
Pergamon
Computers Math. Applic. Vol. 27, No. 9110, pp. 53-58, 1994

Copyright@1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

089%1221(94)E0048-0
0898-1221/94 $7.00 + 0.00

Dynamic Programming and
Graph Optimization Problems

T. C. Hu AND J. D. MORGENTHALER
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093-0114, U.S.A.

Abstract-several classes of graph optimization problems, which can be solved using dynamic
programming, are known to have more efficient tailor-made algorithms. This paper discusses four
such classes and the underlying constraints on their subproblem interrelationships that yield these
efficient algorithms. These classes are also extended to handle more general cost functions.

1. INTRODUCTION

Dynamic programming is a particular way of thinking in problem-solving, just as mathematical

induction is a particular way of proving theorems. Over 40 books (for example [l-6]) and thou-

sands of papers have been written on the subject, making the impact of Bellman’s contribution

on many diverse fields impossible to trace (e.g., [7]).

In the present paper, we shall discuss four classes of graph optimization problems which can

all be solved using dynamic programming. These classes are

(1) Optimum Path Problems

(2) Optimum Binary Tree Problems

(3) Triangulation of a Polygon

(4) Network Partitioning.

Because dynamic programming is such a general principle and can be applied to many problems,

tailor-made algorithms can be more efficient than algorithms based on dynamic programming

alone. We shall discuss such tailor-made algorithms and let the reader decide what special

structures make these improvements possible.

2. OPTIMUM PATH PROBLEMS

Given a graph G = (V, A) with vertices or nodes vu, E V, where i = (1,2,. . . , n) and directed

arcs a,j connecting vi to uj. Length di, is associated with every arc aij E A. We do not require

that dif > 0 or that dii = dji, but we assume that there exists no negative length cycle. The
problem is to find the shortest paths between all pairs of nodes in the graph.

In terms of the shortest path problem, the principle of optimality would be

If vi and vuj are two intermediate nodes in a shortest path, then the subpath

vj must be a shortest path from ‘u, to vj.

from Vi t0

Using this principle recursively, we see that there must be some pairs of nodes, say vk and vl,

for which the shortest path consists of the single arc akl. Such arcs are called basic arcs.

Typeset by AM-w

53

54 T. C. Hu AND J. D. MORGENTHALER

The classical Floyd-Warshall shortest path algorithm [8,9] sums up the total length of a shortest
path from v, to V, consisting of basic arcs and creates a new basic arc aaz with length equal to

the sum of the lengths of those basic arcs. The Floyd-Warshall algorithm can be stated as

dik := miIl(dik, dij + djk), forj=l,..., n, andi,k#j, (1)

and it has a very clever way of keeping track of the intermediate nodes. Operation (1) is called

the triple operation in [lo], since it involves three arcs. The operations min and + can be replaced

by others which maintain a closed semiring, as shown in [ll].

For example, in other optimum path problems, we may want to define the value of a path to

be

L(&b, abcr . . . , ayz) = m=(d,b, &, . . . , dyz), (2)

and seek the path of minimum value. We can solve these problems by modifying the operation

in (1) to be

dik: := min(di,,,max(dij,djk)), for j = 1, . . . , n, and i, k # j. (3)

A natural question is, “What other optimum path problems could be solved by further modifi-

cation of the triple operation?”

Using al, a2, . . , a, to represent the values of m arcs of a path, we can generalize the Floyd-
Warshall algorithm to handle optimum path problems whose values are defined appropriately [12].

For four arcs, with L as the generalized length function, we only require that

L(al,az,as,a4) = L[L(al,a2),L(a3,a4)1,

= L[L(al), L(a2, a3, a4)1,

= -W(al, a2, a3), L(a4)1,

(4)

and

L(%aj) < L(ak,al), if ui < ok, aj 5 al. (5)

3. OPTIMUM BINARY TREES

In this class of problems, we are given a set of square nodes V with a weight Wi > 0 associated
with each square node vi E V. We wish to construct a binary tree with these square nodes as

the leaves. To differentiate them from the square nodes, the internal nodes of this tree are called

circular nodes. The problem is to construct a binary tree such that the sum of the weighted

paths from the root to all the leaves is minimum. Letting li be the number of edges in the path

from the root to leaf vz, we can state our goal as min Ci Wi li.

Here, the dynamic programming principle would be

Any subtree of an optimum tree must be an optimum tree for the set of leaves of that

subtree.

