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In this paper we prove parts of a conjecture of Herzog giving lower bounds on
the rank of the free modules appearing in the linear strand of a graded kth syzygy
module over the polynomial ring. If in addition the module is Z"-graded we show
that the conjecture holds in full generality. Furthermore, we give lower and upper
bounds for the graded Betti numbers of graded ideals with a linear resolution and
a fixed number of generators.  © 2002 Elsevier Science (USA)

INTRODUCTION

Let S = K[x,,...,x,] be the polynomial ring over a field K equipped
with the standard grading by setting deg(x;) = 1, and let M be a finitely
generated graded S-module. We denote by B;,.; (M) =
dim Tor,(M, K),; the graded Betti numbers of M.

Assume that the initial degree of M is d; i.e., we have M; = 0 for i < d
and M, # 0. We are interested in the numbers B/"(M) = B, ;, ,(M) for
i > 0. These numbers determine the rank of the free modules appearing in
the linear strand of the minimal graded free resolution of M. Let p =
max{i : B"(M) # 0} be the length of the linear strand. In [13] Herzog
conjectured the following:

Conjecture. Let M be a kth syzygy module whose linear strand has
length p. Then

p+k

lin M

fori=0,...,p.
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This conjecture is motivated by a result of Green [12] (see also Eisenbud
and Koh [8]) that contains the case i = 0, kK = 1. For k = 0 these lower
bounds were shown by Herzog [13], and Reiner and Welker [16] proved
them for k = 1 for the case where M is a monomial ideal.

In this paper we prove the conjecture for k = 1. For k > 1 we get the
weaker result:

If By"(M) # 0 for p > 0 and M is a kth syzygy module, then B)" (M)
>p+k.

We also show that the conjecture holds in full generality for finitely
generated Z"-graded S-modules. The first three sections of this paper are
concerned with the question above.

In recent years many authors (see, for example, [4, 14, 15]) were
interested in the following problem: Fix a possible Hilbert function H for
a graded ideal. Let %(H) be the set of Betti sequences {3; j(I )}, where
I c S is a graded ideal with Hilbert function H. On %(H) we consider a
partial order: We set { B, ()} > {B, ()} if B, ;(I) = B, (J) forall i, j €
N. It is known that %(H) has a unique maximal element given by the
Betti sequence of the lex-segment ideal in the family of considered ideals.
In general there is more than one minimal element (see [6]).

In Section 4 we study a related problem. We fix an integer d > 0 and
0<k<(ntd-1). Let B(d, k) be the set of Betti sequences {Bi,j(l)}?
where I C S is a graded ideal with d-linear resolution and B, ,(I) = k.
We show that, independent of the characteristic of the base field, there is
a unique minimal and a unique maximal element in Z(d, k).

The author is grateful to Prof. Herzog for inspiring discussions on the
subject of the paper.

1. PRELIMINARIES ON KOSZUL COMPLEXES

Let K be a field, let V' be an n-dimensional K-vector space with basis
X =Xy,...,X,,and let § = K[V]be the symmetric algebra over V" equipped
with the standard grading by setting deg(x;) = 1. Furthermore, let m =
(x4,...,x,) be the graded maximal ideal of S and let 0 # M be a finitely
generated graded S-module which is generated in nonnegative degrees, i.e.
M;=0fori<0.

Consider a graded free S-module L of rank j which is generated in
degree 1 and let A L be the exterior algebra over L. Then A L inherits
the structure of a bigraded S-module. If z € A'L and z has S-degree k,
then we give z the bidegree (i, k). We call i the homological degree (hdeg
for short) and k the internal degree (deg for short) of z.



22 TIM ROMER

We consider maps w € L* = Homg(L, S). Note that L* is again a
graded free S-module generated in degree —1. It is well known (see [5])
that u defines a graded S-homomorphism d,: A L — A L of (homologi-
cal) degree —1.

Recall that if we fix a basis ey,..., e; of L, then A'L is the graded free
S-module with basis consisting of all monomials e, =e; A - Ae; with

={j, < - <j}cljl=11,...,j}. One has

i
(k,J) A
due, A ne )= L (=D (e e, A Aey,

where for F,G c [n] we set a(F,G) =[{(f,g):f>g,f€F,g € G}| and
where ¢; indicates that e; is to be omitted from the exterior product.
Denote by ef,..., e the basis of L* with ej(e;) = 1 and e (e;) = 0 for
k # i. To simplify notations we set d; = d,x. Then g, = Xf_, 9,(e,)d,, and

we have the following:

LemMA 1.1. Let z,Z € AN L be bihomogeneous elements, f € S and
W, v € L*. Then

W f4, =3,
(), +d,= s
(i) 4,09, =0,

(V) d,00,=—d,°4,
V) 9z AD) =39 2) AZ+ (=DMEDz A g (2).

