DISCRETE APPLIED MATHEMATICS

Notes

Hard cases of the multifacility location problem

Alexander V. Karzanov
Russian Academy of Sciences, Institute for System Analysis, 9, Prospect 60 Let Oktyabrya, Moscow 117312, Russia

Received 26 July 2002; received in revised form 20 May 2003; accepted 26 May 2003

Abstract

Let μ be a rational-valued metric on a finite set T. We consider (a version of) the multifacility location problem: given a finite set $V \supseteq T$ and a function $c:\binom{V}{2} \rightarrow \mathbf{Z}_{+}$, attach each element $x \in V-T$ to an element $\gamma(x) \in T$ minimizing $\sum\left(c(x y) \mu(\gamma(x) \gamma(y)): x y \in\binom{V}{2}\right)$, letting $\gamma(t):=t$ for each $t \in T$. Large classes of metrics μ have been known for which the problem is solvable in polynomial time. On the other hand, Dalhaus et al. (SIAM J. Comput. 23 (4) (1994) 864) showed that if $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ and $\mu\left(t_{i} t_{j}\right)=1$ for all $i \neq j$, then the problem (turning into the minimum 3-terminal cut problem) becomes strongly NP-hard. Extending that result and its generalization in (European J. Combin. 19 (1998) 71), we prove that for μ fixed, the problem is strongly NP-hard if the metric μ is nonmodular or if the underlying graph of μ is nonorientable (in a certain sense).

(c) 2003 Elsevier B.V. All rights reserved.

MSC: 05C12; 90C27; 90B10; 57M20
Keywords: Location problem; Multiterminal (multiway) cut; Metric extension; Modular graph

1. Introduction

A semimetric on a set X is a function $d: X \times X \rightarrow \mathbf{R}_{+}$that establishes distances on the pairs of elements (points) of X satisfying $d(x, x)=0, d(x, y)=d(y, x)$ and $d(x, y)+d(y, z) \geqslant d(x, z)$, for all $x, y, z \in X$. We denote an unordered pair $\{x, y\}$ by $x y$, write $d(x y)$ instead of $d(x, y)$, and denote by $\binom{X}{2}$ the set of pairs $x y$ of distinct elements of X. When $d(x y)>0$ for all $x y \in\binom{X}{2}, d$ is called a metric. A special case is the path metric d^{G} of a connected graph $G=(X, E)$, where $d^{G}(x y)$ is the minimum number of edges of a path in G connecting nodes x and y.

Suppose one is given a metric μ on a finite set T, a larger finite set $V \supseteq T$, and a function $c:\binom{V}{2} \rightarrow \mathbf{Z}_{+}$. One is asked for attaching each element $x \in V-T$ to an element $\gamma(x) \in T$ so as to minimize the value $\sum\left(c(x y) \mu(\gamma(x) \gamma(y)): x y \in\binom{V}{2}\right)$, letting by definition $\gamma(t):=t$ for each $t \in T$. Such a problem is known as a version of the multifacility location problem. (In an interpretation, T is thought of as the set of points, each containing one existing facility, $V-T$ as the set of new facilities that are required to be placed into T, and $c(x y)$ as a measure of mutual communication or supporting task between facilities x and y. See [9].)

This admits a reformulation in terms of metric extensions as follows (see [5,8]). A semimetric m on V is called an extension of μ to V if m coincides with μ within T, and a 0 -extension if, in addition, for each $x \in V$, there is $t \in T$ such that $m(x t)=0$. Then the above task is equivalent to the minimum 0 -extension problem:

Find a 0 -extension m of μ to V such that the value

$$
\begin{equation*}
c m:=\sum\left(c(x y) m(x y): x y \in\binom{V}{2}\right) \text { is as small as possible. } \tag{1.1}
\end{equation*}
$$

[^0]This problem generalizes the well-known multiterminal, or multiway, cut problem. It also arises as a discrete strengthening of the dual of a version of the multiflow maximization problem where the values of partial flows are weighted by a given metric (cf. [5,6]). The complexity of (1.1) varies depending on the input metric μ. Large classes of metrics have been found for which the problem is solvable in polynomial time (see [2,3,5,7]). All those metrics have a common feature: they are modular and their underlying graphs are orientable.

