Bounds for Betti Numbers

Tim Römer

FR6 Mathematik und Informatik Universität Essen 45117 Essen Germanv metadata, citation and similar papers at <u>core.ac.uk</u>

Received August 14, 2000

In this paper we prove parts of a conjecture of Herzog giving lower bounds on the rank of the free modules appearing in the linear strand of a graded *k*th syzygy module over the polynomial ring. If in addition the module is \mathbb{Z}^n -graded we show that the conjecture holds in full generality. Furthermore, we give lower and upper bounds for the graded Betti numbers of graded ideals with a linear resolution and a fixed number of generators. © 2002 Elsevier Science (USA)

INTRODUCTION

Let $S = K[x_1, ..., x_n]$ be the polynomial ring over a field K equipped with the standard grading by setting deg $(x_i) = 1$, and let M be a finitely generated graded S-module. We denote by $\beta_{i,i+j}(M) = \dim_K \operatorname{Tor}_i(M, K)_{i+j}$ the graded Betti numbers of M.

Assume that the initial degree of M is d; i.e., we have $M_i = 0$ for i < dand $M_d \neq 0$. We are interested in the numbers $\beta_i^{\text{lin}}(M) = \beta_{i,i+d}(M)$ for $i \ge 0$. These numbers determine the rank of the free modules appearing in the linear strand of the minimal graded free resolution of M. Let $p = \max\{i : \beta_i^{\text{lin}}(M) \neq 0\}$ be the length of the linear strand. In [13] Herzog conjectured the following:

Conjecture. Let M be a kth syzygy module whose linear strand has length p. Then

$$\beta_i^{\mathrm{lin}}(M) \ge \begin{pmatrix} p+k\\ i+k \end{pmatrix}$$

for i = 0, ..., p.

0021-8693/02 \$35.00 © 2002 Elsevier Science (USA) All rights reserved.

This conjecture is motivated by a result of Green [12] (see also Eisenbud and Koh [8]) that contains the case i = 0, k = 1. For k = 0 these lower bounds were shown by Herzog [13], and Reiner and Welker [16] proved them for k = 1 for the case where M is a monomial ideal.

In this paper we prove the conjecture for k = 1. For k > 1 we get the weaker result:

If $\beta_p^{\text{lin}}(M) \neq 0$ for p > 0 and M is a *k*th syzygy module, then $\beta_{p-1}^{\text{lin}}(M) \geq p + k$.

We also show that the conjecture holds in full generality for finitely generated \mathbb{Z}^n -graded *S*-modules. The first three sections of this paper are concerned with the question above.

In recent years many authors (see, for example, [4, 14, 15]) were interested in the following problem: Fix a possible Hilbert function H for a graded ideal. Let $\mathscr{B}(H)$ be the set of Betti sequences $\{\beta_{i,j}(I)\}$, where $I \subset S$ is a graded ideal with Hilbert function H. On $\mathscr{B}(H)$ we consider a partial order: We set $\{\beta_{i,j}(I)\} \ge \{\beta_{i,j}(J)\}$ if $\beta_{i,j}(I) \ge \beta_{i,j}(J)$ for all $i, j \in \mathbb{N}$. It is known that $\mathscr{B}(H)$ has a unique maximal element given by the Betti sequence of the lex-segment ideal in the family of considered ideals. In general there is more than one minimal element (see [6]).

In Section 4 we study a related problem. We fix an integer $d \ge 0$ and $0 \le k \le \binom{n+d-1}{d}$. Let $\mathscr{B}(d,k)$ be the set of Betti sequences $\{\beta_{i,j}(I)\}$, where $I \subset S$ is a graded ideal with *d*-linear resolution and $\beta_{0,d}(I) = k$. We show that, independent of the characteristic of the base field, there is a unique minimal and a unique maximal element in $\mathscr{B}(d, k)$.

The author is grateful to Prof. Herzog for inspiring discussions on the subject of the paper.

1. PRELIMINARIES ON KOSZUL COMPLEXES

Let K be a field, let V be an n-dimensional K-vector space with basis $\mathbf{x} = x_1, \ldots, x_n$, and let S = K[V] be the symmetric algebra over V equipped with the standard grading by setting $\deg(x_i) = 1$. Furthermore, let $\mathfrak{m} = (x_1, \ldots, x_n)$ be the graded maximal ideal of S and let $0 \neq M$ be a finitely generated graded S-module which is generated in nonnegative degrees, i.e. $M_i = 0$ for i < 0.

Consider a graded free S-module L of rank j which is generated in degree 1 and let $\wedge L$ be the exterior algebra over L. Then $\wedge L$ inherits the structure of a bigraded S-module. If $z \in \wedge^i L$ and z has S-degree k, then we give z the bidegree (i, k). We call i the homological degree (hdeg for short) and k the internal degree (deg for short) of z.

We consider maps $\mu \in L^* = \text{Hom}_S(L, S)$. Note that L^* is again a graded free S-module generated in degree -1. It is well known (see [5]) that μ defines a graded S-homomorphism $\partial_{\mu} \colon \wedge L \to \wedge L$ of (homological) degree -1.

Recall that if we fix a basis e_1, \ldots, e_j of L, then $\wedge^i L$ is the graded free *S*-module with basis consisting of all monomials $e_J = e_{j_1} \wedge \cdots \wedge e_{j_i}$ with $J = \{j_1 < \cdots < j_i\} \subseteq [j] = \{1, \ldots, j\}$. One has

$$\partial_{\mu}ig(e_{j_1}\wedge\cdots\wedge e_{j_i}ig)=\sum_{k=1}^{i}(-1)^{lpha(k,J)}\mu(e_{j_k})e_{j_1}\wedge\cdots \hat{e}_{j_k}\cdots\wedge e_{j_i}$$

where for $F, G \subseteq [n]$ we set $\alpha(F, G) = |\{(f, g): f > g, f \in F, g \in G\}|$ and where \hat{e}_{j_k} indicates that e_{j_k} is to be omitted from the exterior product. Denote by e_1^*, \ldots, e_j^* the basis of L^* with $e_i^*(e_i) = 1$ and $e_i^*(e_k) = 0$ for $k \neq i$. To simplify notations we set $\partial_i = \partial_{e_i^*}$. Then $\partial_\mu = \sum_{k=1}^j \partial_\mu(e_k)\partial_k$, and we have the following:

LEMMA 1.1. Let $z, \tilde{z} \in \bigwedge L$ be bihomogeneous elements, $f \in S$ and $\mu, \nu \in L^*$. Then

- (i) $f\partial_{\mu} = \partial_{f_{\mu}}$,
- (ii) $\partial_{\mu} + \partial_{\nu} = \partial_{\mu+\nu}$,
- (iii) $\partial_{\mu} \circ \partial_{\mu} = 0,$
- (iv) $\partial_{\mu} \circ \partial_{\nu} = -\partial_{\nu} \circ \partial_{\mu},$
- (v) $\partial_{\mu}(z \wedge \tilde{z}) = \partial_{\mu}(z) \wedge \tilde{z} + (-1)^{\operatorname{hdeg}(z)} z \wedge \partial_{\mu}(\tilde{z}).$

