
Theoretical Computer Science 302 (2003) 319–335
www.elsevier.com/locate/tcs

On maximizing the throughput of
multiprocessor tasks�

Aleksei V. Fishkin, Guochuan Zhang∗;1

Institut f�ur Informatik und Praktische Mathematik, Universit�at Kiel, Olshausenstrasse 40,
24098 Kiel, Germany

Received 31 May 2002; accepted 7 November 2002
Communicated by D.-Z. Du

Abstract

We consider the problem of scheduling n independent multiprocessor tasks with due dates and
unit processing times, where the objective is to compute a schedule maximizing the throughput.
We derive the complexity results and present several approximation algorithms. For the parallel
variant of the problem, we introduce the 7rst-7t increasing algorithm and the latest-7t increasing
algorithm, and prove that their worst-case ratios are 2 and 2 − 1=m, respectively (m¿ 2 is the
number of processors). Then we propose a revised algorithm with a worst-case ratio bounded by
3
2 − 1=(2m) (m is odd) and 3

2 − 1=(2m− 2) (m is even). For the dedicated variant, we present a
simple greedy algorithm. We show that its worst-case ratio is bounded by

√
m+1. We straighten

this result by showing that the problem cannot be approximated within a factor of m1=2−� for
any �¿ 0, unless NP = ZPP.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Multiprocessor task; Complexity; Approximation algorithm

1. Introduction

In the traditional theory of scheduling, each task is processed by only one processor
at a time. However, due to the rapid development of parallel computer systems, new

� Supported by Alexander von Humboldt Foundation. A preliminary version of this paper appeared in Pro-
ceedings of the 27th International Symposium on Mathematical Foundations of Computer Science (MFCS’02,
pp. 269–279).

∗ Corresponding author.
E-mail addresses: avf@informatik.uni-kiel.de (A.V. Fishkin), gzh@informatik.uni-kiel.de (G. Zhang).

1 On leave from Zhejiang University, Hangzhou, China. Research partially supported by National 973
Fundamental Research Project of China and NSFC.

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0304-3975(02)00850-2

mailto:avf@informatik.uni-kiel.de
mailto:gzh@informatik.uni-kiel.de

320 A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335

theoretical approaches have emerged to model scheduling on parallel architectures. One
of these is scheduling multiprocessor tasks, see e.g. [4,7].
In this paper we address the following multiprocessor scheduling problem. A set

T = {T1; T2; : : : ; Tn} of n tasks has to be executed by a set of m processors M = {1; 2; : : : ;
m}. Each processor can work on at most one task at a time and a task can (or may
need to be) processed simultaneously by several processors. Each task Tj has a unit
processing time pj =1 and integral due date d(Tj). Here we assume that all tasks are
available at time zero and the objective is to maximize the throughput

∑ IUj, where
IUj =1 if task Tj is completed before or at time d(Tj), and IUj =0 otherwise.
We deal with two variants of this problem. In the parallel variant, the multiprocessor

architecture is disregarded and for each task Tj there is given a prespeci7ed number
sizej ∈M which indicates that the task can be processed by any subset of processors
of the cardinality equal to this number. In the dedicated variant, each task Tj requires
the simultaneous use of a prespeci7ed set of processors 6xj ⊆M .
We call a task Tj early if it meets its due dates d(Tj) (IUj =1), and lost (IUj =0)

otherwise. An early task is also called accepted. A lost task will not be scheduled. We
use D to denote the largest due date maxj d(Tj). We say that tasks have a common
due date if d(Tj)=D for all tasks Tj.
To refer to the two variants of the above scheduling problem, we use the standard

notation scheme by Graham et al. [7]. Let P|sizej; pj =1|∑ IUj denote the parallel
variant and P|6xj; pj =1|∑ IUj denote the dedicated variant. If all tasks have a com-
mon due date D, we denote the two variants as P|sizej; pj =1; d(Tj)=D|∑ IUj and
P|6xj; pj =1; d(Tj)=D|∑ IUj, respectively.
For simplicity, throughout this paper we use sj instead of sizej when we refer to the

size of task Tj in the parallel variant and �j instead of 6xj when we refer to the subset
of processors task Tj requires in the dedicated variant.

1.1. Known results

In classical scheduling theory, there are a lot of results known for the objective
of minimizing the (weighted) number of late tasks (wj)Uj, where Uj =1 if task Tj
is completed after d(Tj), and Uj =0 otherwise, e.g. [12,14,1]. In the multiprocessor
setting, the previous research has mainly focused on the objectives of minimizing the
makespan Cmax and the sum of completion times

∑
Cj. As a rule, scheduling mul-

tiprocessor tasks with unit processing times is a strongly NP-hard problem [13,10].
However, recently there have been proposed a number of diLerent approximation
algorithms, e.g. [2,5,13,15]. Up to our knowledge, no results are known for the mul-
tiprocessor tasks scheduling problem concerning the throughput objective. Note that it
is more conventional in scheduling to minimize the number of tardy tasks, rather than
maximizing the number of early tasks. In fact, the optimal value of the two objectives
is the same. When we investigate optimal algorithms or prove complexity results, the
criterion of minimizing the number of tardy tasks is used. However, when we study
approximation results, the number of tardy tasks in an optimal schedule may be zero.
In this case, a 7nite worst-case ratio cannot be derived. The same situation occurs in

A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335 321

on-line scheduling [9]. The problems considered in this paper are hard problems (will
be proved in successive section) and we focus on 7nding good approximation algo-
rithms. It is thus reasonable to choose the objective of maximizing the number of early
tasks.

