Bounds for Betti Numbers

Tim Römer

FB6 Mathematik und Informatik, Uni-*ersitat Essen, 45117 Essen, Germany* ¨ metadata, citation and similar papers at core.ac.uk

> *Communicated by Paul Roberts* Received August 14, 2000

In this paper we prove parts of a conjecture of Herzog giving lower bounds on the rank of the free modules appearing in the linear strand of a graded *k*th syzygy module over the polynomial ring. If in addition the module is \mathbb{Z}^n -graded we show that the conjecture holds in full generality. Furthermore, we give lower and upper bounds for the graded Betti numbers of graded ideals with a linear resolution and a fixed number of generators. \circ 2002 Elsevier Science (USA)

INTRODUCTION

Let $S = K[x_1, \ldots, x_n]$ be the polynomial ring over a field K equipped with the standard grading by setting $deg(x_i) = 1$, and let *M* be a finitely generated graded *S*-module. We denote $i, i+j$ ^(M) = $\dim_K \text{Tor}_i(M, K)_{i+i}$ the graded Betti numbers of M.

Assume that the initial degree of *M* is *d*; i.e., we have $M_i = 0$ for $i < d$ and $M_d \neq 0$. We are interested in the numbers $\beta_i^{\text{lin}}(M) = \beta_{i,i+d}(M)$ for $i \geq 0$. These numbers determine the rank of the free modules appearing in the linear strand of the minimal graded free resolution of *M*. Let $p =$ $\max\{i : \beta_i^{\text{lin}}(M) \neq 0\}$ be the length of the linear strand. In [13] Herzog conjectured the following:

Conjecture. Let *M* be a *k*th syzygy module whose linear strand has length *p*. Then

$$
\beta_i^{\rm lin}(M) \ge \binom{p+k}{i+k}
$$

for $i = 0, ..., p$.

0021-8693/02 \$35.00 $© 2002 Elsevier Science (USA)$ All rights reserved.

This conjecture is motivated by a result of Green [12] (see also Eisenbud and Koh [8]) that contains the case $i = 0$, $k = 1$. For $k = 0$ these lower bounds were shown by Herzog [13], and Reiner and Welker [16] proved them for $k = 1$ for the case where *M* is a monomial ideal.

In this paper we prove the conjecture for $k = 1$. For $k > 1$ we get the weaker result:

If $\beta_p^{\text{lin}}(M) \neq 0$ for $p > 0$ and M is a *k*th syzygy module, then $\beta_{p-1}^{\text{lin}}(M)$ $\geq p$ ^{\cdot} \cdot *k*.

We also show that the conjecture holds in full generality for finitely generated \mathbb{Z}^n -graded *S*-modules. The first three sections of this paper are concerned with the question above.

In recent years many authors (see, for example, $[4, 14, 15]$) were interested in the following problem: Fix a possible Hilbert function *H* for a graded ideal. Let $\mathscr{B}(H)$ be the set of Betti sequences $\{\beta_{i,j}(I)\}$, where $I \subseteq S$ is a graded ideal with Hilbert function *H*. On $\mathcal{B}(H)$ we consider a partial order: We set $\{\beta_{i,j}(I)\} \geq {\{\beta_{i,j}(J)\}}$ if $\beta_{i,j}(I) \geq \beta_{i,j}(J)$ for all $i, j \in \mathbb{N}$. It is known that $\mathcal{B}(H)$ has a unique maximal element given by the Betti sequence of the lex-segment ideal in the family of considered ideals. In general there is more than one minimal element (see $[6]$).

In Section 4 we study a related problem. We fix an integer $d \geq 0$ and $0 \le k \le \frac{n+d-1}{d}$. Let $\mathcal{B}(d, k)$ be the set of Betti sequences $\{\beta_{i,j}(I)\},$ where $I \subset S$ is a graded ideal with *d*-linear resolution and $\beta_{0,d}(I) = k$. We show that, independent of the characteristic of the base field, there is a unique minimal and a unique maximal element in $\mathcal{B}(d, k)$.

The author is grateful to Prof. Herzog for inspiring discussions on the subject of the paper.

1. PRELIMINARIES ON KOSZUL COMPLEXES

Let K be a field, let V be an *n*-dimensional K -vector space with basis $\mathbf{x} = x_1, \dots, x_n$, and let $S = K[V]$ be the symmetric algebra over *V* equipped with the standard grading by setting $deg(x_i) = 1$. Furthermore, let $\overline{m} =$ (x_1, \ldots, x_n) be the graded maximal ideal of *S* and let $0 \neq M$ be a finitely generated graded *S*-module which is generated in nonnegative degrees, i.e. $M_i = 0$ for $i < 0$.

Consider a graded free *S*-module *L* of rank *j* which is generated in degree 1 and let $\wedge L$ be the exterior algebra over *L*. Then $\wedge L$ inherits the structure of a bigraded *S*-module. If $z \in \bigwedge^i L$ and *z* has *S*-degree *k*, then we give *z* the bidegree (i, k) . We call *i* the homological degree (hdeg for short) and k the internal degree (deg for short) of z .

We consider maps $\mu \in L^* = \text{Hom}_S(L, S)$. Note that L^* is again a graded free *S*-module generated in degree -1 . It is well known (see [5]) that μ defines a graded *S*-homomorphism ∂_{μ} : \wedge *L* \rightarrow \wedge *L* of (homological) degree -1 .

Recall that if we fix a basis e_1, \ldots, e_j of *L*, then $\bigwedge^i L$ is the graded free *S*-module with basis consisting of all monomials $e_j = e_{i_j} \wedge \cdots \wedge e_{i_k}$ with $J = \{j_1 < \cdots < j_i\} \subseteq [j] = \{1, \ldots, j\}$. One has

$$
\partial_{\mu}(e_{j_1} \wedge \cdots \wedge e_{j_i}) = \sum_{k=1}^i (-1)^{\alpha(k, J)} \mu(e_{j_k}) e_{j_1} \wedge \cdots \hat{e}_{j_k} \cdots \wedge e_{j_i},
$$

where for $F, G \subseteq [n]$ we set $\alpha(F, G) = |\{(f, g) : f > g, f \in F, g \in G\}|$ and where \hat{e}_{j_k} indicates that e_{j_k} is to be omitted from the exterior product.
Denote by e_1^*, \dots, e_j^* the basis of L^* with $e_i^*(e_i) = 1$ and $e_i^*(e_k) = 0$ for $k \neq i$. To simplify notations we set $\partial_i = \partial_{e_i^*}$. we have the following:

LEMMA 1.1. Let $z, \tilde{z} \in \Lambda L$ be bihomogeneous elements, $f \in S$ and $\mu, \nu \in L^*$. *Then*

- (i) $f\partial_\mu = \partial_{f_\mu},$
- (ii) $\partial_{\mu} + \partial_{\nu} = \partial_{\mu + \nu},$
- (iii) $\partial_{\mu} \circ \partial_{\mu} = 0$,
- (iv) $\partial_{\mu} \circ \partial_{\nu} = \partial_{\nu} \circ \partial_{\mu},$

(v)
$$
\partial_{\mu}(z \wedge \tilde{z}) = \partial_{\mu}(z) \wedge \tilde{z} + (-1)^{\text{hdeg}(z)} z \wedge \partial_{\mu}(\tilde{z}).
$$

