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Abstract 

We describe characterizations for the classes of clique graphs of directed and rooted path 

graphs. The characterizations relate these classes to those of clique_Helly and strongly chordal 

graphs, respectively, which properly contain them. The characterizations lead to polynomial time 
algorithms for recognizing graphs of these classes. 0 1999 Elsevier Science B.V. All rights 

reserved. 

1. Introduction 

Characterizing and recognizing clique graphs of classes of graphs is of interest in 

the context of intersection graphs and specially in the study of clique graphs. Also, 

it provides valuable knowledge about the structure of the graphs of the considered 

classes. A comprehensive reference for clique graphs and other graph operators is the 

book [16]. 

We examine clique graphs of some classes of chordal graphs. The clique graphs 

of chordal graphs correspond to the class of expanded trees [IS]. These graphs are 

also known as dually chordal graphs [3] and tree-clique graphs [ 131. In particular, they 

can be recognized in linear time 131. Undirected path graphs form a proper subclass 

of chordal graphs. However, the class of their clique graphs coincides with that ot 

chordal graphs [IS], i.e. with the expanded trees. The clique graphs of directed path 

graphs correspond to the AC1 graphs [14], while those of the rooted path graphs are 

the rooted expanded trees [2]. We refer to AC1 graphs and rooted expanded trees by 

the names of dually DV and dually RDV graphs, respectively. 
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In the present work we describe characterizations for the classes of dually DV graphs 

and dually RDV graphs. The theorems relate these classes to those of clique-Helly and 

strongly chordal graphs, respectively, which properly contain them. The characteriza- 

tions lead to polynomial time algorithms for recognizing graphs of these classes. These 

recognition problems have not been solved so far. 

G denotes an undirected graph, having vertex set V(G) and edge set E(G). Without 

loss of generality, the graphs here considered are connected. A clique of G is a complete 

subgraph of it, while a maxim& clique is one not properly contained in any other. 

When the set of maximal cliques of G satisfies the Helly property, then G is called 

clique-Helly. The clique graph of G, denoted by K(G), is the intersection graph of the 

maximal cliques of G. Write K2(G) = K(K(G)). 

A tree is a (connected undirected) graph with no cycles. A directed tree is an orien- 

tation of a tree. A rooted tree is a directed tree having exactly one vertex of indegree 

zero. Chordal graphs have been characterized as the intersection graphs of subtrees of 

a tree [4,9]. The intersection graphs of a set of paths P in a tree, directed tree and rooted 

tree T are the undirected path (Uv) graphs, directed path (DIJ) graphs and rooted 

path (RDV) graphs, respectively. When / V( T)I 1s minimum then each vertex ui E V(T) 

corresponds to a maximal clique Ci of G, formed exactly by the vertices of G corre- 

sponding to the paths of P passing through vi. This property applies to all UV, DV and 

RDV graphs ([ 11,15, lo]). In this case, the pair T, P is a representation of G, while T is 

called a (undirected, directed and rooted) clique-tree of G, respectively. A unified study 

of these classes appears in [ 151, where the names UV, DV and RDV were introduced. 

A dually chordul gruph G is one admitting a spanning tree T such that, for each 

(v, w) t E(G), the vertices of the v ~ w path in T form a clique in G. In this case, 

T is called a canonical tree of G. A duully DV (dually RD v) graph is a graph G 

admitting a spanning directed (rooted) tree T such that, for each (0, w) E E(G), T 

contains a directed v - w or w - v path, whose vertices form a clique in G. Such a 

path is called the spun of (v, w) in T. Similarly, T is a directed (rooted) cunonicul 

tree of G. An edge (v, w) E E(G) is maximul in T when there is no edge whose span 

in T properly contains the span of (v, w). 

Since rooted path graphs are directed path graphs and the latter are undirected path 

graphs, it follows that the class of dually RDV graphs is contained in that of dually 

DV graphs, and the latter contained in the class of chordal graphs. The containments 

are proper. For example, the graph of Fig. l(a) is a dually DV graph and not a dually 

RDV. On the other hand, the one of Fig. l(b) is dually chordal and not a dually DV 

graph. 

In Section 2, we describe the characterizations of dually DV and RDV graphs. The 

corresponding recognition algorithms for these classes are given in Section 3. The 

method leads also to constructing directed and rooted canonical trees of the graphs. 

The complexities of the algorithms are 0( lE(G)14) and 0( / V(G)12.38), respectively, for 

recognizing if G is a dually DV and a dually RDV graph. In the affirmative case 

of the recognition process, the algorithms exhibit a directed or rooted canonical tree, 

respectively. 
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Fig. I. 

