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Abstract

We study the near diagonal asymptotic expansion of the generalized Bergman kernel of the renormalized
Bochner-Laplacian on high tensor powers of a positive line bundle over a compact symplectic manifold.
We show how to compute the coefficients of the expansion by recurrence and give a closed formula for the
first two of them. As a consequence, we calculate the density of states function of the Bochner-Laplacian
and establish a symplectic version of the convergence of the induced Fubini—Study metric. We also dis-
cuss generalizations of the asymptotic expansion for non-compact or singular manifolds as well as their
applications. Our approach is inspired by the analytic localization techniques of Bismut and Lebeau.
© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

The Bergman kernel for complex projective manifolds is the smooth kernel of the orthogonal
projection from the space of smooth sections of a positive line bundle L on the space of holomor-
phic sections of L, or, equivalently, on the kernel of the Kodaira-Laplacian 0F = §L9%* + §L*3L
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on L. It was studied in various generalities in [6,17,30-32,42,48,50,51], where the diagonal
asymptotic expansion for high powers of L was established. Moreover, the coefficients in the
diagonal asymptotic expansion encode geometric information about the underlying complex pro-
jective manifolds. The diagonal asymptotic expansion plays a crucial role in the recent work of
Donaldson [26] where the existence of Kdhler metrics with constant scalar curvature is shown to
be closely related to Chow—Mumford stability.

Dai, Liu and Ma [20] studied the asymptotic expansion of the Bergman kernel of the spin®
Dirac operator associated to a positive line bundle on a compact symplectic manifold by relating
it to that of the corresponding heat kernel. As a by product, they gave a new proof of the above
results. Their approach is inspired by Local Index Theory, especially by the analytic localization
techniques of Bismut and Lebeau [4, §11].

Another natural generalization of the operator O in symplectic geometry was initiated by
Guillemin and Uribe [28]. In this very interesting short paper, they introduce a renormalized
Bochner-Laplacian (cf. (0.4)) which is exactly 207 in the Kihler case. The asymptotic of
the spectrum of the renormalized Bochner-Laplacian on L? when p — oo is studied in vari-
ous generalities in [9,15,28] by applying the analysis of Toeplitz structures (generalized Szegd
projections) by Boutet de Monvel and Guillemin [13], and in [33] as a direct application of Lich-
nerowicz formula.

A large and important body of work about the Bergman kernel (to quote just a few [7,10,43])
uses yet another replacement of the d-operator and of the notion of holomorphic section. It is
based on a construction by Boutet de Monvel and Guillemin [13] of a first-order pseudodifferen-
tial operator Dy, on the circle bundle associated to L, which imitates the 3 operator. However,
Dy, is neither canonically defined nor unique.

In this paper we will study the asymptotic expansion of the generalized Bergman kernel of
the renormalized Bochner-Laplacian, namely the smooth kernel of the projection on its bound
states as p — oo. Our motivation is to deal with a concrete, geometrically and canonically de-
fined operator which allows detailed calculations of the expansion coefficients. Our method is
different from the one using the parametrix construction of Boutet de Monvel and Guillemin and
continues the line of thought of [20], having origins in the works of Demailly [22], Bismut [2]
and Bismut and Vasserot [5]. We use the spectral gap of the renormalized Bochner-Laplacian, fi-
nite propagation speed for wave equations and rescaling of the renormalized Bochner-Laplacian
near the diagonal. We can work directly on the base manifold and the passage to the associated
circle bundle is not necessary.

We now explain our results in more detail. We work on a compact symplectic manifold (X, w)
of real dimension 2n. Let (L, k%) and (E, h®) be two Hermitian vector bundles on X, endowed
with Hermitian connections VX and VZ. The curvatures of these connections are given by RL =
(VL2 and RE = (VF)2. We will assume throughout the paper that L is a line bundle satisfying
the pre-quantization condition:

=1
Y _Rl—w
21

We choose an arbitrary! Riemannian metric g7* on X. Let J : TX — TX be the skew-
adjoint linear map which satisfies the relation

0.1)

1 Usually one takes as primary data the symplectic form w and an almost complex structure J with w(Ju, Jv) =
w(u,v) foreachu,v e TX and w(-,J-) > 0, then defines gTX(u, v) :=w(u, Jv). In this case J = J. We prefer however
to work with an arbitrary Riemannian metric in view of the applications, e.g., Theorem 3.11.
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w(u,v):gTX(Ju,v) foru,veTX. 0.2)

Since J, € End(T, X) we can define the determinant function detJ on T X by (detJ)(x) :=
det J . for each x € X.

There exists an almost complex structure J : TX — T X such that gTX(Ju, Jv) = gTX(u, v),
w(Ju, Jv) =w(u,v) forevery u,v € TX and w(-, J-) defines a metric on 7 X. Indeed, if J sat-
isfies these conditions, then J commutes with J and —J J € End(T X) is positive, so necessarily
J=J=JH7

We introduce the Levi-Civita connection V7' X on (T X, g7X) and let RTX denote its curvature
and r¥ its scalar curvature (cf. (2.22)). By VXJ € T*X ® End(T X) we mean the covariant
derivative of J induced by V7X,

Pursuant to the above choices of connections, we consider the induced Bochner-Laplacian
AL"®E acting on € (X, L? ® E) (cf. (1.2)), where L? := L®P Further, we fix a smooth Her-
mitian section @ of End(E) on X and define:

T(x)=—nTr|rx[JJ],

— H 1 plL 2
Mo = uenl;?,fxexv LRy (u, Ju)/|ulyrx >0, 0.3)
Apo=A"9E _prio (0.4)

Note that for a local orthonormal frame {e;}; of (TX,g”"%X) near x € X, we have 7(x) =
@ Zj RL(e.,', Jej). By (0.1) and since w(-, J-) is a metric, we obtain 7(x) > 0 for every
xeX.