Here a metric μ on T is called modular if any three points $s_{0}, s_{1}, s_{2} \in T$ have a median, a node $z \in T$ satisfying $\mu\left(s_{i} z\right)+\mu\left(z s_{j}\right)=\mu\left(s_{i} s_{j}\right)$ for all $0 \leqslant i<j \leqslant 2$. A graph H is called modular if d^{H} is modular; in particular, H is bipartite. The underlying graph of a metric μ on T is the least graph $H(\mu)=(T, U)$ that enables us to restore μ if we know the distances of its edges. Formally, nodes $x, y \in T$ are adjacent in $H(\mu)$ if and only if each $z \in V-\{x, y\}$ satisfies $\mu(x z)+\mu(z y)>\mu(x y)$ (in other words, no $z \neq x, y$ lies between x and y regarding μ). A graph is called orientable if its edges can be oriented so that for any 4-circuit $C=\left(v_{0}, e_{1}, v_{1}, \ldots, e_{4}, v_{4}=v_{0}\right)$ and $i=1,2$, the edge e_{i} is oriented from v_{i-1} to v_{i} if and only if the opposite edge e_{i+2} is oriented from v_{i+2} to v_{i+1}.

The simplest nonmodular metric is $\mu=d^{K_{3}}$, where K_{n} is the complete graph with n nodes. In this case (1.1) turns into the minimum (capacity) 3-terminal cut problem (3-TERMINAL CUT). Dalhaus et al. [4] showed that the latter is strongly NP-hard. This was extended to the path metrics of more general graphs.

Theorem 1.1 (Karzanov [5, Section 6]). For a fixed connected graph H, problem (1.1) with $\mu=d^{H}$ is strongly NP-hard if H is nonmodular or nonorientable.

In this paper, decreasing the existing gap between the hard and polynomial cases in the problem, we extend Theorem 1.1 to more general metrics as follows.

Theorem 1.2. Problem (1.1) with a fixed rational-valued metric μ is strongly NP-hard if either
(i) μ is modular and $H(\mu)$ is nonorientable, or
(ii) μ is nonmodular.

The intractability of 3-TERMINAL CUT is proved in [4] by use of a reduction from the maximum cut problem (MAX CUT). The crucial point is the construction of a certain "gadget" not obeying the standard submodular relation for graphs with two terminals. Borrowing that idea, paper [5] proves Theorem 1.1 by constructing gadgets with a similar property when problem (1.1) with the path metric of a nonmodular or nonorientable graph H is considered. We show that in the hypotheses of Theorem 1.2 the desired gadgets can be constructed as well, thus proving this theorem.

Section 2 explains how to extend the idea of reduction in [4] to our problem. Using it, we prove part (i) of Theorem 1.2 (which is technically simpler) in Section 3, and prove part (ii) in Section 4.

In what follows the set of 0 -extensions of μ to V is denoted $\operatorname{bxt}^{0}(\mu, V)$, and the minimum value $c m$ in (1.1) by $\tau(V, c, \mu)$. Without loss of generality, we can consider only integer metrics μ (since the metrics μ in Theorem 1.2 are rational, and multiplying μ by a positive integer factor does not affect the problem).

2. Approach

Given a metric μ on T, a set $V \supset T$, a function $\binom{V}{2} \rightarrow \mathbf{Z}_{+}$, and (not necessarily distinct) elements $s, t \in T$ and $x, y \in V-T$, let $\tau(s, x \mid t, y)$ denote the minimum $c m$ among all $m \in \operatorname{Ext}^{0}(\mu, V)$ such that $m(x s)=m(y t)=0$.

