefficients
there have different leading terms.

THEOREM 2.11. Let p � 1 and let M be a finitely generated graded
1, linŽ .S-module with � M � 0. Thenp

p1, lin� M �Ž .i ž /i

for i � 1, . . . , p.

Proof. Let

0 � M� � F � M � 0

Ž .be a presentation of M such that F is free and M� � 	 M . We show1
that

p� � 1lin� M� � for p� � p � 1.Ž .i ž /i � 1

1, linŽ . lin Ž .Since � M � � M� , this will prove the theorem.i i�1
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Ž .After a suitable shift of the grading of M we may assume that d M�0
linŽ .� 0. Note that M� is a submodule of a free module. Since � M� � 0,p�

Ž .we get a homogeneous cycle 0 � z � Ý m e in K n, M� . ThereJ , � J ��p� J J p� p�

Ž .are no boundaries except for zero in K n, M� , and therefore we onlyi i
Ž .have to construct enough K-linearly independent cycles in K n, M� toi i

Ž . � 4prove the assertion. Assume that in z � m e where I � i , . . . , i . WeI I 1 p�

make a base change of the basis e , . . . , e that maps e to e for1 n i jj
Ž .j � 1, . . . , p�. Then in z � m e with respect to the new basis. By� p�� � p��

Lemma 2.9 we obtain numbers j , . . . , j and the induced sets J , . . . , J1 p� 0 p�

Ž .for z such that j � p � k � 1 for k � 1, . . . , p and in m �k � Jp�

Ž . Ž .in m � ��� � in m .� J � Jp��1 0
� 4 Ž .Let t 
 0, . . . , p and set i � p� � t. Consider the by Lemma 2.1

˙ ˙Ž .cycles � z with G 
 W � W � ��� � W whereG 0 t

� �� �� 4 � 4W � I � j , . . . , j : I 
 p� � k , I � t � k for k 
 0, . . . , t .� 4k 1 k

We have

p� � k
� �W � ,k ž /t � k

and therefore

t p� � 1p� � k p� � 1 p� � 1
� �W � � � � .Ý ž / ž / ž /ž /p� � t � 1t � k t i � 1k�0

Ž .If we show that the cycles � z are K-linearly independent, the assertionG
follows.

� 4 � � � �Take G 
 W, G � I � j , . . . , j for some I 
 p� � k , I �G 1 k G G GG

t � k . Since z � Ý m e we getG J , � J ��p� J j

� z � m e � m e .Ž . Ý ÝG J J�G J J�I �� j , . . . , j 4G 1 kG
� � � 4 � �J , J �p� I � j , . . . , j 
J , J �p�G 1 kG

Thus

in � z � m e .Ž .Ž .G �1 , . . . , p��k 4� � j , . . . , j 4 �1 , . . . , p��k 4�IG 1 k G GG

It is enough to show that the initial terms of the cycles are K-linearly
independent.

If cycles have different initial monomials in the e , there is nothing toi
show. Take G, G� and assume that the corresponding cycles have the same
initial monomial in the e . We have to consider two cases. If k � k ,i G G �
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then I � I and the cycles are the same. For k � k Lemma 2.9G G � G G �

implies

in m � in m ,Ž . Ž .�1, . . . , p��k 4� � j , . . . , j 4 �1 , . . . , p��k 4� � j , . . . , j 4G 1 k G � 1 kG G �

which proves the K-linear independence.

The next corollary summarizes our results related to the conjecture of
Herzog.

COROLLARY 2.12. Let M be a finitely generated graded S-module and let
� 4 linŽ .p 
 0, . . . , n . Suppose that � M � 0 and M is the kth syzygy module inp

a minimal graded free resolution. Then

lin pŽ . Ž . Ž .i If k � 0, then � M � for i � 0, . . . , p.i i

lin p � 1Ž . Ž . Ž .ii If k � 1, then � M � for i � 0, . . . , p.i i � 1

Ž . lin Ž .iii If k � 1 and p � 0, then � M � p � k.p�1

Ž .Proof. Statement i was shown in Theorem 2.7. In the proof of
Ž . Ž .Theorem 2.11 we proved ii in fact. Finally, iii follows from Corollary 2.6

linŽ . k , linŽ .since � M � � N if M is the k th syzygy module in the minimali i�k
graded free resolution of some module N.