Proof. The proof consists of straightforward calculations (most of them are done in [5]). \blacksquare

We fix a graded free S-module L of rank n for the rest of the paper. Let $\mathbf{e} = e_1, \ldots, e_n$ be a basis of L with $\deg(e_i) = 1$ for $i \in [n]$, and $\mu \in L^*$ with $\mu(e_i) = x_i$ for $i \in [n]$. For $j = 1, \ldots, n$ let L(j) be the graded free submodule of L generated by e_1, \ldots, e_j . Then $(K(j, M), \partial)$ is the Koszul complex of x_1, \ldots, x_j with values in M where $K(j, M) = \wedge L(j) \otimes_S M$ and ∂ is the restriction of $\partial_{\mu} \otimes_S \operatorname{id}_M$ to $\wedge L(j) \otimes_S M$. We denote by H(j, M) the homology of the complex K(j, M), and the homology class of a cycle $z \in K(j, M)$ will be denoted by [z]. If it is clear from the context, we write K(j) instead of K(j, M) and H(j) instead of H(j, M).

Notice that $K_i(j)_{i+k} = 0$ for k < 0 and that $H_i(n) \cong \text{Tor}_i(K, M)$ are isomorphic as graded K-vector spaces. One has the following exact sequence (see [5]):

$$\cdots \rightarrow H_{i+1}(j) \rightarrow H_i(j-1)(-1) \rightarrow H_i(j-1) \rightarrow H_i(j) \rightarrow \cdots$$

The following observation is crucial for the rest of the paper. For a homogeneous element $z \in K_i(j)$ we can write z uniquely as $z = e_k \wedge i$ $\partial_k(z) + r_z$, and e_k divides none of the monomials of r_z .

LEMMA 1.2. Let $z \in K_i(j)$ be a homogeneous cycle of bidegree (i, l). Then $\partial_k(z)$ is for all $k \in [n]$ a homogeneous cycle of bidegree (i - 1, l - 1).

Proof. The proof follows from 1.1.

In the sequel we need the following:

LEMMA 1.3. Let $p \in \{0, ..., n\}$ and $t \in \mathbb{N}$. Suppose that $H_p(j)_{p+1} = 0$ for l = -1, ..., t - 1. Then

- (i) $H_p(j-1)_{p+l} = 0$ for $l = -1, \dots, t-1$,
- (ii) $H_p(j-1)_{p+t}$ is isomorphic to a submodule of $H_p(j)_{p+t}$,
- (iii) $H_i(j)_{i+1} = 0$ for l = -1, ..., t 1 and i = p, ..., j.

Proof. We prove (i) by induction on $l \in \{-1, \dots, t-1\}$. If l = -1there is nothing to show because $H_p(j-1)_{p+1} = 0$ for l < 0. Now let l > -1 and consider the exact sequence

$$\cdots \to H_p(j-1)_{p+l-1} \to H_p(j-1)_{p+l} \to H_p(j)_{p+l} \to \cdots$$

By the induction hypothesis $H_p(j-1)_{p+l-1} = 0$, and by the assumption $H_p(j)_{p+l} = 0$ we get that $H_p(j-1)_{p+l} = 0$. For l = t the exact sequence of the Koszul homology together with (i)

yields

$$0 \to H_p(j-1)_{p+t} \to H_p(j)_{p+t} \to \cdots,$$

which proves (ii).

We show (iii) by induction on $j \in [n]$. The case j = 1 is trivial, and for i > 1 and i = p the assertion is true by assumption. Now let i > 1, i > pand consider

$$\cdots \to H_i(j-1)_{i+l} \to H_i(j)_{i+l} \to H_{i-1}(j-1)_{i-1+l} \to \cdots$$

By (i) and the induction on j we get that $H_i(j-1)_{i+1} = H_{i-1}(j-1)_{i-1+1}$ = 0. Hence $H_i(j)_{i+1} = 0$.

2. LOWER BOUNDS FOR BETTI NUMBERS OF GRADED S-MODULES

In this section M is always a finitely generated graded S-module which is generated in degrees ≥ 0 . For $0 \neq z \in K_i(j)$ we write

$$z = m_J e_J + \sum_{I \subseteq [n], I \neq J} m_I e_I$$

with coefficients in M, and where e_J is the lexicographic largest monomial of all e_I with $m_I \neq 0$. Recall that for $I, J \subseteq [n], I = \{i_1 < \cdots < i_t\}, J = \{j_1 < \cdots < j_t\} e_I <_{lex} e_J$ if either t < t' or t = t', and there exists a number p with $i_l = j_l$ for l < p and $i_p > j_p$. We call $in(z) = m_J e_J$ the initial term of z. Furthermore, for $I = \{i_1 < \cdots < i_t\} \subseteq [n]$ we write $\partial_I = \partial_{i_1} \circ \cdots \circ \partial_{i_t}$.

LEMMA 2.1. Let $p \in \{0, ..., j\}$, $r \in \{0, ..., p\}$, and $0 \neq z \in K_p(j)$ be homogeneous with $in(z) = m_J e_J$. Then for all $I \subseteq J$ with |I| = r the elements $\partial_I(z)$ are K-linearly independent in $K_{p-r}(j)$. In particular, if z is a cycle, then $\{\partial_I(z): I \subseteq J, |I| = r\}$ is a set of K-linearly independent cycles.

Proof. This follows from the fact that $in(\partial_I(z)) = m_J e_{J-I}$. Induction on $r \in \{0, ..., p\}$ proves that all $\partial_I(z)$ are cycles if z is one.

LEMMA 2.2. Let $p \in [j]$, $t \in \mathbb{N}$, and $z \in K_p(j)_{p+t}$. Assume that $H_{p-1}(j)_{p-1+l} = 0$ for l = -1, ..., t - 1.

(i) If p < j and $\partial_j(z) = \partial(y)$ for some y, then there exists \tilde{z} such that $\tilde{z} = z + \partial(r)$ and $\partial_j(\tilde{z}) = 0$. In particular, $\tilde{z} \in K_p(j-1)$, and if z is a cycle, then $[z] = [\tilde{z}]$.

(ii) If p = j and $\partial_j(z) = \partial(y)$ for some y, then z = 0. In particular, if $z \neq 0$ is a cycle, then we always have $0 \neq [\partial_j(z)] \in H_{p-1}(j)_{p-1+t}$.