Proof. The proof consists of straightforward calculations (most of them are done in [5]). \blacksquare

We fix a graded free *S*-module *L* of rank *n* for the rest of the paper. Let $\mathbf{e} = e_1, \ldots, e_n$ be a basis of *L* with deg $(e_i) = 1$ for $i \in [n]$, and $\mu \in L^*$ with $\mu(e_i) = x_i$ for $i \in [n]$. For $j = 1, ..., n$ let $L(j)$ be the graded free submodule of *L* generated by e_1, \ldots, e_j . Then $(K(j, M), \partial)$ is the Koszul complex of x_1, \ldots, x_j with values in *M* where $K(j, M) = \Lambda L(j) \otimes_S M$ and ∂ is the restriction of $\partial_{\mu} \otimes_{S} id_{M}$ to $\wedge L(j) \otimes_{S} M$. We denote by $H(j, M)$ the homology of the complex $K(j, M)$, and the homology class of a cycle $z \in K(j, M)$ will be denoted by [z]. If it is clear from the context, we write $K(j)$ instead of $K(j, M)$ and $H(j)$ instead of $H(j, M)$.

Notice that $K_i(j)_{i+k} = 0$ for $k < 0$ and that $H_i(n) \cong \text{Tor}_i(K, M)$ are isomorphic as graded *K*-vector spaces. One has the following exact sequence (see $[5]$):

$$
\cdots \rightarrow H_{i+1}(j) \rightarrow H_i(j-1)(-1) \rightarrow H_i(j-1) \rightarrow H_i(j) \rightarrow \cdots.
$$

The following observation is crucial for the rest of the paper. For a homogeneous element $z \in K_i(j)$ we can write *z* uniquely as $z = e_k \wedge$ $\partial_k(z) + r_z$, and e_k divides none of the monomials of r_z .

LEMMA 1.2. Let $z \in K_i(j)$ be a homogeneous cycle of bidegree (i, l) . *Then* $\partial_k(z)$ is for all $k \in [n]$ a homogeneous cycle of bidegree $(i - 1, l - 1)$.

Proof. The proof follows from 1.1.

In the sequel we need the following:

LEMMA 1.3. Let $p \in \{0, ..., n\}$ and $t \in \mathbb{N}$. Suppose that $H_p(j)_{p+l} = 0$ *for* $l = -1, ..., t - 1$ *. Then*

- (i) $H_p(j-1)_{p+l} = 0$ for $l = -1, ..., t-1$,
- (ii) $H_p(j-1)_{p+t}$ *is isomorphic to a submodule of* $H_p(j)_{p+t}$,
- (iii) $H_i(j)_{i+1} = 0$ for $l = -1, ..., t 1$ and $i = p, ..., j$.

Proof. We prove (i) by induction on $l \in \{-1, \ldots, t-1\}$. If $l = -1$ there is nothing to show because $H_p(j-1)_{p+l} = 0$ for $l < 0$. Now let $l > -1$ and consider the exact sequence

$$
\cdots \rightarrow H_p(j-1)_{p+l-1} \rightarrow H_p(j-1)_{p+l} \rightarrow H_p(j)_{p+l} \rightarrow \cdots.
$$

By the induction hypothesis $H_p(j-1)_{p+l-1} = 0$, and by the assumption $H_p(j)_{p+l} = 0$ we get that $H_p(j-1)_{p+l} = 0$.

For $l = t$ the exact sequence of the Koszul homology together with (i) yields

$$
0 \to H_p(j-1)_{p+t} \to H_p(j)_{p+t} \to \cdots,
$$

which proves (ii).

We show (iii) by induction on $j \in [n]$. The case $j = 1$ is trivial, and for $j > 1$ and $i = p$ the assertion is true by assumption. Now let $j > 1$, $i > p$ and consider

$$
\cdots \to H_i(j-1)_{i+l} \to H_i(j)_{i+l} \to H_{i-1}(j-1)_{i-1+l} \to \cdots.
$$

By (i) and the induction on *j* we get that $H_i(j-1)_{i+1} = H_{i-1}(j-1)_{i-1+1}$ $= 0$. Hence $H_i(j)_{i+l} = 0$.

2. LOWER BOUNDS FOR BETTI NUMBERS OF GRADED *S*-MODULES

In this section *M* is always a finitely generated graded *S*-module which is generated in degrees ≥ 0 . For $0 \neq z \in K_i(j)$ we write

$$
z = m_J e_J + \sum_{I \subseteq [n], I \neq J} m_I e_I
$$

with coefficients in M , and where e_I is the lexicographic largest monomial of all e_i with $m_i \neq 0$. Recall that for $I, J \subseteq [n]$, $I = \{i_1 < \cdots < i_t\}$, $J = \{j_1 < \cdots < j_t\}$ $e_I \leq_{lex} e_J$ if either $t < t'$ or $t = t'$, and there exists a number *p* with $i_l = j_l$ for $l < p$ and $i_p > j_p$. We call $\text{in}(z) = m_j e_j$ the initial term of *z*. Furthermore, for $\vec{l} = \{\vec{i}_1 < \cdots < \vec{i}_i\} \subseteq [n]$ we write $\partial_I = \partial_{i_1} \circ \cdots \circ \partial_{i_i}.$

LEMMA 2.1. Let $p \in \{0, ..., j\}$, $r \in \{0, ..., p\}$, and $0 \neq z \in K_p(j)$ be *homogeneous with* $\text{in}(z) = m_j e_j$. *Then for all* $I \subseteq J$ *with* $|I| = r$ *the elements* $\partial_I(z)$ are K-linearly independent in $K_{p-r}(j)$. In particular, if z is a cycle, then $\{\partial_t(z): I \subseteq J, |I| = r\}$ is a set of K-linearly independent cycles.

Proof. This follows from the fact that $\text{in}(\partial_I(z)) = m_I e_{I-I}$. Induction on $r \in \{0, \ldots, p\}$ proves that all $\partial_I(z)$ are cycles if *z* is one.

LEMMA 2.2. Let $p \in [j]$, $t \in \mathbb{N}$, and $z \in K_p(j)_{p+t}$. Assume that $H_{p-1}(j)_{p-1+l} = 0$ *for* $l = -1, \ldots, t-1$.

(i) If $p < j$ and $\partial_j(z) = \partial(y)$ for some y, then there exists \tilde{z} such that $\tilde{z} = z + \partial(\vec{r})$ and $\partial_j(\tilde{z}) = 0$. In particular, $\tilde{z} \in K_p(j-1)$, and if z is a cycle, *then* $[z] = [\tilde{z}]$.

(ii) If $p = j$ and $\partial_i(z) = \partial(y)$ for some y, then $z = 0$. In particular, if $z \neq 0$ *is a cycle, then we always have* $0 \neq [\partial_j(z)] \in H_{p-1}(j)_{p-1+i}$.

Proof. We proceed by induction on $t \in \mathbb{N}$ to prove (i). If $t = 0$, then $y \in K_p(j)_{p+t-1} = 0$, and so $\partial_j(z) = 0$. Thus we choose $\tilde{z} = z$.