Let Spec(A) denote the spectrum of an operator A. By [33, Cor. 1.2] (cf. also [5,9,15,28]),
there exists C; > 0 independent of p such that

Spec(Ap,e) C[—CL, CL1U2ppo — Cr, +ool. 0.5)

The constant C; can be estimated precisely by using the ¥%-norms of R7X, RE, RL, vXJ
and @, cf. [33, pp. 656-658].

Since A ¢ is an elliptic operator on a compact manifold, it has discrete spectrum and its
eigensections are smooth. Let , C €*°(X, L? ® E) be the direct sum of eigenspaces of A,
corresponding to the eigenvalues belonging to [-Cr, Cr]. By [33, Cor. 1.2] (also cf. [9,28] for
the case E trivial and J = J) we have the following formula for p large enough:

dimH, =d, = / Td(TX)ch(L? ® E)

X
Ly k(E Ly"—!
=k(p) [ p”+/<c1(E)+r ; %(TX))%MI
X - X )
+0(p"?). (0.6)

As usual, ch(-), ¢1(-), Td(-) are the Chern character, the first Chern class and the Todd class of
the corresponding complex vector bundles (we consider here TX as a complex vector bundle
with complex structure J).
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The restriction to the diagonal of the generalized Bergman kernels (Deﬁnition 1.1, (1.3)) can
be introduced as follows. We consider an arbitrary orthonormal basis {Sp }; ”1 of H,, with respect

to the inner product (1.1) such that A, ¢ Slp = pSlp . We adhere to the convention that A0 = 1
for each A € R. For g € N, we define B, , € €°°(X, End(E)) by

By p(x) = ZA? LSP ) ® (ST ()" ©0.7)

Clearly, B, ,(x) does not depend on the choice of {Sip } but is by construction dependent on the
data gTX, hl, vE hE VE Jand &.

In general, on any given manifold we fix a Riemannian metric and a covariant derivative.
Pursuant to this choices, we form the pointwise norms, covariant derivative of order / € N and
the " -norm of tensors.

Let ¥x denote the set of Riemannian metrics on X. We say that a subset G C ¥ is bounded
below, if there exists gJ X € ¥x such that g”* > ¢! X forall g7* € G.

A corollary of Theorem 1.19 is one of our main results:

Theorem 0.1. There exist smooth coefficients by r(x) € End(E), such that
bo,o = (det J)'/* 1dg, (0.8)

and for every k,l € N there exists Cy, > 0 such that for every x € X, p € N,

1 _ —k—
ﬁBq,p(m—qu,r(x)p o< CupTh (0.9)
r=0 €!

The coefficients b, r(x) are polynomials in RTX, RE, @ (and RY), their derivatives of order
< 2(r +q) — 2 (resp. 2(r 4+ q)), and reciprocals of linear combinations of eigenvalues of J at x.

The expansion is uniform in the following sense. For a subset M of 9, the infinite dimensional
manifold of all compatible tuples (gTX, hE, VL RE VE J ®), assume that:

(i) foreach fixed k,l € N the covariant derivatives in the direction X up to order 2n+2k +2q +
1 + 5 of elements of M form a set of tensors on X x M which is bounded in the €' -norm
calculated in the direction of M,

(ii) the projection of M on the space of Riemannian metrics 9x is bounded below.

Then there exists Cy,; = Cy 1(M) such that (0.9) holds for all tuples of data from M. Moreover,
the €' -norm in (0.9) can be taken to be the €' norm on X x M.

We calculate further the coefficients bg 1 and by 0, g > 1 as follows.2

29 {ej} is a local orthonormal frame of (7' X, gTX) then |VXJ|2 ZU |(V J)e] \2 this is two times the corre-
sponding IvXJ |2 from [34].
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Theorem 0.2. If J = ], then for g > 1,

1 1
bo)l:8—|:rX+Z|VXJ|2~|—2«/_—1RE(ej,Jej):|, (0.10)
T
1 V=1 1
bq’oz(ﬁ|VXJ’2+TRE(ej,Jej)+<D> | ©.11)

Let us verify the compatibility of (0.10) with the Atiyah—Singer formula (0.6). Let 70 x =
fveTX®rC; Jv= \/—_lv} be the almost complex tangent bundle on X and let PO =
%(1 — +/=1J) be the natural projection from 7 X ®g C onto -9 X Then V-0 = p1.OyTX p1.0
is a Hermitian connection on 7YX, and the Chern—Weil representative of c(7X) is
1 (TAOX, VL0 = YL Tr |10 (V10)2. By (1.95),

(v19)2 = P1'0|:RTX _ i(VXJ) A (vXJ)]pLO. 0.12)
Thus if J = J, (0.12), (2.13), (2.15), (2.21) and (2.22) imply

1 1 2
(e (TTO0X, V1), ) = E(VX + Z|VXJ| ) (0.13)

Therefore, by integrating over X the expansion (0.9) for k = 1 we obtain (0.6), so (0.10) is
compatible with (0.6).

Theorem 0.1 for ¢ = 0 and (0.10) generalize the results of [17,31,51] and [50] to the sym-
plectic case. The term rX + %WX J|? in (0.10) is called the Hermitian scalar curvature in the
literature [27, Chap. 10] and is a natural substitute for the Riemannian scalar curvature in the
almost-Kéhler case. It was used by Donaldson [25] to define the moment map on the space of
compatible almost-complex structures. We can view (0.11) as an extension and refinement of
the results of [11], [28, §5] about the density of states function of A, ¢ (cf. Remark 3.2 for the
details).

To clarify the relation between the renormalized Bochner-Laplacian and the pseudodifferen-
tial operator D,% introduced by Boutet de Monvel and Guillemin [13], let us notice that (0.11) for
E =C and J = J shows that these two operators could be equal only if @ = —21—4 VX T2

Let us explain the strategy we apply in this paper. In the case considered in Dai, Liu and
Ma [20] there is a spectral gap in the sense that the eigenvalues of the Laplacian are either O
or tend to +oo. This allows to obtain the key equation [20, (4.89)] and to prove the full off-
diagonal expansion (cf. [20, Theorem 4.18]), which is needed to study the Bergman kernel on
orbifolds.