In general, not every pair of square nodes can be combined to form a subtree of two leaves. We
start with the graph G* = (V, I), called the underlying constraint graph, which shows all allowable
node combinations. If square nodes v, and vj are allowed to combine to form a subtree rooted

at the new circular node vi,j, then the underlying constraint graph contains edge eij. Adjacency
in this graph is inherited by the circular nodes in the binary tree as the tree is constructed from

the leaves (square nodes) in bottom-up fashion. When (square or circular) nodes vi and II~ are

combined, parent v,,~ inherits all adjacent nodes from both vi and vJ, creating a new condensed

constraint graph that shows further allowable combinations.

Dynamic Programming 55

If the underlying constraint graph is a complete graph, then the nodes are free to be combined

in any way. In this case, we can use the classical Huffman’s algorithm [13] which always combines

the two nodes with the smallest weights wi and wj and assigns their parent (new circular node

ui,j) the weight wi + wj. If the underlying constraint graph is a chain, then we have the optimum

alphabetic tree problem. Here we can use the Hu-Tucker algorithm [14,15] with time complexity

O(n log T-L).

If the underlying constraint graph is an arbitrary graph, we could in principle, successively

construct optimum subtrees and merge them into an optimum tree with all leaves corresponding

to the square nodes. However, the work to construct the table could be prohibitive.

A natural question is, “What cost functions enable us to use the same procedures as Huffman

and Hu-Tucker?” This was answered in [16] for a class of functions called regular functions.

In other applications [17], the cost function may be very similar to the cost function of con-

structing a binary tree, namely

where cik is the cost of the subtree containing square nodes vi through Vk, and Wik = ciTi wj.

If the ?&k satisfy certain conditions, say

%b + wed _ wbc + wad, < (7)

which in turn implies

Cab + ccd 5 cbc + Cad, (8)

then the straight 0(n3) dynamic program can be made 0(n2) as shown by Knuth [18] and

Yao [17].
This kind of min-cost alphabetic binary tree is, in a sense, a generalization of a binary search

tree used to search for an item from among n items already sorted alphabetically on a tape. If

we add the cost of moving a “read head” along the tape, in addition to the cost of comparisons,

then we need a hybrid of a complete binary search tree and a linear sequential search tree [19].

4. POLYGON TRIANGULATION

Given a convex polygon P with n sides, a “partitioning” of P into n-2 nonoverlapping triangles

whose vertices are vertices of P is called a triangulation or tiling, and every triangle is a tile.

Every possible tile has a given arbitrary cost. The problem is to find a tiling of P such that

the sum of the costs of the tiles used is minimum. The name “tiling” comes from the intuitive

meaning of tiling the floor of a convex room with triangular tiles.

For polygon triangulation, we can state the principle of optimality as:

Any subpolygon of an optimally partitioned convex polygon must be partitioned opti-

mally.

The problem can be formulated as a linear programming problem with special structure such

that the extreme feasible solutions all have integer components. The special structure of the

matrix of this linear program enables us to develop a recursive 0(n3) algorithm [20].
An interesting special case of this problem is to find the order of multiplication of n rectangular

matrices that minimizes the total number of multiplications. Here, a matrix with dimensions
p x q is represented by an edge whose two end vertices have weights p and q. The matrix chain

is represented by a sequence of edges (p x q), (q x T), (T- x s), (s x t) . . . (y x z) and the resulting
matrix is of dimension p x Z. Thus, the matrix chain of n - 1 matrices is represented by a polygon
of n edges, where the multiplication of a (p x q) matrix with a (q x T) matrix is associated with

56 T. C. HIJ AND J. D. MORGENTHALER

a triangle cost of (p ’ q . r). We have an n-sided convex polygon, where every vertex has weight

wi, and triangle IJ$Jjvk has cost (Wi . Wj * wk). A straight dynamic programming table build-up

would result in a O(n3) algorithm, but a special tailor-made algorithm yields O(nlogn) (21,221,

and a linear algorithm with error bound [23,24].

In a sense, the polygon triangulation problem is somewhat like the alphabetic binary tree

problem, except that the “underlying constraint graph” is a cycle instead of a chain. Also, the

elementary object is an edge with weights wi and wj, not a node. When every node has two

weights (a left weight and a right weight), we can also construct an optimum binary tree in 0(n2)

time [25].

