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a b s t r a c t

We propose a lattice Boltzmann algorithm for an average pressure boundary condition at
outlets in pipe flow systems. The advantage of this boundary condition is that only the
average pressure is used to recover the non-trivial flow fields. The asymptotic analysis
shows that this algorithmworks for general curved boundaries and renders a second order
accurate velocity and a first order accurate pressure approximation of the incompressible
Navier–Stokes solution. Here, we verify the accuracy by numerical simulations of a
Poiseuille flow and a less symmetric flow with non-trivial pressure field in channels
inclined with arbitrary angle, and flows in a pipe with three outlets.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For incompressible Navier–Stokes flows, the fluid velocity u and pressure p are found from the governing equations (in
non-dimensional form)

∇ ·u = 0, ∂tu+ (u · ∇)u+∇p = ν∇2u+ G, u|t=0 = ψ, (1)

where ν is the fluid shear viscosity, ψ : Ω → Rd and G : [0, T ] × Ω → Rd represent a divergence-free initial velocity
field and a source term respectively. One of the non-Dirichlet boundary conditions is an outflow condition. Since this kind
of boundary condition is not set by nature and the physics just provides some observable guidelines, appropriate outflow
conditions are difficult to construct. Based on the experience of successful simulations, Gresho [1,2] proposed a type of open
boundary condition

− pn+ ν
∂u
∂n
= F , (2)

where F is a prescribed physical quantity depending on the flow typewhich contains also curvature terms in the case of non-
planar boundaries. Further, Heywood et al. [3] carried out a systematic numerical investigation of flows around junctions
in pipe systems, which need to be truncated at outlets where appropriate artificial boundary conditions must be imposed.
They found that F is related to the average pressure, leading to a hydrodynamic pressure drop condition

− pn+ ν
∂u
∂n
= −P̄n. (3)

Relation (3) is a natural boundary condition in the proper variational form of the Navier–Stokes equation (1), when the finite
element method is applied. The numerical experiments in [3] show that the position of the truncation does not significantly
influence the inner flow with this type of pressure boundary condition. Typically P̄ is a given constant for stationary flows
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Fig. 1. Left: boundary aligned with grid lines. In the case of the D2Q9 discrete velocity model, there are three incoming directions c1 , c5 and c8 at each
boundary node on the boundary segment S1 , in particular c1 = −n. Right: general curved boundary ∂Ω . The velocity ci is incoming at xj and xw is the
corresponding outer-neighbor node. n is the unit outer normal direction at the intersection point x̄ji . G(xj) is the closest direction to−n at the boundary
segment near xj . The black and hollow balls represent fluid and wall nodes respectively.

and a prescribed function of time for transient flows. Moreover, the mathematical well-posedness of the initial boundary
value problem (1), (3) togetherwith the no-slip condition of the bounding pipewalls has been rigorously proved byGaldi [4].
It is worthmentioning that the outflow condition (3) only demands prescription of the average pressure and yields a non-

trivial pressure profile on the boundary. Its success in simulations of pipe systems with the finite element method suggests
that it is a reasonable outflow condition for the incompressible Navier–Stokes equation. This is our motivation to construct
its lattice Boltzmann implementation.
Most previous research concerned with pressure conditions concentrates on Dirichlet conditions where the pressure

profile is prescribed along the boundary. One can refer to extrapolation methods proposed by Guo et al. [5,6] and the
algorithm PAB (pressure anti-bounce back) suggested by Ginzburg et al. [7]. However, the Dirichlet condition for pressure
(see the useful references [5–7]) is not the in the focus of this paper.
In [8], Verhaeghe et al. propose a lattice Boltzmann algorithm by using the average pressure alone as outflow condition

inmicrochannels. There, the unknown lattice Boltzmann distributions are extrapolated and renormalized to ensure that the
pressure is attained on average along the boundary while being consistent to the flow field inside the channel.
A lattice Boltzmann realization for the pressure drop outflow condition (3) is also presented in [9]. A key requirement is