However, in the current situation we have possibly different bounded eigenvalues (cf. (0.5)
and (0.6)) so we proceed as follows. The first step is to use the spectral gap (0.5) and the finite
propagation speed of solutions of hyperbolic equations which permit to localize the asymptotics
near the diagonal. Then we rescale the renormalized Bochner—Laplace operator and obtain a
formal expansion of the operator as p — oo. Finally we combine the Sobolev norm estimates
contained in [20] and a formal power series technique to show that the formal expansion is indeed
the real expansion.
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In the course of the proof we also develop a method to compute the coefficients (cf. (1.110),
(1.114)) which is new with respect to [31] and [20]. The final result is Theorem 1.19 where we
obtain the near diagonal expansion of the generalized Bergman kernels. This result is enough
for most applications.

We treat several applications of the asymptotic expansion of the renormalized Bochner-
Laplacian. First we calculate the density of bounded eigenvalues of A, . We show then how our
method can be employed to study the Bergman kernel of the operator 3 4+ 8* when X is Kihler but
J # J. This discussion applies also to the first-order pseudodifferential operator Dj, of Boutet de
Monvel and Guillemin [13], which was studied extensively by Shiffman and Zelditch [43]. We
give further a symplectic version of the convergence of the induced Fubini—Study metric [48].

We include also generalizations for non-compact or singular manifolds. We have thus a unified
treatment of the convergence of the induced Fubini—Study metric [10,12,43,48], the holomorphic
Morse inequalities [2,8,22] and the characterization of Moishezon spaces [8,22,29,45] from the
point of view of Bergman kernels.

Let us provide a short road-map of the paper. In Section 1, we prove Theorem 0.1. In Section 2,
we compute the coefficients by ,, and thus establish Theorem 0.2. In Section 3, we explain the
applications.

Some results of this paper have been announced in [34]. In [35] we shall study the Berezin—
Toeplitz quantization on symplectic manifolds as an application of the asymptotic expansion of
the Bergman kernel. We refer also the readers to our forthcoming book [36] for a comprehensive
study of the Bergman kernels along the lines of the present paper.

1. Generalized Bergman kernels

As pointed out in Introduction, we will apply the same strategy as in [20]. However, we have
to deal with the following problem. In the situation of [20] the operators DIZJ have only one
bounded eigenvalue as p — oo, namely 0, whereas in the present paper, we could have different
eigenvalues of A, ¢ in the interval [-Cr, Cr] as p — oo (cf. (0.5) and (0.6); it is in principle
possible to have d,, different eigenvalues of multiplicity one in [—~Cp, C]). This prevents us to
use directly the key equation [20, (4.89)] in order to get a full off-diagonal asymptotic expansion
of the generalized Bergman kernels.

To overcome this difficulty, we first localize the asymptotics near the diagonal and by rescaling
arguments we obtain a formal expansion of the considered operators as p — co. In order to
show that the formal expansion is indeed the real expansion we need to prove the vanishing of
the coefficients F, , (r < 2q) in the expansion (1.77). We will introduce a formal power series
technique which permits to show the vanishing of the latter coefficients and allows us also to give
a method to compute the coefficients from (0.9).

The ideas used here are inspired by the technique of Local Index Theory, especially by [4,
§10, 11].

This section is organized as follows. In Section 1.1, we explain that the asymptotic expansion
of the generalized Bergman kernel P, ,(x,x’) is local on X by using the spectral gap (0.5) and
the finite propagation speed of solutions of hyperbolic equations. In Section 1.2, we obtain an
asymptotic expansion of A, ¢ in normal coordinates. In Section 1.3, we adapt to our problem
the Sobolev norm estimates developed in [20] and we study the uniform estimate of the gen-
eralized Bergman kernels of the renormalized Bochner-Laplacian .Z;. In Section 1.4, we study
the Bergman kernel of the limit operator .%p. In Section 1.5, we compute some coefficients F ,
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(r < 2q) of the asymptotic expansion from Theorem 1.13. Finally, we prove Theorem 0.1 in
Section 1.6.

1.1. Localization of the problem

Let a* be the injectivity radius of (X, g7X). We fix ¢ € 10, a*X /4[. We denote by BX(x, €)
and BT=X(0, €) the open balls in X and 7, X with center x and radius €, respectively. Then the
exponential map T, X 5 Z — expf (Z) € X is a diffeomorphism from BTxX(0,€) on BX(x, €)
for € < aX. From now on, we identify BTX(0, €) with BX(x, €) for € < a¥X.

Let (-, -)LrgE be the metric on L? ® E induced by hL and hE and dvy be the Riemannian
volume form of (T'X, g7%). The L?-Hermitian product on €°° (X, L? ® E), the space of smooth
sections of L” ® E, is given by

(s1,52) = f (5100), 5200), g d0x (). (1.1
X
We denote the corresponding norm with || - || ;2.

Let VTX be the Levi-Civita connection of the metric g7* and V"®E be the connection on
L? ® E induced by VX and V. Let {e;}; be an orthonormal frame of 7 X. Then the Bochner-
Laplacian on L? ® E is given by

ALPBE = _NT[(VE'OE)? _yLISE], (1.2)

VTXE,
l

We consider the vector subspace H , spanned by the eigensections of A, ¢ = ALRE _ pr 4 @
corresponding to eigenvalues in [—Cp,Cr]. Let Pp, be the orthonormal projection from
¢ (X,LP? ® E) onto H,.