Proof. We proceed by induction on $t \in \mathbb{N}$ to prove (i). If t = 0, then $y \in K_p(j)_{p+t-1} = 0$, and so $\partial_j(z) = 0$. Thus we choose $\tilde{z} = z$. Let t > 0 and assume that $\partial_j(z) = \partial(y)$. We see that $\partial_j(y)$ is a cycle

Let t > 0 and assume that $\partial_j(z) = \partial(y)$. We see that $\partial_j(y)$ is a cycle because

$$0 = \partial_j (\partial_j(z)) = \partial_j (\partial(y)) = -\partial (\partial_j(y)).$$

But $\partial_j(y) \in K_{p-1}(j)_{p-1+t-1}$. Since $H_{p-1}(j)_{p-1+t-1} = 0$, it follows that $\partial_j(y) = \partial(y')$ is a boundary for some element y'. By the induction hypothesis we get $\tilde{y} = y + \partial(r')$ such that $\partial_j(\tilde{y}) = 0$. Note that $\partial(\tilde{y}) = \partial(y) = \partial_j(z)$. We define

$$\tilde{z} = z + \partial (e_j \wedge \tilde{y}) = z + x_j \tilde{y} - e_j \wedge \partial_j (z).$$

Then

$$egin{aligned} &\partial_j(\tilde{z}) = \partial_j(z) + x_j \partial_j(\tilde{y}) - \partial_j(e_j) \wedge \partial_j(z) + e_j \wedge \partial_j \circ \partial_j(z) \ &= \partial_j(z) - \partial_j(z) = 0, \end{aligned}$$

and this proves (i).

If p = j, we see that $z = me_{[j]}$ for some $m \in M$, and therefore $\partial_j(z) \neq 0$ if and only if $z \neq 0$.

We prove (ii) by induction on $t \in \mathbb{N}$. For t = 0 there is nothing to show. Let t > 0 and assume $\partial_j(z) = \partial(y)$. By the same argument as in the proof of (i) we get $\partial_j(y) = \partial(y')$ for some y'. The induction hypothesis implies y = 0, and then z = 0.

LEMMA 2.3. Let $p \in \{0, ..., j\}$, $t \in \mathbb{N}$, and $0 \neq z \in K_p(j)_{p+t}$. Assume that $H_p(j)_{p+l} = 0$ for l = -1, ..., t-1 and let $q \in \{0, ..., j\}$. If $z \in K_p(j - q)_{p+t} \subseteq K_p(j)_{p+t}$ and $\partial(y) = z$ in K(j) for some element y, then there exists an element $\tilde{y} \in K_{p+1}(j-q)_{p+1+t-1}$ such that $\partial(\tilde{y}) = z$ in K(j-q).

Proof. We prove the assertion by induction on j for all $q \in \{0, ..., j\}$. For j = 0 and j > 0, q = 0, there is nothing to show. Let $j \ge q > 0$. Write $y = e_j \land \partial_i(y) + r_y$. Since $0 = \partial_i(z)$ and

$$z = \partial(y) = \partial(e_j \wedge \partial_j(y) + r_y) = x_j \partial_j(y) - e_j \wedge \partial(\partial_j(y)) + \partial(r_y),$$

we see that $\partial_j(y)$ is a cycle and therefore a boundary by the assumption that $H_p(j)_{p+t-1} = 0$. By Lemma 2.2 we may assume that $y \in K(j-1)$. By the induction hypothesis we find the desired \tilde{y} in K(j-q) = K(j-1-(q-1)).

LEMMA 2.4. Let $t \in \mathbb{N}$. If $\beta_{n-1,n-1+l}(M) = 0$ for $l = -1, \ldots, t-1$ and $\beta_{n,n+l}(M) \neq 0$, then there exists a basis **e** of *L* and a cycle $z \in K_n(n)_{n+l}$ such that

(i)
$$[z] \in H_n(n)_{n+t}$$
 is not zero,

(ii) $[\partial_i(z)] \in H_{n-1}(n)_{n-1+t}$ are K-linearly independent for i = 1, ..., n.

In particular, $\beta_{n-1,n-1+t}(M) \ge n$.

Proof. Let **e** be an arbitrary basis of *L*. Since $\beta_{n,n+t}(M) \neq 0$ there exists a cycle $z \in K_n(n)_{n+t}$ with $0 \neq [z] \in H_n(n)_{n+t}$. Furthermore, $H_{n-1}(n)_{n-1+l} = 0$ for $l = -1, \ldots, t-1$. In this situation we have $z = me_{[n]}$ for some socle element *m* of *M*, and we want to show that every equation

$$0 = \sum_{i=1}^{n} \mu_i [\partial_i(z)] = \left[\sum_{i=1}^{n} \mu_i \partial_i(z)\right] \quad \text{with } \mu_i \in K$$

implies $\mu_i = 0$ for all $i \in [n]$. Assume there is such an equation where not all μ_i are zero. After a base change we may assume that $\sum_{i=1}^{n} \mu_i \partial_i = \partial_n$. We get

$$0=\big[\partial_n(z)\big],$$

contradicting Lemma 2.2(ii).

THEOREM 2.5. Let $t \in \mathbb{N}$ and $p \in [n]$. If $\beta_{p-1,p-1+l}(M) = 0$ for $l = -1, \ldots, t-1$ and $\beta_{p,p+l}(M) \neq 0$, then there exists a basis **e** of *L* and a cycle $z \in K_p(n)_{p+l}$ such that

(i)
$$[z] \in H_p(n)_{p+t}$$
 is not zero,

(ii)
$$[\partial_i(z)] \in H_{n-1}(n)_{n-1+t}$$
 are K-linearly independent for $i = 1, ..., p$.

In particular, $\beta_{p-1, p-1+t}(M) \ge p$.

Proof. We have $H_p(n)_{p+t} \neq 0$ because $\beta_{p, p+t}(M) \neq 0$. Choose $0 \neq h \in H_p(n)_{p+t}$. We prove by induction on *n* that we can find a basis **e** of L(n) and a cycle $z \in K_p(n)_{p+t}$ representing *h* such that every equation

$$0 = \sum_{i=1}^{p} \mu_i [\partial_i(z)] = \left[\sum_{i=1}^{p} \mu_i \partial_i(z)\right] \quad \text{with } \mu_i \in K$$

implies $\mu_i = 0$ for all *i*. The cases n = 1 and n > 1, p = n were shown in Lemma 2.4.

Let n > 1 and p < n. Assume that there is a basis **e** and such an equation for a cycle z with [z] = h where not all μ_i are zero. After a base change of L(n) we may assume that $\sum_{i=1}^{p} \mu_i \partial_i = \partial_n$. Then $0 = [\partial_n(z)]$, and therefore $\partial_n(z) = \partial(y)$ for some element y. By Lemma 2.2 we can find an element \tilde{y} such that $[\tilde{y}] = [z]$ and $\tilde{y} \in K_p(n-1)_{p+i}$. Now Lemma 1.3 guarantees that we can apply our induction hypothesis to \tilde{y} , and we find a base change $\mathbf{l} = l_1, \ldots, l_{n-1}$ of e_1, \ldots, e_{n-1} , $[\tilde{z}] = [\tilde{y}]$ in $H_p(n-1)_{p+i}$ (with respect to the new basis) such that $[\partial_i(\tilde{z})] \in H_{p-1}(n-1)_{p-1+i}$ are *K*-linearly independent for $i = 1, \ldots, p$. By Lemma 1.3 we have $H_i(n-1)_{i+i} \subseteq H_i(n)_{i+i}$ for i = p - 1, p. Then \tilde{z} is the desired cycle because $[\tilde{z}] = [z]$ in $H_p(n)_{p+i}$.

