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Abstract

Let � be a rational-valued metric on a 0nite set T . We consider (a version of) the multifacility location problem: given
a 0nite set V ⊇ T and a function c :

( V
2

) → Z+, attach each element x∈V − T to an element �(x)∈ T minimizing∑(
c(xy)�(�(x)�(y)) : xy∈ ( V2 )), letting �(t) := t for each t ∈ T . Large classes of metrics � have been known for which

the problem is solvable in polynomial time. On the other hand, Dalhaus et al. (SIAM J. Comput. 23 (4) (1994) 864)
showed that if T = {t1; t2; t3} and �(titj) = 1 for all i �= j, then the problem (turning into the minimum 3-terminal cut
problem) becomes strongly NP-hard. Extending that result and its generalization in (European J. Combin. 19 (1998) 71),
we prove that for � 0xed, the problem is strongly NP-hard if the metric � is nonmodular or if the underlying graph of
� is nonorientable (in a certain sense).
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A semimetric on a set X is a function d : X × X → R+ that establishes distances on the pairs of elements (points)
of X satisfying d(x; x) = 0, d(x; y) = d(y; x) and d(x; y) + d(y; z)¿d(x; z), for all x; y; z ∈X . We denote an unordered
pair {x; y} by xy, write d(xy) instead of d(x; y), and denote by ( X2 ) the set of pairs xy of distinct elements of X . When
d(xy)¿ 0 for all xy∈ ( X2 ), d is called a metric. A special case is the path metric dG of a connected graph G = (X; E),
where dG(xy) is the minimum number of edges of a path in G connecting nodes x and y.
Suppose one is given a metric � on a 0nite set T , a larger 0nite set V ⊇ T , and a function c : ( V2 ) → Z+. One is asked

for attaching each element x∈V−T to an element �(x)∈ T so as to minimize the value ∑(
c(xy)�(�(x)�(y)) : xy∈ ( V2 )),

letting by de0nition �(t) := t for each t ∈ T . Such a problem is known as a version of the multifacility location problem.
(In an interpretation, T is thought of as the set of points, each containing one existing facility, V − T as the set of
new facilities that are required to be placed into T , and c(xy) as a measure of mutual communication or supporting task
between facilities x and y. See [9].)
This admits a reformulation in terms of metric extensions as follows (see [5,8]). A semimetric m on V is called an

extension of � to V if m coincides with � within T , and a 0-extension if, in addition, for each x∈V , there is t ∈ T such
that m(xt) = 0. Then the above task is equivalent to the minimum 0-extension problem:

Find a 0-extension m of � to V such that the value

cm :=
∑(

c(xy)m(xy) : xy∈
(
V
2

))
is as small as possible: (1.1)
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This problem generalizes the well-known multiterminal, or multiway, cut problem. It also arises as a discrete strength-
ening of the dual of a version of the multiJow maximization problem where the values of partial Jows are weighted
by a given metric (cf. [5,6]). The complexity of (1.1) varies depending on the input metric �. Large classes of metrics
have been found for which the problem is solvable in polynomial time (see [2,3,5,7]). All those metrics have a common
feature: they are modular and their underlying graphs are orientable.
Here a metric � on T is called modular if any three points s0; s1; s2 ∈ T have a median, a node z ∈ T satisfying

�(siz)+�(zsj)=�(sisj) for all 06 i ¡ j6 2. A graph H is called modular if dH is modular; in particular, H is bipartite.
The underlying graph of a metric � on T is the least graph H (�) = (T; U ) that enables us to restore � if we know
the distances of its edges. Formally, nodes x; y∈ T are adjacent in H (�) if and only if each z ∈V − {x; y} satis0es
�(xz) + �(zy)¿�(xy) (in other words, no z �= x; y lies between x and y regarding �). A graph is called orientable if
its edges can be oriented so that for any 4-circuit C = (v0; e1; v1; : : : ; e4; v4 = v0) and i = 1; 2, the edge ei is oriented from
vi−1 to vi if and only if the opposite edge ei+2 is oriented from vi+2 to vi+1.
The simplest nonmodular metric is � = dK3 , where Kn is the complete graph with n nodes. In this case (1.1) turns

into the minimum (capacity) 3-terminal cut problem (3-TERMINAL CUT). Dalhaus et al. [4] showed that the latter is
strongly NP-hard. This was extended to the path metrics of more general graphs.