Recall that a finitely generated graded S-module M satisfies Serre’s
condition SS ifk

depth M � min k , dim SŽ . Ž .P P

Ž . � �for all P 
 Spec S . We recall the Auslander�Bridger theorem 2 :

LEMMA 2.13. Let M be a finitely generated graded S-module. Then M is a
kth syzygy module in a graded free resolution if and only if M satisifes SS .k

� �Proof. The proof is essentially the same as in 11 , where the local case
is treated.

COROLLARY 2.14. Let M be a finitely generated graded S-module and
� 4 linŽ .p 
 0, . . . , n . Suppose that M satisfies SS and � M � 0. Thenk p

lin pŽ . Ž . Ž .i If k � 0, then � M � for i � 0, . . . , p.i i

lin p � 1Ž . Ž . Ž .ii If k � 1, then � M � for i � 0, . . . , p.i i � 1

Ž . lin Ž .iii If k � 1 and p � 0, then � M � p � k.p�1

Proof. According to Lemma 2.13 the module M satisfies SS if andk
only if M is a k th syzygy module in a graded free resolution G � N � 0

�

Ž � �.of some graded S-module N. It is well known see, for example, 3 that
G � F � H as graded complexes where F is the minimal graded free

� � � �
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resolution of N and H is split exact. Then M splits as a graded module
�

Ž .into 	 N � W, where W is a graded free S-module. If p � 0, there isk
linŽ Ž ..nothing to show. For p � 0 it follows that � 	 N � 0. Then Corol-p k

Ž . Ž .lary 2.12 applied to 	 N proves the corollary, since � M �k i, j
Ž Ž ..� 	 N for all integers i, j.i, j k

3. PROOF OF THE CONJECTURE IN THE CASE OF
� N-GRADED MODULES

n Ž . Ž .S is � -graded with deg x � 
 � 0, . . . , 1, . . . , 0 , where the 1 is at thei i
ith position. Let M � � M be a finitely generated �n-graded S-n aa
 �

module. Recall that every �n-graded S-module M is naturally �-graded by
setting M � � M . Therefore all methods from the last sectionni aa
 � , � a ��i
can be applied in the following. Furthermore, the Koszul complex and
homology are �n-graded if we assign the degree 
 to e . For example, ifi i

n Ž . Ž .m 
 M for some a 
 � , then deg me is a � Ý 
 ; or if z 
 K j isa I i
 I i i
Ž Ž ..homogeneous of degree a, then deg � z � a � Ý 
 .I i
 I i

We want to prove a more precise result than in the last section for this
more restricted situation. Note that Lemmas 2.2 and 2.3 hold in the
�n-graded setting. The proofs are verbatim the same if we replace ‘‘graded’’
with ‘‘�n-graded.’’ We prove now a modified version of Theorem 2.5.
Usually we assume that M � � M .n aa
 �

� � Ž .LEMMA 3.1. Let p 
 j and t 
 �. Suppose that H j � 0 fori i�l
Ž . ni � p � 1, . . . , j, l � �1, . . . , t � 1 and let z 
 K j be a � -homoge-p p�t

� � Ž . nneous cycle with 0 � z 
 H j . Then there exists a � -homogeneousp p�j
cycle z with˜

Ž . � � � � Ž .i z � z 
 H j ,˜ p p�t

Ž . � Ž .� Ž .ii the elements � z 
 H j are K-linearly independent for˜j p�1 p�1�ti� �some distinct j , . . . , j 
 j .1 p

� � � � � �Proof. We prove by induction on j 
 n that we find z � z and a˜
� 4 � Ž .�set j , . . . , j such that the cycles � z are K-linearly independent for˜1 p ji

i � 1, . . . , p.
Ž .The cases j � 1 and j � 1, p � j, follow from Lemma 2.2 ii because if

Ž . n Ž .deg z � a 
 � , then all � z have different degrees a � 
 , and itk k
suffices to show that these elements are not boundaries.