Definition 1.1. The smooth kernel of (A, ¢)? Py,.q > 0 (where (Ap@)o = 1), with respect to
dvy (x') is denoted Py p(x, x") and is called a generalized Bergman kernel of A DD

The kernel P, ,(x,x’) is a section of 7 (L? ® E) @ wj (L” ® E)* over X x X, where 71 and
1y are the projections of X x X on the first and second factor. Using the notations of (0.7) we
can write

Py p(x, x)—zfxfpsf’(x)@) (SP(x")" e (L?®E) ® (LY Q E).. (1.3)

Since LY @ (LY)* is canonically isomorphic to C, the restriction of P, , to the diagonal
{(x,x): x € X} can be identified to B, , € €*°(X, E ® E*) = ¢*° (X, End(E)).

Let f:R — [0, 1] be a smooth even function such that f(v) =1 for |v| < &/2,and f(v) =0
for jv| >e.Set F:R— R

—1 400

+00
F(a):( /f(v)dv) /e"”“f(u)dv. (1.4)

—00
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Then F(a) is an even function and lies in the Schwartz space S(R) and F(0) = 1. Let F be the
holomorphic function on C such that F' (a2) = F(a), for a € R. The restriction of F to R lies in
the Schwartz space S(R).

We define by recurrence the functions Fk :R — R, for k € N, and the constants ¢, for k € N*,
as follows. We set Fo(a) = F(a) and c; ;= ﬁﬁé(O). If Fo, e Fk_l and cy, ..., ¢ are already
defined, set

FED0). (1.5)

k
Fi=F@=->) cjalFla), =

. (k+1)1*
Jj=1

Then fk verifies
FP0)=0 forevery0<i <k. (1.6)

Proposition 1.2. For every k, m € N, there exists Cy »,, > 0 such that for all p > 1 we have

~ 1
Fy (—Ap,qb)(x, x') = Py p(x, x') < Cpmp™ 2 HOHHD), (1.7)
VP Em(XxX)

Here the €™ norm is induced by VE, VE, k', hE and gTX.

Proof. By (1.4), for each m € N, there exists C,’m > 0 such that

sup la|™| Fi(a)| < Cf - (1.8)
acR

Set

G, p(@) = 1 ypug. ool (@) Fr (@), Hy,p(a) =1, (IaI)Fk(a) (1.9)

ﬁ

By (0.5), for p big enough,

~ 1 1 1
F.l —A =G —A “+ H, —A . 1.10
"(ﬁ ”"”) "”’(ﬁ ”"”) "”’(ﬁ ”"I’) (110

Since X is compact, there exist {x;};_, such that {U; = BX(x;, €)}i_, is a covering of X. We
identify B TaX (0, ¢) with BX (x;, €) by the exponential map as above. We identify (L? ® E)z
for Z € BTi%(0,¢) to (L? ® E) x; by parallel transport with respect to the connection VL'®E
along the curve yz : [0, 1] u — expffl_ (uZ). Let us take an orthonormal basis {e;}; of Ty, X and
let ¢; (Z) be the parallel transport of ¢; with respect to V7 X along the above curve yz. We denote
by I'E, ' the corresponding connection forms of V£, V1 with respect to some fixed frame for
E, L which is parallel along the curve yz under the trivialization on U;. Denote by Vy is the
ordinary differentiation operator on 7y, X in the direction U. Then

vjjp@f:vej+prL(e,-)+rE(ej). (1.11)
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Let ¢; be a partition of unity associated to {U;}. We define a Sobolev norm on the /th Sobolev
space H (X, L? ® E) by

Is 1% —ZZ Z Ve, - Ve (@i5)] 7. (1.12)
i k=0ip,...,ix=1
Then by (0.4), (1.2), (1.11), there exists C > 0 such that forany p > 1, s € H*(X,LP ® E),
lls1l 2 <C(IAp.oslp2+ plslz2). (1.13)
Let Q be a differential operator of order m € N with scalar principal symbol and with compact

support in U;. Since [A ), ¢, Q] is a differential operator of order m + 1 in which the coefficient
of p? is a differential operator of order m — 1, (1.13) implies

10512 < C(IAp.0 Qs 2 + P11 Osll.2)

C(1QAp.osli2 + pllslgpst + P lsll ot + P210sll ) (114)

Hence for every m € N there exists C,, > 0 such that for all p we have

m—+1
sl gzms2 < G ™"+ ZHA 3] 2 (1.15)

Moreover, if Gy, is one of the operators Gy, , or Hy, p,, then (A’;”,(I,Gk,p(#A,,@)Qs, s’y =

(s, Q*Gk,p(ﬁAp,qs)A;”:dss’). Hence from (1.6), (1.8), we infer that for /, m’ € N, there exist
C, C’ > 0 such that for p > 1,

, 1
el
L
[ (s 200) - . o
P PNV ! L

We deduce from (1.15) and (1.16) that if P, Q are differential operators with compact support in
U;, Uj respectively, then for each [ € N, there exists C > 0 such that for p > 1,

-1
LS Cp sl

<C'p Hsll o, (1.16)
2

| _
HPGk,p(ﬁAP,¢)Qs LS6p s 2.
Pl (—oa, o) =Py )os| < cp2omm =5y (1.17)
5P \/ﬁ p.® HI) 12 sLp L+- .

Using the Sobolev inequality on U; x U; we see for every [, m € N, there exist C; ;, > 0 and
C,, > 0 such that for all p > 1 the following estimates hold:
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1
Gk»P<_Ap,<P>(xvx/) g C[,mp_lz
‘ ﬁ Ecm
1
'(%p(EAp,@) - Po,p>(x,x’) » < Cpy pHim D=1 (1.18)

By (1.10) and (1.18), we get our Proposition 1.2. O

Using (1.4), (1.5) and the finite propagation speed [19, §7.8], [47, §4.4], it is clear that for
x,x' €X, Fk(ﬁA[]’d))(x, -) only depends on the restriction of A, ¢ to BX(x,sp_%), and

Fk(ﬁAP’q_‘))(x, x)=0,ifd(x,x") > 8[7_%. This means that the asymptotic of P, ,(x,-) when

p — 400, modulo &(p~*°) (i.e. terms whose €™ norm is ﬁ(p_l) for every [, m € N), only
depends on the restriction of A, ¢ to BX (x, 8p_%).