The idea of a possible reduction from MAX CUT to (1.1) (naturally generalizing that from MAX CUT to 3-TERMINAL CUT in [4]) is as follows. Suppose that for one or another μ we are able to devise a pair (gadget) (V, c) with specified s, t, x, y satisfying the following condition:
(i) $\tau(s, x \mid t, y)=\tau(s, y \mid t, x)=\hat{\tau}$,
(ii) $\quad \tau(s, x \mid s, y)=\tau(t, x \mid t, y)=\hat{\tau}+\delta \quad$ for some $\delta>0$,
(iii) $\quad \tau\left(s^{\prime}, x \mid t^{\prime}, y\right) \geqslant \hat{\tau}+\delta \quad$ for all other pairs s^{\prime}, t^{\prime} in T,
where $\hat{\tau}$ stands for $\tau(V, c, \mu)$ (an analog of the "violated submodularity" in [4]). Take an instance of (a 2-terminal version of) MAX CUT whose input consists of a graph $\Gamma=(W, Z)$ and specified nodes p, q. It is required to find a subset $X \subset W$ such that $p \in X \nexists q$ and the number of edges of Γ connecting X and $W-X$ is maximum. Similar to the construction in [4], replace each edge $u v \in Z$ by a copy of the gadget, identifying the element x as above with one node among u, v, the
element y with the other node, s with p, and t with q. Also identify the corresponding elements of $T-\{s, t\}$ in these copies. This results in a set \mathscr{V} and a function ζ on the pairs of elements of \mathscr{V} (determined in a natural way by the copies of c when the involved copies of the gadget are glued together). Using (2.1), it is not difficult to conclude that if m is a minimum 0 -extension for μ, \mathscr{V}, ζ, then the set $X:=\{v \in W: m(p v)=0\}$ induces a maximum cardinality cut for Γ, p, q. Therefore, (1.1) for the given μ is NP-hard (as this is so for MAX CUT); moreover, it is strongly NP-hard because the gadget size is a constant depending only on μ.

Thus, our aim is to construct gadgets satisfying (2.1) for the metrics μ as in Theorem 1.2.

3. Modular metrics with nonorientable underlying graphs

In this section we prove Theorem 1.2 in case (i). We use the following result of Bandelt [1]:
if μ is a modular metric, then the underlying graph $H(\mu)$ is modular,
$\mu(e)=\mu\left(e^{\prime}\right)$ holds for any two nonajacent edges e, e^{\prime} occurring in a
4-circuit of $H(\mu)$, and a path P in $H(\mu)$ is shortest
if and only if P is a shortest path for μ.
(For a shorter proof and relevant facts, see [6, Section 2].)
Let μ be an integer modular metric on T whose underlying graph $H=H(\mu)$ is nonorientable. The construction of a gadget satisfying (2.1) is close to that for the path metric of a nonorientable bipartite graph in [5].

Since H is nonorientable, there exist edges $e_{0}, e_{1}, \ldots, e_{k-1}, e_{k}=e_{0}$ of H along with 4 -circuits C_{0}, \ldots, C_{k-1}, which yield the "twist" (or constitute an orientation-reversing dual cycle). More precisely,
for $i=0, \ldots, k-1, e_{i}=s_{i} t_{i}$ and $e_{i+1}=s_{i+1} t_{i+1}$ are opposite edges
in the 4-circuit $C_{i}=s_{i} t_{i} t_{i+1} s_{i+1} s_{i}$ of H, and $t_{k}=s_{0}$ (and $s_{k}=t_{0}$).
(One can choose such a sequence with all edges different, but this is not important for us.) Since μ is modular, we have by (3.1) that

$$
\begin{equation*}
\text { for } i=0, \ldots, k-1, \mu\left(e_{i}\right) \text { is a constant } h \text {, and } \mu\left(s_{i} s_{i+1}\right)=\mu\left(t_{i} t_{i+1}\right)=: f_{i} \tag{3.3}
\end{equation*}
$$

We denote t_{i} by s_{i+k} and take indices modulo $2 k$. The desired gadget is represented by the graph $G=(V, E)$ with edge weights c, where $V=T \cup\left\{z_{0}, \ldots, z_{2 k-1}\right\}$ and for $i=0, \ldots, 2 k-1$,
(i) z_{i} is adjacent to both s_{i} and s_{i+k}, and $c\left(z_{i} s_{i}\right)=c\left(z_{i} s_{i+k}\right)=N$ for a positive integer N (specified below);
(ii) z_{i} and z_{i+1} are adjacent, and $c\left(z_{i} z_{i+1}\right)=1$.