2. The characterizations 

In this section, we describe characterizations of dually DV and dually RDV graphs. 

The following are known results on these classes of graphs. 

Theorem 1 (Gutierrez and Zucchiello [ 141). The clique graphs of the D.V yruphs ure 

exactly the dually D V graphs, and the clique graphs ef the dually D V gruphs ure 

esuctly the DV graphs. 

Theorem 2 (Bornstein and Szwarcfiter [2]). The clique graphs qf the RDV yruphs 

are exactly the dually RD V graphs, und the clique qruphs of the dually RD V qruphs 

are exuctly the RDV graphs. 

The following notation is usefull for our purposes. Let G be a graph. By G’ we 

denote the graph obtained from G by adding to each 2‘ E V(G) a new vertex I.’ and 

an edge (L’, c’). Call c’ the image of P in G’. 

The theorem below characterizes dually DV graphs. 

Theorem 3. G is a dually D V graph if und only if’ G is clique-Helly and K( G’ ) is u 

D V gruph. 

Proof: The hypothesis is that G is a dually DV graph. Dually chordal graphs are nec- 

essarily clique-Helly [l]. Therefore G is clique-Helly. Let T be a directed canonical 

tree of G. For each u E V(T), add to T a new vertex u’ and an edge (c, P’), directed 

arbitrarily. The resulting tree is a directed canonical tree of G’. Consequently. G’ is 

also a dually DV graph. By Theorem 1, K(G’) is a DV graph. 

Conversely, by hypothesis G is clique-Helly and K(G’) a DV graph. Assume that 

G has at least two vertices, otherwise the theorem is trivial. First, we show that G’ is 

clique-Helly too. For each u E V(G), let 2~’ be the image of I’ in G’. Let S be a set 

of pairwise intersecting maximal cliques of G’. Either S is formed solely by maximal 

cliques of G, or S has exactly one maximal clique containing the image c’ of some 

I: E V(G), besides cliques of G. In the first case, the maximal cliques of S contain 
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a common vertex, because G is clique-Helly. In the second, all of them contain v. 

Therefore G’ is clique-Helly. On the other hand, no two vertices of G’ have the same 

neighbourhood and the only dominated vertices in this graph are the images. In this 

situation, we can apply Escalante’s Theorem [7] and conclude that K2(G’) = G. Con- 

sequently, G is the clique graph of a DV graph. By Theorem 1, it follows that G is 

a dually DV graph. 0 

Theorem 4. The following conditions are equivalent jbr a yruph G: 

(1) G is a dually RDV graph, 
(2) G is clique-Helly and K(G’) is a RD V graph, 

(3) G is strongly chordal und K(G’) is a RD V graph. 

Proof: “( 1) + (3)” Assume that G is a dually RDV graph. By Theorem 2, G is the 

clique graph of some RDV graph. On the other hand, RDV graphs are strongly chordal. 

In addition, clique graphs of strongly chordal graphs are strongly chordal [l]. Therefore 

G is strongly chordal. For the second condition, let T be a rooted canonical tree of 

G. Similarly as before, let T’ be the tree obtained from T by adding a new vertex v’ 

and an edge (v, u’), this time directed from v to v’, for each 2; E V(T). Then T’ is a 

rooted canonical tree of G’. Consequently, G’ is a dually RDV graph. By Theorem 2, 

K(G’) is a RDV graph. 

“(3) + (2)” is obvious. 

“(2) + (1)” Assume that G is clique-Helly and K(G’) a RDV graph. As in the proof 

of Theorem 3, G’ is clique-Helly. Again, similarly as above, we conclude by [7] that 

K2(G’) = G. Consequently, using the hypothesis, it follows that G is a dually RDV 

graph. 0 

3. The algorithms 

We describe below algorithms for recognizing dually DV and dually RDV graphs, as 

well as for constructing directed canonical trees and rooted canonical trees, respectively. 

The algorithms are applications of Theorems 3 and 4. 

The recognition algorithm for dually DV graphs is as follows. Given a graph G, 

verify if it is clique-Helly. If the answer is negative, stop, as G is not a dually DV 

graph. If G is indeed clique-Helly, construct G’ and K(G’). Finally, verify if K(G’) is 

a DV graph. G is a dually DV graph in the affirmative case, and otherwise is not. 

The algorithm for recognizing dually RDV graphs is next described. Given a graph 

G, check whether G is strongly chordal. If not, stop, and conclude that G is not a 

dually RDV graph. In the affirmative case, construct G’ and K(G’). Verify if K(G’) 
is a RDV graph. If it is, G is a dually RDV graph, otherwise it is not. 