Proof.  The proof consists of straightforward calculations (most of them
are done in [5]). |1

We fix a graded free S-module L of rank n for the rest of the paper.
Lete =e¢y,..., e, be a basis of L with deg(e;) = 1fori € [n],and pu € L*
with u(e,) = x; for i € [n]. For j =1,...,n let L(j) be the graded free
submodule of L generated by e,,...,e;. Then (K(j, M), 3) is the Koszul
complex of x,,...,x; with values in M where K(j, M) = A L(j) & M
and ¢ is the restriction of g, ®& id, to A L(j) ® M. We denote by
H(j, M) the homology of the complex K(j, M), and the homology class of
a cycle z € K(j, M) will be denoted by [z]. If it is clear from the context,
we write K(j) instead of K(j, M) and H(j) instead of H(j, M).

Notice that K.,(j); ., = 0 for k <0 and that H,(n) = Tor,(K, M) are
isomorphic as graded K-vector spaces. One has the following exact se-
quence (see [5]:

() 2 H(J—1D)(=1) > H(j—1) = H(j) > .
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The following observation is crucial for the rest of the paper. For a
homogeneous element z € K,(j) we can write z uniquely as z = e, A
d,(z) + r,, and ¢, divides none of the monomials of r,.

LEMMA 1.2. Let z € K(j) be a homogeneous cycle of bidegree (i,1).
Then 3,(2) is for all k € [n] a homogeneous cycle of bidegree (i — 1,1 — 1).

Proof. The proof follows from 1.1. |
In the sequel we need the following:

LEMMA 1.3. Let p €{0,...,n} and t € N. Suppose that H,(j),., =0
forl= —1,...,t — 1. Then

O HG-D,,=0forl=—1,...,t — 1,
() H,(j — D,,, is isomorphic to a submodule of H,(}),.
Gi) H(j),,,;=0forl=—-1,....,t —landi=p,...,]j.

Proof. We prove (i) by induction on /€ {—1,...,t —1}. If [ = —1
there is nothing to show because H,(j — 1),,, =0 for / <0. Now let
! > —1 and consider the exact sequence

) _)Hp(j —Dpsr-1— Hp(j —1Dprr > Hp(j)p+l - .

By the induction hypothesis H,(j — 1),.,_; = 0, and by the assumption
H,(j),.; =0 we get that H,(j — 1),,,=0.
For [ = ¢ the exact sequence of the Koszul homology together with (i)
yields
0 - Hp(] — 1)p+t - Hp(j)pﬂ - e

which proves (ii).

We show (iii) by induction on j € [n]. The case j = 1 is trivial, and for
j > 1 and i = p the assertion is true by assumption. Now let j > 1,i > p
and consider

o H( - D) 2 H(J) i 2 Hoy (= 1) >

By (1) and the induction on j we get that H(j — 1,,, = H,_,(j — D,_,,,
= 0. Hence H,(j),,,=0. 1

2. LOWER BOUNDS FOR BETTI NUMBERS
OF GRADED S-MODULES

In this section M is always a finitely generated graded S-module which
is generated in degrees > 0. For 0 # z € K,(j) we write

z=mye, + Y, me
Ic[n], I#J
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with coefficients in M, and where e, is the lexicographic largest monomial
of all e, with m; # 0. Recall that for I,J c[n], I=1{i < - <i},
J=1{j, < - <j,} e <., e if either t <t' or t =¢', and there exists a
number p with i, =j, for / <p and i, >j,. We call in(z) =m e, the
initial term of z. Furthermore, for I = {i, < -+ <i,} C[n] we write
Gy = d; 0 0.

LemmA 2.1. Let p €10,...,j}, r €{0,...,p}, and 0 #z € K,(j) be
homogeneous with in(z) = m e,. Then for all I C J with |I| = r the elements
9,(z) are K-linearly independent in K, _ (j). In particular, if z is a cycle, then
{0,(2): I CJ,|I| = r} is a set of K-linearly independent cycles.

Proof.  This follows from the fact that in(J,(z)) = m e, _,. Induction on
r€{0,..., p} proves that all J,(z) are cycles if z is one. |

Lemma 2.2. Let p€[jl, t€N, and z € K,/(j),,,. Assume that
H, (j),_14;=0forl=~1,...,t 1.

() Ifp <jand 9(z) = d(y) for somey, then there exists Z such that
Z=z+ d(r) and (%) = 0. In particular, 7 € K ,(j — 1), and if z is a cycle,
then [z] = [Z].

(i) Ifp =jand d(z) = d(y) for somey, then z = 0. In particular, if
z # 0 is a cycle, then we always have 0 # [d(2)] € H,_(j),_ ;.

Proof. We proceed by induction on ¢ € N to prove (i). If ¢+ = 0, then
y € K,(j),1,-1 =0, and so d(z) = 0. Thus we choose 7 = z.