Let $t > 0$ and assume that $\partial_i(z) = \partial(y)$. We see that $\partial_i(y)$ is a cycle because

$$
0 = \partial_j(\partial_j(z)) = \partial_j(\partial(y)) = -\partial(\partial_j(y)).
$$

But $\partial_j(y) \in K_{p-1}(j)_{p-1+t-1}$. Since $H_{p-1}(j)_{p-1+t-1} = 0$, it follows that $\partial_j(y) = \partial(y')$ is a boundary for some element *y*'. By the induction hypothesis we get $\tilde{y} = y + \partial(r')$ such that $\partial_j(\tilde{y}) = 0$. Note that $\partial(\tilde{y}) = 0$ $\partial(y) = \partial_i(z)$. We define

$$
\tilde{z} = z + \partial(e_j \wedge \tilde{y}) = z + x_j \tilde{y} - e_j \wedge \partial_j(z).
$$

Then

$$
\partial_j(\tilde{z}) = \partial_j(z) + x_j \partial_j(\tilde{y}) - \partial_j(e_j) \wedge \partial_j(z) + e_j \wedge \partial_j \circ \partial_j(z)
$$

= $\partial_j(z) - \partial_j(z) = 0$,

and this proves (i).

If $p = j$, we see that $z = me_{[j]}$ for some $m \in M$, and therefore $\partial_j(z) \neq 0$ if and only if $z \neq 0$.

We prove (ii) by induction on $t \in \mathbb{N}$. For $t = 0$ there is nothing to show. Let $t > 0$ and assume $\partial_i(z) = \partial(y)$. By the same argument as in the proof of (i) we get $\partial_i(y) = \partial(y')$ for some *y'*. The induction hypothesis implies $y = 0$, and then $z = 0$.

LEMMA 2.3. Let $p \in \{0, \ldots, j\}$, $t \in \mathbb{N}$, and $0 \neq z \in K_p(j)_{p+i}$. Assume *that* $H_p(j)_{p+l} = 0$ *for* $l = -1, ..., t-1$ *and let* $q \in \{0, ..., j\}$. If $z \in K_p(j)$ $(-q)_{p+t} \subseteq K_p(j)_{p+t}$ and $\partial(y) = z$ in $K(j)$ for some element y, then there exists an element $\tilde{y} \in K_{p+1}(j-q)_{p+1+t-1}$ such that $\partial(\tilde{y}) = z$ in $K(j-q)$.

Proof. We prove the assertion by induction on *j* for all $q \in \{0, \ldots, j\}$. For $j = 0$ and $j > 0$, $q = 0$, there is nothing to show. Let $j \ge q > 0$. Write $y = e_i \wedge \partial_i(y) + r_v$. Since $0 = \partial_i(z)$ and

$$
z = \partial(y) = \partial(e_j \wedge \partial_j(y) + r_y) = x_j \partial_j(y) - e_j \wedge \partial(\partial_j(y)) + \partial(r_y),
$$

we see that $\partial_j(y)$ is a cycle and therefore a boundary by the assumption that $H_p(j)_{p+t-1} = 0$. By Lemma 2.2 we may assume that $y \in K(j-1)$. By the induction hypothesis we find the desired \tilde{y} in $K(j - q) = K(j - 1 - q)$ $(q - 1)$.

LEMMA 2.4. *Let* $t \in \mathbb{N}$. If $\beta_{n-1,n-1+l}(M) = 0$ for $l = -1, ..., t-1$ and $\beta_{n,n+1}(M) \neq 0$, then there exists a basis **e** of L and a cycle $z \in K_n(n)_{n+1}$ *such that*

 (i) $[z] \in H_n(n)_{n+t}$ *is not zero*,

(ii) $[\partial_i(z)] \in H_{n-1}(n)_{n-1+t}$ are K-linearly independent for $i = 1, ..., n$.

 $\text{In particular, } \beta_{n-1,n-1+t}(M) \geq n.$

Proof. Let **e** be an arbitrary basis of *L*. Since $\beta_{n,n+t}(M) \neq 0$ there exists a cycle $z \in K_n(n)_{n+t}$ with $0 \neq [z] \in H_n(n)_{n+t}$. Furthermore, $H_{n-1}(n)_{n-1+l} = 0$ for $l = -1, \ldots, t-1$. In this situation we have $z = me_{n}$ for some socle element *m* of *M*, and we want to show that every equation

$$
0 = \sum_{i=1}^{n} \mu_i [\partial_i(z)] = \left[\sum_{i=1}^{n} \mu_i \partial_i(z) \right] \quad \text{with } \mu_i \in K
$$

implies $\mu_i = 0$ for all $i \in [n]$. Assume there is such an equation where not all μ_i are zero. After a base change we may assume that $\sum_{i=1}^n \mu_i \partial_i = \partial_n$. We get

$$
0=\big[\partial_n(z)\big],
$$

contradicting Lemma 2.2(ii). \blacksquare

THEOREM 2.5. Let $t \in \mathbb{N}$ and $p \in [n]$. If $\beta_{p-1, p-1+l}(M) = 0$ for $l =$ $-1, \ldots, t-1$ and $\beta_{p, p+t}(M) \neq 0$, then there exists a basis **e** of L and a $cycle\ z \in K_p(n)_{p+t}\ such\ that$

(i)
$$
[z] \in H_p(n)_{p+t}
$$
 is not zero,

(ii)
$$
[\partial_i(z)] \in H_{p-1}(n)_{p-1+i}
$$
 are K-linearly independent for $i = 1, ..., p$.

In particular, $\beta_{p-1, p-1+t}(M) \geq p$.

Proof. We have $H_p(n)_{p+t} \neq 0$ because $\beta_{p, p+t}(M) \neq 0$. Choose $0 \neq h$ $H_p(n)_{p+t}$. We prove by induction on *n* that we can find a basis **e** of $L(n)$ and a cycle $z \in K_p(n)_{p+t}$ representing *h* such that every equation

$$
0 = \sum_{i=1}^{p} \mu_i [\partial_i(z)] = \left[\sum_{i=1}^{p} \mu_i \partial_i(z) \right] \quad \text{with } \mu_i \in K
$$

implies $\mu_i = 0$ for all *i*. The cases $n = 1$ and $n > 1$, $p = n$ were shown in Lemma 2.4.

Let $n > 1$ and $p < n$. Assume that there is a basis **e** and such an equation for a cycle *z* with $[z] = h$ where not all μ_i are zero. After a base change of $L(n)$ we may assume that $\sum_{i=1}^p \mu_i \partial_i = \partial_n$. Then $0 = [\partial_n(z)]$, and therefore $\partial_n(z) = \partial(y)$ for some element *y*. By Lemma 2.2 we can find an element \tilde{y} such that $[\tilde{y}] = [z]$ and $\tilde{y} \in K_p(n-1)_{p+i}$. Now Lemma 1.3 guarantees that we can apply our induction hypothesis to \tilde{y} , and we find a base change $\mathbf{l} = l_1, \ldots, l_{n-1}$ of e_1, \ldots, e_{n-1} , $[\tilde{z}] = [\tilde{y}]$ in $H_p(n-1)_{p+1}$ (with respect to the new basis) such that $[\partial_i(\tilde{z})] \in H_{p-1}(n-1)_{p-1+i}$ are *K*-linearly independent for $i = 1, ..., p$. By Lemma 1.3 we have $H_i(n - p)$ $1_{i_{t+1}} \subseteq H_i(n)_{i_{t+1}}$ for $i = p - 1$, p. Then \tilde{z} is the desired cycle because $[\tilde{z}] = [z]$ in $H_p(n)_{p+t}$.