Fig. 1 illustrates G for $k=4$. We assign $s:=s_{0}, t:=t_{0}, x:=z_{0}$ and $y:=z_{k}$, and formally extend c by zero to $\binom{V}{2}-E$. We claim validity of (2.1).

Indeed, associate each 0 -extension $m \in \operatorname{Ext}^{0}(\mu, V)$ with the attaching map $\gamma:\left\{z_{0}, \ldots, z_{2 k-1}\right\} \rightarrow T$ such that $\gamma\left(z_{i}\right)=s_{j}$ if $m\left(z_{i} s_{j}\right)=0$; we denote m by m^{γ}. If $\gamma\left(z_{i}\right)=v$, then, letting $\varepsilon:=\mu\left(s_{i} v\right)+\mu\left(v s_{i+k}\right)-\mu\left(s_{i} s_{i+k}\right)$, the contribution to the volume cm^{γ} due to the edges $e=z_{i} s_{i}$ and $e^{\prime}=z_{i} s_{i+k}$ is equal to

$$
c(e) m^{\gamma}(e)+c\left(e^{\prime}\right) m^{\gamma}\left(e^{\prime}\right)=N\left(m^{\gamma}(e)+m^{\gamma}\left(e^{\prime}\right)\right)=N h+N \varepsilon
$$

(h is defined in (3.3)). We have $\varepsilon=0$ if $v \in\left\{s_{i}, s_{i+k}\right\}$, and $\varepsilon \geqslant 1$ otherwise (since $s_{i} t_{i}$ is an edge of $H(\mu)$). Hence, every map γ pretending to be optimal or nearly optimal must attach each z_{i} to either s_{i} or s_{i+k} when N is chosen sufficiently large (e.g., $N=1+2 k \max \{\mu(s t): s, t \in T\}$).

Fig. 1. Gadget for a nonorientable H.

Next, if z_{i} is attached to s_{i} (resp. s_{i+k}) and z_{i+1} is attached to s_{i+1} (resp. s_{i+1+k}), then the edge $u=z_{i} z_{i+1}$ contributes $c(u) m^{\nu}(u)=f_{i}$ (cf. (3.3)), letting $f_{j}=f_{j+k}$. On the other hand, if z_{i} is attached to s_{i} (resp. s_{i+k}) while z_{i+1} to s_{i+1+k} (resp. s_{i+1}), then the contribution becomes $h+f_{i}=\mu\left(s_{i} t_{i+1}\right)$ (since the shortest paths $s_{i} t_{i} t_{i+1}$ and $t_{i} s_{i} s_{i+1}$ of $H(\mu)$ are shortest for μ, by (3.1)).

So we can conclude that $\hat{\tau}=2 k h N+2\left(f_{1}+\cdots+f_{k}\right)$, and there are precisely two optimal 0 -extensions, namely, $m^{\gamma_{1}}$ and $m^{\gamma_{2}}$, where $\gamma_{1}\left(z_{i}\right)=s_{i}$ and $\gamma_{2}\left(z_{i}\right)=s_{i+k}$ for $i=0, \ldots, 2 k-1$. This gives (i) in (2.1). Furthermore, one can see that if m^{γ} is the least-volume 0 -extension induced by a map γ that brings both x, y either to s or to t, then $m^{\gamma}\left(z_{j} z_{j+1}\right)=h+f_{j}$ for precisely two numbers $j \in\{0, \ldots, 2 k-1\}$ such that $f_{j}=\min \left\{f_{1}, \ldots, f_{k}\right\}$. So $\mathrm{cm}^{\gamma}=\hat{\tau}+2 h$, yielding (2.1) (ii). Finally, (iii) is guaranteed by the choice of N.

Thus, (1.1) with μ modular and $H(\mu)$ nonorientable is strongly NP-hard.