Theorem 1.1 (Karzanov [5, Section 6]). For a 8xed connected graph H , problem (1.1) with �=dH is strongly NP-hard
if H is nonmodular or nonorientable.

In this paper, decreasing the existing gap between the hard and polynomial cases in the problem, we extend Theorem
1.1 to more general metrics as follows.

Theorem 1.2. Problem (1.1) with a 8xed rational-valued metric � is strongly NP-hard if either

(i) � is modular and H (�) is nonorientable, or
(ii) � is nonmodular.

The intractability of 3-TERMINAL CUT is proved in [4] by use of a reduction from the maximum cut problem (MAX
CUT). The crucial point is the construction of a certain “gadget” not obeying the standard submodular relation for graphs
with two terminals. Borrowing that idea, paper [5] proves Theorem 1.1 by constructing gadgets with a similar property
when problem (1.1) with the path metric of a nonmodular or nonorientable graph H is considered. We show that in the
hypotheses of Theorem 1.2 the desired gadgets can be constructed as well, thus proving this theorem.
Section 2 explains how to extend the idea of reduction in [4] to our problem. Using it, we prove part (i) of Theorem

1.2 (which is technically simpler) in Section 3, and prove part (ii) in Section 4.
In what follows the set of 0-extensions of � to V is denoted by Ext0(�; V ), and the minimum value cm in (1.1) by

�(V; c; �). Without loss of generality, we can consider only integer metrics � (since the metrics � in Theorem 1.2 are
rational, and multiplying � by a positive integer factor does not aNect the problem).

2. Approach

Given a metric � on T , a set V ⊃ T , a function
( V
2

) → Z+, and (not necessarily distinct) elements s; t ∈ T and
x; y∈V − T , let �(s; x|t; y) denote the minimum cm among all m∈Ext0(�; V ) such that m(xs) = m(yt) = 0.
The idea of a possible reduction from MAX CUT to (1.1) (naturally generalizing that from MAX CUT to 3-TERMINAL

CUT in [4]) is as follows. Suppose that for one or another � we are able to devise a pair (gadget) (V; c) with speci0ed
s; t; x; y satisfying the following condition:

(i) �(s; x|t; y) = �(s; y|t; x) = �̂;
(ii) �(s; x|s; y) = �(t; x|t; y) = �̂+ � for some �¿ 0;

(iii) �(s′; x|t′; y)¿ �̂+ � for all other pairs s′; t′ in T; (2.1)

where �̂ stands for �(V; c; �) (an analog of the “violated submodularity” in [4]). Take an instance of (a 2-terminal version
of) MAX CUT whose input consists of a graph �=(W; Z) and speci0ed nodes p; q. It is required to 0nd a subset X ⊂ W
such that p∈X3q and the number of edges of � connecting X and W − X is maximum. Similar to the construction in
[4], replace each edge uv∈ Z by a copy of the gadget, identifying the element x as above with one node among u; v, the
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element y with the other node, s with p, and t with q. Also identify the corresponding elements of T − {s; t} in these
copies. This results in a set V and a function % on the pairs of elements of V (determined in a natural way by the copies
of c when the involved copies of the gadget are glued together). Using (2.1), it is not diQcult to conclude that if m is a
minimum 0-extension for �;V; %, then the set X := {v∈W :m(pv) = 0} induces a maximum cardinality cut for �; p; q.
Therefore, (1.1) for the given � is NP-hard (as this is so for MAX CUT); moreover, it is strongly NP-hard because the
gadget size is a constant depending only on �.
Thus, our aim is to construct gadgets satisfying (2.1) for the metrics � as in Theorem 1.2.