The Castelnuovo-Mumford regularity for a finitely generated graded *S*-module $0 \neq M$ is defined as $reg(M) = max\{j \in \mathbb{Z} : \beta_{i,j+j}(M) \neq 0 \text{ for } j \in \mathbb{Z} \}$ some $i \in \mathbb{N}$. For $k \in \{0, ..., n\}$ we define $d_k(M) = \min(\{j \in \mathbb{N}\})$ $\mathbb{Z}: \beta_{k,k+i}(M) \neq$ $\mathbb{Z}: \beta_{k,k+j}(M) \neq 0$ \cup {reg(*M*)}). We are interested in the numbers $\beta_i^{k,\text{lin}}(M) = \beta_{i,i+d_k(M)}(M)$ for $i \geq k$. Note that $\beta_i^{0,\text{lin}}(M) = \beta_i^{\text{lin}}(M)$. If $0 \neq \Omega_k(M)$ is the *k*th syzygy module in the minimal graded free resolution of *M* (see [7] for details), then we always have $\beta_{i,i+j}(M) =$ $\beta_{i-k, i-k+j+k}(\Omega_k(M))$ for $i \geq k$. Therefore $\beta_i^{k, \text{lin}}(M) = \beta_{i-k}^{\text{lin}}(\Omega_k(M))$ for these *i*. Observe that $d_0(\Omega_k(M)) = d_k(M) + k$.

COROLLARY 2.6. *Let* $k \in \{0, ..., n\}$. If $\beta_p^{k, \text{lin}}(M) \neq 0$ for some $p > k$, *then*

$$
\beta_{p-1}^{k,\mathrm{lin}}(M) \geq p.
$$

For the numbers $\beta_i^{\text{lin}}(M)$ and $\beta_i^{\text{1,lin}}(M)$ we get more precise results. The next result was first discovered in [13].

THEOREM 2.7. *Let* $p \in \{0, ..., n\}$. If $\beta_p^{\text{lin}}(M) \neq 0$, then

$$
\beta_i^{\rm lin}(M) \geq {p \choose i}
$$

for $i = 0, ..., p$.

Proof. The proof follows from Lemma 2.1 and the fact that there are no non-trivial boundaries in $K_i(n)_{i+d_o(M)}$.

To prove lower bounds for $\beta_i^{1, \text{lin}}$ we use slightly different methods. Let $S = K[x_1, \ldots, x_n]$. We fix a basis **e** of *L* such that $\partial(e_i) = x_i$ for all $i \in [n]$ for the rest of this paper. For $a \in \mathbb{N}^n$ we write $x^a = x_1^{a_1} \cdots x_n^{a_n}$ and call it a monomial in *S*. Let *F* be a graded free *S*-module with free homogeneous basis g_1, \ldots, g_t . Then we call $x^a g_i$ a monomial in *F* for $a \in \mathbb{N}^n$ and $i \in [t]$. Let \geq be an arbitrary degree refining term order on *F* with $x_1 g_i > \cdots > x_n g_i > g_i$ (see [7] for details). For a homogeneous element $f \in F$ we set in $\zeta(f)$ for the maximal monomial in a presentation of *f*. Note that we also defined in (*z*) for some bihomogeneous $z \in K(n)$.

LEMMA 2.8. Let $M \subset F$ be a finitely generated graded S-module and let $0 \neq z$ be a homogeneous cycle of $K_1(n, M)$ with $z = \sum_{j \geq i} m_j e_j$, $\text{in}(z) = m_i e_i$. *Then there exists an integer* $j > i$ *with* $0 \neq in_{>}(m_j) > in_{>}(m_i)$ *. In particular,* m_i and m_i are K-linearly independent.

Proof. We have

$$
0 = \partial(z) = m_i x_i + \sum_{j>i} m_j x_j.
$$

Hence there exists an integer $j > i$ and a monomial a_j of m_j with $\lim_{n \to \infty} (m_i)x_i = a_i x_i$ because all monomials have to cancel. Assume that

$$
\text{in}_{>}(m_i) \geq \text{in}_{>}(m_j).
$$

Then

П

$$
\text{in}_{>}(m_i)x_i > \text{in}_{>}(m_i)x_j \ge \text{in}_{>}(m_j)x_j \ge a_jx_j
$$

is a contradiction. Therefore

$$
\mathrm{in}_{>}(m_i)<\mathrm{in}_{>}(m_j).
$$

LEMMA 2.9. Let $M \subset F$ be a finitely generated graded S-module, $p \in$ $\{0, \ldots, n\}$, and let $0 \neq z$ be a homogeneous cycle of $K_p(n, M)$ with $z =$ $\sum_{J, |J|=p} m_J e_J$, $\text{in}(z) = m_I e_I$. Assume that $I = \{1, \ldots, p\}$. Then there exist distinct numbers $j_1, \ldots, j_p \in [n]$ such that $j_k > p - k + 1$ for $k = 1, \ldots, p$ *and*

$$
\text{in}_{>}(m_{J_p}) > \text{in}_{>}(m_{J_{p-1}}) > \cdots > \text{in}_{>}(m_{J_0}),
$$

where $J_0 = I$ and $J_k = \{1, \ldots, p - k, j_1, \ldots, j_k\}$ for $k = 1, \ldots, p$.

Proof. We construct the numbers j_k and the sets J_k with the desired properties by induction on $k \in \{0, ..., p\}$. For $k = 0$ we set $J_0 = I$. Let $0 < k \leq p$. Assume that J_{k-1} is constructed. Then we apply Lemma 2.8 to

$$
\partial_{(1,\ldots,p-k,j_1,\ldots,j_{k-1})}(z) \quad \text{where in}\left(\partial_{(1,\ldots,p-k,j_1,\ldots,j_{k-1})}(z)\right) = m_{J_{k-1}}e_{p-k+1}
$$

and find $j_k > p - k + 1$ such that $\text{in}_{\geq} (m_{\{1, ..., p-k, j_1, ..., j_{k-1}\} \cup \{j_k\}})$ $\lim_{k \to \infty} (m_{J_{k-1}})$. We see that $j_k \neq j_i$ for $i = 1, ..., k-1$ because these e_{j_i} do not appear with non-zero coefficients in $\partial_{(1,\ldots,p-k, j_1,\ldots,j_{k-1})}(z)$. This concludes the proof.

COROLLARY 2.10. Let $M \subset F$ be a finitely generated graded S-module, $p \in \{0, \ldots, n\}$, and let $0 \neq z$ be a homogeneous cycle of $K_p(n, M)$ with $z = \sum_{J, |J| = p} m_J e_J$. Then there exist $p + 1$ coefficients m_J of z, which are *K*-*linearly independent*.

Proof. The proof follows from Lemma 2.9 because the coefficients there have different leading terms.