Let t > 0 and assume that d,(z) = d(y). We see that d,(y) is a cycle
because

0=9,(d,(2)) = (a(y)) = =a(3,(y))-
But 9(y) € K, ((j),_ 14,1 Since H,_(j),_,,,_, =0, it follows that
d{y) = d(y') is a boundary for some element y’'. By the induction
hypothesis we get y =y + d(r') such that J,(y) = 0. Note that () =
d(y) = d,(z). We define

f=z+d(e; AY)=z+x7—e Ad(z).
Then

é’j(f) = (?j(z) +xj<9j()7) — o”j(ej) A é’j(z) +e Ao aj(z)

d,(z) — d(z) =0,

and this proves (i).
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If p = j, we see that z = me;; for some m € M, and therefore J,(z) # 0
if and only if z # 0.

We prove (ii) by induction on ¢ € N. For ¢ = 0 there is nothing to show.
Let ¢ > 0 and assume ¢;(z) = d(y). By the same argument as in the proof
of (i) we get d;(y) = d(y’) for some y’. The induction hypothesis implies
y =0, and then z=0. |

LEmMMA 2.3. Letp €{0,...,j}, t €N, and 0 #z € Kp(j)pﬂ. Assume
that H(j), ;=0 forl = —1,....t — L and let g €{0,...,j}. If z € K,(j
=@y SK,(j), s, and (y) =z in K(j) for some element y, then there
exists an element § € K, (j — q),,11,-, such that 3(3) = z in K(j — q).

Proof. We prove the assertion by induction on j for all g € {0,..., j}.
For j =0and j > 0, g = 0, there is nothing to show. Let j > g > 0. Write
y =e; A d(y) +r,. Since 0 = J,(z) and

z=209(y) = &(ej A d(y) + ry) =x;0(y) —¢; A &(ﬁj(y)) +a(r,),

we see that ¢,(y) is a cycle and therefore a boundary by the assumption
that H,(j),,,_; = 0. By Lemma 2.2 we may assume that y € K(j — 1). By
the induction hypothesis we find the desired y in K(j —¢g) = K(j — 1 —
(@—D). 1

LEmMMA 2.4, Let teN. If B, , 1, (M)=0 forl=—1,...,t -1
and B, , . (M) # 0, then there exists a basis e of L and a cycle z € K,(n), ,,
such that

@ [zl H,(n),,, is not zero,
() [0l e H,_(n),_,,, are K-linearly independent fori = 1,..., n.

In particular, B, , ., (M) > n.

Proof. Let e be an arbitrary basis of L. Since B, ,, (M) # 0 there
exists a cycle z € K, (n),,, with 0 # [z] € H(n),,,. Furthermore,
H,_(n),_,,;=0forl = —1,...,t — 1.In this situation we have z = me,,,
for some socle element m of M, and we want to show that every equation

n

0= 3 /J“i[ai(z)] =

i=1

>z /J“i(?i(z)} with u; € K
i=1

implies u; = 0 for all i € [n]. Assume there is such an equation where not
all u; are zero. After a base change we may assume that X'_, w,d;, = d,.
We get

i=

0= [(9"(2)],

contradicting Lemma 2.2Gi). I
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THEOREM 2.5. Lett €N and p €[nl If B,_, ,_1.(M) =0 for ] =
—1,...,t—1 and BP,PH(M) # 0, then there exists a basis e of L and a
cycle z € K (n), ., such that

@ [zl € H/(n),,, is not zero,
() [9(2)] € H,_(n),_, ., are K-linearly independent fori = 1,..., p.

In particular, 8, ,_,. (M) = p.

Proof. We have H,(n),,, # 0 because B, ,. (M) # 0. Choose 0 # h
€ H,(n), .. We prove by induction on n that we can find a basis e of L(n)
and a cycle z € K (n),,, representing /& such that every equation

P

0= /‘Li[ai(z)] =

i=1

p
)y Miﬁi(z)} with u; € K
i=1

implies u; = 0 for all i. The cases n = 1 and n > 1, p = n were shown in
Lemma 2.4.

Let n > 1 and p < n. Assume that there is a basis e and such an
equation for a cycle z with [z] = & where not all u, are zero. After a base
change of L(n) we may assume that ©” | w,d;, = d,. Then 0 = [4,(2)], and
therefore d,(z) = d(y) for some element y. By Lemma 2.2 we can find an
element y such that [§] =[z] and § Kp(n — 1)p+,. Now Lemma 1.3
guarantees that we can apply our induction hypothesis to y, and we find a
base change 1=1,...,1,_, of e,...,e,_,, [Z]=[7] in H(n - 1),,,
(with respect to the new basis) such that [9(2)] € H,_(n — 1,_,,, are
K-linearly independent for i = 1,..., p. By Lemma 1.3 we have H,(n —
D,,, €H(n),,, for i=p —1,p. Then Z is the desired cycle because
(2] = [z]in H,(n),,,. 1

The Castelnuovo—Mumford regularity for a finitely generated graded
S-module 0 # M is defined as reg(M) = max{j € Z: g, ;. (M) # 0 for
some i€ N}. For ke€{0,...,n we define d, (M) = min({j
Z: By - (M) # 0} U {reg(M)}). We are interested in the numbers
Bl(M) = B, iy g, (M) for i > k. Note that g*>"™(M) = g/™(M). If
0 # Q,(M) is the kth syzygy module in the minimal graded free resolution
of M (see [7] for details), then we always have B, (M) =
Bkt (Q (M) for i > k. Therefore B/ (M) = B (Q, (M) for
these i. Observe that dy(Q (M) = d (M) + k.