1.2. Our results

In this paper, focusing on the throughput objective, we give the complexity results
and present several approximation algorithms, for both parallel and dedicated variants
of the problem. The quality of an approximation algorithm A is measured by its worst-
case ratio de7ned as

RA = sup
T

{NO(T)=NA(T)};

where NA(T) denotes the number of early tasks in the schedule produced by the
approximation algorithm A, and NO(T) denotes the number of early tasks in an optimal
schedule for a task set T . In this paper we sometimes simply use NO and NA instead
of NO(T) and NA(T) if no confusion is caused.
In the 7rst part of the paper we consider the parallel variant of the problem. We

prove that it is strongly NP-hard and present a number of approximation algorithms.
We start with two simple greedy algorithms, namely, FFIs and LFIs. We prove that the
worst-case ratio of FFIs is 2, and the worst-case ratio of LFIs is 2− 1=m, respectively.
Then, by re7ning the algorithm LFIs we get an improved algorithm HA with the worst-
case ratio at most 3

2 − 1=(2m) (m is odd) and 3
2 − 1=(2m− 2) (m is even).

In the second part we consider the dedicated variant. Each dedicated task requires
a subset of processors. Hence, two tasks that share a processor cannot be processed
at the same time. If all tasks have a common due date, we can adopt the complex-
ity result for MAXIMUM CLIQUE [8]. Accordingly, we prove that our problem cannot
be approximated within m1=2−� unless NP=ZPP, where �¿0 is any given small num-
ber. On the other hand, we are able to show that the worst-case ratio of a greedy
algorithm does not exceed

√
m + 1. To grip on the case of individual due dates, we

generalize this algorithm and demonstrate that the bound
√
m+ 1 remains valid.

Interestingly, there are a number of diLerent relations to some well-known combi-
natorial problems. Just beyond the relation to MAXIMUM CLIQUE, we can 7nd that BIN

PACKING and MULTIPLE KNAPSACK correspond to the parallel variant of our problem. We
discuss this in successive section.
The paper is organized as follows: Section 2 presents the results on the parallel

model, and Section 3 on the dedicated model. Conclusions are given in Section 4.

2. Scheduling parallel tasks

We are given a set T = {T1; T2; : : : ; Tn} of n tasks and a set of m processors. Each
task Tj has a unit processing time pj =1, an integral due date d(Tj), and requires sj

322 A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335

processors for its processing. The goal is to maximize the throughput, i.e. the number
of early tasks Tj that meet their due dates d(Tj).

Theorem 1. Problem P|sizej; pj =1|∑ IUj is strongly NP-hard.

Proof. Recall 3-PARTITION [6]:

Instance: Set A of 3N elements, a bound B∈Z+, and a size s(a)∈Z+ for each
a∈A such that B=4¡s(a)¡B=2 and such that

∑
a∈B s(a)=NB.

Question: Can A be partitioned into N disjoint sets A1; A2; : : : ; AN such that, for
16i6N ,

∑
a∈Ai

s(a)=B?

We transform 3-PARTITION to our problem. First, we take a set of B processors.
Next, we replace each a∈A by a single task Ta with the unit processing time, size
s(a) and due date D=N . (There are 3N tasks and all of them have a common due
date N .) Clearly, this instance can be constructed in polynomial time from the 3-
PARTITION instance, and 3-PARTITION instance is YES if and only if all the tasks meet
the common due date. Since 3-PARTITION is strongly NP-complete [6], our problem is
strongly NP-hard.

We then concentrate on some eRcient approximation algorithms. The 7rst simple
approximation algorithm is as follows.

Algorithm. FFIs (First Fit Increasing for sizej)
Reindex the tasks of T in non-decreasing order of sizes sj. Select the tasks one
by one and assign them as early as possible. If a task Tj cannot be assigned to
meet its due date d(Tj), it gets lost (will not be processed).

When all tasks have the same due date, the problem P|sizej; pj =1; dj =D|∑ IUj is
just the bin packing problem for maximizing the number of items packed, which was
studied by CoLman et al. [3]. They presented an algorithm called FFI and proved
that tight asymptotic worst-case ratio is 4

3 . Actually, their proof is also valid for the
absolute worst-case ratio. FFI is the same as FFIs. Therefore, for the common due dates
problem, the worst-case ratio of FFIs is not greater than 4

3 . Furthermore, the following
instance shows that the bound 4

3 for FFIs is tight for any speci7ed m¿3: assume that
the common due date is 2, and there are two small tasks, each of which requires only
one processor, and two large tasks, each of which requires m− 1 processors. FFIs can
only schedule three of them, while the optimal value is 4.
Note that the problem with common due date is also a special case of the multiple

knapsack problem where all items have the same weight. Recently, Kellerer [11] proved
that the multiple knapsack problem admits a PTAS. Now we turn to the general case
where each task has an individual due date.
We need some de7nitions. A task Tj is large if its size sj is greater than m=2, and

small otherwise. Let 0¡d1¡ · · ·¡dg =D be all distinct due dates, where D= maxj dj.