5. NETWORK PARTITIONING

Given a graph N = (V,d), called a network, with n nodes and where every arc aij E A has

a positive integer capacity CQ E Cji [26]. The multiterminal flow problem [27] is to determine

the maximum flow between every pair of nodes in the network. Due to the Max-Flow Min-Cut

theorem [28,29], the maximum flow value between each of the (I) different pairs of nodes is equal

to the minimum cut separating that pair of nodes. A cut is a partitioning of V into two proper
subsets X and x’, where the value (capacity) of the cut is defined to be

C(X,rr) = -+j+j: where (i E X, j E x).

As shown in [27], a subset of n - 1 noncrossing cuts among the (g) minimum cuts is enough

to determine all (t) maximum flows. Two cuts (X,x) and (Y,Y) cross each other if each of the
--

four sets X n Y, X n Y, X ~1 Y, and x n f7 is nonempty. A set of cuts is non-crossing if no two

cuts in the set cross each other.

It can be shown that there is a one-to-one correspondence between any n - 1 noncrossing cuts

and a tree. The so-called Gomory-Hu cut tree corresponds to such a set of n - 1 noncrossing cuts

where the total sum of the cut values is a minimum.

In this case, the dynamic programming principle would be

If a cut (X,x) is selected to be one of the tree cuts partitioning V, then the subsets X

and x must be partitioned optimally.

Only n - 1 maximum flow computations [30,31] are needed to determine the n - 1 minimum

cuts of the Gomory-Hu cut tree. Once we have this tree, the minimum cut partitioning vi and vj

is simply the tree arc with the minimum value on the unique path from vi to vj in the cut tree.

In many applications, the value of a cut (X,x) is defined differently [32-341. For example, we

can define the value to be

C(X,X) = c Cij

(icx, jE’j7) 1x1 .IXl’

We may still want to find the n - 1 minimum cuts which separate the (;) different pairs of nodes.

However, there are 2+’ - 1 cuts in an n-node network. A straight-forward dynamic program-

ming algorithm would require too much time and space.

Assume the values of all cuts are defined arbitrarily, and we have a subroutine which can find

the minimum cut separating a given pair of nodes. How many times do we have to call this

subrout,ine so that we know the minimum cut separating any pair of nodes? The answer is that

we need to use the subroutine only n - 1 times to construct a tree where each internal node of
the tree corresponds to a cut, and every leaf of the tree corresponds to a node in the original
network. The minimum cut separating a leaf vi and a leaf vj is the least common ancestor of ZI%

and l/j [35].

Dynamic Programming 57

6. FINAL REMARKS

Dynamic programming is based on a simple and yet profound idea which cannot be totally

formalized. This makes it unlike greedy algorithms, which are based on the theory of gree-

doids [36]. In a nutshell, dynamic programming is the art of decomposing a complex problem

into subproblems and combining the optimum solutions to these subproblems without duplication

of computations. The success of dynamic programming lies in the fact that an optimum solution

to a subproblem usually depends only on the optimum values of adjacent subproblems and not

on the structure of these adjacent subproblems.

In graph terminology, we may consider an elementary subproblem as a node vi, and the compu-

tational effort to solve the subproblem as weight wi. The interrelationship between the subprob-

lems is the underlying constraint graph showing which subproblems (nodes) can be combined.

The final goal is to successively cluster all the nodes of the underlying constraint graph into one

node.
Recent efforts to implement dynamic programming algorithms in the framework of parallel

computation [37-391 will undoubtedly open another horizon for dynamic programming. In clos-

ing, the following caption from the chapter on dynamic programming in [lo] is dedicated to the

memory of Dr. Richard E. Bellman.

Live optimally today, for today is the first day of the rest of your life.

REFERENCES

3.

4.

5.
6.

7.

a.
9.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, (1957).
R. Bellman and S.E. Dreyfuss, Applied Dynamic Programming, Princeton University Press, Princeton, NJ,
(1962).
E.V. Denardo, Dynamic Programming: Models and Applications, Prentice-Hall, Englewood Hills, NJ,
(1982).
S.E. Dreyfuss and A.M. Law, The Art and Theory of Dynamic Programming, Academic Press, New York,
(1977).
G.L. Nemhauser, An Introduction to Dynamic Programming, John Wiley & Sons, New York, (1966).
M. Sniedovich, Dynamic Programming, Pure and Applied Mathematics: A Series of Monographs and
Textbooks, Marcel Dekker, New York, (1992).
A. Lew, Richard Bellman’s contribution to computer science, Math Analysis and Applications 119 (l/2),