Let j � 1 and assume that p � j. Again it suffices to show that the
Ž . � 4 � �cycles � z are not boundaries for a suitable subset j , . . . , j 
 j . Ifj 1 pi

such a set exists, then there is nothing to prove. Otherwise there exists a
� � � Ž .�k 
 j with � z � 0, and we may assume k � j. By Lemma 2.2 we findk

� � � � Ž . Ž .z such that z � z in H j and z 
 K j � 1 . By Lemma 1.3 we can˜ ˜ ˜



TIM ROMER¨32

apply our induction hypothesis and assume that z has the desired proper-˜
Ž . Ž .ties in H j � 1 . Again by Lemma 1.3 we have H j � 1 
p�1 p�1�t

Ž .H j , and z is the desired element.˜p�1 p�1�t

� �We need the following simple combinatorial result. Let p 
 n . Define
� n� � 4inductively a sequence of subsets W 
 2 for t � 0, . . . , p. Set W � � .t 0

If W is defined, then for every set w 
 W we choose p � t � 1t�1 t�1
different elements j w, . . . , j w such that jw � w. Define1 p�t�1 l

W � w � j w : w 
 W and l � 1, . . . , p � t � 1 .� 4� 4t l t�1

LEMMA 3.2. Let W be defined as abo�e. Then for t � 0, . . . , p we ha�et
that

p
� �W � .t ž /t

� �Proof. We prove this by induction on p 
 n . The case p � 0 is trivial,
so let p � 0, and without loss of generality we may assume that W �1
�� 4 � 44 1 �1 , . . . , p . The set W is the disjoint union of the sets W � w 
 W : 1t t t

1̂ 14 � 4
 w and W � w 
 W : 1 � w . The induction hypothesis applied to Wt t t
1̂and W impliest

p � 1 p � 1 pˆ1 1� � � � � �W � W � W � � � .t t t ž / ž / ž /t � 1 t t

We prove the main theorem of this section.

� � nTHEOREM 3.3. Let k 
 n and let M be a finitely generated � -graded
k , linŽ .S-module. If � M � 0 for some p � k, thenp

pk , lin� M �Ž .i ž /i

for i � k, . . . , p.
k , linŽ .Proof. Without loss of generality M � � M . Since � M � 0,n a pa
 �

n Ž . � �there exists a � -homogeneous cycle z 
 K n such that 0 � zp p�d ŽM .k
Ž . Ž . nin H n and deg z � a for some a 
 � . By the definition ofp p�d ŽM .k

Ž . Ž .d M and Lemma 1.3 we have H n � 0 for i � k and l �k i i�l
Ž .�1, . . . , d M � 1.k

We construct inductively W as above, as well as cycles z for eacht w
� � Ž . � Ž .�ww 
 W such that z � 0, deg z � a � Ý 
 , 0 � � z for l �t w w j
 w j j wl

1, . . . , p � t and suitable j w � w. Furthermore, z is an element of thel w
Koszul complex with respect to the variables x with j � w. For i � k wej
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Ž .take all cycles z 
 K n with w 
 W which have differentw i i�d ŽM . p�ik

�n-degree. They are not zero and are therefore K-linearly independent in
p pŽ . Ž .homology. By Lemma 3.2 there are at least � of them, and thisp � i i

concludes the proof.
� 4Let W � � . By Lemma 3.1 we can choose z in such a way that0

� � � Ž .� � �z � � z � 0 for l � 1, . . . , p and some j 
 n . Choose z � z andj j l �l l

j� � j .l l
If W and z for w 
 W are constructed, then define W with Wt�1 w t�1 t t�1

w � w4and the given j for w 
 W . For w� 
 W with w� � w � j , re-l t�1 t l
Ž . � Ž .�w w �choose z � � z by Lemma 3.1 in such a way that � z � 0 forw � j w j w �l l�w � � �l� � 1, . . . , p � t and some j 
 n .l�

Note that since z has no monomial which is divisible by some e forw j
j 
 w, we can use Lemmas 2.2 and 2.3 to avoid these e in the constructionj

Ž . Ž .w �of z again. By Lemma 1.3 the cycles � z are also not zero in H n .w � j w �l�w �Clearly j � w�, and the assertion follows.l�

In the �n-graded setting we prove the desired results about � lin in fulli
generality.