4. Nonmodular metrics

Next we prove Theorem 1.2 in case (ii). Let μ be an integer nonmodular metric on T.
For $x, y, z \in T$, let $\Delta(x, y, z)$ denote the value (perimeter) $\mu(x y)+\mu(y z)+\mu(z x)$. We fix a medianless triplet $\left\{s_{0}, s_{1}, s_{2}\right\}$ such that $\Delta\left(s_{0}, s_{1}, s_{2}\right)$ is minimum, denoted by $\bar{\Delta}$. By technical reasons, we put $s_{i+3}:=s_{i}$ for $i=0,1,2$, and take indices modulo 6. In the gadget (G, c) (whose structure is more involved compared with the corresponding unweighted case in [5]) the graph $G=(V, E)$ is such that

$$
V=T \cup Z, \quad Z=\left\{z_{0}, \ldots, z_{5}\right\} \quad \text { and } \quad E=E_{1} \cup E_{2} \cup E_{3} .
$$

For $i=1,2,3$, we assign certain numbers $c_{i}(e)$ (specified below) to the edges $e \in E_{i}$, and define the weight $c(e)$ of e to be $N_{i} c_{i}(e)$. The factors N_{1}, N_{2}, N_{3} are chosen so that $N_{1}=1, N_{2}$ is sufficiently large, and N_{3} is sufficiently large with respect to N_{2}. Informally speaking, the "heavy" edges of E_{3} provide that (at optimality or almost optimality) each point z_{j} must come in the interval $I_{j}:=\left\{v \in T: \mu\left(s_{j-1} v\right)+\mu\left(v s_{j+1}\right)=\mu\left(s_{j-1} s_{j+1}\right)\right\}$, then the "medium" edges of E_{2} force z_{j} to choose only between the endpoints s_{j-1}, s_{j+1} of I_{j}, and finally the "light" edges of E_{1} provide the desired property (2.1).

As before, m^{γ} denotes the 0 -extension of μ to V induced by $\gamma: Z \rightarrow T$. A sequence $P=\left(v_{1}, \ldots, v_{k}\right)$ of elements of T is called a path on T, and P is called shortest if $\mu\left(v_{1} v_{2}\right)+\cdots+\mu\left(v_{k-1} v_{k}\right)=\mu\left(v_{1} v_{k}\right)$. Define

$$
d_{i}:=d_{i+3}:=\mu\left(s_{i-1} s_{i+1}\right)
$$

The set E_{3} consists of edges $e_{j}=z_{j} s_{j-1}$ and $e_{j}^{\prime}=z_{j} s_{j+1}$ with $c_{3}\left(e_{j}\right)=c_{3}\left(e_{j}^{\prime}\right)=1$ for $j=0, \ldots, 5$. Then the contribution to cm^{γ} due to e_{j} and e_{j}^{\prime} is $N_{3} d_{j}$ if $\gamma\left(z_{j}\right) \in I_{j}$, and at least $N_{3} d_{j}+N_{3}$ otherwise, implying that z_{j} should be mapped into I_{j}, by the choice of N_{3}. The minimality of $\bar{\Delta}$ provides the following useful property.

Statement 4.1. For any $v \in I_{j}$, at least one of the paths $P=\left(s_{j}, s_{j-1}, v\right)$ and $P^{\prime}=\left(s_{j}, s_{j+1}, v\right)$ is shortest.
Proof. Let for definiteness $j_{-}=1$. Suppose P^{\prime} is not shortest. Then $\mu\left(s_{1} v\right)<\left|P^{\prime}\right|=\mu\left(s_{1} s_{2}\right)+\mu\left(s_{2} v\right)$ and $\mu\left(s_{0} v\right)=\mu\left(s_{0} s_{2}\right)-$ $\mu\left(s_{2} v\right)$ imply $\Delta\left(s_{1}, v, s_{0}\right)<\bar{\Delta}$. So s_{1}, v, s_{0} have a median w. If $w=s_{0}$, then P is shortest, as required. Otherwise we have $\Delta\left(s_{1}, w, s_{2}\right)<\bar{\Delta}$ (since $\mu\left(s_{1} w\right)<\mu\left(s_{1} s_{0}\right)$ and the path $\left(s_{2}, v, w, s_{0}\right)$ is, obviously, shortest). Then s_{1}, w, s_{2} have a median q. It is easy to see that q is a median for s_{0}, s_{1}, s_{2}; a contradiction.