3. Modular metrics with nonorientable underlying graphs

In this section we prove Theorem 1.2 in case (i). We use the following result of Bandelt [1]:

if � is a modular metric; then the underlying graph H (�) is modular;

�(e) = �(e′) holds for any two nonajacent edges e; e′ occurring in a

4-circuit of H (�); and a path P in H (�) is shortest

if and only if P is a shortest path for �: (3.1)

(For a shorter proof and relevant facts, see [6, Section 2].)
Let � be an integer modular metric on T whose underlying graph H = H (�) is nonorientable. The construction of a

gadget satisfying (2.1) is close to that for the path metric of a nonorientable bipartite graph in [5].
Since H is nonorientable, there exist edges e0; e1; : : : ; ek−1; ek = e0 of H along with 4-circuits C0; : : : ; Ck−1, which yield

the “twist” (or constitute an orientation-reversing dual cycle). More precisely,

for i = 0; : : : ; k − 1; ei = siti and ei+1 = si+1ti+1 are opposite edges

in the 4-circuit Ci = sititi+1si+1si of H; and tk = s0 (and sk = t0): (3.2)

(One can choose such a sequence with all edges diNerent, but this is not important for us.) Since � is modular, we have
by (3.1) that

for i = 0; : : : ; k − 1; �(ei) is a constant h; and �(sisi+1) = �(titi+1) =: fi: (3.3)

We denote ti by si+k and take indices modulo 2k. The desired gadget is represented by the graph G=(V; E) with edge
weights c, where V = T ∪ {z0; : : : ; z2k−1} and for i = 0; : : : ; 2k − 1,

(i) zi is adjacent to both si and si+k , and c(zisi) = c(zisi+k) = N for a positive integer N (speci0ed below);
(ii) zi and zi+1 are adjacent, and c(zizi+1) = 1.

Fig. 1 illustrates G for k = 4. We assign s := s0, t := t0, x := z0 and y := zk , and formally extend c by zero to ( V2 )− E.
We claim validity of (2.1).
Indeed, associate each 0-extension m∈Ext0(�; V ) with the attaching map � : {z0; : : : ; z2k−1} → T such that �(zi) = sj if

m(zisj)=0; we denote m by m�. If �(zi)= v, then, letting + := �(siv)+�(vsi+k)−�(sisi+k), the contribution to the volume
cm� due to the edges e = zisi and e′ = zisi+k is equal to

c(e)m�(e) + c(e′)m�(e′) = N (m�(e) + m�(e′)) = Nh+ N+

(h is de0ned in (3.3)). We have += 0 if v∈ {si; si+k}, and +¿ 1 otherwise (since siti is an edge of H (�)). Hence, every
map � pretending to be optimal or nearly optimal must attach each zi to either si or si+k when N is chosen suQciently
large (e.g., N = 1 + 2k max{�(st) : s; t ∈ T}).

Fig. 1. Gadget for a nonorientable H .
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Next, if zi is attached to si (resp. si+k) and zi+1 is attached to si+1 (resp. si+1+k), then the edge u = zizi+1 contributes
c(u)m�(u) = fi (cf. (3.3)), letting fj = fj+k . On the other hand, if zi is attached to si (resp. si+k) while zi+1 to si+1+k
(resp. si+1), then the contribution becomes h + fi = �(siti+1) (since the shortest paths sititi+1 and tisisi+1 of H (�) are
shortest for �, by (3.1)).
So we can conclude that �̂= 2khN + 2(f1 + · · · + fk), and there are precisely two optimal 0-extensions, namely, m�1

and m�2 , where �1(zi) = si and �2(zi) = si+k for i = 0; : : : ; 2k − 1. This gives (i) in (2.1). Furthermore, one can see that if
m� is the least-volume 0-extension induced by a map � that brings both x; y either to s or to t, then m�(zjzj+1) = h+ fj
for precisely two numbers j∈ {0; : : : ; 2k−1} such that fj=min{f1; : : : ; fk}. So cm�= �̂+2h, yielding (2.1) (ii). Finally,
(iii) is guaranteed by the choice of N .
Thus, (1.1) with � modular and H (�) nonorientable is strongly NP-hard.