A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335 323

Fig. 1.

Then, we de7ne time slots It =(t−1; t], t=1; : : : ; D. Consider any algorithm A schedul-
ing tasks on time slots. We write m(It) and Nt to denote the number of processors
occupied and the number of tasks scheduled in time slot It , t=1; : : : ; D. We say that
It is closed if A meets the 7rst task for which there is no room in It , and open if it is
not closed yet.

Theorem 2. For problem P|sizej; pj =1|∑ IUj, the worst-case ratio RFFIs =2.

Proof. We 7rst prove that RFFIs62. Consider an optimal schedule with NO early tasks
and the FFIs schedule with NFFIs early tasks. Remove from the optimal schedule all
the tasks involved in the FFIs schedule and let ‘t be the number of the left tasks in
time slot It . We prove that

∑D
t=1 ‘t is at most NFFIs =

∑D
t=1 Nt . In this case we get

NFFIs¿NO=2.
Recall that all the ‘t left tasks in the optimal schedule are lost in the FFIs schedule.

Hence, in each time slot It the left ‘t tasks of the optimal schedule are not smaller in
size than those of the FFIs schedule. Since FFIs schedules the tasks by non-decreasing
order of sizes, the number of scheduled tasks Nt cannot be less than ‘t . Thus, we have
Nt¿‘t for all t=1; : : : ; D.
The bound is tight. Consider two tasks: task T1 with size s1 = 1 and due date

d(T1)= 2, and task T2 with size s2 =m and due date d(T2)= 1. In an optimal schedule
both of the tasks meet their due dates, but FFIs loses task T2 (Fig. 1).

The bad example tells us that the a task with larger due date may wait a moment to
save space for some other task with smaller due date. The following simple algorithm
takes into account this point.

Algorithm. LFIs (Latest Fit Increasing for sizej)
Reindex the tasks in nondecreasing order of sizes. Select the ordered tasks one
by one. If a task can be completed before or at its due date, assign it as late as
possible provided that its due date can be met. If a task cannot be assigned to
meet its due date, it gets lost (will not be processed).

In the schedule produced by algorithm LFIs, we partition (0; dg] =
⋃D

t=1 It into blocks
B(1); : : : ; B(l):

324 A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335

Fig. 2.

• the 7rst block B(1)= (0; di1] with the smallest di1 such that all tasks Tj in B(1) have
due dates d(Tj)6di1 ,

• each further block B(s) is the smallest interval (dis−1 ; dis] in which all tasks Tj have
due dates dis−1¡d(Tj)6dis .

Notice that it can happen that there is only one block or there are g blocks. Accordingly,
we use lost(s) and sch(s) to denote the set of the lost tasks and the set of early tasks
with due dates in block B(s).
Fig. 2 shows that in a block, say B(2)((di1 ; di2]), for any due date dj where di1¡dj¡

di2 , there must exist some task Ti in this block, which starts before dj and has due
date larger than dj (but no more than di2).

Lemma 3. For problem P|sizej; pj =1|∑ IUj, the worst-case ratio RLFIs is at least
2− 1=m, where m¿2 is the number of processors.

Proof. An example is constructed below. We are given m small tasks (denoted by s
in Fig. 3), where task Tj has a size sj =1 and a due date d(Tj)= j, for j=1; : : : ; m,
and m − 1 large tasks (denoted by L in Fig. 3), where sj =m and d(Tj)=m, for
j=m + 1; : : : ; 2m − 1. An optimal algorithm can complete all small tasks at time 1
and schedule the large tasks each in a time slot afterwards. Then all tasks are early.
However, with algorithm LFIs, only small tasks are scheduled and all large tasks are
lost. Hence the worst-case ratio is at least 2− 1=m.

Theorem 4. For problem P|sizej; pj =1|∑ IUj, the worst-case ratio RLFIs =2− 1=m.

Proof. We show that RLFIs62− 1=m, and then we complete by Lemma 3. We prove
by a contradiction. Assume that RLFIs¿2−1=m. Accordingly, let Tmin be the minimum
task set, in terms of the number of tasks, such that NO(Tmin)=NLFIs(Tmin)¿2−1=m. For
all task sets T with |T |¡|Tmin|, it follows NO(T)=NLFIs(T)62− 1=m.
Assume that LFIs runs on Tmin. Then, we can claim the following.

Lemma 5. There are no open time slots.

A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335 325

Fig. 3.

Proof. Assume that a time slot It is open, where dis¡t6dis+1 . Then, tasks j with due
dates dj¿dis are early, and removing all these tasks from Tmin, we get a smaller set.
It causes a contradiction.

Lemma 6. For each block B(s), the size of any task in lost(s) is not smaller than
that of any task in sch(s), s=1; : : : ; l. Moreover, any task in lost(s) cannot 6t in any
of the time slots in Block B(s).