Now we explain the construction of E_{2} and c_{2}. Each $z=z_{j}(j=0, \ldots, 5)$ is connected to each $s_{i}(i=0,1,2)$ by edge $u_{i}=z s_{i}$ on which the value of c_{2} is defined by

$$
\begin{equation*}
c_{2}\left(u_{i}\right):=a_{i}:=\left(d_{i-1}+d_{i+1}-d_{i}\right) /\left(d_{i-1} d_{i+1}\right) \tag{4.1}
\end{equation*}
$$

(a_{i} is positive and does not depend on j). Suppose z is mapped by γ to some s_{i}, say $\gamma(z)=s_{1}$. Then, up to a factor of N_{2}, the contribution to cm^{γ} from the edges u_{0}, u_{1}, u_{2} (concerning z) is

$$
\begin{align*}
d_{2} a_{0}+d_{0} a_{2} & =d_{2}\left(d_{1}+d_{2}-d_{0}\right) /\left(d_{1} d_{2}\right)+d_{0}\left(d_{1}+d_{0}-d_{2}\right) /\left(d_{0} d_{1}\right) \\
& =\left(d_{1}+d_{2}-d_{0}\right) / d_{1}+\left(d_{1}+d_{0}-d_{2}\right) / d_{1}=2 \tag{4.2}
\end{align*}
$$

On the other hand, the contribution grows when z_{j} occurs in the interior of any interval I_{i}.

Statement 4.2. Let $v \in I_{i}-\left\{s_{i-1}, s_{i+1}\right\}$. Then $\sigma:=\sum\left(a_{k} \mu\left(s_{k} v\right): k=0,1,2\right)>2$.
Proof. Assume $i=0$ and let $\mu\left(s_{1} v\right)=\varepsilon$ and $\mu\left(s_{0} v\right)=d_{2}+\varepsilon$ (cf. Statement 4.1). Then

$$
\begin{aligned}
\sigma= & \left(d_{2}+\varepsilon\right) a_{0}+\varepsilon a_{1}+\left(d_{0}-\varepsilon\right) a_{2}=d_{2} a_{0}+d_{0} a_{2} \\
& +\varepsilon\left(a_{0}+a_{1}-a_{2}\right)=2+\varepsilon\left(a_{0}+a_{1}-a_{2}\right),
\end{aligned}
$$

in view of (4.2). We observe that $a_{0}+a_{1}-a_{2}>0$. Indeed,

$$
\begin{aligned}
& d_{0} d_{1} d_{2}\left(a_{0}+a_{1}-a_{2}\right) \\
& \quad=\left(d_{0} d_{1}+d_{0} d_{2}-d_{0}^{2}\right)+\left(d_{1} d_{0}+d_{1} d_{2}-d_{1}^{2}\right)-\left(d_{2} d_{0}+d_{2} d_{1}-d_{2}^{2}\right) \\
& \quad=2 d_{0} d_{1}-d_{0}^{2}-d_{1}^{2}+d_{2}^{2}=d_{2}^{2}-\left(d_{0}-d_{1}\right)^{2}>0
\end{aligned}
$$

since $d_{2}>d_{0}-d_{1}$. So $\sigma>2$.
Thus, by an appropriate choice of constants N_{2} and N_{3}, each point z_{j} must be mapped to either s_{j-1} or s_{j+1}. Such a map γ is called feasible. We now construct the crucial set E_{1} and function c_{1}. The set E_{1} consists of six edges $g_{j}=z_{j} z_{j+1}$, $j=0, \ldots, 5$, forming the 6 -circuit C (this is similar to the construction in [5] motivated by Dalhaus et al. [4]). The core is how to assign c_{1}. For $i=0,1,2$, let $h_{i}:=h_{i+3}:=\left(d_{i-1}+d_{i+1}-d_{i}\right) / 2$. These numbers would be just the distances from s_{0}, s_{1}, s_{2} to their median if it existed, i.e.,

$$
\begin{equation*}
d_{i}=h_{i-1}+h_{i+1} . \tag{4.3}
\end{equation*}
$$

We define

$$
\begin{equation*}
c_{1}\left(z_{j} z_{j+1}\right):=c_{1}\left(z_{j+3} z_{j+4}\right):=h_{j-1} \quad \text { for } j=0,1,2 \tag{4.4}
\end{equation*}
$$