THEOREM 2.11. Let $p \ge 1$ and let M be a finitely generated graded *S*-module with $\beta_p^{1, \text{lin}}(M) \neq 0$. Then

$$
\beta_i^{1,\mathrm{lin}}(M) \geq \binom{p}{i}
$$

for $i = 1, ..., p$.

Proof. Let

$$
0 \to M' \to F \to M \to 0
$$

be a presentation of *M* such that *F* is free and $M' = \Omega_1(M)$. We show that

$$
\beta_i^{\rm lin}(M') \ge \binom{p'+1}{i+1} \quad \text{for } p' = p-1.
$$

Since $\beta_i^{\text{1, lin}}(M) = \beta_{i-1}^{\text{lin}}(M')$, this will prove the theorem.

After a suitable shift of the grading of *M* we may assume that $d_0(M')$ = 0. Note that *M'* is a submodule of a free module. Since $\beta_{p'}^{\text{lin}}(M') \neq 0$, we get a homogeneous cycle $0 \neq z = \sum_{J, |J| = p'} m_J e_J$ in $K_{p'}(n, M')_{p'}$. There are no boundaries except for zero in $K_i(n, M')$, and therefore we only have to construct enough *K*-linearly independent cycles in $K_i(n, M')$, to prove the assertion. Assume that $\text{in}(z) = m_I e_I$ where $I = \{i_1, \ldots, i_p\}$. We make a base change of the basis e_1, \ldots, e_n that maps e_{i_j} to e_j for $j = 1, \ldots, p'$. Then $\text{in}(z) = m_{p'}e_{p'}$ with respect to the new basis. By Lemma 2.9 we obtain numbers $j_1, \ldots, j_{p'}$ and the induced sets $J_0, \ldots, J_{p'}$ for *z* such that $j_k > p - k + 1$ for $k = 1, ..., p$ and $\text{in}_{\lambda}(m_{J_{p}}) >$ $\lim_{s \to 0} (m_{J_{n'-1}}) > \dots > \lim_{s \to 0} (m_{J_0}).$

Let $t \in \{0, ..., p\}$ and set $i = p' - t$. Consider the (by Lemma 2.1) cycles $\partial_G(z)$ with $G \in W = W_0 \cup \cdots \cup W_t$ where

$$
W_k = \{I \cup \{j_1, \ldots, j_k\} : I \subseteq [p'-k], |I| = t - k\} \quad \text{for } k \in \{0, \ldots, t\}.
$$

We have

$$
|W_k| = \binom{p'-k}{t-k},
$$

and therefore

$$
|W| = \sum_{k=0}^{t} {p' - k \choose t - k} = {p' + 1 \choose t} = {p' + 1 \choose p' - t + 1} = {p' + 1 \choose i + 1}.
$$

If we show that the cycles $\partial_G(z)$ are *K*-linearly independent, the assertion follows.

Take $G \in W$, $G = I_G \cup \{j_1, ..., j_{k_G}\}\$ for some $I_G \subseteq [p' - k_G], |I_G| =$ $t - k_G$. Since $z = \sum_{J, |J| = p'} m_J e_j$ we get

$$
\partial_G(z) = \sum_{J, |J|=p'} m_J e_{J-G} = \sum_{I_G \cup \{j_1, \ldots, j_{k_G}\} \subseteq J, |J|=p'} m_J e_{J-I_G - \{j_1, \ldots, j_{k_G}\}}.
$$

Thus

$$
\operatorname{in}\bigl(\partial_G(z)\bigr)=m_{\{1,\cdots,\,p'-k_G\}\cup\{j_1,\ldots,j_{k_G}\}}e_{\{1,\cdots,\,p'-k_G\}-I_G}.
$$

It is enough to show that the initial terms of the cycles are *K*-linearly independent.

If cycles have different initial monomials in the e_i , there is nothing to show. Take G, G' and assume that the corresponding cycles have the same initial monomial in the e_i . We have to consider two cases. If $k_G = k_G$, then $I_G = I_{G'}$ and the cycles are the same. For $k_G < k_{G'}$ Lemma 2.9 implies

$$
\text{in}(m_{\{1,\ldots,p'-k_G\}\cup\{j_1,\ldots,j_{k_G}\}})<\text{in}(m_{\{1,\ldots,p'-k_G\}\cup\{j_1,\ldots,j_{k_G}\}}),
$$

which proves the *K*-linear independence.

The next corollary summarizes our results related to the conjecture of Herzog.

COROLLARY 2.12. *Let M be a finitely generated graded S*-*module and let* $p \in \{0, \ldots, n\}$. Suppose that $\beta_p^{\text{lin}}(M) \neq 0$ and M is the kth syzygy module in *a minimal graded free resolution*. *Then*

(i) If $k = 0$, then $\beta_i^{\text{lin}}(M) \geq {p \choose i}$ for $i = 0, ..., p$.

(ii) If
$$
k = 1
$$
, then $\beta_i^{\text{lin}}(M) \ge (\frac{p+1}{i+1})$ for $i = 0, ..., p$.

(iii) If $k > 1$ and $p > 0$, then $\beta_{p-1}^{\text{lin}}(M) \geq p + k$.

Proof. Statement (i) was shown in Theorem 2.7. In the proof of Theorem 2.11 we proved (ii) in fact. Finally, (iii) follows from Corollary 2.6 since $\beta_i^{\text{lin}}(M) = \beta_{i+k}^{k,\text{lin}}(N)$ if M is the *k*th syzygy module in the minimal graded free resolution of some module *N*.

Recall that a finitely generated graded *S*-module *M* satisfies *Serre*'*s condition* \mathcal{S}_k if

$$
\operatorname{depth}(M_P) \geq \min(k, \dim S_P)
$$

for all $P \in \text{Spec}(S)$. We recall the Auslander-Bridger theorem [2]:

LEMMA 2.13. *Let M be a finitely generated graded S*-*module*. *Then M is a kth syzygy module in a graded free resolution if and only if M satisifes* \mathcal{S}_k .

Proof. The proof is essentially the same as in [11], where the local case is treated.

COROLLARY 2.14. *Let M be a finitely generated graded S*-*module and* $p \in \{0, \ldots, n\}$. Suppose that M satisfies \mathscr{S}_k and $\beta_p^{\text{lin}}(M) \neq 0$. Then

(i) If $k = 0$, then $\beta_i^{\text{lin}}(M) \geq {p \choose i}$ for $i = 0, ..., p$.

(ii) If $k = 1$, then $\beta_i^{\text{lin}}(M) \geq {(\gamma + 1) \choose i+1}$ for $i = 0, ..., p$.

(iii) If $k > 1$ and $p > 0$, then $\beta_{p-1}^{\text{lin}}(M) \geq p + k$.

Proof. According to Lemma 2.13 the module *M* satisfies \mathcal{S}_k if and only if *M* is a *k*th syzygy module in a graded free resolution $G_{\bullet} \to N \to 0$ of some graded *S*-module *N*. It is well known (see, for example, [3]) that $G_{\bullet} = F_{\bullet} \oplus H_{\bullet}$ as graded complexes where F_{\bullet} is the minimal graded free

resolution of *N* and *H*- is split exact. Then *M* splits as a graded module into $\Omega_k(N) \oplus W$, where *W* is a graded free *S*-module. If $p = 0$, there is nothing to show. For $p > 0$ it follows that $\beta_p^{\text{lin}}(\Omega_k(N)) \neq 0$. Then Corollary 2.12 applied to $\Omega_k(N)$ proves the corollary, since $\beta_{i,j}(M) \geq$ $\beta_{i,j}(\Omega_k(N))$ for all integers *i*, *j*.