COROLLARY 2.6. Let k €{0,...,n}. If B"™(M) # 0 for some p > k,
then

(M) > p.
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For the numbers B/"(M) and B''""(M) we get more precise results.
The next result was first discovered in [13].

THEOREM 2.7. Let p €{0,...,n}. If B"(M) # 0, then

(M) > (’f)

fori=0,...,p.

Proof.  The proof follows from Lemma 2.1 and the fact that there are
no non-trivial boundaries in K,(n);, 4 () |1

To prove lower bounds for 8™ we use slightly different methods. Let

S =Kl[x,,...,x,]. We fix a basis e of L such that d(e,) = x; for all i € [n]
for the rest of this paper. For a € N" we write x* = x{" --- x» and call it
a monomial in S. Let F be a graded free S-module with free homoge-

neous basis gy,...,g,. Then we call x“g; a monomial in F for a € N" and
i €[t]. Let > be an arbitrary degree refining term order on F with
X8 > = >x,8 > g (see [7] for details). For a homogeneous element

f € F we set in_(f) for the maximal monomial in a presentation of f. Note
that we also defined in (z) for some bihomogeneous z € K(n).

LEMMA 2.8. Let M C F be a finitely generated graded S-module and let

0 # z be a homogeneous cycle of K \(n, M) withz = Z,;_ , m;e;, in(z) = m,e,.

Then there exists an integer j > i with 0 # in.(m;) > in.(m,). In particular,
m; and m; are K-linearly independent.

Proof. We have

0=0(z) =mux; + )} mx,.

Jj>i

Hence there exists an integer j > i and a monomial a; of m; with
in,(m;)x; = a;x; because all monomials have to cancel. Assume that

in,(m;) > in.(m;).
Then
in,(m;)x; > in>(mi)xj > in>(mj)xj > a;x;
is a contradiction. Therefore

in,(m;) <in,(m;).
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LEMMA 29. Let M CF be a finitely generated graded S-module, p €
{0,...,n}, and let 0 + z be a homogeneous cycle of Kp(n,M) with z =
Xy =p myey, in(z) = mye;. Assume that I ={1,..., p}. Then there exist
distinct numbers j,,...,j, € [n] such that j, >p —k + 1 fork=1,...,p
and

in>(m]p) > in>(mjp7]) > - >in (my ),

where Jy=TandJ, ={1,....,p —k,j,...,j.} fork=1,..., p.

Proof. We construct the numbers j, and the sets J, with the desired
properties by induction on k € {0,..., p}. For k = 0 we set J, = I. Let
0 < k < p. Assume that J, _, is constructed. Then we apply Lemma 2.8 to
..., p_kvjlv“'vjk—l)(z) where in(a(l »»»»» Pk jtse s i 1}(2)) My, €p—k+1
and find j, >p —k + 1 such that inGmy 4 i qugy) >
in,(m; ). We see that j, #j;, for i =1,...,k — 1 because these e; do

not appear with non-zero coefficients in (9(1 ,,,, “kjpje(2). This con-
cludes the proof. |

COROLLARY 2.10. Let M C F be a finitely generated graded S-module,
p €10,...,n}, and let 0 # z be a homogeneous cycle of K,(n, M) with
z =X, 5=p mse;. Then there exist p + 1 coefficients m; of z, which are
K-linearly independent.

Proof. The proof follows from Lemma 2.9 because the coefficients
there have different leading terms. |

THEOREM 2.11. Let p > 1 and let M be a finitely generated graded
S-module with B, (M) # 0. Then

Bl(M) = (’f)

fori=1,...,p.
Proof. Let
0-M —->F->M-0

be a presentation of M such that F is free and M’ = Q,(M). We show
that

in ’ "+1 ’
,8}(M)2(€_+1) forp’ =p — 1.