For $\gamma: Z \rightarrow T$, let ζ^{γ} denote $\sum\left(c_{1}\left(g_{j}\right) m^{\nu}\left(g_{j}\right): j=0, \ldots, 5\right)$, i.e., ζ^{γ} is the contribution to cm^{γ} from the edges of C. The analysis below will depend on the numbers

$$
\begin{equation*}
\rho=2\left(h_{0} h_{1}+h_{1} h_{2}+h_{2} h_{0}\right) \quad \text { and } \quad \alpha=2 \min \left\{h_{0}^{2}, h_{1}^{2}, h_{2}^{2}\right\} . \tag{4.5}
\end{equation*}
$$

W.l.o.g., assume $h_{0} \leqslant h_{1}, h_{2}$, i.e., $\alpha=2 h_{0}^{2}$. Our aim is to show that (2.1) holds if we take as s, t, x, y the elements $s_{0}, s_{2}, z_{1}, z_{4}$, respectively.

To show this, consider the map γ_{1} as drawn in Fig. 2(a), i.e., $\gamma_{1}\left(z_{j}\right)$ is s_{j+1} for $j=0,2,4$ and s_{j-1} for $j=1,3,5$. This γ_{1} attaches x to s and y to t. In view of (4.3)-(4.5), we have

$$
\begin{aligned}
\zeta^{\gamma_{1}} & =c_{1}\left(g_{0}\right) \mu\left(\gamma_{1}\left(z_{0}\right) \gamma_{1}\left(z_{1}\right)\right)+\cdots+c_{1}\left(g_{5}\right) \mu\left(\gamma_{1}\left(z_{5}\right) \gamma_{1}\left(z_{0}\right)\right) \\
& =h_{2} d_{2}+h_{0} \times 0+h_{1} d_{1}+h_{2} \times 0+h_{0} d_{0}+h_{1} \times 0 \\
& =h_{2}\left(h_{0}+h_{1}\right)+h_{1}\left(h_{0}+h_{2}\right)+h_{0}\left(h_{1}+h_{2}\right)=\rho .
\end{aligned}
$$

Similarly, $\zeta \gamma^{\gamma_{2}}=\rho$ for the symmetric map γ_{2} which is defined by $\gamma_{2}\left(z_{j}\right)=\gamma_{1}\left(z_{j+3}\right)$, attaching x to t and y to s. We shall see later that γ_{1} and γ_{2} are just optimal maps for our gadget.

The maps pretending to provide (ii) in (2.1) are γ_{3} and γ_{4} illustrated in Fig. 2(b) and (c); here both x, y are mapped by γ_{3} to s, and by γ_{4} to t. We have

$$
\begin{aligned}
\zeta^{\gamma_{3}} & =h_{2} d_{2}+h_{0} d_{2}+h_{1} \times 0+h_{2} d_{2}+h_{0} d_{2}+h_{1} \times 0=\left(2 h_{2}+2 h_{0}\right)\left(h_{0}+h_{1}\right) \\
& =2 h_{2} h_{0}+2 h_{2} h_{1}+2 h_{0}^{2}+2 h_{0} h_{1}=\rho+\alpha
\end{aligned}
$$

Fig. 2. (a) γ_{1}, (b) γ_{3}, (c) γ_{4}.
and

$$
\begin{aligned}
\zeta^{\gamma_{4}} & =h_{2} \times 0+h_{0} d_{1}+h_{1} d_{1}+h_{2} \times 0+h_{0} d_{1}+h_{1} d_{1}=\left(2 h_{0}+2 h_{1}\right)\left(h_{0}+h_{2}\right) \\
& =2 h_{0}^{2}+2 h_{0} h_{2}+2 h_{1} h_{0}+2 h_{1} h_{2}=\rho+\alpha .
\end{aligned}
$$