Proof. We only need to consider the 7rst lost task Tj in lost(s) (this task Tj has the
smallest size among the tasks of lost(s)). Then its due date dis−1 + 16d(Tj)6dis , and
its size sj is not less than the size of any tasks in sch(s) which have due dates at most
d(Tj). Moreover, sj + m(t)¿m holds for each time slot It , t=dis−1 + 1; : : : ; d(Tj). If
d(Tj)=dis , we have proved the lemma. Now we assume that d(Tj)¡dis . According
to the de7nition of a block, there must be some task, which has a due date larger
than d(Tj), starts before time d(Tj). Otherwise, Block B(s) becomes (dis−1 + 1; d(Tj)],
which conSicts with the assumption. Denote by Tj1 the one with a largest due date
among the tasks completed in (dis−1 + 1; d(Tj)]. Its due date and size are d(Tj1) and
sj1 , respectively. Clearly d(Tj1)¿d(Tj). Then sj¿sj1 and sj + m(t)¿sj1 + m(t)¿m for
each time slot It , t=d(Tj) + 1; : : : ; d(Tj1). We then 7nd task Tj2 with the largest due
date among those tasks completed in (d(Tj); d(Tj1)]. Continue this process until we 7nd
task Tjk among those tasks completed in (d(Tjk−2); d(Tjk−1)] such that d(Tjk)=dis . In
the end, we have sj¿sj1¿ · · ·¿sjk . Note the following two facts. For u=2; : : : ; k,
• sju is not less than the size of those tasks completed in the time period (d(Tju−1);

d(Tju)].
• sju + mt¿m+ 1 for each time slot It , t=d(Tju−1) + 1; : : : ; d(Tju).

326 A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335

Therefore, sj is not less than the size of any task ∈ sch(s). Moreover, sj + m(t)¿m
for any time slot It , t=dis−1 + 1; : : : ; dis . It means that Tj cannot 7t in any time slot in
Block B(s).

Analogously we can prove the following lemma.

Lemma 7. For any two blocks B(s) and B(s′) (with s′¡s) the tasks of lost(s) are
not smaller in size than the tasks of sch(s′), and any task in lost(s) cannot 6t in any
of the time slots of B(s′).

Recall that the number of time slots is D. In the LFIs schedule on Tmin, each time slot
contains at least one task (Lemma 5). Hence NLFIs(Tmin)¿D. For an optimal schedule
+∗ on Tmin, let h be the extra number of tasks accepted, i.e., NO(Tmin)=NLFIs(Tmin)+h.
Let T ∗ and S∗ be the set of early tasks and the total size of early tasks (in the
optimal schedule +∗), respectively. Note that S∗6mD. We want to 7nd a bound on
h. To do this, we construct a set To of tasks by changing some tasks from T ∗ as
follows.
1. Let To =T ∗.
2. If To contains more than |di1 |−1 tasks from lost(1), some task Tp in sch(1) must be

lost in +∗, i.e., Tp =∈To. Replace a task ∈ lost(1)∩To by Tp. Continue this process
until that To contains at most |di1 | − 1 tasks from lost(1).

3. For s=2; : : : ; l, the same as the above, we do as follows. If To contains more than
|dis | − 1 tasks from

⋃s
j=1 lost(j), some task Tq in

⋃s
j=1 sch(j) must be lost in +∗,

i.e., Tq =∈To. Replace a task ∈ ⋃s
j=1 lost(j) ∩ To by Tq. Continue this process until

that To contains at most |dis | − 1 tasks from
⋃s

j=1 lost(j).
4. For s= l; : : : ; 1, if sch(s)*To, i.e., a task Tu ∈ sch(s)−To, there must be some task

∈ (
⋃l

j=s lost(j))∩To. Replace such a task by Tu. Continue this exchange until that

all tasks from
⋃l

s=1 sch(s) are involved in To.

In the above process, Steps 2 and 3 guarantee that the number of tasks in (
⋃s

j=1 lost(j))
∩To is at most dis − 1, for s=1; : : : ; l. Step 4 ensures that To contains all tasks in⋃l

s= 1 sch(s). Furthermore,
• the number of tasks in To is NO(Tmin)=NLFIs(Tmin) + h;
• by Lemmas 6 and 7, the total size So of tasks in To does not increase when a
replacement of tasks is made, which implies So6S∗6mD.

Note that To consists of all tasks involved in LFIs schedule and h extra tasks (lost
in the LFIs schedule). By Lemmas 6 and 7, the total size of the h extra tasks and the
tasks of the 7rst h time slots in the LFIs schedule is at least h(m+ 1). The total size
of the tasks in the remaining D − h time slots in the LFIs schedule is at least D − h,
since each of these time slots contains at least one task (see an illustration in
Fig. 4). Then So¿h(m + 1) + (D − h). We have mD¿h(m + 1) + (D − h) and then
h6D(m− 1)=m. However, since NO(Tmin)=NLFIs(Tmin)¿2− 1=m, i.e., (NLFIs(Tmin)+ h)=

A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335 327

Fig. 4.

NLFIs(Tmin)¿2− 1=m. Thus h¿D(m− 1)=m. It is a contradiction. The proof of Theo-
rem 4 is complete.

Theorem 8. If all early tasks are small, the worst-case ratio of algorithm LFIs is at
most 3

2 − 1=(2m− 2) for problem P|sizej; pj =1|∑ IUj.