that the normal direction is one of the discrete velocity directions (for a 2D sketch see the left part of Fig. 1). The velocity at
the boundary node xj is extrapolated using two fluid neighbor nodes xj−n and xj−2n, while the density is determined using
the boundary condition (3). As a result, the velocity and pressure field are obtainedwith accuracy order 2 and 1 respectively.
However, both approaches [8,9] require that channels or pipes are parallel to a coordinate axis with perpendicular inlet

and outlet in order to guarantee that the boundary is aligned with the lattice grid lines. Along a general curved boundary,
the normal direction varies and is no longer one of the particle velocity directions. The ideas in [8,9] thus fail and must be
modified. In this paper, we intend to give a lattice Boltzmann algorithm which yields the outflow condition (3) on general
curved boundaries. The structure of the paper is as follows. Section 2 introduces the lattice Boltzmann methods which are
compatible to the boundary algorithm proposed in Section 3. Section 4 shows three numerical tests. The conclusion and
discussion are given in Section 5.

2. Lattice Boltzmann methods

We consider the standard lattice Boltzmann equation,

fi(n+ 1, j + ci) = fi(n, j)+ (A(f eq − f ))i(n, j)+ gi(n, j), (4)

where fi(n, j) represent the density distributions of the particles which are moving with velocity ci at time level tn = n4t
and node xj = hj for a given temporal step ∆t and a spatial grid size h with n ∈ N and j ∈ Zd. The time step is
coupled with the grid size by ∆t ∼ h2 (see the detailed discussion in [10,11]). The discrete velocity ci is taken from the
set V = {c1, . . . , cN} ⊂ Rd which possesses the symmetry property V = −V and which is compatible with the spatial
lattice hZd in the sense that j+ ci ∈ Zd for every j ∈ Zd and every ci ∈ V. The bold face quantities f and f eq are vectors with
components fi and f

eq
i respectively.

The equilibrium distribution f eqi is taken to be

f eqi = Fi(ρ̂, û), Fi(ρ̂, û) = f ∗i

(
ρ̂ + 3û · ci +

9
2
(û · ci)2 −

3
2
|û|2

)
(5)
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which is a function of the total mass density and the average velocity of the particles

ρ̂ =

N∑
i=1

fi, û =
N∑
i=1

cifi. (6)

Here f ∗i = Fi(1, 0) are the standard lattice Boltzmannweights obeying the symmetry property f
∗

i = f
∗

i∗ where i
∗ is the index

of the velocity vector ci∗ = −ci, and
N∑
i=1

f ∗i = 1,
N∑
i=1

ciαciβ f ∗i =
1
3
δαβ ,

N∑
i=1

ciαciβciγ ciδ f ∗i =
1
9
(δαβδγ δ + δαδδβγ + δαγ δβδ).

Note that the standard D2Q9, D3Q15, D3Q19, and D3Q27 weights fall into this class [12,13].
The collision matrix A ∈ RN×N used in (4) should satisfy the following properties: it should be symmetric and positive

semi-definite with kernel generated by {1, v1, . . . , vd}. Here, the components of the vector 1 ∈ RN are all 1 and vα ∈ Rn is a
vectorwith components (ciα)i=1,...,N . Furtherwe require that for everyα, β ∈ {1, . . . , d} the vectorsΛαβ f ∗with components

(Λαβ f ∗)i =
(
ciαciβ −

1
d
|ci|2

)
f ∗i , i = 1, . . . ,N

are eigenvectors of the collision matrix Awith eigenvalue 1/(3µ), i.e.