1.2. Rescaling and a Taylor expansion of the operator A ¢

We fix xo € X. From now on, we identify BTXOX(O, 4g) with BX(xp,4e). For Z €
BT"OX(O, 4e) we identify Lz, Ez and (L? ® E)z to Ly, Ex, and (L? ® E)y, by parallel trans-
port with respect to the connections VX, VE and VE"®F along the curve yz : [0,1] 5> u —
expffo (uZ). Let {e;}; be an oriented orthonormal basis of Ty, X, and let {ei }i be its dual basis.

Let us identify R?" ~ T, X by

Rzna(zl,...,Zzn)HZZ,-ei €Ty X. (1.19)

1

For ¢ > 0 small enough, we will extend the geometric objects from BT0X (0, ¢) to R2 ~ T X
such that A, ¢ becomes the restriction of a renormalized Bochner-Laplacian on R associated
to a Hermitian line bundle with positive curvature. In this way, we are able to replace X by R*".

We denote in the sequel X = R** ~ Ty, X. We consider the trivial bundles L, Eo with fibers
Ly, Ey, on Xo. We still denote by VL VE Rl etc. the connections and metrics on Lo, Eg
on BT0X (0, 4¢) induced by the above identification. Then i, hE get identified to the constant
metrics hL0 = hxo , hEo = hExo.

Let p : R — [0, 1] be a smooth even function such that

1 it <2,
p(“)_{o if [u] > 4. (1.20)

Let ¢, : R?* — R?" is the map defined by ¢:(Z) = p(|Z|/e)Z. Then @9 = @ o @, is a smooth
self-adjoint section of End(Eg) on X(. We equip Xo with the metric g7 X0(2) = g7 X(¢:(2))
and with the complex structure Jo(Z) = J(¢:(Z)). Set vEo = or VE . Then V0 is the extension
of VE on BT"OX(O, ). If R= Zi Z;e; = Z denotes the radial vector field on R?", then we define
the Hermitian connection VL0 on (L, hL0) by

1
Vil =g v+ (1 — p*(121/€))RE (R ). (1.21)

Then we calculate easily that its curvature R0 = (V£0)2 js
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1
RY(Z) = giR" + 2d((1 - p*(1Z1/¢) )R, (R. )
= (1-p*(1ZI/e))RE, + p*(1Z1/€)RL, 4,

Z;é'
= (pp’)(|Z|/s)T;| A[RE (R, ) = RE £ (R, )], (1.22)

Recall that wy was defined in (0.3) as the infimum on X of the smallest eigenvalue of
V—1RE(-, J-) with respect to g7X. Formula (1.22) shows that for & > 0 small enough R0
is positive, i.e., «/—_IZ] R%0(ej, Joe;) > 0 for every local orthonormal frame {e;} of T X, and
satisfies the following estimate for any xp € X,

i 4
mf{\/—lRéo(u, Jou)/|u|z”0: ueTzXo, ZeXo}> <ho.

From now on we ﬁxpsuch an¢ > 0.
Let A;{O@O = AL®E0 — pry + @ be the renormalized Bochner-Laplacian on Xy = R ~
Ty, X associated to the above data, as in (0.4). Observe that by the previous estimate R0 s

uniformly positive on R??, so by [33, (3.2), (3.11) and (3.12), pp. 656—658] the operator A;(?@o
admits a spectral gap analogous to (0.5). Specifically, there exists Cr,, > 0 such that

8
Spec(A;{f’(po) C[=CLy, Cr,lU |:§PMO —Cr,, —i—oo[. (1.23)

Let Sy be a unit vector of Ly,. Using S; and the above discussion, we get an isometry
Ey® LY ~ E,,. Let Po,3, be the spectral projection of A;(,O% from ¢ (Xo, L) ® Eo) ~
%> (Xo, Ex,) corresponding to the interval [—Cp,, Cr,], and let Py, ,(x,x") (g > 0) be the
smooth kernels of Py, , = (Aff)%)q Py 3¢, (we set (Aff’(po)o = 1) with respect to the volume
form dvy,(x"). The following proposition shows that P, , and Py, , are asymptotically close
on BT0X (0, ¢) in the € *°-topology, as p — oo.

The following result is an analogue of [20, Proposition 4.4].

Proposition 1.3. For every [,m € N, there exists C;, > 0 such that for x,x’ € BTXOX(O, g),
X0 € X,

|(Po.g.p = Pg.p) %, X oo < Crmp ™. (1.24)

Proof. Using (1.4) and (1.23), we know that for x, x’ € BT0X (0, ¢),

~ 1 _k
Fk(—ﬁam)(x,x’) — Poop(x,x)| < Cppp 2 THmEED, (1.25)
anl

Thus from (1.7) and (1.25) for k big enough, we infer (1.24) in the particular case ¢ = 0. Taking
into account the definition of Py 4 , and P, p, (1.11) and the g = O case of (1.24) entail (1.24) in
general. 0O
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It suffices therefore to study the kernel Py, , and for this purpose we rescale the operator

A[)io%. Let dvryx be the Riemannian volume form of (7y,X, gTXOX ). Let k¥ (Z) be the smooth

positive function defined by the equation

dvx,(Z) =k(Z)dvrx(2), (1.26)
with «(0) = 1. Denote by Vy, the ordinary differentiation operator on Ty, X in the direction U,
and set 9; = V,,. If o = (a1, ..., a2,) is a multi-index, then set Z* = Z‘f‘ az" We also
denote by (3% RL),, the tensor (3% RE)y,(ei, ej) = 3*(RE(e;, €j))x,. Denote by t = ﬁ' For

s € EC (R, E,,) and Z € R, set

SNZ)=s(Z/1), V=18 k2 VE®E 3,

I
L =57 T AK, T3S, (1.27)
p

The operator .%; is the rescaled operator, which we now develop in Taylor series. In the following
result we draw on [20, Theorem 4.6] and calculate two more terms of the asymptotic expansion

of %.