The Castelnuovo–Mumford regularity for a finitely generated graded *S*-module $0 \neq M$ is defined as $\operatorname{reg}(M) = \max\{j \in \mathbb{Z} : \beta_{i,i+j}(M) \neq 0 \text{ for some } i \in \mathbb{N}\}$. For $k \in \{0, \ldots, n\}$ we define $d_k(M) = \min(\{j \in \mathbb{Z} : \beta_{k,k+j}(M) \neq 0\} \cup \{\operatorname{reg}(M)\})$. We are interested in the numbers $\beta_i^{k, \lim}(M) = \beta_{i,i+d_k(M)}(M)$ for $i \geq k$. Note that $\beta_i^{0, \lim}(M) = \beta_i^{\lim}(M)$. If $0 \neq \Omega_k(M)$ is the *k*th syzygy module in the minimal graded free resolution of *M* (see [7] for details), then we always have $\beta_{i,i+j}(M) = \beta_{i-k,i-k+j+k}(\Omega_k(M))$ for $i \geq k$. Therefore $\beta_i^{k, \lim}(M) = \beta_{i-k}^{\lim}(\Omega_k(M))$ for these *i*. Observe that $d_0(\Omega_k(M)) = d_k(M) + k$.

COROLLARY 2.6. Let $k \in \{0, ..., n\}$. If $\beta_p^{k, \text{lin}}(M) \neq 0$ for some p > k, then

$$\beta_{p-1}^{k,\ln}(M) \ge p.$$

For the numbers $\beta_i^{\text{lin}}(M)$ and $\beta_i^{1,\text{lin}}(M)$ we get more precise results. The next result was first discovered in [13].

THEOREM 2.7. Let $p \in \{0, \ldots, n\}$. If $\beta_p^{\text{lin}}(M) \neq 0$, then

$$\beta_i^{\mathrm{lin}}(M) \ge \begin{pmatrix} p\\ i \end{pmatrix}$$

for i = 0, ..., p.

Proof. The proof follows from Lemma 2.1 and the fact that there are no non-trivial boundaries in $K_i(n)_{i+d_0(M)}$.

To prove lower bounds for $\beta_i^{1, \text{lin}}$ we use slightly different methods. Let $S = K[x_1, \ldots, x_n]$. We fix a basis **e** of *L* such that $\partial(e_i) = x_i$ for all $i \in [n]$ for the rest of this paper. For $a \in \mathbb{N}^n$ we write $x^a = x_1^{a_1} \cdots x_n^{a_n}$ and call it a monomial in *S*. Let *F* be a graded free *S*-module with free homogeneous basis g_1, \ldots, g_t . Then we call $x^a g_i$ a monomial in *F* for $a \in \mathbb{N}^n$ and $i \in [t]$. Let > be an arbitrary degree refining term order on *F* with $x_1g_i > \cdots > x_ng_i > g_i$ (see [7] for details). For a homogeneous element $f \in F$ we set in_>(*f*) for the maximal monomial in a presentation of *f*. Note that we also defined in (*z*) for some bihomogeneous $z \in K(n)$.

LEMMA 2.8. Let $M \subset F$ be a finitely generated graded S-module and let $0 \neq z$ be a homogeneous cycle of $K_1(n, M)$ with $z = \sum_{j \geq i} m_j e_j$, $in(z) = m_i e_i$. Then there exists an integer j > i with $0 \neq in_>(m_j) > in_>(m_i)$. In particular, m_i and m_j are K-linearly independent.

Proof. We have

$$0 = \partial(z) = m_i x_i + \sum_{j>i} m_j x_j.$$

Hence there exists an integer j > i and a monomial a_j of m_j with $in_j(m_i)x_i = a_jx_j$ because all monomials have to cancel. Assume that

$$\operatorname{in}_{>}(m_i) \geq \operatorname{in}_{>}(m_i).$$

Then

$$\operatorname{in}_{>}(m_i)x_i > \operatorname{in}_{>}(m_i)x_j \ge \operatorname{in}_{>}(m_j)x_j \ge a_jx_j$$

is a contradiction. Therefore

$$\operatorname{in}_{>}(m_i) < \operatorname{in}_{>}(m_i).$$

LEMMA 2.9. Let $M \subset F$ be a finitely generated graded S-module, $p \in \{0, \ldots, n\}$, and let $0 \neq z$ be a homogeneous cycle of $K_p(n, M)$ with $z = \sum_{J, |J|=p} m_J e_J$, $in(z) = m_I e_I$. Assume that $I = \{1, \ldots, p\}$. Then there exist distinct numbers $j_1, \ldots, j_p \in [n]$ such that $j_k > p - k + 1$ for $k = 1, \ldots, p$ and

$$\operatorname{in}_{>}(m_{J_{n}}) > \operatorname{in}_{>}(m_{J_{n-1}}) > \cdots > \operatorname{in}_{>}(m_{J_{0}}),$$

where $J_0 = I$ and $J_k = \{1, ..., p - k, j_1, ..., j_k\}$ for k = 1, ..., p.

Proof. We construct the numbers j_k and the sets J_k with the desired properties by induction on $k \in \{0, ..., p\}$. For k = 0 we set $J_0 = I$. Let $0 < k \le p$. Assume that J_{k-1} is constructed. Then we apply Lemma 2.8 to

$$\partial_{\{1,\ldots,p-k,j_1,\ldots,j_{k-1}\}}(z)$$
 where $in(\partial_{\{1,\ldots,p-k,j_1,\ldots,j_{k-1}\}}(z)) = m_{J_{k-1}}e_{p-k+1}$

and find $j_k > p - k + 1$ such that $in_{>}(m_{\{1,\ldots,p-k,j_1,\ldots,j_{k-1}\} \cup \{j_k\}}) > in_{>}(m_{J_{k-1}})$. We see that $j_k \neq j_i$ for $i = 1, \ldots, k - 1$ because these e_{j_i} do not appear with non-zero coefficients in $\partial_{\{1,\ldots,p-k,j_1,\ldots,j_{k-1}\}}(z)$. This concludes the proof.

COROLLARY 2.10. Let $M \subset F$ be a finitely generated graded S-module, $p \in \{0, ..., n\}$, and let $0 \neq z$ be a homogeneous cycle of $K_p(n, M)$ with $z = \sum_{J, |J|=p} m_J e_J$. Then there exist p + 1 coefficients m_J of z, which are *K*-linearly independent.