AΛαβ f ∗ =
1
3µ
Λαβ f ∗, α, β ∈ {1, . . . , d}. (7)

As shown in [10], this establishes the link to the fluid viscosity ν with the relation ν = µ− 1/6.
The required conditions on the matrix A are satisfied for many widely used collision models, for example MRT models

described in [14]. Also, the well-known BGK model with single relaxation time τ = 3µ can be formulated with an
appropriate matrix A as shown, for example, in [10,15].
Finally, the function gimodels the body force term in (1) with a scaling proportional to h3 (a detailed explanation is given

in [10])

gi(n, j) = c−2s h
3f ∗i ci · G(tn, xj).

3. Boundary algorithm

In the following, we always assume that xj is some boundary node, i.e. a node in the domain Ω for which at least one
neighbor is outside ofΩ . The lattice Boltzmann equation (4) does not prescribe how to compute fi(n+1, j) for those indices
iwhich satisfy xj−ci 6∈ Ω . The corresponding directions ci are called incoming directions at xj .
In order to specify the required values fi(n+1, j), we use the boundary condition (3) which can also be split into a normal

and a tangential component

−p+ ν
∂un
∂n
= −P̄, (8a)

∂ut
∂n
= 0, (8b)

in which t and n indicate the tangential and outer normal directions and components; both t and n are unit vectors.
The normal component of (3), i.e. Eq. (8a), is a natural candidate to specify the incoming information fi(n+ 1, j) for the

direction c̄i which is as normal as possible. In order to make this notion more precise, we construct a function G with the
property that ci = G(xj) is as normal as possible in the following sense: at xj we check the intersection points x̄jk of all the
links with ∂Ω and compare−n(xjk) and c̄k = ck/ ‖ck‖. The index i for which the least norm difference is encountered wins
and we set G(xj) = ci (see Appendix A for a more careful definition).
Usually G(xj) is an incoming direction at node xj . A rare exception is illustrated in the right plot of Fig. 2. Here, the

boundary node has only one incoming direction ci but G(xj) is equal to cn.
A second direction selection function is required to deal with the tangential component (8a) of (3). Here, our basic idea

is to implement the zero slope condition in normal direction by imposing suitably reflected values of the tangential velocity
outside the computational domain so that the normal derivative approximately vanishes at the boundary. In particular, the
value to be prescribed at some outside point xw ∈ Ωc is computed from values inside the domain in a direction which is as
normal as possible. A velocity cp which satisfies these requirements will be denoted cp = P (xw). More specifically, at xw
we follow the velocity directions which point into the domain and select those for which at least two neighboring nodes
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Fig. 2. Illustration of various boundary scenarios for the D2Q9 velocity model. The outer nodes and fluid nodes are represented by ◦ and • respectively. At
a boundary node xj , cn = G(xj) denotes a velocity which is as normal as possible and cp = P (xw) is a velocity which is most appropriate for extrapolating
the velocity at xw . For an incoming direction ci , the left and right plot illustrate the case ci 6= cn while ci = cn and cp 6= cn is shown in the middle.

inΩ are available. If there are several such directions, we choose the one which is closest to −n at the corresponding link
intersection with ∂Ω . The corresponding discrete velocity is denotedP (xw). A more formal definition ofP can be found in
Appendix B.
Of course, it may happen that no direction is found for which two neighboring points of xw are available inΩ . In this case,

the geometry is either very thin or strongly curved and it is recommended to use a finer grid to better resolve the situation.
If this is not feasible, other specifically tailored modifications have to be used. A remedy is also given in Appendix B.
Having introduced the velocity selection functionsP and G, we can now distinguish the relevant cases which can appear

at a general boundary point. To this end, we assume that xj is a boundary node and that ci is an incoming velocity. The
corresponding neighbor outside the domain is denoted xw = xj−ci . We distinguish the case

ci = G(xj) and G(xj) = P (xw) (9)

and the opposite situation

ci 6= G(xj) or G(xj) 6= P (xw). (10)