3. PROOF OF THE CONJECTURE IN THE CASE OF *^N*-GRADED MODULES

S is \mathbb{Z}^n -graded with deg(x_i) = ε_i = (0, . . . , 1, . . . , 0), where the 1 is at the *i*th position. Let $M = \bigoplus_{a \in \mathbb{Z}^n} M_a$ be a finitely generated \mathbb{Z}^n -graded *S*module. Recall that every \mathbb{Z}^n -graded S-module M is naturally \mathbb{Z} -graded by setting $M_i = \bigoplus_{a \in \mathbb{Z}^n, |a|=i} M_a$. Therefore all methods from the last section can be applied in the following. Furthermore, the Koszul complex and homology are \mathbb{Z}^n -graded if we assign the degree ε homology are \mathbb{Z}^n -graded if we assign the degree ε_i to e_i . For example, if $m \in M_a$ for some $a \in \mathbb{Z}^n$, then deg (me_i) is $a + \sum_{i \in I} \varepsilon_i$; or if $z \in K_i(j)$ is homogeneous of degree *a*, then deg($\partial_I(z)$) = $a - \sum_{i=1}^{n} \varepsilon_i$.

We want to prove a more precise result than in the last section for this more restricted situation. Note that Lemmas 2.2 and 2.3 hold in the Zⁿ-graded setting. The proofs are verbatim the same if we replace "graded" with " \mathbb{Z}^n -graded." We prove now a modified version of Theorem 2.5. Usually we assume that $M = \bigoplus_{a \in \mathbb{N}^n} M_a$.

LEMMA 3.1. Let $p \in [j]$ and $t \in \mathbb{N}$. Suppose that $H_i(j)_{i+1} = 0$ for $i = p - 1, \ldots, j, l = -1, \ldots, t - 1$ and let $z \in K_p(j)_{p+t}$ be a \mathbb{Z}^n -homoge*neous cycle with* $0 \neq [z] \in H_p(j)_{p+j}$. Then there exists a \mathbb{Z}^n -homogeneous *cycle z with* ˜

(i) $[\tilde{z}] = [z] \in H_p(j)_{p+t}$,

(ii) the elements $[\partial_i(\tilde{z})] \in H_{p-1}(j)_{p-1+t}$ are K-linearly independent for *some distinct* $j_1, \ldots, j_p \in [j]$.

Proof. We prove by induction on $j \in [n]$ that we find $[\tilde{z}] = [z]$ and a set $\{j_1, \ldots, j_p\}$ such that the cycles $[\partial_i(\tilde{z})]$ are *K*-linearly independent for $i = 1, \ldots, p$.

The cases $j = 1$ and $j > 1$, $p = j$, follow from Lemma 2.2(ii) because if $deg(z) = a \in \mathbb{N}^n$, then all $\partial_k(z)$ have different degrees $a - \varepsilon_k$, and it suffices to show that these elements are not boundaries.

Let $j > 1$ and assume that $p < j$. Again it suffices to show that the cycles $\partial_i(z)$ are not boundaries for a suitable subset $\{j_1, \ldots, j_p\} \subseteq [j]$. If such a set exists, then there is nothing to prove. Otherwise there exists a $k \in [j]$ with $[\partial_k(z)] = 0$, and we may assume $k = j$. By Lemma 2.2 we find \tilde{z} such that $[\tilde{z}] = [z]$ in $H(j)$ and $\tilde{z} \in K(j-1)$. By Lemma 1.3 we can

apply our induction hypothesis and assume that \tilde{z} has the desired properties in *H*(*j* – 1). Again by Lemma 1.3 we have $H_{p-1}(j-1)_{p-1+t} \subseteq$ $H_{p-1}(j)_{p-1+t}$, and \tilde{z} is the desired element.

We need the following simple combinatorial result. Let $p \in [n]$. Define inductively a sequence of subsets $W_t \subseteq 2^{[n]}$ for $t = 0, \ldots, p$. Set $W_0 = \{ \emptyset \}$. If W_{t-1} is defined, then for every set $w \in W_{t-1}$ we choose $p - t + 1$ different elements $j_1^w, \ldots, j_{p-t+1}^w$ such that $j_l^w \notin w$. Define

$$
W_t = \{ w \cup \{ j_l^w \} : w \in W_{t-1} \text{ and } l = 1, \ldots, p - t + 1 \}.
$$

LEMMA 3.2. Let W_t be defined as above. Then for $t = 0, \ldots, p$ we have *that*

$$
|W_t| \geq {p \choose t}.
$$

Proof. We prove this by induction on $p \in [n]$. The case $p = 0$ is trivial, so let $p > 0$, and without loss of generality we may assume that $W_1 =$ $\{(1), ..., \{p\}\}\)$. The set W_t is the disjoint union of the sets $W_t^1 = \{w \in W_t : 1 \in W\}$ and $W_t^1 = \{w \in W_t : 1 \notin w\}$. The induction hypothesis applied to W_t^1 $w_k \in W_i$ and $W_t^1 = \{w \in W_t : 1 \notin w\}$. The induction hypothesis applied to W_t and W_t^1 implies

$$
|W_t| = |W_t^1| + |W_t^1| \ge \binom{p-1}{t-1} + \binom{p-1}{t} = \binom{p}{t}.
$$

We prove the main theorem of this section.

THEOREM 3.3. Let $k \in [n]$ and let M be a finitely generated \mathbb{Z}^n -graded *S*-*module. If* $\beta_p^{k,\text{lin}}(M) \neq 0$ *for some* $p \geq k$, *then*

$$
\beta_i^{k,\mathrm{lin}}(M) \geq {p \choose i}
$$

for $i = k, \ldots, p$.

ш

Proof. Without loss of generality $M = \bigoplus_{a \in \mathbb{N}^n} M_a$. Since $\beta_p^{k, \text{lin}}(M) \neq 0$, *a* $\omega_{a \in \mathbb{N}^n}$ *n* $a \in \mathbb{N}^n$ *n* a . since p_p $(n) \neq 0$, there exists a \mathbb{Z}^n -homogeneous cycle $z \in K_p(n)_{p+d_k(M)}$ such that $0 \neq [z]$ in $H_p(n)_{p+d_k(M)}$ and deg(*z*) = *a* for some $a \in \mathbb{N}^n$. By the definition of $d_k(M)$ and Lemma 1.3 we have $H_i(n)_{i+l} = 0$ for $i \ge k$ and $l =$ $-1, \ldots, d_k(M) - 1.$

We construct inductively W_t as above, as well as cycles z_w for each $w \in W_t$ such that $[z_w] \neq 0$, $deg(z_w) = a - \sum_{j \in w} \varepsilon_j$, $0 \neq [\partial_{ij} (z_w)]$ for $l =$ 1, ..., $p - t$ and suitable $j_l^w \notin w$. Furthermore, z_w is an element of the Koszul complex with respect to the variables x_i with $j \notin w$. For $i \geq k$ we