Proof. The proof follows from Lemma 2.9 because the coefficients there have different leading terms.

THEOREM 2.11. Let $p \ge 1$ and let M be a finitely generated graded S-module with $\beta_p^{1, \text{lin}}(M) \ne 0$. Then

$$\beta_i^{1, \operatorname{lin}}(M) \ge \begin{pmatrix} p \\ i \end{pmatrix}$$

for i = 1, ..., p.

Proof. Let

$$0 \to M' \to F \to M \to 0$$

be a presentation of M such that F is free and $M' = \Omega_1(M)$. We show that

$$\beta_i^{\text{lin}}(M') \ge \begin{pmatrix} p'+1\\ i+1 \end{pmatrix} \quad \text{for } p'=p-1.$$

Since $\beta_i^{1, \text{lin}}(M) = \beta_{i-1}^{\text{lin}}(M')$, this will prove the theorem.

After a suitable shift of the grading of M we may assume that $d_0(M') = 0$. Note that M' is a submodule of a free module. Since $\beta_{p'}^{\lim}(M') \neq 0$, we get a homogeneous cycle $0 \neq z = \sum_{J_i|J|=p'} m_J e_J$ in $K_{p'}(n, M')_{p'}$. There are no boundaries except for zero in $K_i(n, M')_i$, and therefore we only have to construct enough K-linearly independent cycles in $K_i(n, M')_i$ to prove the assertion. Assume that $\ln(z) = m_I e_I$ where $I = \{i_1, \ldots, i_{p'}\}$. We make a base change of the basis e_1, \ldots, e_n that maps e_{i_j} to e_j for $j = 1, \ldots, p'$. Then $\ln(z) = m_{[p']} e_{[p']}$ with respect to the new basis. By Lemma 2.9 we obtain numbers $j_1, \ldots, j_{p'}$ and the induced sets $J_0, \ldots, J_{p'}$ for z such that $j_k > p - k + 1$ for $k = 1, \ldots, p$ and $\ln_{>}(m_{J_{p'}}) > \ln_{>}(m_{J_{p'}}) > \cdots > \ln_{>}(m_{J_0})$.

Let $t \in \{0, ..., p\}$ and set i = p' - t. Consider the (by Lemma 2.1) cycles $\partial_G(z)$ with $G \in W = W_0 \cup \cdots \cup W_t$ where

$$W_k = \{ I \cup \{ j_1, \dots, j_k \} : I \subseteq [p' - k], |I| = t - k \} \quad \text{for } k \in \{ 0, \dots, t \}.$$

We have

$$|W_k| = \binom{p'-k}{t-k},$$

and therefore

$$|W| = \sum_{k=0}^{t} {p'-k \choose t-k} = {p'+1 \choose t} = {p'+1 \choose p'-t+1} = {p'+1 \choose i+1}.$$

If we show that the cycles $\partial_G(z)$ are *K*-linearly independent, the assertion follows.

Take $G \in W$, $G = I_G \cup \{j_1, \dots, j_{k_G}\}$ for some $I_G \subseteq [p' - k_G]$, $|I_G| = t - k_G$. Since $z = \sum_{J, |J| = p'} m_J e_j$ we get

$$\partial_G(z) = \sum_{J, |J|=p'} m_J e_{J-G} = \sum_{I_G \cup \{j_1, \ldots, j_{k_G}\} \subseteq J, |J|=p'} m_J e_{J-I_G - \{j_1, \ldots, j_{k_G}\}}.$$

Thus

$$\operatorname{in}(\partial_G(z)) = m_{\{1,\ldots,p'-k_G\} \cup \{j_1,\ldots,j_{k_G}\}} e_{\{1,\ldots,p'-k_G\} - I_G}.$$

It is enough to show that the initial terms of the cycles are K-linearly independent.

If cycles have different initial monomials in the e_i , there is nothing to show. Take G, G' and assume that the corresponding cycles have the same initial monomial in the e_i . We have to consider two cases. If $k_G = k_{G'}$,

then $I_G = I_{G'}$ and the cycles are the same. For $k_G < k_{G'}$ Lemma 2.9 implies

 $\inf(m_{\{1,\ldots,p'-k_G\}\cup\{j_1,\ldots,j_{k_G}\}}) < \inf(m_{\{1,\ldots,p'-k_G\}\cup\{j_1,\ldots,j_{k_G}\}}),$

which proves the *K*-linear independence.

The next corollary summarizes our results related to the conjecture of Herzog.

COROLLARY 2.12. Let M be a finitely generated graded S-module and let $p \in \{0, ..., n\}$. Suppose that $\beta_p^{\text{lin}}(M) \neq 0$ and M is the kth syzygy module in a minimal graded free resolution. Then

(i) If k = 0, then $\beta_i^{\text{lin}}(M) \ge {\binom{p}{i}}$ for i = 0, ..., p.

(ii) If
$$k = 1$$
, then $\beta_i^{\text{lin}}(M) \ge \binom{p+1}{i+1}$ for $i = 0, \dots, p$.

(iii) If k > 1 and p > 0, then $\beta_{p-1}^{\ln}(M) \ge p + k$.

Proof. Statement (i) was shown in Theorem 2.7. In the proof of Theorem 2.11 we proved (ii) in fact. Finally, (iii) follows from Corollary 2.6 since $\beta_i^{\text{lin}}(M) = \beta_{i+k}^{k,\text{lin}}(N)$ if M is the *k*th syzygy module in the minimal graded free resolution of some module N.

Recall that a finitely generated graded S-module M satisfies Serre's condition \mathcal{S}_k if

$$depth(M_P) \ge min(k, \dim S_P)$$

for all $P \in \text{Spec}(S)$. We recall the Auslander–Bridger theorem [2]:

LEMMA 2.13. Let M be a finitely generated graded S-module. Then M is a kth syzygy module in a graded free resolution if and only if M satisifies \mathcal{S}_k .

Proof. The proof is essentially the same as in [11], where the local case is treated. \blacksquare

COROLLARY 2.14. Let *M* be a finitely generated graded *S*-module and $p \in \{0, ..., n\}$. Suppose that *M* satisfies \mathscr{S}_k and $\beta_p^{\text{lin}}(M) \neq 0$. Then

(i) If k = 0, then $\beta_i^{\text{lin}}(M) \ge {\binom{p}{i}}$ for i = 0, ..., p.

(ii) If k = 1, then $\beta_i^{\lim}(M) \ge \binom{p+1}{i+1}$ for i = 0, ..., p.

(iii) If k > 1 and p > 0, then $\beta_{p-1}^{\ln}(M) \ge p + k$.