3.1. Case: ci = G(xj) and G(xj) = P (xw)

By construction, ci is closest to the inner normal direction−n. A 2D example is illustrated in the right plot of Fig. 1. The
particular case that c̄i = ci/ ‖ci‖ is exactly equal to−n, has been studied in [9], however, under the additional restriction that
the grid nodes are located on the boundary. In the boundary algorithm proposed below, this restriction has been removed.
At the node xj , the incoming direction ci will be responsible for the realization of Eq. (8a) using the following boundary

scheme,

fi(n+ 1, j)+ fi∗(n+ 1, j) = fi(n, j)+ fi∗(n, j)+ 2f ∗i (ρ̃(n, j)− ρ̂(n, j)), (11)

inwhich fi∗(n+1, j) is already obtained from the lattice Boltzmann equation (4). The density ρ̃(n, j) represents the estimated
density at xj after imposing the boundary condition (8a). More precisely, following the idea in [9], ρ̃(n, j) is obtained by
interpolating between the values at the intersection point x̄ji and the neighbor node xj+ci . This gives rise to

ρ̃(n, j) =
1

1+ qji
ρ(n, x̄ji)+

qji
1+ qji

ρ̂(n, xj+ci). (12)

Here qji is the scaled distance between x̄ji and the node xj , namely xj = x̄ji + hqjici. Further, the pressure at the intersection
point x̄ji is calculated from the boundary condition,

ρ(n, x̄ji) = 1+ 3h2
(
P̄ + ν(n · ∇)(u · n)(x̄ji)

)
. (13)

The unknown normal stress term is approximated by averaging the non-equilibrium distribution (a variation of the idea
introduced in [16]),

(n · ∇)(u · n)(x̄ji) ≈ −
1
2h2

N∑
k=1

Bk(n)(Ak + Ak∗)f neq(tn, x̄ji), (14)

in which Ak is the kth row of the collision matrix A and Bk are functions from Rd to R defined by

Bk(s) =
c−2s
2

[
(s · ck)2 −

1
d
‖s‖2 ‖ck‖2

]
, k = 1, . . . ,N. (15)



2172 Z. Yang / Computers and Mathematics with Applications 59 (2010) 2168–2177

Finally, the non-equilibrium distribution at the intersection point x̄ji is obtained by

f neq(tn, x̄ji) ≈ (1+ qji)f neq(n, j)− qjif neq(n, j + ci). (16)

The reason why (11) implies that Eq. (8a) can be seen from an asymptotic analysis [10,16,17,9]. Since the difference
of fi + fi∗ between two consecutive time level is of high order h4 and the correction term 2f ∗(ρ̃ − ρ̂) is of order h2, the
scheme (11) leads to the condition (8a) in leading order.

3.2. Case: ci 6= G(xj) or G(xj) 6= P (xw)

This case generally occurs if the incoming velocity ci is rather tangential than normal. However, the opposite may also
happen in some extreme situations as depicted in the middle plot of Fig. 2.
The update formula has the basic form

fi(n+ 1, j) = Fi(ρ̂, û)(n,w)+ f
neq
i (n,w)− (Af neq)i(n,w)+ gi(n,w), (17)

which is obtained by performing a lattice Boltzmann step (4) at the boundary node xj and applying f = f eq + f neq. The
required values at the outer-neighbor node xw are extrapolated. The idea to use extrapolation at the non-fluid node xw and
not at xj is inspired by the paper [6].
Since P (xw)maps the outer-neighbor node xw to an incoming direction cp which guarantees two fluid neighbor nodes

on the corresponding grid line, the fluid velocity and density can be extrapolated to the node xw imposing the Neumann
condition of the tangential velocity component (Eq. (8b)). For convenience, we denote the first fluid neighbor node as
xm = xw+cp . Then we set