Theorem 1.4. There exist polynomials A; j, (resp. Bi r, Cr) (r €N, i, j € {1, ...,2n}) in Z with
the following properties:

(i) their coefficients are polynomials in RTX (resp. RTX, RE, ®, RL) and their derivatives at
Xxo up toorderr —2 (resp.r —2,r —2, r —2, 1),
(i) A; j, is a homogeneous polynomial in Z of degree r, the degree in Z of B; , is <r +1
(resp. Cy is < r +2), and has the same parity withr — 1 (resp. r),
(iii) if we denote by

Or = Ai,j,rve,- Ve_,- + Bi,r Ve,- + Cr’ (128)
then
m
L=Ly+ Yy O+ 0", (1.29)
r=1

and there exists m' € N so that for every k € N, t < 1, the derivatives up to order k of the
coefficients of the operator €(t" ') are dominated by Ct"™+1 (1 + |Z))™' . Moreover

1 2
$0=_2<vej+ R (Z, e])> — Typs

J

2 1
01(Z) =—§(ajRL)XO(R,ei)Zj (ve, +-RE (R, e,)) (9 R*) o (Roei) = (VRD)x,

wl'—‘
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TX 1 L 1 L
02 (2) = (R (R, el)R,ej)xo Ve, + = R “(R.ei) )| Ve, + 5 R (R.ej)

2 1 VA
+ |:3<RTX(R e])e],e,> — (E Z (aolRL)XOm —i—Rf;)(R, ei):|

=2
x (Ve, - 1RL (R, e,))

1 wory Z° 1 L 2
— Ve <|az_2(a RY),, (R, e,-)) -5 Xi:[;(a,}e ), (R, el-)z,-]

1
- [0 (REF R, enR.ei), ] = D (6°7)

la|=2

o

+ Dy (1.30)

X0 !

Proof. Set g;j(Z) = g"*(ei,e;)(Z) = (ei, e;)z and let (g7 (Z)) be the inverse of the matrix
(gij(Z)). By [1, Proposition 1.28], the Taylor expansion of g;;(Z) with respect to the basis {e;}
up to order r is a polynomial of the Taylor expansion of R”X up to order  — 2, moreover

1
FRIX (R eNR ej), + o(12P),

8ij(Z) =6ij + 3

1
K(Z) = |det(gij(2)) > =1+ (RO R.eDR. e}, +0(2ZF). (1.31)

If Fllj is the connection form of V7 ¥ with respect to the basis {e;}, then we have (V/*e;)(Z) =
qu.(Z)el. Owing to (1.31),

1
I (2) = 58" @igju + 0 g — hesij)(2)

1
= g[(113;"0"(73, epeisel), + (R R epej e, ]+ O(1Z1P). (1.32)

Now by (1.2),
Apo=—g'l(VE'OEVLISE _ v@j’,_?i) - pr+ @, (1.33)

so from (1.27) and (1.33) we infer the expression
L = —gij(tZ)[V,,eiVl,ej tl"l (Z)Vie| —T(tZ) +12P(12). (1.34)

Let I'E, 'L be the connection forms of V£ and V/ with respect to some fixed frames for E, L
which are parallel along the curve yz under our trivializations on BTwX (0, &). (1.27) yields on
BT0X(0, ¢/1)

Vielz =k2(tZ) <Ve,. + %FL(e,-)(tZ) + tFE(e,-)(tZ))K—% (7). (1.35)
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Let I'*=TF, 'l and R® = R, RL, respectively. By [1, Proposition 1.18] the Taylor coeffi-
cients of 1"*(e;)(Z) at xo up to order r are only determined by those of R® up to order r — 1, and

] o

VA Z
Z (<9¢>z1“-)xo(e]-)J = 1 Z (aaR-)xo(R, ej)a. (1.36)

la|=r loe|=r—1

Owing to (1.31), (1.36)

2
&= —<5ij - %<R£)X(R’ e)R.ej)+ ﬁ(ﬁ))"%(tz)

Lot L 2 wply 2% 1 ok 3
<A Ve + (5 R + 5 (R )xozk+zl;2(a RY), =5 + S RG ) R.e) +0(1)
ol=

2

1 t t VARNNS
x [vej + (ER)fO + 3 (0RY), Zk+ > (0"RE), —r + 5R§)>(R, ej)+ ﬁ(ﬁ)}

lor|=2

—zF/,-(zz)<v + IRL (R, ez)+ﬁ’(t))}f<‘%(tz>

z
— Ty — H(VRT)xy — 12 Z (ao‘r)mJ +120, + O(r). (1.37)
Jo|=2 ’

Relations (1.31) and (1.34)—(1.37) settle our theorem. O
1.3. Uniform estimate of the generalized Bergman kernels

We shall estimate the Sobolev norm of the resolvent of % so we introduce the following
norms. We denote by (-,-)y ;2 and || - [|o z2 the inner product and the L? norm on € (Xo, Ey)
induced by g7*0, hFo asin (1.1). For s € 6y (X0, Ex,) set

2
Isl7o=lsllg= / |5(2)|; g dvrx(2),
R2n

m 2n
IsU7 =" > WIVie, - Vieslio- (1.38)

=0 iy,...,ij=1

We denote by (s’, s);,0 the inner product on ¥*°(Xo, E,) corresponding to || - ||t2’0. Let H}
be the Sobolev space of order m with norm || - ||;,,. Let H; ! be the Sobolev space of order
—1l andlet || - ||;,—1 be the norm on H_1 defined by ||s||;,—1 = SUPs e H! [(s,s"Ye.0l/ 18" ls1. IE

Ae ZH", H") for m,m' € Z, then we denote by ||A|}" " the norm of A with respect to the
norms || - {|¢,m and - Alem-

Remark 1.5. Note that A Oq) is self-adjoint with respect to || - ||, thus by (1.26), (1.27) and
(1.38), .Z; is a formally self adJomt elliptic operator with respect to || - |lo, and is a smooth
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family of operators with the parameter xg € X. Thus .y and O, are also formally self-adjoint
with respect to || - [lo. This will simplify the computation of the coefficients bg 1 in (0.11) (cf.
Section 2.3) and explains why we prefer to conjugate with x /2 comparing to [20, (3.38)].