Proof. We can prove this theorem in the similar way as that of Theorem 4. Since
all early tasks are small, by Lemma 5, each time slot contains at least two tasks.
Hence NLFIs(Tmin)¿2D. Assume that an optimal schedule can accept h more tasks than
algorithm LFIs. Analogously, as the proof of Theorem 4, h(m + 1) + 2(D − h)6mD.
It implies that h6D(m− 2)=(m− 1). Therefore,

NO(Tmin)=NLFIs(Tmin) = (NLFIs(Tmin) + h)=NLFIs(Tmin)

6 1 + (m− 2)=(2m− 2)

= 3
2 + 1=(2m− 2):

Notice that both FFIs and LFIs attach importance to the task sizes. In some sense,
FFIs “groups” small tasks together, whereas LFIs “spreads” them (see the above “bad”
examples). Can we do something better?
It seems that earliest due date (EDD) rule—schedule tasks in non-decreasing order

of their due dates—cannot help. For example, take k large tasks with sj =m and
d(Tj)= k (j=1; : : : ; k), and m(k+1) small tasks with sj =1 and d(Tj)= k+1 (j= k+
1; : : : ; (m + 1)(k + 1)). Then, NO =m(k + 1), but EDD schedules only k large tasks
and m small tasks. Thus, as k→∞, the ratio tends to m. However, we can combine
all our ideas together. In the following a hybrid algorithm is presented.

328 A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335

Fig. 5.

Algorithm. HA (Hybrid Algorithm)
1. Divide the tasks of T into small ones and large ones.
2. Schedule the set of small tasks by LFIs. If there are no time slots open, go to

Step 5.
3. Start from the 7rst open time slot and go further taking the tasks in a slot and

indexing them from the bottom of the slot. Then, reschedule the indexed tasks
in a 7rst-7t manner.

4. If there is a time slot which contains a single small task, say Tjs , put this task
Tjs into the set of large tasks.

5. Schedule the set of large tasks by EDD(ties broken in favor of smaller size).

Fig. 5 gives an illustration for algorithm HA.

Lemma 9. For problem P|sizej; pj =1|∑ IUj, the worst-case ratio of algorithm HA

RHA¿




3
2 − 1=(2k − 2) if m = 3k;
3
2 − 1=(2k − 1) if m = 3k + 1;
3
2 − 1=(2k) if m = 3k + 2:

Proof. Consider the following instance. There are 3n tasks (the value of n related with
m will be speci7ed later). For i=1; : : : ; n, exact three tasks have the due date i. Their
sizes are denoted by xi; yi and zi, respectively, where xi; yi6zi; xi¿xi+1; yi¿yi+1;
zi¡zi+1. Furthermore, xi + yi + zi =m + 1 and xi+1 + yi+1 + zi =m (we will prove
that there exists such an instance below). Clearly, algorithm HA starts the task of size
xi and the task of size yi at time i − 1, and all tasks with size zi are lost. Then the
total number of tasks accepted is 2n. An optimal algorithm can start the three tasks of
respective sizes xi; yi and zi+1 together at time i − 1 for i=1; n− 1, and schedule the
task of size zn at time n−1. The number of tasks accepted in an optimal way is 3n−2.
Thus RHA¿(3n−2)=(2n)= 3

2 −1=n. Now we specify the value of n by considering the

A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335 329

following three cases:

1. m=3k. In this case n=2k − 2. Let xi + yi =2k − i and zi = k + i+1, for i=1; : : : ;
2k − 2.

2. m=3k + 1. In this case n=2k − 1. Let xi + yi =2k − i + 1 and zi = k + i + 1, for
i=1; : : : ; 2k − 1.

3. m=3k + 2. In this case n=2k. Let xi + yi =2k − i + 2 and zi = k + i + 1, for
i=1; : : : ; 2k.

The lemma is proved.

Theorem 10. For problem P|sizej; pj =1|∑ IUj, the worst-case ratio of algorithm HA

RHA6

{ 3
2 − 1=(2m) if m is odd ;
3
2 − 1=(2m− 2) if m is even:

Proof. We 7rst consider the case that there are no time slots open immediately after
Step 2 of algorithm HA. Let N1 be the number of small tasks accepted and N2 be the
number of large tasks accepted. Then NHA =N1 + N2. Let Ik be the last time slot (in
time) containing small tasks. Obviously no small tasks have due dates greater than k.
Thus any optimal algorithm can only accept D − k tasks (large tasks) after time k.
Assume that there are h tasks more in an optimal schedule. Following the same line
of the ideas as in the proof of Theorem 8, we can bound the number h as follows:
h(m+ 1) + 2(k − h)6mk. Hence h6k(m− 2)=(m− 1) and

NO=NHA = (N1 + N2 + h)=(N1 + N2)61 + h=(2k)

6 1 + (m− 2)=(2m− 2)

= 3
2 − 1=(2m− 2):

Now we consider the case that there is an open time slot after implementing Step 2 of
algorithm HA. Let It be this time slot. We divide the tasks into three groups: (S1) small
tasks completed before It , i.e. in the closed time slots; (S2) small tasks rescheduled
at or after It except the small task Tjs (if any) from Step 4; (L) large tasks scheduled
and the small task Tjs (if any) from Step 4. The tasks of (S1) have due dates smaller
than t, and we can use Theorem 8. The tasks of (S2) have due dates at least t, and
all of the small tasks with due dates at least t are accepted. Let kS2 be the number of
time slots occupied by the tasks of (S2). Each of these time slots contains at least two
tasks. Let NS1, NS2 and NL be the number of tasks in (S1), (S2) and (L), respectively.
Then, NHA =NS1 + NS2 + NL.
We consider the following three cases: (a) task Tjs shares a time slot with a large

task; (b) task Tjs stays alone; and (c) there is no task Tjs .
We start with the last case. Take the optimal schedule. Assume that h1 more tasks are

accepted in the 7rst t−1 time slots, and h2 more tasks are accepted after time t−1. Then
NO6NHA+h1+h2. Analogous to the above analysis, we get h16(t−1)(m−2)=(m−1).