4. Nonmodular metrics

Next we prove Theorem 1.2 in case (ii). Let � be an integer nonmodular metric on T .
For x; y; z ∈ T , let R(x; y; z) denote the value (perimeter) �(xy)+ �(yz)+ �(zx). We 0x a medianless triplet {s0; s1; s2}

such that R(s0; s1; s2) is minimum, denoted by SR. By technical reasons, we put si+3 := si for i = 0; 1; 2, and take indices
modulo 6. In the gadget (G; c) (whose structure is more involved compared with the corresponding unweighted case in
[5]) the graph G = (V; E) is such that

V = T ∪ Z; Z = {z0; : : : ; z5} and E = E1 ∪ E2 ∪ E3:

For i=1; 2; 3, we assign certain numbers ci(e) (speci0ed below) to the edges e∈Ei, and de0ne the weight c(e) of e to be
Nici(e). The factors N1; N2; N3 are chosen so that N1 = 1, N2 is suQciently large, and N3 is suQciently large with respect
to N2. Informally speaking, the “heavy” edges of E3 provide that (at optimality or almost optimality) each point zj must
come in the interval Ij := {v∈ T : �(sj−1v) + �(vsj+1) = �(sj−1sj+1)}, then the “medium” edges of E2 force zj to choose
only between the endpoints sj−1; sj+1 of Ij , and 0nally the “light” edges of E1 provide the desired property (2.1).
As before, m� denotes the 0-extension of � to V induced by � : Z → T . A sequence P = (v1; : : : ; vk) of elements of T

is called a path on T , and P is called shortest if �(v1v2) + · · ·+ �(vk−1vk) = �(v1vk). De0ne

di := di+3 := �(si−1si+1):

The set E3 consists of edges ej = zjsj−1 and e′j = zjsj+1 with c3(ej) = c3(e
′
j) = 1 for j = 0; : : : ; 5. Then the contribution

to cm� due to ej and e′j is N3dj if �(zj)∈ Ij , and at least N3dj +N3 otherwise, implying that zj should be mapped into Ij ,
by the choice of N3. The minimality of SR provides the following useful property.

Statement 4.1. For any v∈ Ij , at least one of the paths P = (sj; sj−1; v) and P′ = (sj; sj+1; v) is shortest.

Proof. Let for de0niteness j=1. Suppose P′ is not shortest. Then �(s1v)¡ |P′|=�(s1s2)+�(s2v) and �(s0v)=�(s0s2)−
�(s2v) imply R(s1; v; s0)¡ SR. So s1; v; s0 have a median w. If w= s0, then P is shortest, as required. Otherwise we have
R(s1; w; s2)¡ SR (since �(s1w)¡�(s1s0) and the path (s2; v; w; s0) is, obviously, shortest). Then s1; w; s2 have a median
q. It is easy to see that q is a median for s0; s1; s2; a contradiction.

Now we explain the construction of E2 and c2. Each z = zj (j = 0; : : : ; 5) is connected to each si (i = 0; 1; 2) by edge
ui = zsi on which the value of c2 is de0ned by

c2(ui) := ai := (di−1 + di+1 − di)=(di−1di+1) (4.1)

(ai is positive and does not depend on j). Suppose z is mapped by � to some si, say �(z) = s1. Then, up to a factor of
N2, the contribution to cm� from the edges u0; u1; u2 (concerning z) is

d2a0 + d0a2 = d2(d1 + d2 − d0)=(d1d2) + d0(d1 + d0 − d2)=(d0d1)
= (d1 + d2 − d0)=d1 + (d1 + d0 − d2)=d1 = 2: (4.2)

On the other hand, the contribution grows when zj occurs in the interior of any interval Ii.
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Statement 4.2. Let v∈ Ii − {si−1; si+1}. Then 0 :=∑(ak�(skv) : k = 0; 1; 2)¿ 2.

Proof. Assume i = 0 and let �(s1v) = + and �(s0v) = d2 + + (cf. Statement 4.1). Then

0 = (d2 + +)a0 + +a1 + (d0 − +)a2 = d2a0 + d0a2
+ +(a0 + a1 − a2) = 2 + +(a0 + a1 − a2);

in view of (4.2). We observe that a0 + a1 − a2¿ 0. Indeed,

d0d1d2(a0 + a1 − a2)
=(d0d1 + d0d2 − d20) + (d1d0 + d1d2 − d21)− (d2d0 + d2d1 − d22)
=2d0d1 − d20 − d21 + d22 = d22 − (d0 − d1)2¿ 0

since d2¿d0 − d1. So 0¿ 2.