Let $W_0 = \{ \emptyset \}$. By Lemma 3.1 we can choose *z* in such a way that $[z_{i,l}] = [a_{i,l}^{\delta}(z)] \neq 0$ for $l = 1, ..., p$ and some $j_l \in [n]$. Choose $z_{\emptyset} = z$ and $j_l^{\varnothing} = j_l.$

If W_{t-1} and z_w for $w \in W_{t-1}$ are constructed, then define W_t with W_{t-1}
and the given j_l^w for $w \in W_{t-1}$. For $w' \in W_t$ with $w' = w \cup \{j_l^w\}$, rechoose $z_{w'} = \partial_{j_l^w} (z_w)$ by Lemma 3.1 in such a way that $[\partial_{j_l^w} (z_{w'})] \neq 0$ for $l' = 1, ..., p - t$ and some $j_l^{w'} \in [n]$. $l' = 1, ..., p - t$ and some $j_{l'}^{w'} \in [n]$.

Note that since z_w has no monomial which is divisible by some e_i for $j \in w$, we can use Lemmas 2.2 and 2.3 to avoid these e_j in the construction of *z_w* again. By Lemma 1.3 the cycles $\partial_{j_i^w}(z_{w_i})$ are also not zero in *H(n)*. Clearly $j_i^w \notin w'$, and the assertion follows.

In the \mathbb{Z}^n -graded setting we prove the desired results about β_i^{lin} in full generality.

COROLLARY 3.4. Let M be a finitely generated \mathbb{Z}^n -graded S-module, where M is the kth syzygy module in a minimal \mathbb{Z}^n -graded free resolution. If $\beta_p^{\text{lin}}(M) \neq 0$ for some $p \in \mathbb{N}$, then

$$
\beta_i^{\rm lin}(M) \ge \binom{p+k}{i+k}
$$

for $i = 0, ..., p$.

Proof. This follows from Theorem 3.3 and the fact that

$$
\beta_i^{\rm lin}(M) = \beta_{i+k}^{k,\rm lin}(N) \geq {p+k \choose i+k},
$$

where *M* is the *k*th syzygy module of a \mathbb{Z}^n -graded *S*-module *N*.

As an analogue to Lemma 2.13 we get

LEMMA 3.5. *Let M be a finitely generated ⁿ* -*graded S*-*module*. *Then M satisfies* \mathscr{S}_k *if and only if M is a kth syzygy module in a* \mathbb{Z}^n *-graded free resolution*.

COROLLARY 3.6. Let M be a finitely generated \mathbb{Z}^n -graded S-module satisfying \mathscr{S}_k . If $\beta_p^{\text{lin}}(M) \neq 0$ for some $p \in \mathbb{N}$, then

$$
\beta_i^{\rm lin}(M) \ge \binom{p+k}{i+k}
$$

for $i = 0, ..., p$.

Proof. The assertion follows from Corollary 3.4 with arguments similar to those for the graded case.

4. BOUNDS FOR BETTI NUMBERS OF IDEALS WITH A FIXED NUMBER OF GENERATORS IN GIVEN DEGREE AND A LINEAR RESOLUTION

In this section we are interested in bounds for the graded Betti numbers of graded ideals of *S*. We assume that the field *K* is infinite and fix a basis $\mathbf{x} = x_1, \ldots, x_n$ of S_1 . For a monomial x^a of *S* with $|a| = d$ we denote by $R(x^a) = \{x^b : |b| = d, x^b \geq_{\text{rlex}} x^a\}$ the revlex-segment of x^a , where $\geq_{\text{rlex}} a$ is defined as follows: $x^a >_{\text{rlex}}^{\text{max}} x^b$ if either $|a| > |b|$ or $|a| = |b|$ and there exists an integer *r* such that $a_r < b_r$ and $a_s = b_s$ for $s > r$. Note that for a given $d \in \mathbb{N}$ and $0 \le k \le \binom{n+d-1}{d}$ there exists a unique ideal $I(d, k)$ which is generated in degree *d* by a revlex-segment $R(x^a)$ for some monomial x^a with $|R(x^a)| = k$.

Following Eliahou and Kervaire [10] for a given monomial x^a , let $m(x^a)$ be the maximal *i* such that x_i divides x^a . An ideal is a monomial ideal if it is generated by monomials. We call a monomial ideal *I* stable if for all monomials $x^a \in I$ we have $x_i x^a / x_{m(x^a)} \in I$ for $i < m(x^a)$. Is it easy to see that it is enough to prove this condition for the generators of the ideal *I*. For example, $I(d, k)$ is stable.

For stable ideals there exist explicit formulas for the Betti numbers (see [10]). Let $I \subset S$ be a stable ideal and let $G(I)$ be the set of minimal generators of *I*. Then

$$
\beta_{i, i+j}(I) = \sum_{x^a \in G(I), |a|=j} {m(x^a) - 1 \choose i} \quad (*)
$$

If a stable ideal *I* is generated in one degree *d*, then *I* has a linear resolution.

PROPOSITION 4.1. Let $I \subset S$ be a stable ideal generated in degree $d \in \mathbb{N}$ $with \ \beta_{0, d}(I) = k.$ *Then*

$$
\beta_{i,i+j}(I) \geq \beta_{i,i+j}(I(d,k))
$$

for all $i, j \in \mathbb{N}$.

Proof. Fix $d \in \mathbb{N}$ and $0 \le k \le (\frac{n+d-1}{d})$. Let $l(I)$ be the number of monomials in I_d which are not monomials in $I(d, k)_d$. We prove the statement by induction on $l(I)$. If $l(I) = 0$, then $I = I(d, k)$ and there is nothing to show.

Assume that $l(I) > 0$. Let x^a be the smallest monomial in I_d with respect to $>_{\text{rlex}}$ which is not in $I(d, k)_d$, and let x^b be the largest monomial which is in $I(d, k)$ _d but not in I_d . Define the ideal I^{\top} by $G(\tilde{I}) = (G(I) \setminus \{x^a\}) \cup \{x^b\}$. Then $l(\tilde{I}) = l(I) - 1$, and \tilde{I} is also stable. Thus, by the induction hypothesis,

$$
\beta_{i,i+j}(\tilde{I})\geq \beta_{i,i+j}(I(d,k)).
$$

Since $x^b >_{\text{rlex}} x^a$, the revlex order implies $m(x^b) \le m(x^a)$. Therefore $(*)$ yields

$$
\beta_{i,i+j}(I) \geq \beta_{i,i+j}(\tilde{I}),
$$

which proves the assertion.

For a graded ideal *I*, the initial ideal in(*I*) is generated by all in(*f*) for $f \in I$ with respect to some monomial order.