330 A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335

From NS1¿2(t − 1) (there are t − 1 time slots), we have

(NS1 + h1)=NS1 6 3
2 − 1=(2m− 2):

In the following we prove (NS2 + NL + h2)=(NS2 + NL)6 3
2 − 1=(2m − 2) when m is

even. Suppose that it does not hold. Then

h2 ¿ (m− 2)(NS2 + NL)=(2m− 2): (1)

Tasks in (S2) and (L) occupy kS2+NL time slots, at most one of which has free space
no more than m=2 (free space is the number of idle processors at the time). Since time
slot It is open, the lost tasks with due date at least t are large tasks. It implies that the
h2 extra tasks accepted in the optimal schedule are large tasks, each of which requires
at least m=2 + 1 processors (m is even). Since at most kS2 + NL large tasks can be
assigned to kS2 + NL time slots, h26kS2.
If we put any of the h2 extra task into a time slot occupied by tasks of (S2) and

(L), the total size of tasks is at least m+ 1. Therefore,

h2(m+ 1) + (NL + kS2 − h2)(m=2 + 1)6m(NL + kS2);

or simplifying

h2 6 (m− 2)(NL + kS2)=m: (2)

Note that NS2¿2kS2. Combining (1) and (2), we have NS2¡(m − 2)NL. From (1),
h2¿NS2=2¿kS2. Then h2¿kS2. It is a contradiction. Hence, when m is even,

(NS2 + NL + h2)=(NS2 + NL)6 3
2 − 1=(2m− 2)

and

NO=NHA = (NS1 + h1 + NS2 + NL + h2)=(NS1 + NS2 + NL)

6 3
2 − 1=(2m− 2):

When m is odd, we can prove (NS2 + NL + h2)=(NS2 + NL)6 3
2 − 1=(2m). If it is not

true, then

h2 ¿ (m− 1)(NS2 + NL)=(2m): (3)

On the other hand, similar to the above we have

h2(m+ 1) + (NL + kS2 − h2)(m+ 1)=26 m(NL + kS2)

or

h2 6 (m− 1)(NL + kS2)=(m+ 1): (4)

Combining (3) and (4), and noting that NS2¿2kS2, we get h2¿kS2. It is a contradiction.
Thus,

NO=NHA = (NS1 + h1 + NS2 + NL + h2)=(NS1 + NS2 + NL)6 3
2 − 1=(2m):

Finally, in case (a) we regard the time slot with js as one of the slots constructed by
the small tasks of (S2), and in case (b) we can regard the time slot with js as one

A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335 331

of the slots constructed by the large tasks of (L). The above analysis remains valid in
both cases.

3. Scheduling dedicated tasks

In the dedicated problem, the diLerent aspect from the parallel problem is that each
task Tj requires for its processing a set �j of processors. Consider the special case that
all tasks have due date D=1, denoted by P(1) (P|6xj; pj =1; d(Tj)= 1|∑ IUj). In the
following we investigate the relationship between P(1) and MC (Maximum Clique).
A P(1) instance: n tasks with unit processing time are given, each of which requires

a subset �j of processors. The common due date is 1. The goal is to schedule as many
early tasks as possible.
An MC instance: A graph G(V; E) is given, where |V |= n. The goal is to 7nd a

Maximum Clique, i.e., a subset V ′ ⊆V such that any two vertices in V ′ are joined by
an edge in E and |V | is maximum.
P(1)→MC: Suppose we have a P(1) instance. Now we construct an MC instance.

Each task corresponds to a vertex. Two vertices are adjacent if and only if the two
corresponding tasks are compatible (do not share any processors). Then scheduling
maximum number of tasks in the time slot [0; 1] is equivalent to 7nding a maximum
clique in the graph.
MC→P(1): Suppose we have an MC instance. Consider the complementary graph

IG(V; IE), in which each vertex Vi corresponds to a task Ti and each edge ej corresponds
to a processor j. If Vi is a vertex of edge ej, then the task Ti requires the processor
j for its processing. Moreover, the degree of a vertex in the complementary graph is
just the number of processors the corresponding task requires. Obviously the number
of processors is no more than n(n − 1)=2, where n is the number of vertices (tasks).
Then 7nding a maximum clique from graph G(V; E) is equivalent to scheduling as
many tasks as possible in the time slot [0; 1]. Furthermore, the optimal value of MC
is the same as that of P(1).

Theorem 11. Unless NP=ZPP, P(1) is not approximable within m1=2−� for any given
small positive number �.