Since B1'""(M) = Blin(M"), this will prove the theorem.
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After a suitable shift of the grading of M we may assume that d,(M")
= 0. Note that M’ is a submodule of a free module. Since B,"(M’) # 0,
we get a homogeneous cycle 0 # z = X, |, _,m,e; in K,(n, M"),. There
are no boundaries except for zero in Kl-én, M"),, and therefore we only
have to construct enough K-linearly independent cycles in K;(n, M'); to

prove the assertion. Assume that in(z) = m,e; where I = {i},...,i,}. We
make a base change of the basis e,...,e, that maps e; to e for
J=1,...,p". Then in(z) = m, 1915 with respect to the new bas1s By
Lemma 2.9 we obtain numbers j,, .. s Jp and the induced sets J, ..., Iy
for z such that j,>p —k+1 for k = 1,...,p and 1n>(m,p,) >
1n>(m, D> e >ing(my).

Let t € {0,...,p} and set i =p’ —t. Consider the (by Lemma 2.1)
cycles d5(z) with G € W = W, U --- U W, where

We={TU{j,....0}:1c[p —kl,Ill=t—k} forke{0,...,1}.
We have
p' —k
W,| =
"l = ( —k)
and therefore

t ’
_ p —k p +1 p +1
= g L

_[p +1
i+1)

If we show that the cycles d;(z) are K-linearly independent, the assertion

follows.

Take Ge W, G =1; U {jl,...,jkc} for some I; C[p’' — kgl, 1] =
t — kg. Since z =X, ;_, mye; we get

dg(z) = Z mye;_g = Z MyCr—1o—{i . ieg)
Il=p’ 16U G- ji d S 1=p

Thus
in(d6(2)) = M0,y kUl i) €l =k~ T

It is enough to show that the initial terms of the cycles are K-linearly
independent.

If cycles have different initial monomials in the e;, there is nothing to
show. Take G, G' and assume that the corresponding cycles have the same
initial monomial in the e;. We have to consider two cases. If kg "
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then I; =1; and the cycles are the same. For k; < k5 Lemma 2.9
implies

>>>>> P'*kG')UUln--»JlkGr})’

which proves the K-linear independence. |

The next corollary summarizes our results related to the conjecture of
Herzog.

COROLLARY 2.12.  Let M be a finitely generated graded S-module and let
p €10,...,n}. Suppose that B;‘“(M) # 0 and M is the kth syzygy module in
a minimal graded free resolution. Then

() Ifk =0, then B"™(M) = (?) fori=0,...,p.
Gi) Ifk =1, then B™(M) = (¢ 1) fori=0,...,p.

i+ 1

(ii) Ifk>1andp >0, then B (M) = p + k.

o

Proof. Statement (i) was shown in Theorem 2.7. In the proof of
Theorem 2.11 we proved (ii) in fact. Finally, (iii) follows from Corollary 2.6
since B"(M) = BXIN(N) if M is the kth syzygy module in the minimal
graded free resolution of some module N. |

Recall that a finitely generated graded S-module M satisfies Serre’s
condition 7, if

depth(M,) > min(k,dim S,)
for all P € Spec(S). We recall the Auslander—Bridger theorem [2]:

LeEMMA 2.13.  Let M be a finitely generated graded S-module. Then M is a
kth syzygy module in a graded free resolution if and only if M satisifes .7,.

Proof. The proof is essentially the same as in [11], where the local case
is treated. I

COROLLARY 2.14. Let M be a finitely generated graded S-module and
p €10,...,n}. Suppose that M satisfies %, and B,"(M) # 0. Then

Q) Ifk =0, then B/™(M) = (2) fori=0,...,p.
Gi) Ifk=1,then B™(M) > (¢+1) fori=0,...,p.

i+ 1
(i) Ifk>1andp >0, then B (M) > p + k.

Proof. According to Lemma 2.13 the module M satisfies %, if and
only if M is a kth syzygy module in a graded free resolution G, - N — 0
of some graded S-module N. It is well known (see, for example, [3]) that
G, =F, ® H, as graded complexes where F, is the minimal graded free
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resolution of N and H, is split exact. Then M splits as a graded module
into Q,(N) & W, where W is a graded free S-module. If p = 0, there is
nothing to show. For p > 0 it follows that 8,™(Q,(N)) # 0. Then Corol-
lary 2.12 applied to Q,(N) proves the corollary, since g; (M) >
B (Q,(N)) for all integers i, j. [}

3. PROOF OF THE CONJECTURE IN THE CASE OF
ZN-GRADED MODULES

S is Z"-graded with deg(x;) = ¢, = (0,...,1,...,0), where the 1 is at the
ith position. Let M = @,_,. M, be a finitely generated Z"-graded S-
module. Recall that every Z" -graded S-module M is naturally Z-graded by
setting M; = &,_,. ,_, M,. Therefore all methods from the last section
can be apphed in the following. Furthermore, the Koszul complex and
homology are Z"-graded if we assign the degree ¢; to e;. For example, if
m € M, for some a € Z", then deg(me,;)is a + L, &; orif z € K,(j) is
homogeneous of degree a, then deg(9,(z)) =a — L, &;.

We want to prove a more precise result than in the last section for this
more restricted situation. Note that Lemmas 2.2 and 2.3 hold in the
Z"-graded setting. The proofs are verbatim the same if we replace “graded”
with “Z"-graded.” We prove now a modified version of Theorem 2.5.