COROLLARY 3.4. Let M be a finitely generated �n-graded S-module,
where M is the kth syzygy module in a minimal �n-graded free resolution. If

linŽ .� M � 0 for some p 
 �, thenp

p � klin� M �Ž .i ž /i � k

for i � 0, . . . , p.

Proof. This follows from Theorem 3.3 and the fact that

p � klin k , lin� M � � N � ,Ž . Ž .i i�k ž /i � k
nwhere M is the k th syzygy module of a � -graded S-module N.

As an analogue to Lemma 2.13 we get

LEMMA 3.5. Let M be a finitely generated �n-graded S-module. Then M
satisfies SS if and only if M is a kth syzygy module in a �n-graded freek
resolution.

COROLLARY 3.6. Let M be a finitely generated �n-graded S-module
linŽ .satisfying SS . If � M � 0 for some p 
 �, thenk p

p � klin� M �Ž .i ž /i � k

for i � 0, . . . , p.
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Proof. The assertion follows from Corollary 3.4 with arguments similar
to those for the graded case.

4. BOUNDS FOR BETTI NUMBERS OF IDEALS WITH A
FIXED NUMBER OF GENERATORS IN GIVEN

DEGREE AND A LINEAR RESOLUTION

In this section we are interested in bounds for the graded Betti numbers
of graded ideals of S. We assume that the field K is infinite and fix a basis

a � �x � x , . . . , x of S . For a monomial x of S with a � d we denote by1 n 1
Ž a. � b � � b a4 aR x � x : b � d, x � x the revlex-segment of x , where �rlex rlex

a b � � � � � � � �is defined as follows: x � x if either a � b or a � b and thererlex
exists an integer r such that a � b and a � b for s � r. Note that for ar r s s

n � d � 1Ž . Ž .given d 
 � and 0 � k � there exists a unique ideal I d, kd

Ž a.which is generated in degree d by a revlex-segment R x for some
a � Ž a. �monomial x with R x � k.

� � a Ž a.Following Eliahou and Kervaire 10 for a given monomial x , let m x
be the maximal i such that x divides x a. An ideal is a monomial ideal if iti
is generated by monomials. We call a monomial ideal I stable if for all

a a Ž a.amonomials x 
 I we have x x �x 
 I for i � m x . Is it easy to seei mŽ x .
that it is enough to prove this condition for the generators of the ideal I.

Ž .For example, I d, k is stable.
ŽFor stable ideals there exist explicit formulas for the Betti numbers see

� �. Ž .10 . Let I 	 S be a stable ideal and let G I be the set of minimal
generators of I. Then

m x a � 1Ž .
� I � � .Ž . Ž .Ýi , i�j ž /ia Ž . � �x 
G I , a �j

If a stable ideal I is generated in one degree d, then I has a linear
resolution.

PROPOSITION 4.1. Let I 	 S be a stable ideal generated in degree d 
 �
Ž .with � I � k. Then0, d

� I � � I d , kŽ . Ž .Ž .i , i�j i , i�j

for all i, j 
 �.

n � d � 1Ž . Ž .Proof. Fix d 
 � and 0 � k � . Let l I be the number ofd

Ž .monomials in I which are not monomials in I d, k . We prove thed d
Ž . Ž . Ž .statement by induction on l I . If l I � 0, then I � I d, k and there is

nothing to show.
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Ž . aAssume that l I � 0. Let x be the smallest monomial in I withd
Ž . brespect to � which is not in I d, k , and let x be the largestrlex d

˜Ž .monomial which is in I d, k but not in I . Define the ideal I byd d
˜ a b ˜ ˜Ž . Ž Ž . � 4. � 4 Ž . Ž .G I � G I � x � x . Then l I � l I � 1, and I is also stable.

Thus, by the induction hypothesis,

˜� I � � I d , k .Ž .Ž . Ž .i , i�j i , i�j

b a Ž b. Ž a. Ž .Since x � x , the revlex order implies m x � m x . Therefore �rlex
yields

˜� I � � I ,Ž . Ž .i , i�j i , i�j

which proves the assertion.

Ž . Ž .For a graded ideal I, the initial ideal in I is generated by all in f for
f 
 I with respect to some monomial order.