Proof. Assume that there exists a polynomial time algorithm with a worst-case ratio
m1=2−�0 for some number �0¿0 for problem P(1). Then for any MC instance this algo-
rithm can approximate MC with a worst-case ratio |E|1=2−�0 where |E| is the number
of edges. Note that |E|6n(n − 1)=2, where n is the number of vertices. Thus, the
worst-case ratio of the algorithm is at most n1−2�0 . However, Hastad [8] showed that
for Maximum Clique problem, there does not exist a polynomial time algorithm with
a worst-case ratio n1−� for any given small positive number �, unless NP=ZPP. It is
a contradiction. Therefore, the theorem holds.

Clearly the lower bound holds for the general problem P|6xj; pj =1|∑ IUj. We 7rst
consider the case that all tasks have a common due date D¿1.

332 A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335

Algorithm. FFIf (First Fit Increasing for 6xj)
Sort the tasks in non-decreasing order of the number of processors they require
such that if i¡j, |�i|6|�j|. Arrange the tasks from the list with First Fit before
time D. If a task can not be completed before or at time D, it is lost (will not be
processed).

As de7ned before, denote by NO and NFFIf the number of early tasks scheduled by
an optimal algorithm and by algorithm FFIf, respectively.

Theorem 12. For problem P|6xj; pj =1; dj =D|∑ IUj, FFIf has a worst-case ratio no
more than

√
m+ 1 but at least

√
m.

Proof. Let Lt and L∗t be the set of tasks scheduled in time slot It = [t − 1; t] in
the FFIf schedule and an optimal schedule, respectively, where t=1; : : : ; D. Let lost∗t
be the tasks in L∗t , which are lost in the FFIf schedule. Without loss of generality,
assume that there are k tasks in Lt , denoted by T1; : : : ; Tk , and |�1|6|�2|6 · · ·6|�k |.
Clearly any task in lost∗t is blocked by some task in Lt . Let B∗

1 be the tasks in lost∗t
blocked by T1. For i=2; : : : ; k, denote by B∗

i the tasks in lost∗t −(B∗
1∪· · ·∪B∗

i−1), which
are blocked by Ti. If |B∗

i |6
√
m, |lost∗t |6

√
m|Lt |. Then we have NO6(

√
m+ 1)NFFIf .

The worst-case ratio of algorithm FFIf is not greater than
√
m + 1. In the following

we prove that |B∗
i |6

√
m.

Note that |B∗
i |6min {|�i|; m=|�i|}. It can be observed from the following facts:

• Ti occupies |�i| processors. By removing Ti, at most |�i| lost tasks can be scheduled.
Thus |B∗

i |6|�i|.
• For each lost task Tj ∈B∗

i , |�j|¿|�i|. Thus at most m=|�i| lost tasks can be scheduled
by removing task Ti.

Then |B∗
i |6min{|�i|; m=|�i|}6

√
m.

The following simple instance shows that the worst-case ratio RFFIf¿
√
m. Given√

m + 1 tasks, each of which has |�j|=
√
m and the common due date is 1. The last√

m tasks are compatible with each other, but are incompatible with the 7rst one. Then
NO =

√
m and NFFIf =1.

The above bounds are valid for general m. However, for some speci7ed m, the
algorithm may have a better performance ratio. It is trivial that for m=2 the algorithm
provides an optimal schedule. For m=3, the ratio is 4

3 , which can be proved below.

Lemma 13. FFIf has a worst-case ratio 4
3 for m=3.

Proof. The following instance shows that the worst-case ratio of FFIf for m=3 is
at least 4

3 . There are four tasks T1; T2; T3; T4, where �1 = {1}, �2 = {3}, �3 = {2; 3} and
�4 = {1; 2}. The common due date is two. In the optimal schedule all tasks can be
executed to meet the due date, whereas in the FFIf schedule, T3 or T4 gets lost.

A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335 333

In the following we prove that 4
3 is an upper bound of the worst-case ratio of algo-

rithm FFIf. Consider the minimum counterexample in terms of the number of tasks. Let
T be the task set in the counterexample, i.e., NO(T)=NFFIf(T)¿

4
3 and |T | is minimum.

The tasks can be divided into three groups G1, G2 and G3, where Gi = {Tj‖�j|= i} for
i=1; 2; 3.
• We 7rst prove that in the counterexample, G3 = ∅. If it is not true, let Tp ∈G3. If Tp
is an early task in an optimal schedule, we can construct an instance T ′ as follows:
removing task Tp from T and decreasing the common due date by 1. Obviously,
for instance T ′, the optimal value NO(T ′)=NO(T)−1 and NFFIf(T

′)6NFFIf(T)−1.
NFFIf(T

′)=NO(T ′)¿ 4
3 . The number of tasks in T ′ is smaller than that in T . It conSicts

with the assumption that T is a smallest set . If Tp is lost in an optimal schedule,
we construct an set T ′ by removing task Tp from T . There exists a counterexample
with a smaller task set, which causes a contradiction too.

• Next, all tasks in G1 are early tasks. In case that some task in G1 is lost, removing
such a task results in a smaller counterexample in terms of number of tasks.