In order to evaluate the complexities of the above algorithms, we need to obtain 

bounds on the number of maximal cliques of the graphs. The lemma below describes 

the maximal cliques of dually DV graphs. 



Lemma 1. Let G he u dually DV yvapil und T a directed cunonicul tree qf’ it. Tlwn 

there exists u one-to-one correspondent between maxinxd cliyzres qf’ G and mu.\-inwl 

edcqes yf G in T. 

PI-oo~: First we show that every maximal clique C induces a directed path in T. With 

this purpose, observe that the following weaker statement must be true. T contains a 

directed path p passing through all vertices of C. Because otherwise, there exists a 

pair of vertices ,~.y E V(C) such that T has neither an x-y nor a y-x path. However 

X, J’ E V(C) implies (x, y) E E(G). The latter, together with the definition of directed 

canonical tree imply that T contains either an x - ~1 or a ~9 - .Y path. This contradiction 

assures that p indeed exists. Let, this time, x and J’ be the first and the last vertices of 

C’(C) in the path p, respectively. Examine the directed subpath _Y - ~2 of p. Clearly. 

x ~~ J‘ contains all vertices of C. Since T is a directed canonical tree and (.Y. .I’) t E:‘(G) 

it follows that the vertices of the .Y - y path in T induce a clique C’ in G. It follows 

that C’ and C must coincide, otherwise C is not a maximal clique. Consequently. .I- .I‘ 

is the path induced in T by the vertices of C. 

Let now C be a maximal clique of G. Then V(C) induces a L’ - $1‘ path in T. Clearly. 

(l,. w) E E(G). because P, w E V(C). Then this path 1% - 1%‘ is precisely the span of 

(I’. na). In addition, (u. +i*) is a maximal edge. otherwise C cannot be a maximal clique. 

Choose (r, M‘) to be the edge corresponding to C. 

Conversely, let (r,b~) E E(G) be a maximal edge. Let C be a maximal clique 

containing (P. 1~). We have seen above that V(C) induces a path p in T. Clearly. p 

contains the span of (u,M’) in T. This containment cannot be proper, otherwise (r. II’) 

would not be a maximal edge. Hence p and the span of (r, it’) coincide. Since p 

contains exactly the vertices of C it follows that there exists precisely one maximal 

clique of G containing (1’.1;v). That is, select C to correspond to the edge (I., 11%). ! 

Dually chordal graphs may contain an exponential number of maximal cliques, since 

all graphs obtained from complete graphs on 2p+ 1 vertices by deleting p independent 

edges are expanded trees. In contrast, Lemma 1 assures that if G is a dually DV graph 

then it contains at most I.!?(G)1 maximal cliques. Finally, when G is a dually RDV 

graph then it has no more than 1 V(G)/ maximal cliques, as dually RDV graphs are 

necessarily chordal. 

Let the dually DV graph recognition algorithm be applied to the graph G, where 

/V(G)/ = II and IE(G)I = m. Its complexity can be evaluated as follows. Recognizing 

if G is a clique-Helly graph can be done in 0(n3m) steps [17]. Constructing G’ from 

G requires O(n) steps. The following determines an upper bound for the number ot‘ 

steps involved in the construction of K(G’). Generate the set of maximal cliques of 

G’. using the algorithm [19]. If G is a dually DV graph then G’ has no more than 

II + m maximal cliques, by Lemma I. Hence the execution of [ 191 can be stopped 

after the (n + m + I)-st maximal clique is enumerated. In this case. the recognition 

process is also stopped with a negative answer. The complexity of [19] is the product 

of the number of vertices and edges per maximal clique effectively generated. Hence 
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the entire execution of [19] is bounded by 0(nm2). The same bound applies to the 

actual construction of K(G’), Clearly, K(G’) has O(m) vertices and O(m*) edges. By 

a similar argument as above, we may assume that the latter graph has O(m) maximal 

cliques. Because if K(G’) has more maximal cliques than vertices, it follows that G is 

not a dually DV graph and the recognition process can again be stopped. Finally, to 

recognize if K(G’) is a DV graph would take O(m4) steps [15]. Therefore the latter 

expression is the complexity of the algorithm. 

The dually RDV graph recognition algorithm is faster. First, observe that the graph 

G’ must be chordal in this case. Otherwise, G is not strongly chordal and therefore 

not a dually RDV graph. In this case, the construction of the clique graph K(G’) can 

be performed as indicated by the lemma below. 