ρ̂(n,w) = 2ρ̂(n,m)− ρ̂(n,m+ cp),
gi(n,w) = 2gi(n,m)− gi(n,m+ cp),

û(n,w) =
4qmp
1+ 2qmp

û(n,m)+
1− 2qmp
1+ 2qmp

û(n,m+ cp)−
1

1+ 2qmp

[
γ1tmp +

1
a
(γ2 − bγ1)nmp

]
, (18)

where nmp and tmp are defined as follows: at x̄mp, we split cp = anmp + btmp, where nmp = n(x̄mp) is the unit outer normal
direction and tmp is a tangential direction. In addition, γ1 and γ2 are defined by

γ1 = −b
N∑
k=1

Bk(tmp)(Ak + Ak∗)f neq(tn, x̄mp),

γ2 = −

N∑
k=1

Bk(cp)(Ak + Ak∗)f neq(tn, x̄mp),

(19)

where the non-equilibrium distribution at the intersection point x̄mp is extrapolated similar to (16).
The remaining task is to approximate the non-equilibrium distributions in (17). There are two ways to extrapolate f neq

to xw . First, analogous to the approach for the density ρ̂(n,w), we can approximate the non-equilibrium at xw by

f neq(n,w) = 2f neq(n,m)− f neq(n,m+ cp). (20)

Secondly, if the boundary node xj has a fluid neighbor node along the incoming direction ci, the following approach used
in [6], is also feasible:

f neq(n,w) = 2f neq(n, j)− f neq(n, j + ci). (21)

Note that the second approximation is always possible except in the rare case that ci and ci∗ is a pair of opposite, incoming
directions. In numerical simulations we have found that the second approximation appears to be more stable.
Using standard asymptotic analysis [10,16,17] we can check that the boundary algorithm (11), (17) yields a second order

accurate velocity and a first order accurate pressure.

4. Numerical simulations

4.1. Pressure driven Poiseuille flow in inclined channels

Let θ be the angle between the inclined centerline of the channel and the x-axis. The exact velocity and pressure fields of
the 2D pressure driven Poiseuille flows are given by

u(x, y, t) = ȳ(1− ȳ)4P/(2ν) cos(θ),
v(x, y, t) = −ȳ(1− ȳ)4P/(2ν) sin(θ),
p(x, y, t) = (x cos(θ)− y sin(θ))4P + P0,

(22)
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Fig. 3. Velocity profiles of Poiseuille flow (left) and a flow with non-trivial pressure (right) in a channel inclined with an angle θ = π/6. The arrows
indicate the velocity at each lattice node on a coarse grid h = 1/10 in the computational domain.
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where 4P is a constant pressure drop and ȳ = x sin(θ) + y cos(θ). Obviously the isolines of the exact pressure are
x cos(θ)− y sin(θ) = C . The velocity profile is displayed in the left plot of Fig. 3.
The computational region is restricted to an inclined unit square. At the channel’s rigid walls, the BFL method [18] is

implemented to recover the no-slip boundary condition. The proposed algorithm (11), (17) is implemented at the left and
right boundaries x cos(θ) − y sin(θ) = 0 and x cos(θ) − y sin(θ) = 1. The average pressure is computed from the exact
pressure: P̄0 = P0, P̄1 = P0 + 4P . Changing the size of the constants P0 and4P , we can set the average pressure values at
the boundaries. By determining the numerical error on several grids h ∈ {1/10, 1/20, . . . , 1/70}with different inclination
angles θ ∈ {0, π6 ,

π
11 ,

π
4 ,
11
26π}, we find that the velocity is second order accurate and the pressure first order accurate (see

Fig. 4), which coincides with the predicted accuracy. In cases where the outer normal direction is opposite to an incoming
direction, i.e. θ = 0, π4 , the accuracy is better than the analytic prediction which may be due to the special nature of the
Poiseuille flow: the average pressure is the exact pressure and ∂u

∂n = 0 along the boundary for any angle θ .