• Furthermore, in the schedule by FFIf, at any moment at most one processor is
idle. If at some time (no more than D) all the three processors are idle, no tasks
get lost and then the schedule is optimal. If at some time two processors are idle,
without loss of generality, assume that the two idle processors are 1 and 2. Then
processor 3 is always busy during the time [0; D]. Let Tq be a lost task in the FFIf
schedule. Clearly Tq requires processor 3. Note that in an optimal schedule there
must be a lost task which requires processor 3, since the number of tasks requiring
processor 3 is more than D. After some necessary exchanges, Tq is also a lost
task in an optimal schedule. Removing Tq we get a smaller counterexample which
induces a contradiction.

Let NO1 and NO2 be the number of early tasks in an optimal schedule, which
belong to G1 and G2, respectively. Let NF1 and NF2 be the number of early tasks
involved in the FFIf schedule, which belong to G1 and G2, respectively. Note that
NO1 =NF1. Then NO(T)=NO1+NO2 and NFFIf(T)=NO1+NF2. In the counterexample,
NO(T)=NFFIf(T)¿

4
3 . It implies that 3NO2¿NO1+4NF2. Recall that in the FFIf schedule

at any time at most one processor is idle. In any unit time slot if there is at most one
task of G1, a task of G2 must be scheduled at the moment. There are at least D−NO1=2
such unit time slots, i.e., NF2¿D− NO1=2. Then we have 3NO2¿4D− NO1. Note that
NO1 + 2NO263D. Thus NO2¿D. It is impossible. Therefore the lemma holds.

Finally, we consider the general case that each task has individual due date.

Algorithm. LFIf (Latest Fit Increasing)
Sort the tasks in non-decreasing order of the number of processors they require
such that if i¡j then |�i|6|�j|. Arrange the tasks from the list with Latest Fit
before their due dates d(Tj). If a task can not be arranged to meet its due date, it
is lost (will not be processed).

334 A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335

Theorem 14. LFIf has a worst-case ratio no more than
√
m+ 1 but at least

√
m.

Proof. The proof is similar to the one of Theorem 12.

4. Conclusions

In this paper we have considered the scheduling problem to maximize the number
of early multiprocessor tasks on both dedicated processors and parallel processors. For
the parallel model, several heuristics have been proposed and analyzed. For general m,
the best algorithm we have obtained has a worst-case ratio no more than 3

2 , and this
bound is asymptotically tight. For the dedicated model, no polynomial-time algorithms
can have a worst-case ratio m1=2−� for any �¿0, while we have shown that a greedy
algorithm has a worst-case ratio at most

√
m+1. Although multiprocessor task schedul-

ing has been studied extensively, the objective of maximizing throughput is new. Our
work raises the following questions: For the parallel variant, is there a PTAS or is it
APX -Hard? How is the approximability for the general case that the processing times
of tasks are non-identical? Another interesting question is designing on-line algorithms
for the problem.

Acknowledgements

We would like to thank Klaus Jansen for valuable discussions.

References

[1] P. Brucker, Scheduling Algorithms, Springer, Berlin, 1998, pp. 217–218.
[2] X. Cai, C.-Y. Lee, C.-L. Li, Minimizing total completion time in two-processor task systems with

prespeci7ed processor allocation, Naval Res. Logist. 45 (1998) 231–242.
[3] E.G. CoLman, J.Y.-T. Leung, D.W. Ting, Bin packing: maximizing the number of pieces packed, Acta

Inform. 9 (1978) 263–271.
[4] M. Drozdowski, Scheduling multiprocessor tasks—an overview, European J. Oper. Res. 94 (1996)

215–230.
[5] A. Feldmann, J. Sgall, S.-H. Teng, Dynamic scheduling on parallel machines, Theoret. Comput. Sci.

130 (1994) 49–72.
[6] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

Freeman, San Francisco, CA, 1979.
[7] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in

deterministic scheduling: a survey, Ann. Discrete Math. 5 (1979) 287–326.
[8] J. Hastad, Clique is hard to approximate within n1−�, Acta Math. 182 (1999) 105–142.
[9] H. Hoogeveen, C.N. Potts, G.J. Woeginger, On-line scheduling on a single machine: maximizing the

number of early jobs, Oper. Res. Lett. 27 (2000) 193–197.
[10] J.A. Hoogeveen, S.L. Van de Velde, B. Veltman, Complexity of scheduling multiprocessor tasks with

prespeci7ed processor allocations, Discrete Appl. Math. 55 (1994) 259–272.
[11] H. Kellerer, A polynomial time approximation scheme for the multiple knapsack problem,

RANDOM-APPROX, 1999, pp. 51–62.
[12] E.L. Lawler, Sequencing to minimize the weighted number of tardy jobs, RAIRO Recherche OpXera. 10

(1976) 27–33.

A.V. Fishkin, G. Zhang / Theoretical Computer Science 302 (2003) 319–335 335

[13] E.L. Lloyd, Concurrent task systems, Oper. Res. 29 (1981) 189–201.
[14] C.L. Monma, Linear-time algorithms for scheduling on parallel processors, Oper. Res. 37 (1982)

116–124.
[15] J. Turek, W. Ludwig, J. Wolf, P. Yu, Scheduling parallel tasks to minimize average response times,

Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, 1994, Arlington, Virginiia, ACM=SIAM, pp.
112–121.

	On maximizing the throughput ofmultiprocessor tasks
	Introduction
	Known results
	Our results

	Scheduling parallel tasks
	Scheduling dedicated tasks
	Conclusions
	Acknowledgements
	References