Usually we assume that M = @, _. M,

LEMMA 3.1. Let p €[j] and t € N. Suppose that H(j),,, =0 for
i=p—1,...,5,1=—1,...,t—1andlet z € K,(j),,, be a Z"-homoge-
neous cycle with 0 # [z] Hp( j)p +j- Then there exists a Z"-homogeneous
cycle z with

M [2]=[z]€ H,(),..
(ii) the elements [9,(2)) € H,_(j),_, ., are K-linearly independent for
some distinct jy, ..., j, € [j]

Proof. We prove by induction on j € [n] that we find [Z] = [z] and a
set {j;,.--, jp} such that the cycles [‘91}(2)] are K-linearly independent for
i=1,...,p

The cases j = 1 and j > 1, p = j, follow from Lemma 2.2(ii) because if
deg(z) = a € N”, then all J,(z) have different degrees a — ¢, and it
suffices to show that these elements are not boundaries.

Let j > 1 and assume that p <j. Again it suffices to show that the
cycles 4, (z) are not boundaries for a suitable subset {j,,..., ]p} cljl 1t
such a set exists, then there is nothing to prove. Otherwise there exists a
k € [jlwith [9,(2)] = 0, and we may assume k = j. By Lemma 2.2 we find
Z such that [Z] = [z] in H(j) and Z € K(j — 1). By Lemma 1.3 we can
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apply our induction hypothesis and assume that Z has the desired proper-
ties in H(j — 1). Again by Lemma 1.3 we have H, (j—1,_;,, C
H, (j),_i;, and Z is the desired element. [I

We need the following simple combinatorial result. Let p € [n]. Define
inductively a sequence of subsets W, c 2! for t = 0,..., p. Set W, = {J}.
If W,_, is defined, then for every set w € W,_;, we choose p — ¢ + 1
different elements j', ..., j,_,, such that j" & w. Define

W,={wu{jr}:weW,_,andl=1,...,p —t + 1}.

LEMMA 3.2. Let W, be defined as above. Then for t =0, ..., p we have
that

Ithz(];).

Proof. 'We prove this by induction on p € [n]. The case p = 0 is trivial,
so let p > 0, and without loss of generality we may assume that W, =
{{1},...,{p}}. The set W, is the disjoint union of the sets W,l =wew:1
€ w}and W,'! = {w € W,:1 & w}. The induction hypothesis applied to W,!
and W,' implies

wi=wiewis (P (701 < (7).
t—1 t t

We prove the main theorem of this section.

THEOREM 3.3. Let k € [n] and let M be a finitely generated 7"-graded
S-module. If B;’I‘“(M) # 0 for some p > k, then

(M) = (’l’)

fori=k,...,p.

Proof.  Without loss of generality M = @, _, M,. Since B)>"™(M) # 0,
there exists a Z"-homogeneous cycle z € K,(n),. ;4 (, such that 0 # [z]
in H,(n),,,  and deg(z) = a for some a € N". By the definition of
d, (M) and Lemma 1.3 we have H(n),,, =0 for i >k and [ =
—1,...,d (M) — 1.

We construct inductively W, as above, as well as cycles z, for each
w € W, such that [z,] # 0, deg(z,) =a — X, &, 0 # [d,(z,)] for | =
1,..., p — t and suitable j;" & w. Furthermore, z, is an element of the
Koszul complex with respect to the variables x; with j & w. For i > k we
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take all cycles z, € K(n);, 4 ) With w € W,_. which have different
Z"-degree. They are not zero and are therefore K-linearly independent in

homology. By Lemma 3.2 there are at least (,” ;) = (#) of them, and this

concludes the proof.

Let W, = {J}. By Lemma 3.1 we can choose z in such a way that
}éjl]—j [&j[(z)] # 0 for / =1,..., p and some j, € [n]. Choose z; = z and
r =

If W,_, and z,, for w € W,_, are constructed, then define W, with W,_
and the given j for w € W,_,. For w' € W, with w’' =w U {j}"}, re-
choose z,, = d;(z,) by Lemma 3.1 in such a way that [d;,(z, )] # 0 for
I'=1,...,p —t and some j}!" € [n].

Note that since z,, has no monomial which is divisible by some ¢; for
j € w, we can use Lemmas 2.2 and 2.3 to avoid these e; in the construction
of z,, again. By Lemma 1.3 the cycles d;(z,.) are also not zero in H(n).
Clearly j* & w’, and the assertion follows. |

In the Z"-graded setting we prove the desired results about 8" in full
generality.