Proof. According to Lemma 2.13 the module M satisfies \mathscr{S}_k if and only if M is a kth syzygy module in a graded free resolution $G_{\bullet} \to N \to 0$ of some graded S-module N. It is well known (see, for example, [3]) that $G_{\bullet} = F_{\bullet} \oplus H_{\bullet}$ as graded complexes where F_{\bullet} is the minimal graded free

resolution of N and H_{\bullet} is split exact. Then M splits as a graded module into $\Omega_k(N) \oplus W$, where W is a graded free S-module. If p = 0, there is nothing to show. For p > 0 it follows that $\beta_p^{\text{lin}}(\Omega_k(N)) \neq 0$. Then Corollary 2.12 applied to $\Omega_k(N)$ proves the corollary, since $\beta_{i,j}(M) \ge \beta_{i,j}(\Omega_k(N))$ for all integers i, j.

3. PROOF OF THE CONJECTURE IN THE CASE OF \mathbb{Z}^{N} -GRADED MODULES

S is \mathbb{Z}^n -graded with deg $(x_i) = \varepsilon_i = (0, ..., 1, ..., 0)$, where the 1 is at the *i*th position. Let $M = \bigoplus_{a \in \mathbb{Z}^n} M_a$ be a finitely generated \mathbb{Z}^n -graded *S*-module. Recall that every \mathbb{Z}^n -graded *S*-module *M* is naturally \mathbb{Z} -graded by setting $M_i = \bigoplus_{a \in \mathbb{Z}^n, |a|=i} M_a$. Therefore all methods from the last section can be applied in the following. Furthermore, the Koszul complex and homology are \mathbb{Z}^n -graded if we assign the degree ε_i to e_i . For example, if $m \in M_a$ for some $a \in \mathbb{Z}^n$, then deg (me_I) is $a + \sum_{i \in I} \varepsilon_i$; or if $z \in K_i(j)$ is homogeneous of degree a, then deg $(\partial_I(z)) = a - \sum_{i \in I} \varepsilon_i$.

We want to prove a more precise result than in the last section for this more restricted situation. Note that Lemmas 2.2 and 2.3 hold in the \mathbb{Z}^n -graded setting. The proofs are verbatim the same if we replace "graded" with " \mathbb{Z}^n -graded." We prove now a modified version of Theorem 2.5. Usually we assume that $M = \bigoplus_{a \in \mathbb{N}^n} M_a$.

LEMMA 3.1. Let $p \in [j]$ and $t \in \mathbb{N}$. Suppose that $H_i(j)_{i+1} = 0$ for $i = p - 1, \ldots, j, l = -1, \ldots, t - 1$ and let $z \in K_p(j)_{p+t}$ be a \mathbb{Z}^n -homogeneous cycle with $0 \neq [z] \in H_p(j)_{p+j}$. Then there exists a \mathbb{Z}^n -homogeneous cycle \tilde{z} with

(i) $[\tilde{z}] = [z] \in H_p(j)_{p+t}$,

(ii) the elements $[\partial_{j_i}(\tilde{z})] \in H_{p-1}(j)_{p-1+t}$ are K-linearly independent for some distinct $j_1, \ldots, j_p \in [j]$.

Proof. We prove by induction on $j \in [n]$ that we find $[\tilde{z}] = [z]$ and a set $\{j_1, \ldots, j_p\}$ such that the cycles $[\partial_{j_i}(\tilde{z})]$ are *K*-linearly independent for $i = 1, \ldots, p$.

The cases j = 1 and j > 1, p = j, follow from Lemma 2.2(ii) because if $\deg(z) = a \in \mathbb{N}^n$, then all $\partial_k(z)$ have different degrees $a - \varepsilon_k$, and it suffices to show that these elements are not boundaries.

Let j > 1 and assume that p < j. Again it suffices to show that the cycles $\partial_{j_i}(z)$ are not boundaries for a suitable subset $\{j_1, \ldots, j_p\} \subseteq [j]$. If such a set exists, then there is nothing to prove. Otherwise there exists a $k \in [j]$ with $[\partial_k(z)] = 0$, and we may assume k = j. By Lemma 2.2 we find \tilde{z} such that $[\tilde{z}] = [z]$ in H(j) and $\tilde{z} \in K(j-1)$. By Lemma 1.3 we can

apply our induction hypothesis and assume that \tilde{z} has the desired properties in H(j-1). Again by Lemma 1.3 we have $H_{p-1}(j-1)_{p-1+t} \subseteq H_{p-1}(j)_{p-1+t}$, and \tilde{z} is the desired element.

We need the following simple combinatorial result. Let $p \in [n]$. Define inductively a sequence of subsets $W_t \subseteq 2^{[n]}$ for t = 0, ..., p. Set $W_0 = \{\emptyset\}$. If W_{t-1} is defined, then for every set $w \in W_{t-1}$ we choose p - t + 1different elements $j_1^w, ..., j_{p-t+1}^w$ such that $j_l^w \notin w$. Define

$$W_t = \{ w \cup \{ j_l^w \} : w \in W_{t-1} \text{ and } l = 1, \dots, p - t + 1 \}.$$

LEMMA 3.2. Let W_t be defined as above. Then for t = 0, ..., p we have that

$$|W_t| \ge \binom{p}{t}.$$

Proof. We prove this by induction on $p \in [n]$. The case p = 0 is trivial, so let p > 0, and without loss of generality we may assume that $W_1 = \{\{1\}, \ldots, \{p\}\}$. The set W_t is the disjoint union of the sets $W_t^1 = \{w \in W_t : 1 \in w\}$ and $W_t^1 = \{w \in W_t : 1 \notin w\}$. The induction hypothesis applied to W_t^1 and W_t^1 implies

$$|W_t| = |W_t^1| + |W_t^1| \ge {p-1 \choose t-1} + {p-1 \choose t} = {p \choose t}.$$

We prove the main theorem of this section.

THEOREM 3.3. Let $k \in [n]$ and let M be a finitely generated \mathbb{Z}^n -graded S-module. If $\beta_p^{k, \text{lin}}(M) \neq 0$ for some $p \geq k$, then

$$\beta_i^{k, \operatorname{lin}}(M) \ge \begin{pmatrix} p \\ i \end{pmatrix}$$

for i = k, ..., p.

Proof. Without loss of generality $M = \bigoplus_{a \in \mathbb{N}^n} M_a$. Since $\beta_p^{k, \lim}(M) \neq 0$, there exists a \mathbb{Z}^n -homogeneous cycle $z \in K_p(n)_{p+d_k(M)}$ such that $0 \neq [z]$ in $H_p(n)_{p+d_k(M)}$ and $\deg(z) = a$ for some $a \in \mathbb{N}^n$. By the definition of $d_k(M)$ and Lemma 1.3 we have $H_i(n)_{i+1} = 0$ for $i \geq k$ and $l = -1, \ldots, d_k(M) - 1$.