Theorems 1.6—1.9 are the analogues of [20, Theorems 4.7—4.10]. We include the proofs for
the sake of completeness.

Theorem 1.6. There exist constants Cyi, C, C3 > 0 such that for t € 10, 1] and every s,s’ €
%&O(Rzn, EX())’

2 2
(Zis,s)e.0 2 Crllslly; — Callslly o
(s, 5" 0] < Callslletlls Il 1. (1.39)

Proof. Relations (0.4) and (1.2) yield

4 2
(Apos,s)g 2= ||VLo®Eos||0’L2 —{(pr = )3, 5)y 12 (1.40)

Thus (1.27), (1.38) and (1.40) applied to « ~'/2S,s instead of s, yield
(Zs.8)10=1VisllF o — (57 (r = £2@))s, ), o (1.41)

which implies (1.39). O
Let § be the counterclockwise oriented circle in C of center O and radius o /4.

Theorem 1.7. There exists to > 0 such that the resolvent (. — £,)~" exists for all % € 8,
t €10, tg]. There exists C > 0 such that for all t €10, t9], . € 8, and all xo € X we have

-2 <c. Jo-27!) M <c (142)
Proof. By (1.23), (1.27), for ¢ small enough,
Spec(-4;) C [—Cryt?, Cryt?] U [0, +00l. (1.43)

Thus the resolvent (A — %)~ ! exists for A € § and 7 small enough, and we get the first inequality
of (1.42). By (1.39), (Ao — %)~ exists for 19 € R, Ao < —2C3, and [|(ho — )17 < cll
Now,

=L ' =00 - =2 —L) o -7 (1.44)

Thus for A € §, from (1.44), we get

Lo 1 4
lo =277 < F(HEM_’\O')' (1.45)
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Changing the last two factors in (1.44) and applying (1.45) we get

IS RS N SN I evi]
||()L z) ||t < Cl + C12

4
(1+—|A—A0|><C. (1.46)
140

The proof of our theorem is complete. O

Proposition 1.8. Tuke m € N*. There exists C,, > 0 such that for t € 10,1], Q1,...,Om €
(Vi ZiYi, and s, s' € 65°(Xo, Ex,),

|<[Q17 [Q27 LRER} [Qma Z] .. .]]S, S/>t,0| g Cm”S”t,l ”s/”I,l' (147)

Proof. Note that [V, ,, Z;] = 6;;, hence (1.34) implies that [Z;, ;] verifies (1.47). On the
other hand, we obtain from (1.27)

Vi, Vie, 1= (RE(t2) + 2 RE(12)) (e; e)). (1.48)

Thus from (1.34) and (1.48), we know that [V, ,, , ;] has the same structure as .Z; for ¢ € ]0, 1],
i.e. [V, ¢, -2 ] has the same type as

> aij(t. 12V Vie; + Y _bi(t 12V, o +(t.12), (1.49)

ij i

and a;;(t, Z), b;i(t, Z), c(t, Z) and their derivatives in Z are uniformly bounded for Z € R2",
t € [0, 1]. Moreover they are polynomials in .
If (V;,¢,)* is the adjoint of V; ., with respect to (-, -); 0, then (1.38) yields

(Vie)* = —Vie — (k" (eir)) (t Z). (1.50)

Thus by (1.49) and (1.50), (1.47) is verified for m = 1.
By recurrence, it follows that [Q1,[Q2,...,[Qm,-Z]...]] has the same structure (1.49)
as .%;, so from (1.50) we get the required assertion. [

Theorem 1.9. For every t € 10,19], A € 8, m € N, the resolvent (. — £)~" maps H' into

H;"'H. Moreover, for every o € N2" there exists Cyq.m > 0 such that for t € 10, 1], L €4, s €
%oo (XO’ E)C()):

|20~ 2075, gy < Cam D251, (1.51)
o' <a
Proof. For Qy,...,0, € {vaei}izil’ Om+ts - Omtlal € {Z,'}izil, we can express

01 Omila) (X — )71 as a linear combination of operators of the type

[le[Q2v7[Qm’1()‘_$)7]]]]Qm’+lQm—Ha\» m/<m+|a| (152)
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Let %; be the family of operators Z; ={[Q},,[Q},,...,[Q};, £]...11}. Clearly, every commu-
tator [Q1,[Q2,...,[Qm, (A — #)~11...11is a linear combination of operators of the form

=L 'R~ L) 'Ry Ry . — £} (1.53)

with Ry, ..., R,y € %;.

From Proposition 1.8 we deduce that the norm || - || ,1 1 of the operators R; € %; is uniformly
bounded from above by a constant. Hence by Theorem 1.7 there exists C > 0, such that the norm
I - ||?’] of operators (1.53) is dominated by C. O

The next step is to convert the estimates for the resolvent into estimates for the spec-
tral projection Po; : (€°°(Xo, Ex,). || - llo) = (€°(Xo, Exy). || - llo) of £} corresponding to
the interval [—CLOIZ, CLOtz]. Let Py (Z,Z") = Py1x(Z,Z") (With Z,Z" € Xo, g > 0) be
the smooth kernel of P, ; = (£)7Po, (we set (£)? = 1) with respect to dvrx(Z’). Note
that %} is a family of differential operators on Ty, X with coefficients in End(E),,. Let 7 :
TX xx TX — X be the natural projection from the fiberwise product of 7X on X. Then we can
view Py (Z, Z") as a smooth section of 7*(End(E)) over T X x x T X by identifying a section
S € ¢™(TX xx TX,7*End(E)) with the family (Sy)ex, where Sy = S| -1 ,,. Let VEM(E)
be the connection on End(E) induced by VE. Then V™" EM(E) induces naturally a €”"-norm of
S for the parameter xp € X.