Lemma 2. The clique graph of a chordal graph G can be computed in O() V(G)j2.38) 

steps. 

Proof The following is an algorithm for constructing K(G) with the desired complex- 

ity. First, verify whether G is a chordal graph by constructing a perfect elimination 

ordering of it, in linear time. From such an ordering, obtain the set %? of maximal 

cliques of G. This requires O(l V(G)j2) steps [ 121. Define the bipartite graph B , with 

vertex set V(G) U V, and such that v E V(G) is adjacent in B to C E %? precisely 

when C contains v in G. Clearly, /V(B)1 <2JV(G)J. It follows that K(G) is exactly 

the subgraph induced in B* by W. Therefore an adjacency matrix of K(G) can be 

constructed as follows. Compute the square of an adjacency matrix of B. This can be 

performed in 0( / V(G)12.38) steps [5]. Then replace by 1 any entry greater or equal to 

than 1. Finally, the submatrix defined by the lines and columns corresponding to ?? is 

an adjacency matrix of K(G’). 0 

We can now evaluate the complexity of the dually RDV graph algorithm. As before, 

let G be the input graph, ) V( G)I = n and JE(G)I = m. To recognize whether G is 

strongly chordal requires 0(n2) steps [8]. In the present case, we can assume that G’ 

has at most 2n maximal cliques. By Lemma 2, K(G’) can be computed in O(H~.~*) 

steps. Recognizing whether K(G’) is a RDV graph can be done in time 0(n2) [6]. 

Consequently, the complexity is O(n2.38). 

It remains to describe the methods for obtaining directed and rooted canonical trees 

of dually DV and dually RDV graphs, respectively. The lemmas below indicate the 

constructions. 

Lemma 3. Let G be dually DV graph and T a directed tree. Then T is a directed 

canonical tree of G if and only ij” T is a directed clique-tree qf K(G’). 

ProoJ: For each vi E V(G), denote by u( its image in G’ and by C(vi) the set of 

maximal cliques of G containing vi. Consequently, C(s) corresponds to a clique in 

K(G’). Such a clique, together with the vertex of K(G’) corresponding to the maximal 



clique fonned by the edge (Ui,Ui) of G’, define a maximal clique C: of K(G’). Since 

G is a dually DV graph, G is clique-Helly and so is G’. The latter implies that K( G’ ) 

has no maximal cliques besides C:, 1 <i < / V(G)l. Th ere ore the vertices of G arc in f 

one-to-one correpondence with the maximal cliques of K(G’). 

The hypothesis is that T is directed canonical tree of G. We are going to define a set 

of paths P of T as follows. For each L’, E V(T), there is a path in P composed by the 

sole vertex P,. In addition, for each maximal edge (IT, $1’) of G with respect to T. the 

span of (I..I~) is included in P. Each path of P corresponds to a vertex of K(G’). In 

addition, two vertices of K(G’) are adjacent precisely when their corresponding paths 

intersect. Hence r, P is a representation of K(G’). That is, T is a directed clique-tree. 

Conversely, the hypothesis is that 7’ is a directed clique-tree of K(G’). Let P bc 

a set of paths of T, such that r, P is a representation of K(G’ ). Let r,. I‘, t I’( G ). 

We show that (c,, Pj) g E(G) if and only if there is a path in P passing through both 

r!, [.;. This fact implies that T is a directed canonical tree of G. as required. Suppose 

that I‘,, r, are adjacent in G. The corresponding elements in K(G’) are two intersecting 

maximal cliques C:, Ci, since every clique of G containing the edge (I’,. P, ) belongs ta 

both C’: and Ci. Consequently, there must be a path of P containing the vertices I.!, I., 

of T. Finally, suppose that P contains a path from r, to I’, in T. Then the maximal 

cliques C,‘, Ci of K(G’) correponding to r,,~, must intersect. Consequently. I’). I’, arc 

adjacent, completing the proof. 0 

The corresponding lemma for the rooted case is given below. Its proof is similar. 

Lemma 4. Let G he dually RDV grupph und T LI woted trw. Tim T is (I rootccl 

cunonicml trrr of’ G if’ und only ij’ T is u rooted cliqw-trre of’ K(G’ ). 

By Lemmas 4 and 5, to compute a directed or rooted canonical tree of a dually 

DV or dually RDV graph G, respectively, is equivalent to finding a directed or rooted 

clique-tree of K(G’). Such clique-trees are obtained in the recognition algorithms. as 

by-products of the steps of recognizing that K(G’) is a DV or RDV graph. respectively. 

Hence the algorithms also obtain the directed or rooted canonical trees. 
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