COROLLARY 3.4. Let M be a finitely generated 7"-graded S-module,
where M is the kth syzygy module in a minimal 7"-graded free resolution. If

B,"(M) # 0 for some p € N, then

p+k
i+k

B = |

fori=0,...,p.
Proof. This follows from Theorem 3.3 and the fact that
; ; +k
‘lm M) = ‘k,lm N) > p
:81 ( ) i+k ( ) =\i+k >
where M is the kth syzygy module of a Z"-graded S-module N. |
As an analogue to Lemma 2.13 we get

LEmMMA 3.5. Let M be a finitely generated 7"-graded S-module. Then M
satisfies .7, if and only if M is a kth syzygy module in a Z7"-graded free
resolution.

COROLLARY 3.6. Let M be a finitely generated Z"-graded S-module
satisfying . If B,"(M) # 0 for some p € N, then

lin ptk
g = (0 1]

fori=0,...,p.
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Proof.  The assertion follows from Corollary 3.4 with arguments similar
to those for the graded case. |

4. BOUNDS FOR BETTI NUMBERS OF IDEALS WITH A
FIXED NUMBER OF GENERATORS IN GIVEN
DEGREE AND A LINEAR RESOLUTION

In this section we are interested in bounds for the graded Betti numbers
of graded ideals of S. We assume that the field K is infinite and fix a basis
X =X;,...,%, of §;. For a monomial x* of § with |a| = d we denote by
R(x") ={x?:|b| = d, x* >,., x°} the revlex-segment of x“, where >,
is defined as follows: x* > .. x’ if either |a| > |b| or |a|l = |b| and there
exists an integer r such that a, < b, and a, = b, for s > r. Note that for a
given d € N and 0 <k < ("*¢-1) there exists a unique ideal I(d, k)
which is generated in degree d by a revlex-segment R(x“) for some
monomial x¢ with |R(x4)| = k.

Following Eliahou and Kervaire [10] for a given monomial x¢, let m(x?)
be the maximal i such that x; divides x“. An ideal is a monomial ideal if it
is generated by monomials. We call a monomial ideal [ stable if for all
monomials x* € I we have x;x“/x,, .« € I for i <m(x").Is it easy to see
that it is enough to prove this condition for the generators of the ideal 1.
For example, I(d, k) is stable.

For stable ideals there exist explicit formulas for the Betti numbers (see
[10D. Let I € § be a stable ideal and let G(I) be the set of minimal
generators of I. Then

Bh= ¥ (m(x“?‘l) (%).

x4eG(I),lal=j L

If a stable ideal [ is generated in one degree d, then I has a linear
resolution.
PROPOSITION 4.1. Let I C S be a stable ideal generated in degree d € N
Bi,i+j(1) = Bi,i+j(1(d>k))
foralli,j € N.

Proof. Fix d €N and 0 <k <("*4-1). Let /(I) be the number of

monomials in I, which are not monomials in I(d, k),. We prove the
statement by induction on [([). If I(I) = 0, then I = I(d, k) and there is
nothing to show.
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Assume that [(I) > 0. Let x“ be the smallest monomial in I, with
respect to >, which is not in I(d, k),, and let x” be the largest
monomial which is in I(d, k), but not in I,. Define the ideal I by
G = (G \ {x“) U {x"}. Then I(I) = I(I) — 1, and I is also stable.
Thus, by the induction hypothesis,

Bi,i+j(f) = Bi,i+j(1(d7k))‘

Since x? > .. x% the revlex order implies m(x®) < m(x*). Therefore (*)

yields

rlex

Bi,iJrj(I) = Bi,i+j(1)’
which proves the assertion. [

For a graded ideal I, the initial ideal in(]) is generated by all in(f) for
f € I with respect to some monomial order.

Every element g of the general linear group GL(n) induces a linear
automorphism of S by

g(xj) = Zgi,jxi for g = (gi,j)'
i=1

There is a non-empty open set U € GL(n) and a unique monomial ideal J
with J = in(g([)) for every g € U with respect to the revlex order (for
details see [7]). We call J the generic initial ideal of I and denote it by
Gin(I). A nice property is that Gin([) is Borel-fixed, i.e., Gin(I) = b Gin(I)
for all b € B, where B is the Borel subgroup of GL(n) which is generated
by all upper triangular matrices.

PROPOSITION 4.2.  Letd € N and let I C S be a graded ideal with d-linear
resolution. Then Gin(I) is stable, independent of the characteristic of K, and

Biir/ (D) = By ;. (GIn(D) for all i, j € N.

Proof. 1t is well known that reg(Gin(1)) = reg(/). Therefore
reg(Gin(7)) = d and Gin(]) also has a d-linear resolution. Reference [9,
Proposition 10] implies that a Borel-fixed monomial ideal, which is gener-
ated in degree d, has regularity d if and only if it is stable. Thus we get
that Gin(7) is a stable ideal, independent of the characteristic of K.