9&96 (1986).
R.W. Floyd, Algorithm 97, Shortest path, Communications of the ACM 5, 345 (1962).
S. Warshall, A theorem on Boolean matrices, Journal of the ACM 9, 11-12 (1962).
T.C. Hu, Combinatorial Algorithms, Addison-Wesley, Reading, MA, (1982).
A.V. Aho, J.E. Hopcraft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addi-
son-Wesley, Reading, MA, (1974).
V. Klee and D. Larman, Use of Floyd’s algorithm to find shortest restricted paths, Annals of Discrete
Mathematics 4, 237-249 (1979).
D.A. Huffman, A method for the construction of minimum redundancy codes, Proceedings of the IRE 40,
1098-1101 (1952).
T.C. Hu and A.C. Tucker, Optimal computer search trees and variable-length alphabetic codes, SIAM
Journal on Applied Mathematics 21 (4), 514-532 (1971).
D.E. Knuth, The Art of Computer Programming, Volume ZZZ: Sorting and Searching, Addison-Wesley,
Reading, MA, (1973).
T.C. Hu, D.J. Kleitman and J.K. Tamaki, Binary trees optimum under various criteria, SZAM Journal on
Applied Mathematics 37 (2), 246-256 (1979).
F.F. Yao, Speed-up in dynamic programming, SIAM Journal on Algebraic Discrete Methods 3, 532-540
(1982).
D.E. Knuth, Optimum binary search trees, Acta Znformatica 1, 14-25 (1971).
T.C. Hu and M.L. Wachs, Binary search on a tape, SIAM Journal on Computing 16, 573-590 (1987).
G.B. Dantzig, A.J. Hoffman and T.C. Hu, Triangulations (tilings) and certain block triangular matrices,
Mathematical Programming 31 (1-14) (1985).
T.C. Hu and M.T. Shing, An optimum algorithm for matrix chain product, part I, SIAM Journal on
Computing 11 (2), 362-373 (1982).

T.C. Hu and M.T. Shing, An optimum algorithm for matrix chain product, part II, SIAM Jownal on
Computing 13 (2), 228-251 (1984).

58 T. C. Hu AND J. D. MORGENTHALER

23. F.Y. Chin, An O(n) algorithm for determining near-optimal computation order of matrix chain products.,
Communications of the ACM 21 (7), 544-549 (1978).

24. T.C. Hu and M.T. Shing, An O(n) algorithm to find a near-optimum partition of a convex polygon, Journal
of Algorithms 2, 122-138 (1981).

25. M.T. Shing, Optimum ordered bi-weighted binary trees, Information Processing Letters 17 (2), 67-70
(1983).

26. R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Netzvorlc Flows: Theory, Algorithms and Applications, Prentice
Hall, Englewood Cliffs, NJ, (1993).

27. R.E. Gomory and T.C. Hu, Multi-terminal network flows, SIAM Jownal on Applied Mathematics 9 (4),
551-570 (1961).

28. L.R. Ford and D.R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics 8,
399-404 (1956).

29. L.R. Ford and D.R. Fulkerson, Flozus in Netzuorlcs, Princeton University Press, Princeton, NJ, (1962).
30. D. Gusfield, Very simple methods for all pairs network flow analysis, SIAM Jownal on Computing 19 (l),

143-155 (1990).
31. R. Hassin, Solution basis of multi-terminal cut problems, Mathematics of Operation Research 13 (4), 535-542

(1988).
32. C.K. Cheng and T.C. Hu, Maximum concurrent flow and minimum cut, Algorithmica 8, 233-249 (1992).
33. T.C. Hu and E.S. Kuh, Editors, VLSI Layout: Theory and Design, IEEE Press, New York, (1985).
34. T. Lengauer, Combinatorial Algorithms for Integrated Circzlit Layout, John Wiley & Sons, Chichester, West

Sussex, England, (1990).
35. C.K. Cheng and T.C. Hu, Ancestor tree for arbitrary multi-terminal cut functions, In Integer Programming

and Combinatorial Optimization, (Edited by R. Kannan and W.R. Pulleyblank), University of Waterloo
Press (1990); Extended version: Annuls of Operations Research 33, pp. 199-213, (1991).

36. B. Korte, L. Lov&z and R. Schrader, Greedoids, Springer-Verlag, Berlin, (1991).
37. D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Compzltution, Prentice Hall, Englewood Cliffs,

NJ, (1989).
38. P.G. Bradford, Efficient parallel dynamic programming, Technical Report 352, Department of Computer

Science, Indiana University, (April 1992).
39. P. Ramanan, An efficient algorithm for finding an optimal order of computing a matrix chain product,

Technical Report WSUCS-92-2, Department of Computer Science, Wichita State University, (1992).