Ž .Every element g of the general linear group GL n induces a linear
automorphism of S by

n

g x � g x for g � g .Ž . Ž .Ýj i , j i i , j
i�1

Ž .There is a non-empty open set U 	 GL n and a unique monomial ideal J
Ž Ž .. Žwith J � in g I for every g 
 U with respect to the revlex order for
� �.details see 7 . We call J the generic initial ideal of I and denote it by

Ž . Ž . Ž . Ž .Gin I . A nice property is that Gin I is Borel-fixed, i.e., Gin I � b Gin I
Ž .for all b 
 B, where B is the Borel subgroup of GL n which is generated

by all upper triangular matrices.

PROPOSITION 4.2. Let d 
 � and let I 	 S be a graded ideal with d-linear
Ž .resolution. Then Gin I is stable, independent of the characteristic of K , and

Ž . Ž Ž ..� I � � Gin I for all i, j 
 �.i, i�j i, i�j

Ž Ž .. Ž .Proof. It is well known that reg Gin I � reg I . Therefore
Ž Ž .. Ž . �reg Gin I � d and Gin I also has a d-linear resolution. Reference 9,

�Proposition 10 implies that a Borel-fixed monomial ideal, which is gener-
ated in degree d, has regularity d if and only if it is stable. Thus we get

Ž .that Gin I is a stable ideal, independent of the characteristic of K.
� �Since I has a linear resolution, we obtain by the main result in 1 that

Ž . Ž Ž ..� I � � Gin I for all i, j 
 �.i, i�j i, i�j

n � d � 1Ž .THEOREM 4.3. Let d 
 �, let 0 � k � , and let I 	 S be ad

graded ideal with d-linear resolution and k generators. Then

� I � � I d , kŽ . Ž .Ž .i , i�j i , i�j

for all i, j 
 �.
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Proof. This follows from Propositions 4.1 and 4.2.

Consider the lexicographic order � . Recall that for monomials x a,lex
b a b � � � � � � � �x 
 S we have x � x if either a � b or a � b and there exists anlex

Ž a. � b � �integer r such that a � b and a � b for s � r. Then L x � x : br r s s
b a4 a� d, x � x is the lex-segment of x . For a given d 
 � and 0 � k �lex

n � d � 1Ž . Ž .there exists a unique ideal J d, k which is generated in degree dd

Ž a. a � Ž a. �by a lex-segment L x for some monomial x with L x � k. It is easy
Ž . b c c Ž .to see that J d, k is a lex-ideal; i.e., if x � x and x 
 J d, k , thenlex

b Ž . Ž .x 
 J d, k . In particular, J d, k is stable.

n � d � 1Ž .PROPOSITION 4.4. Let d 
 �, let 0 � k � , and let I 	 S be ad

graded ideal with d-linear resolution and k generators. Then

� I � � J d , kŽ . Ž .Ž .i , i�j i , i�j

for all i, j 
 �.

� �Proof. By 15, Theorem 31 we find a lex-ideal L with the same Hilbert
Ž . Ž .function as I and � I � � L for all i, j 
 �. We see thati, i�j i, i�j

Ž . Ž .� L � � I � k because these ideals share the same Hilbert func-0, d 0, d
Ž . Ž . Ž Ž .. Ž .tion. It follows that J d, k � L , and, in particular, G J d, k � G L .d d

Therefore

� I � � L � � J d , kŽ . Ž . Ž .Ž .i , i�d i , i�d i , i�d

Ž .for all i, j 
 �, where the last equality follows from � .

n � d � 1Ž . Ž .Fix d 
 � and 0 � k � . Let BB d, k be the set of Bettid

� Ž .4sequences � I where I is a graded ideal with d-linear resolution andi, j
Ž . Ž . � Ž .4� I � k. On BB d, k we consider a partial order: We set � I �0, d i, j

� Ž .4 Ž . Ž .� J if � I � � J for all i, j 
 �.i, j i, j i, j

n � d � 1Ž .COROLLARY 4.5. Let d 
 � and let 0 � k � . Thend

� Ž Ž ..4 � Ž Ž ..4� I d, k is the unique minimal element and � J d, k is thei, j i, j
Ž .unique maximal element of BB d, k .
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