4.2. A nonlinear flow

Since the Poiseuille flow is very special, we also test our scheme with a less symmetric flow which has a nonlinear
pressure profile on the boundary. The example has been introduced in [9]. The divergence-free velocity field and the pressure
are prescribed in the domainΩ = [0, 1]2,

u(x, y) =
a
νπ

(
sin(πy)−

2
π

)
sin(πx),

v(x, y) =
a
νπ
(cos(πy)+ 2y) cos(πx).

p(x, y) = a sin(π(x+ y)).

(23)
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Fig. 6. Left: a schematic explanation of the geometry and the parameters for a pipe flow with three outlets. Right: the corresponding velocity profile.

Here a is an arbitrary constant which we set to 3ν in the following tests. Together with the acceleration G = (Gx, Gy)T

Gx = u∂xu+ v∂yu+ aπ cosπ(x− y)− 2a sin(πx),
Gy = u∂xv + v∂yv + aπ cosπ(x+ y)+ 2aπ cos(πx)(cos(πy)+ y),

(24)

we obtain a solution of the incompressible Navier–Stokes equation (1) with suitable Dirichlet velocity conditions at y = 0
and y = 1. The pressure satisfies relation (3) at x = 0 and x = 1. The average pressures are P̄0 at x = 0 and P̄1 at x = 1 with

P̄0 =
2a
π
, P̄1 = −

2a
π
. (25)

Similar to the Poiseuille flow, we simulate this nonlinear flow in a coordinate system rotated with an angle θ . An
exemplary flow profile with θ = π/6 is indicated in the right plot of Fig. 3.
The Dirichlet velocity boundary condition is obtained from the exact values of the velocity field and is realized by the BFL

rule [18]. At the remaining boundaries, the proposed scheme is applied.
In the setup of the lattice Boltzmann method, the velocity set V is of type D2Q9. As collision model, we have used

the MRT model as in [19] with eigenvalues s8 = s9 = 1/τ and the other nonzero eigenvalues close to 1, for example,
s2 = 1.13, s3 = 1.14, s5 = s7 = 1.2.
Thenumerical tests on several grids showa secondorder accurate velocity and a first order accurate pressure. A numerical

order study is given in Fig. 5. The right part of Fig. 5 indicates that the non-trivial pressure on the boundary is resolved using
condition (3) with the given average pressure.

4.3. Pipe flows with three outlets

In this section we simulate stationary flows around a junction in a 2D pipe system. Fig. 6 shows a schematic explanation.
All three outlets have identical width, but are assigned different average pressure values. The right upper and lower outlets
are inclined with different angles, as a model for cases where outlets are not perpendicular to the pipe axis (e.g., systems of
blood vessels which leave the computational box at various angles.).
The lattice Boltzmann setup is the same as in Section 4.2. The flow is initially at rest. At rigid walls, the BFL rule is used

to recover the no-slip condition. The newly developed algorithm is applied to realize the average pressure condition at the
outlets.
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viscous term. The configuration of the flow is similar to the one in Fig. 6 with longer pipes.

The right plot of Fig. 6 illustrates the numerical velocity profile of the flow with a mild viscosity ν = 0.1 on a coarse grid
h = 1/6. The flow streams in at the left outlet (high pressure) and leaves mostly at the right lower outlet due to the bigger
pressure drop compared to the right upper one.
We also compare the net flux with its theoretical value zero on several grids (see right plot of Fig. 7). For several flows

with different shear viscosities, we find that the convergence rate is about 2. Since the net flux is a linear function of the
boundary velocity, the numerical convergence rate supports the analytically predicted accuracy very well. The left plot of
Fig. 7 shows the net flux behavior on the coarse grid h = 1/6 before the flow reaches the stationary state. The net flux is
eventually close to zero after the initial oscillation.