We construct inductively W_t as above, as well as cycles z_w for each $w \in W_t$ such that $[z_w] \neq 0$, $\deg(z_w) = a - \sum_{j \in w} \varepsilon_j$, $0 \neq [\partial_{j_i^w}(z_w)]$ for $l = 1, \ldots, p - t$ and suitable $j_i^w \notin w$. Furthermore, z_w is an element of the Koszul complex with respect to the variables x_j with $j \notin w$. For $i \geq k$ we

Let $W_0 = \{\overline{\emptyset}\}$. By Lemma 3.1 we can choose z in such a way that $[z_{j_l}] = [\partial_{j_l}(z)] \neq 0$ for l = 1, ..., p and some $j_l \in [n]$. Choose $z_{\emptyset} = z$ and $j_l^{\emptyset} = j_l$.

If W_{t-1} and z_w for $w \in W_{t-1}$ are constructed, then define W_t with W_{t-1} and the given j_l^w for $w \in W_{t-1}$. For $w' \in W_t$ with $w' = w \cup \{j_l^w\}$, rechoose $z_{w'} = \partial_{j_l^w}(z_w)$ by Lemma 3.1 in such a way that $[\partial_{j_{l'}}(z_{w'})] \neq 0$ for $l' = 1, \ldots, p - t$ and some $j_{l'}^{w'} \in [n]$.

Note that since z_w has no monomial which is divisible by some e_j for $j \in w$, we can use Lemmas 2.2 and 2.3 to avoid these e_j in the construction of $z_{w'}$ again. By Lemma 1.3 the cycles $\partial_{j_i^{w'}}(z_{w'})$ are also not zero in H(n). Clearly $j_{i'}^{w'} \notin w'$, and the assertion follows.

In the \mathbb{Z}^n -graded setting we prove the desired results about β_i^{lin} in full generality.

COROLLARY 3.4. Let M be a finitely generated \mathbb{Z}^n -graded S-module, where M is the kth syzygy module in a minimal \mathbb{Z}^n -graded free resolution. If $\beta_p^{\text{lin}}(M) \neq 0$ for some $p \in \mathbb{N}$, then

$$\beta_i^{\mathrm{lin}}(M) \ge \begin{pmatrix} p+k\\ i+k \end{pmatrix}$$

for i = 0, ..., p.

Proof. This follows from Theorem 3.3 and the fact that

$$\beta_i^{\mathrm{lin}}(M) = \beta_{i+k}^{k,\mathrm{lin}}(N) \ge {p+k \choose i+k},$$

where M is the kth syzygy module of a \mathbb{Z}^n -graded S-module N.

As an analogue to Lemma 2.13 we get

LEMMA 3.5. Let M be a finitely generated \mathbb{Z}^n -graded S-module. Then M satisfies \mathcal{S}_k if and only if M is a kth syzygy module in a \mathbb{Z}^n -graded free resolution.

COROLLARY 3.6. Let M be a finitely generated \mathbb{Z}^n -graded S-module satisfying \mathscr{S}_k . If $\beta_p^{\text{lin}}(M) \neq 0$ for some $p \in \mathbb{N}$, then

$$\beta_i^{\mathrm{lin}}(M) \ge \begin{pmatrix} p+k\\ i+k \end{pmatrix}$$

for i = 0, ..., p.

Proof. The assertion follows from Corollary 3.4 with arguments similar to those for the graded case.

4. BOUNDS FOR BETTI NUMBERS OF IDEALS WITH A FIXED NUMBER OF GENERATORS IN GIVEN DEGREE AND A LINEAR RESOLUTION

In this section we are interested in bounds for the graded Betti numbers of graded ideals of S. We assume that the field K is infinite and fix a basis $\mathbf{x} = x_1, \ldots, x_n$ of S_1 . For a monomial x^a of S with |a| = d we denote by $R(x^a) = \{x^b : |b| = d, x^b \ge_{\text{rlex}} x^a\}$ the revlex-segment of x^a , where $>_{\text{rlex}}$ is defined as follows: $x^a >_{\text{rlex}} x^b$ if either |a| > |b| or |a| = |b| and there exists an integer r such that $a_r < b_r$ and $a_s = b_s$ for s > r. Note that for a given $d \in \mathbb{N}$ and $0 \le k \le \binom{n+d-1}{d}$ there exists a unique ideal I(d, k)which is generated in degree d by a revlex-segment $R(x^a)$ for some monomial x^a with $|R(x^a)| = k$.

Following Eliahou and Kervaire [10] for a given monomial x^a , let $m(x^a)$ be the maximal *i* such that x_i divides x^a . An ideal is a monomial ideal if it is generated by monomials. We call a monomial ideal *I* stable if for all monomials $x^a \in I$ we have $x_i x^a / x_{m(x^a)} \in I$ for $i < m(x^a)$. Is it easy to see that it is enough to prove this condition for the generators of the ideal *I*. For example, I(d, k) is stable.

For stable ideals there exist explicit formulas for the Betti numbers (see [10]). Let $I \subset S$ be a stable ideal and let G(I) be the set of minimal generators of I. Then

$$eta_{i,i+j}(I) = \sum\limits_{x^a \in G(I), |a|=j} igg(rac{m(x^a)-1}{i} igg) \quad (*).$$

If a stable ideal I is generated in one degree d, then I has a linear resolution.

PROPOSITION 4.1. Let $I \subset S$ be a stable ideal generated in degree $d \in \mathbb{N}$ with $\beta_{0, d}(I) = k$. Then

$$\beta_{i,i+j}(I) \ge \beta_{i,i+j}(I(d,k))$$

for all $i, j \in \mathbb{N}$.

Proof. Fix $d \in \mathbb{N}$ and $0 \le k \le \binom{n+d-1}{d}$. Let l(I) be the number of monomials in I_d which are not monomials in $I(d,k)_d$. We prove the statement by induction on l(I). If l(I) = 0, then I = I(d,k) and there is nothing to show.

Assume that l(I) > 0. Let x^a be the smallest monomial in I_d with respect to $>_{\text{rlex}}$ which is not in $I(d, k)_d$, and let x^b be the largest monomial which is in $I(d, k)_d$ but not in I_d . Define the ideal \tilde{I} by $G(\tilde{I}) = (G(I) \setminus \{x^a\}) \cup \{x^b\}$. Then $l(\tilde{I}) = l(I) - 1$, and \tilde{I} is also stable. Thus, by the induction hypothesis,

$$\beta_{i,i+j}(\tilde{I}) \geq \beta_{i,i+j}(I(d,k)).$$

Since $x^b >_{\text{rlex}} x^a$, the revlex order implies $m(x^b) \le m(x^a)$. Therefore (*) yields

$$\beta_{i,i+j}(I) \geq \beta_{i,i+j}(I),$$

which proves the assertion.

For a graded ideal I, the initial ideal in(I) is generated by all in(f) for $f \in I$ with respect to some monomial order.