Every element *g* of the general linear group $GL(n)$ induces a linear automorphism of *S* by

$$
g(x_j) = \sum_{i=1}^{n} g_{i,j} x_i
$$
 for $g = (g_{i,j}).$

There is a non-empty open set $U \subset GL(n)$ and a unique monomial ideal *J* with $J = \text{in}(g(I))$ for every $g \in U$ with respect to the revlex order (for details see $[7]$). We call J the generic initial ideal of I and denote it by $Gin(I)$. A nice property is that $Gin(I)$ is Borel-fixed, i.e., $Gin(I) = b \operatorname{Gin}(I)$ for all $b \in B$, where *B* is the Borel subgroup of $GL(n)$ which is generated by all upper triangular matrices.

PROPOSITION 4.2. Let $d \in \mathbb{N}$ and let $I \subset S$ be a graded ideal with d-linear *resolution. Then* Gin(I) is stable, *independent of the characteristic of K*, *and* $\beta_{i, i+j}(I) = \beta_{i, i+j}(\text{Gin}(I))$ for all $i, j \in \mathbb{N}$.

Proof. It is well known that $reg(Gin(I)) = reg(I)$. Therefore $reg(Gin(I)) = d$ and $Gin(I)$ also has a *d*-linear resolution. Reference [9, Proposition 10] implies that a Borel-fixed monomial ideal, which is generated in degree *d*, has regularity *d* if and only if it is stable. Thus we get that $\text{Gin}(I)$ is a stable ideal, independent of the characteristic of *K*.

Since I has a linear resolution, we obtain by the main result in [1] that $\beta_{i, i+j}(I) = \beta_{i, i+j}(\text{Gin}(I))$ for all $i, j \in \mathbb{N}$.

THEOREM 4.3. Let $d \in \mathbb{N}$, *let* $0 \le k \le (\binom{n+d-1}{d})$, *and let* $I \subset S$ *be a graded ideal with d*-*linear resolution and k generators*. *Then*

$$
\beta_{i,i+j}(I) \geq \beta_{i,i+j}(I(d,k))
$$

for all $i, j \in \mathbb{N}$.

Proof. This follows from Propositions 4.1 and 4.2.

Consider the lexicographic order $>_{lex}$. Recall that for monomials x^a , $x^b \in S$ we have $x^a >_{\text{lex}}^{\text{lex}} x^b$ if either $|a| > |b|$ or $|a| = |b|$ and there exists an integer *r* such that $a_r > b_r$ and $a_s = b_s$ for $s < r$. Then $L(x^a) = \{x^b : |b|$ $\alpha = d, x^b \geq_{\text{lex}} x^a$ is the lex-segment of x^a . For a given $d \in \mathbb{N}$ and $0 \leq k \leq a$ $(n+d-1)$ there exists a unique ideal $J(d, k)$ which is generated in degree *d* by a lex-segment $L(x^a)$ for some monomial x^a with $|L(x^a)| = k$. It is easy to see that $J(d, k)$ is a lex-ideal; i.e., if $x^b >_{\text{lex}} x^c$ and $x^c \in J(d, k)$, then $x^b \in J(d, k)$. In particular, $J(d, k)$ is stable.

PROPOSITION 4.4. *Let* $d \in \mathbb{N}$, *let* $0 \le k \le \binom{n+d-1}{d}$, and let $I \subset S$ be a *graded ideal with d*-*linear resolution and k generators*. *Then*

$$
\beta_{i,i+j}(I) \leq \beta_{i,i+j}(J(d,k))
$$

for all $i, j \in \mathbb{N}$.

Proof. By [15, Theorem 31] we find a lex-ideal *L* with the same Hilbert function as *I* and $\beta_{i,i+j}(I) \leq \beta_{i,i+j}(L)$ for all $i, j \in \mathbb{N}$. We see that $\beta_{0,d}(L) = \beta_{0,d}(I) = k$ because these ideals share the same Hilbert function. It follows that $J(d, k) = (L_d)$, and, in particular, $G(J(d, k)) = G(L)_d$. Therefore

$$
\beta_{i,i+d}(I) \leq \beta_{i,i+d}(L) = \beta_{i,i+d}(J(d,k))
$$

for all $i, j \in \mathbb{N}$, where the last equality follows from $(*)$.

Fix $d \in \mathbb{N}$ and $0 \le k \le (\frac{n+d-1}{d})$. Let $\mathcal{B}(d, k)$ be the set of Betti sequences $\{\beta_{i,j}(I)\}\$ where *I* is a graded ideal with *d*-linear resolution and $\beta_{0,d}(I) = k$. On $\mathscr{B}(d,k)$ we consider a partial order: We set $\{\beta_{i,j}(I)\}\geq$ $\{\beta_{i,j}(J)\}\$ if $\beta_{i,j}(I) \geq \beta_{i,j}(J)$ for all $i, j \in \mathbb{N}$.

COROLLARY 4.5. *Let* $d \in \mathbb{N}$ *and let* $0 \le k \le \binom{n+d-1}{d}$ *. Then* $\{\beta_{i,j}(I(d,k))\}$ is the unique minimal element and $\{\beta_{i,j}(J(d,k))\}$ is the *unique maximal element of* $\mathcal{B}(d, k)$.

REFERENCES

- 1. A. Aramova, J. Herzog, and T. Hibi, Ideals with stable Betti numbers, Adv. Math. 152, No. 1 (2000), 72-77.
- 2. M. Auslander and M. Bridger, Stable module theory, *Mem*. *Amer*. *Math*. *Soc*. No. 94 (1969) .
- 3. L. L. Avramov, Infinite free resolutions, *in* ''Six Lectures on Commutative Algebra,'' pp. 1-118, Progress in Mathematics, Vol. 166, Birkhäuser, Basel, 1998.
- 4. A. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, *Comm*. *Algebra* 21, No. 7 (1993), 2317-2334.
- 5. W. Bruns and J. Herzog, "Cohen-Macaulay Rings," rev. ed., Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge Univ. Press, Cambridge, UK, 1998.
- 6. H. Charalambous and E. Evans, Resolutions with a given Hilbert function, *Contemp*. *Math.* **159** (1994), 19-26.
- 7. D. Eisenbud, ''Commutative Algebra with a View Toward Algebraic Geometry,'' Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.
- 8. D. Eisenbud and J. Koh, Some linear syzygy conjectures, Adv. Math. 90, No. 1 (1991), $47 - 76.$
- 9. D. Eisenbud, A. Reeves, and B. Totaro, Initial ideals, Veronese subrings, and rates of algebras, Adv. Math. 109, No. 2 (1994), 168-187.
- 10. S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, *J*. *Algebra* **129**, No. 1 (1990), 1-25.
- 11. E. G. Evans and P. Griffith, ''Syzygies,'' London Mathematical Society, Lecture Note Series, Vol. 106, Cambridge Univ. Press, Cambridge/New York, 1985.
- 12. M. Green, Koszul cohomology and the geometry of projective varieties, *J*. *Differential Geom.* **19**, No. 1 (1984), 125-171.
- 13. J. Herzog, The linear strand of a graded free resolution, unpublished notes, 1998.
- 14. H. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, *Comm. Algebra* 21, No. 7 (1993), 2335-2350.
- 15. K. Pardue, Deformation classes of graded modules and maximal Betti numbers, *Illinois J*. *Math.* 40, No. 4 (1996), 564-585.
- 16. V. Reiner and V. Welker, Linear syzygies of Stanley-Reisner ideals, *Math. Scand.* 89, No. 1 (2001), 117-132.