5. Conclusion and discussion

We have constructed a lattice Boltzmann algorithm for the average pressure outflow boundary condition (3). This
algorithm applies to arbitrary boundary shapes and requires only one neighbor fluid node in an incoming direction.
Theoretically, second order accurate velocity and first order accurate pressure fields are recovered for both 2D and 3D flows.
For the practically relevant case of inclined boundaries, the numerical verification is carried out in several 2D tests. The

results for the Poiseuille flow and a more general flow demonstrate the advantage of this boundary condition: the correct
pressure profile on the boundary is recovered, while only the average pressure is prescribed.
We note that, if the viscous term in (3) is dropped, the proposed algorithm actually recovers the following hydrodynamic

condition

p = P̄,
∂ut
∂n
= 0, (26)

and thus imposes a constant pressure on the boundary. Applied to the flow in Fig. 6 on several grids, it leads to a different
flow at the inclined outlets (see Fig. 8). The magnitude of the velocity difference and pressure difference does not decrease
when the grid becomes finer. However, the difference is obvious only in the regions close to the inclined boundaries. At the
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Fig. B.1. A rare situation where the definition of P (xw) is not straightforward. The outer-neighbor nodes and fluid nodes are represented by ◦ and •
respectively. For the outer node xw , only on the ci grid line there is an associated fluid node xj . No second fluid node exists in direction ci .

left outlet, no obvious difference occurs which may be due to the fact that the pressure is almost constant in the stationary
flow.
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Appendix A. Definition of the mapping G

For an arbitrary boundary node xj , we select a velocity direction cn according to the rule∥∥∥∥ cn
‖cn‖
+ njn

∥∥∥∥ = minck∈Vj

{∥∥∥∥ ck
‖ck‖
+ njk

∥∥∥∥} , (A.1)

where Vj is the set of the incoming velocities ci at the boundary node xj or at a close-by neighbor node of xj , njk = n(x̄jk) is
the outer normal direction at the intersection point x̄jk of the line xj − λck (λ ≥ 0) and the boundary ∂Ω . This give rise to
the definition

G(xj) = cn. (A.2)

Note that cn is closest to the inner normal direction−n at the boundary segment near the node xj .

Appendix B. Definition of the mapping P

In general, an outer-neighbor node xw is related to several pairs of boundary nodes and incoming directions, so that
we can define a mapping P which associates xw to an incoming direction cp ensuring that on the corresponding grid line
both nodes xw+cp and xw+2cp are in Ω . Moreover, we select the direction cp to be relatively close to the normal direction.
Altogether,

P (xw) = cp. (B.1)

is defined by∥∥∥∥∥nwp +
cp∥∥cp∥∥

∥∥∥∥∥ = minck∈V

{∥∥∥∥nwk +
ck
‖ck‖

∥∥∥∥ |xw+cp ∈ Ω, xw+2cp ∈ Ω} . (B.2)

A very rare situation might occur (for example at a corner), when the node xw is related to opposite, incoming directions.
Then the set in (B.2) is empty and P is not defined. In 2D, such an example is displayed in Fig. B.1.
To cope with this special case, we seek a velocity direction cp so that the node xw1 = xw+cp is another outer-neighbor

node which has two fluid neighbor nodes on the link of cp. Then we define

P1(xw) = cp. (B.3)
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Accordingly, for achieving the values at xw used in the boundary scheme (17), the extrapolation coefficients change. Now
let xm = xw+2cp , we then set

ρ̂(n,w) = 3ρ̂(n,m)− 2ρ̂(n,m+ cp),
g(n,w) = 3g(n,m)− 2g(n,m+ cp),
f neq(n,w) = 3f neq(n,m)− 2f neq(n,m+ cp),

û(n,w) =
6qmp − 3
2qmp + 1

û(n, j)+
4− 4qmp
2qmp + 1

û(n,m+ cp)−
3

2qmp + 1

[
γ1tmp +

1
a
(γ2 − bγ1)nmp

]
. (B.4)

The formula for γ1 and γ2 is the same as in (19).
In principle, this idea can be repeated by considering xw2 = xw+2cp and P2(xw) = cp. However, if P2 is required, a finer

grid is definitely recommended.
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