Since I has a linear resolution, we obtain by the main result in [1] that
B+ (1) = B, ;. (Gin(1)) for all i,j € N. 1

THEOREM 4.3. Let d €N, let 0 <k <("*4-1), and let I C S be a
graded ideal with d-linear resolution and k generators. Then

Bi,i+j(1) = Bi,iJrj(I(d’k))
foralli,j e N.
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Proof.  This follows from Propositions 4.1 and 4.2. |

Consider the lexicographic order >, . Recall that for monomials x*,
x? € S we have x“ >, x” if either |al > |b| or |al = |b| and there exists an
integer r such that a, > b, and a, = b, for s <r. Then L(x“) = {x”:|b|
=d,x" >, x° is the lex-segment of x° Fora givend € Nand 0 < k <
(#+d4-1) there exists a unique ideal J(d, k) which is generated in degree d

by a lex-segment L(x?) for some monomial x* with |L(x*)| = k. It is easy
to see that J(d, k) is a lex-ideal; i.e., if x* >, x¢ and x¢ € J(d, k), then
x? € J(d, k). In particular, J(d, k) is stable.

PROPOSITION 4.4. Letd € N, let 0 <k <("*¢-1), and let I C S be a
graded ideal with d-linear resolution and k generators. Then

:Bi,i+j(1) =< Bi,i+j(‘](d’k))
foralli,j e N.

Proof. By [15, Theorem 31] we find a lex-ideal L with the same Hilbert
function as I and B, ;,(I) < B, ;,,(L) for all i,j €N. We see that
By, 4(L) = By, 4(I) = k because these ideals share the same Hilbert func-
tion. It follows that J(d, k) = (L ), and, in particular, G(J(d, k)) = G(L),.
Therefore

Biiva(1) < Biiva(L) = Biira(J(d, k))
for all i, j € N, where the last equality follows from (). |

Fix d €N and 0 <k <(7*4-1). Let (d, k) be the set of Betti
sequences { 3; j(I )} where I is a graded ideal with d-linear resolution and
Bo.«(I) = k. On B(d, k) we consider a partial order: We set { B, ()} >
(B, (DY if B (D) = B, (J) forall i, j € .

COROLLARY 4.5. Let d € N and let 0 <k < ("*4-1). Then

{Bi’j(l(d, k))} is the unique minimal element and {B,-’j(J(d, k))} is the
unique maximal element of %(d, k).

REFERENCES

1. A. Aramova, J. Herzog, and T. Hibi, Ideals with stable Betti numbers, Adv. Math. 152,
No. 1 (2000), 72-77.

2. M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. No. 94
(1969).

3. L. L. Avramoyv, Infinite free resolutions, in “Six Lectures on Commutative Algebra,” pp.
1-118, Progress in Mathematics, Vol. 166, Birkhauser, Basel, 1998.



10.

11.

12.

13.
14.

15.

16.

BOUNDS FOR BETTI NUMBERS 37

. A. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm.
Algebra 21, No. 7 (1993), 2317-2334.

. W. Bruns and J. Herzog, “Cohen—Macaulay Rings,” rev. ed., Cambridge Studies in
Advanced Mathematics, Vol. 39, Cambridge Univ. Press, Cambridge, UK, 1998.

. H. Charalambous and E. Evans, Resolutions with a given Hilbert function, Contemp.
Math. 159 (1994), 19-26.

. D. Eisenbud, “Commutative Algebra with a View Toward Algebraic Geometry,” Gradu-
ate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.

. D. Eisenbud and J. Koh, Some linear syzygy conjectures, Adv. Math. 90, No. 1 (1991),
47-76.

. D. Eisenbud, A. Reeves, and B. Totaro, Initial ideals, Veronese subrings, and rates of

algebras, Adv. Math. 109, No. 2 (1994), 168-187.

S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra

129, No. 1 (1990), 1-25.

E. G. Evans and P. Griffith, “Syzygies,” London Mathematical Society, Lecture Note

Series, Vol. 106, Cambridge Univ. Press, Cambridge /New York, 1985.

M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential

Geom. 19, No. 1 (1984), 125-171.

J. Herzog, The linear strand of a graded free resolution, unpublished notes, 1998.

H. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function,

Comm. Algebra 21, No. 7 (1993), 2335-2350.

K. Pardue, Deformation classes of graded modules and maximal Betti numbers, Illinois J.

Math. 40, No. 4 (1996), 564-585.

V. Reiner and V. Welker, Linear syzygies of Stanley—Reisner ideals, Math. Scand. 89,

No. 1 (2001), 117-132.



	INTRODUCTION
	1. PRELIMINARIES ON KOSZUL COMPLEXES
	2. LOWER BOUNDS FOR BETTI NUMBERS OF GRADED S-MODULES
	3. PROOF OF THE CONJECTURE IN THE CASE OF Z^{N} -GRADED MODULES
	4. BOUNDS FOR BETTI NUMBERS OF IDEALS WITH A FIXED NUMBER OF GENERATORS IN GIVEN DEGREE AND A LINEAR RESOLUTION
	REFERENCES