Now (2.1) is obtained from the following.
Statement 4.3. Let γ be a feasible map different from γ_{1} and γ_{2}. Then $\zeta^{\gamma} \geqslant \rho+\alpha$.
Proof. By (4.3), ζ^{γ} is representable as a nonnegative integer combination of products $h_{i} h_{j}$ for $0 \leqslant i, j \leqslant 5$ (including $i=j$). The contribution ζ_{j} to cm^{γ} from a single edge $g_{j}=z_{j} z_{j+1}$ is as follows:
(i) if $\gamma\left(z_{j}\right)=\gamma\left(z_{j+1}\right)=s_{j-1}$, then $\zeta_{j}=0$;
(ii) if $\gamma\left(z_{j}\right)=s_{j+1}$ and $\gamma\left(z_{j+1}\right)=s_{j}$, then $\zeta_{j}=h_{j-1} d_{j-1}=h_{j-1} h_{j}+h_{j-1} h_{j+1}$;
(iii) if $\gamma\left(z_{j}\right)=s_{j+1}$ and $\gamma\left(z_{j+1}\right)=s_{j-1}$, then $\zeta_{j}=h_{j-1} d_{j}=h_{j-1} h_{j+1}+h_{j-1}^{2}$;
(iv) if $\gamma\left(z_{j}\right)=s_{j-1}$ and $\gamma\left(z_{j+1}\right)=s_{j}$, then $\zeta_{j}=h_{j-1} d_{j+1}=h_{j-1} h_{j}+h_{j-1}^{2}$.

We call g_{j} slanting if case (iii) or (iv) of (4.6) takes place. If no edge of C is slanting, then γ is either γ_{1} or γ_{2}. Otherwise C contains at least two slanting edges. In this case we observe from (4.6) that the representation of ζ^{γ} includes $h_{i}^{2}+h_{j}^{2}$ (or $2 h_{i}^{2}$) for some i, j, which is at least α. So the result would follow from the fact that the representation includes the term $2 h_{i} h_{j}$ for each $0 \leqslant i<j \leqslant 2$.

To see the latter for $i=0$ and $j=2$ say, consider the edges g_{0} and g_{1}. By (4.3), g_{0} contributes $h_{0} h_{2}$ in cases (ii) and (iv), i.e., when $\gamma\left(z_{1}\right)=s_{0}$. And if $\gamma\left(z_{1}\right)=s_{2}$, then g_{1} contributes $h_{0} h_{2}$. Similarly, the pair g_{3}, g_{4} contributes $h_{0} h_{2}$.

This completes the proof of Theorem 1.2.

Acknowledgements

This work was supported in part by the Fields Institute for Research in Mathematical Sciences, Toronto.

References

[1] H.-J. Bandelt, Networks with Condorcet solutions, Euro. J. Oper. Res. 20 (1985) 314-326.
[2] H.-J. Bandelt, V. Chepoi, A.V. Karzanov, A characterization of minimizable metrics in the multifacility location problem, Euro. J. Combin. 21 (2000) 715-725.
[3] V. Chepoi, A multifacility location problem on median spaces, Discrete Appl. Math. 64 (1996) 1-29.
[4] E. Dalhaus, D.S. Johnson, C. Papadimitriou, P.D. Seymour, M. Yannakakis, The complexity of the multiterminal cuts, SIAM J. Comput. 23 (4) (1994) 864-894.
[5] A.V. Karzanov, Minimum 0-extensions of graph metrics, Euro. J. Combin. 19 (1998) 71-101.
[6] A.V. Karzanov, Metrics with finite sets of primitive extensions, Ann. Combin. 2 (1998) 213-243.
[7] A.V. Karzanov, One more well-solved case of the multifacility location problem, Discrete Appl. Math., to appear.
[8] A.V. Karzanov, Y. Manoussakis, Minimum (2,r)-metrics and integer multiflows, Euro. J. Combin. 17 (1996) 223-232.
[9] B.C. Tansel, R.L. Fransis, T.J. Lowe, Location on networks: a survey I, II, Management Sci. 29 (1983) 482-511.

[^0]: E-mail address: sasha@cs.isa.ac.ru (A.V. Karzanov).