Thus, by an appropriate choice of constants N2 and N3, each point zj must be mapped to either sj−1 or sj+1. Such a
map � is called feasible. We now construct the crucial set E1 and function c1. The set E1 consists of six edges gj= zjzj+1,
j = 0; : : : ; 5, forming the 6-circuit C (this is similar to the construction in [5] motivated by Dalhaus et al. [4]). The core
is how to assign c1. For i=0; 1; 2, let hi := hi+3 := (di−1 +di+1 −di)=2. These numbers would be just the distances from
s0; s1; s2 to their median if it existed, i.e.,

di = hi−1 + hi+1: (4.3)

We de0ne

c1(zjzj+1) := c1(zj+3zj+4) := hj−1 for j = 0; 1; 2: (4.4)

For � : Z → T , let %� denote
∑
(c1(gj)m�(gj) : j = 0; : : : ; 5), i.e., %� is the contribution to cm� from the edges of C. The

analysis below will depend on the numbers

2= 2(h0h1 + h1h2 + h2h0) and 3 = 2min{h20; h21; h22}: (4.5)

W.l.o.g., assume h06 h1; h2, i.e., 3=2h20. Our aim is to show that (2.1) holds if we take as s; t; x; y the elements s0; s2; z1; z4,
respectively.
To show this, consider the map �1 as drawn in Fig. 2(a), i.e., �1(zj) is sj+1 for j = 0; 2; 4 and sj−1 for j = 1; 3; 5. This

�1 attaches x to s and y to t. In view of (4.3)–(4.5), we have

%�1 = c1(g0)�(�1(z0)�1(z1)) + · · ·+ c1(g5)�(�1(z5)�1(z0))
= h2d2 + h0 × 0 + h1d1 + h2 × 0 + h0d0 + h1 × 0

= h2(h0 + h1) + h1(h0 + h2) + h0(h1 + h2) = 2:

Similarly, %�2 = 2 for the symmetric map �2 which is de0ned by �2(zj) = �1(zj+3), attaching x to t and y to s. We shall
see later that �1 and �2 are just optimal maps for our gadget.
The maps pretending to provide (ii) in (2.1) are �3 and �4 illustrated in Fig. 2(b) and (c); here both x; y are mapped

by �3 to s, and by �4 to t. We have

%�3 = h2d2 + h0d2 + h1 × 0 + h2d2 + h0d2 + h1 × 0 = (2h2 + 2h0)(h0 + h1)

= 2h2h0 + 2h2h1 + 2h
2
0 + 2h0h1 = 2+ 3

Fig. 2. (a) �1, (b) �3, (c) �4.
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and

%�4 = h2 × 0 + h0d1 + h1d1 + h2 × 0 + h0d1 + h1d1 = (2h0 + 2h1)(h0 + h2)

= 2h20 + 2h0h2 + 2h1h0 + 2h1h2 = 2+ 3:

Now (2.1) is obtained from the following.

Statement 4.3. Let � be a feasible map di;erent from �1 and �2. Then %�¿ 2+ 3.

Proof. By (4.3), %� is representable as a nonnegative integer combination of products hihj for 06 i; j6 5 (including
i = j). The contribution %j to cm� from a single edge gj = zjzj+1 is as follows:

(i) if �(zj) = �(zj+1) = sj−1; then %j = 0;

(ii) if �(zj) = sj+1 and �(zj+1) = sj; then %j = hj−1dj−1 = hj−1hj + hj−1hj+1;

(iii) if �(zj) = sj+1 and �(zj+1) = sj−1; then %j = hj−1dj = hj−1hj+1 + h
2
j−1;

(iv) if �(zj) = sj−1 and �(zj+1) = sj; then %j = hj−1dj+1 = hj−1hj + h
2
j−1:

(4.6)

We call gj slanting if case (iii) or (iv) of (4.6) takes place. If no edge of C is slanting, then � is either �1 or �2.
Otherwise C contains at least two slanting edges. In this case we observe from (4.6) that the representation of %� includes
h2i +h

2
j (or 2h

2
i ) for some i; j, which is at least 3. So the result would follow from the fact that the representation includes

the term 2hihj for each 06 i ¡ j6 2.
To see the latter for i = 0 and j = 2 say, consider the edges g0 and g1. By (4.3), g0 contributes h0h2 in cases (ii) and

(iv), i.e., when �(z1) = s0. And if �(z1) = s2, then g1 contributes h0h2. Similarly, the pair g3; g4 contributes h0h2.
This completes the proof of Theorem 1.2.
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