Every element g of the general linear group GL(n) induces a linear automorphism of S by

$$g(x_j) = \sum_{i=1}^{n} g_{i,j} x_i$$
 for $g = (g_{i,j})$.

There is a non-empty open set $U \subset GL(n)$ and a unique monomial ideal J with J = in(g(I)) for every $g \in U$ with respect to the review order (for details see [7]). We call J the generic initial ideal of I and denote it by Gin(I). A nice property is that Gin(I) is Borel-fixed, i.e., Gin(I) = b Gin(I) for all $b \in B$, where B is the Borel subgroup of GL(n) which is generated by all upper triangular matrices.

PROPOSITION 4.2. Let $d \in \mathbb{N}$ and let $I \subset S$ be a graded ideal with d-linear resolution. Then Gin(I) is stable, independent of the characteristic of K, and $\beta_{i,i+i}(I) = \beta_{i,i+i}(Gin(I))$ for all $i, j \in \mathbb{N}$.

Proof. It is well known that reg(Gin(I)) = reg(I). Therefore reg(Gin(I)) = d and Gin(I) also has a d-linear resolution. Reference [9, Proposition 10] implies that a Borel-fixed monomial ideal, which is generated in degree d, has regularity d if and only if it is stable. Thus we get that Gin(I) is a stable ideal, independent of the characteristic of K.

Since *I* has a linear resolution, we obtain by the main result in [1] that $\beta_{i,i+j}(I) = \beta_{i,i+j}(Gin(I))$ for all $i, j \in \mathbb{N}$.

THEOREM 4.3. Let $d \in \mathbb{N}$, let $0 \le k \le \binom{n+d-1}{d}$, and let $I \subset S$ be a graded ideal with d-linear resolution and k generators. Then

$$\beta_{i,i+j}(I) \ge \beta_{i,i+j}(I(d,k))$$

for all $i, j \in \mathbb{N}$.

Proof. This follows from Propositions 4.1 and 4.2.

Consider the lexicographic order $>_{lex}$. Recall that for monomials x^a , $x^b \in S$ we have $x^a >_{lex} x^b$ if either |a| > |b| or |a| = |b| and there exists an integer r such that $a_r > b_r$ and $a_s = b_s$ for s < r. Then $L(x^a) = \{x^b : |b| = d, x^b \ge_{lex} x^a\}$ is the lex-segment of x^a . For a given $d \in \mathbb{N}$ and $0 \le k \le (n + \frac{d}{d} - 1)$ there exists a unique ideal J(d, k) which is generated in degree d by a lex-segment $L(x^a)$ for some monomial x^a with $|L(x^a)| = k$. It is easy to see that J(d, k) is a lex-ideal; i.e., if $x^b >_{lex} x^c$ and $x^c \in J(d, k)$, then $x^b \in J(d, k)$. In particular, J(d, k) is stable.

PROPOSITION 4.4. Let $d \in \mathbb{N}$, let $0 \le k \le \binom{n+d-1}{d}$, and let $I \subset S$ be a graded ideal with d-linear resolution and k generators. Then

$$\beta_{i,i+j}(I) \le \beta_{i,i+j}(J(d,k))$$

for all $i, j \in \mathbb{N}$.

Proof. By [15, Theorem 31] we find a lex-ideal L with the same Hilbert function as I and $\beta_{i,i+j}(I) \leq \beta_{i,i+j}(L)$ for all $i, j \in \mathbb{N}$. We see that $\beta_{0,d}(L) = \beta_{0,d}(I) = k$ because these ideals share the same Hilbert function. It follows that $J(d, k) = (L_d)$, and, in particular, $G(J(d, k)) = G(L)_d$. Therefore

$$\beta_{i,i+d}(I) \le \beta_{i,i+d}(L) = \beta_{i,i+d}(J(d,k))$$

for all $i, j \in \mathbb{N}$, where the last equality follows from (*).

Fix $d \in \mathbb{N}$ and $0 \le k \le \binom{n+d-1}{d}$. Let $\mathscr{B}(d,k)$ be the set of Betti sequences $\{\beta_{i,j}(I)\}$ where *I* is a graded ideal with *d*-linear resolution and $\beta_{0,d}(I) = k$. On $\mathscr{B}(d,k)$ we consider a partial order: We set $\{\beta_{i,j}(I)\} \ge \{\beta_{i,j}(J)\}$ if $\beta_{i,j}(I) \ge \beta_{i,j}(J)$ for all $i, j \in \mathbb{N}$.

COROLLARY 4.5. Let $d \in \mathbb{N}$ and let $0 \le k \le \binom{n+d-1}{d}$. Then $\{\beta_{i,j}(I(d,k))\}$ is the unique minimal element and $\{\beta_{i,j}(J(d,k))\}$ is the unique maximal element of $\mathscr{B}(d,k)$.

REFERENCES

- A. Aramova, J. Herzog, and T. Hibi, Ideals with stable Betti numbers, Adv. Math. 152, No. 1 (2000), 72–77.
- 2. M. Auslander and M. Bridger, Stable module theory, *Mem. Amer. Math. Soc.* No. 94 (1969).
- L. L. Avramov, Infinite free resolutions, in "Six Lectures on Commutative Algebra," pp. 1–118, Progress in Mathematics, Vol. 166, Birkhäuser, Basel, 1998.

- 4. A. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, *Comm. Algebra* 21, No. 7 (1993), 2317–2334.
- 5. W. Bruns and J. Herzog, "Cohen-Macaulay Rings," rev. ed., Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge Univ. Press, Cambridge, UK, 1998.
- H. Charalambous and E. Evans, Resolutions with a given Hilbert function, *Contemp. Math.* 159 (1994), 19–26.
- 7. D. Eisenbud, "Commutative Algebra with a View Toward Algebraic Geometry," Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.
- 8. D. Eisenbud and J. Koh, Some linear syzygy conjectures, *Adv. Math.* **90**, No. 1 (1991), 47–76.
- 9. D. Eisenbud, A. Reeves, and B. Totaro, Initial ideals, Veronese subrings, and rates of algebras, *Adv. Math.* **109**, No. 2 (1994), 168–187.
- S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129, No. 1 (1990), 1–25.
- E. G. Evans and P. Griffith, "Syzygies," London Mathematical Society, Lecture Note Series, Vol. 106, Cambridge Univ. Press, Cambridge/New York, 1985.
- M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19, No. 1 (1984), 125–171.
- 13. J. Herzog, The linear strand of a graded free resolution, unpublished notes, 1998.
- H. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra 21, No. 7 (1993), 2335–2350.
- K. Pardue, Deformation classes of graded modules and maximal Betti numbers, *Illinois J.* Math. 40, No. 4 (1996), 564–585.
- V. Reiner and V. Welker, Linear syzygies of Stanley-Reisner ideals, *Math. Scand.* 89, No. 1 (2001), 117–132.