In the following result we adapt [20, Theorem 4.11] to the present situation.

Theorem 1.10. For everym, m’,r € N, o > 0, there exists C > 0, such that fort €10, 1), Z, Z' €
T, X, 1Z],1Z'| < o,

glal+le’l  gr
——— —Pq.(Z, Z <C. (1.54)
ol +le| <m| DZ¥DZ'* Ot &' (X)
Here €™ (X) is the €™ norm for the parameter xg € X.
Proof. By (1.43), for every k e N*, ¢ >0,
q 1 q+k—1 - g+k—1 —k
Pyt = (L) 1Po,; = o k1 A A=) "dAx. (1.55)
s
For m € N, let Q™ be the set of operators {Vt,e,-l e Vt,eij } j<m- From Theorem 1.9, we deduce
that if Q € Q™, then there is C,, > 0 such that
lo = 2)™|"° < Cp, forall 1 es. (1.56)

Observe that .%; is formally self-adjoint with respect to || - ||;.0, so after taking the adjoint of
(1.56), we have

Jo.— 20|’ < Cu. (1.57)
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From (1.55), (1.56) and (1.57), we obtain
0P Q1P < C, for 0, Q"€ Q™. (1.58)
Let | - |(),m be the usual Sobolev norm on € (BT0X(0,06 + 1), E,) induced by hExo
and the volume form dvrx(Z) as in (1.38). Let ||A|ls) be the operator norm of A €

ZLLHB™X(0,0 + 1), Ey,)) with respect to | - |(5).0. Observe that by (1.35), (1.38), for m > 0,
there exists C, > 0 such that for s € €°° (X, Ey,), supp(s) C BTXOX(O, o+1),

1
”S”tm |S|(0),m < Co ”s”t,m- (1.59)
Cs

Now (1.58) and (1.59) together with Sobolev’s inequalities imply

sup  |070%Py.(Z,Z)|<C, forQ, 0 Q™ (1.60)
1Z,1Z'|<o

Thanks to 't (e;)(0) = 0, (1.35) and (1.60), estimate (1.54) holds for r = m’ = 0. To obtain
(1.54) for r > 1 and m’ = 0, note that from (1.55),

o U (g+k=1\" [ 1 @ i
S5 _ —(r— > 1. .
o Pa 27'[1'( o ) /A =)o dh, fork>1. (16D)
Set
j j
I, = {(k,r)z(k,-,ri) ‘ Y ki=k+j. Y ri=r ki eN* L. (1.62)
i=0 i=1

Then there exist a* € R such that

97 «i”z

A% D) = 0= L) koa ‘- gy S gy,

" —k k 4k
A== > arA¥ (). (1.63)

kr)el,,

We claim that A'r‘(k, t) is well defined and for every m e N, k > 2(m +r + 1), Q, Q' € 9™,
there exists C > 0 such that for A € 8, t € ]0, 7],

leara.n@'s], ,<C 3 2%, (1.64)

1BI<2r
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In fact, by (1.34), %iﬂt is a combination of

r

o i a2 o
atrl ( ( Z)) <Mvt,ei) : <a[—r.2vt’ej>’

r r

9 dtZ 9 di(tZ 3r2v
atrl( (t )), W(i(t ))' 3 Ve )

Ifri > 1, then 2 t,l d(t2)) (resp at,l Vi,e;), are functions of the type d’ (tZ)ZP, where B8] <
(resp. |B| < r1+ 1) and d'(Z) and its derivatives with respect to Z are bounded smooth functlons
in Z.

Let %, be the family of operators of the type

Ky = {[fjl Qjis [szsz’---’[szle»"%]"']]}

where f. are smooth functions with bounded derivatives, and Q j, € {V,,, Z[}lzi "

To handle the operator A'r‘()», t)Q’, we will, as above, move all the terms 7B in d’ (tZ)Z‘8 to
the right-hand side of this operator. To do so, we always use the commutator relations, in the
sense that each time we consider only the commutator only for Z;, and not for Z# with || > 1.
Then AX(1, #) Q' turns out to be of the form qur Lt QgZﬁ and Q” is obtained from Q’ and

its commutation with Z#. Next we move all the terms V, e in 2 '27’

to the right-hand side of the
operator Lt . Then as in the proof of Theorem 1.9, we get ﬁnally that QAlr‘ (A, 1) Q' is of the form
2 oipl<r féZ B, where .,2”/; is a linear combination of operators of the form

Q0 — L) MR (. — L) MRy Ry — L) Q" Q"

with Ry,...,Ry € %, Q" € Q¥ 0" e Q", |Bl <2r, and Q" is obtained from Q' and its
commutation with Z?. Since k > 2(m + r + 1), we can use the same argument as in (1.56) and
(1.57) to split the above operator in the following two parts

oM — %)71{6}31()» — a%)*k/l Ry---Ri(h— Z)fk;’7
()L — Z)*(k,{*kt(/) . Rl/()\. _ %)—k;/ Q/HQN,

such that the || - ||?’0—norm of each part is bounded by C for A € §. Thus the proof of (1.64) is
complete.

By (1.61), (1.63) and the above argument, we get the estimate (1.54) with m’ = 0. Finally, for
every vector U on X we have

- I 1\ .
vU End(E)P 27[ <5]‘]L‘k 1 l) fkq+k7]VZ End(E)()L_D%)fkd)h (1.65)
i —

g End(E)()\ ’L

Now we use a similar formula as (1.63) for V, )% by replacing = by

Vg End(E).f,, and remark that Vg End(E).Z@ is a differential operator on Ty, X with the same

structure as .%;. Then by the above argument, we conclude that (1.54) holds form’ > 1. O
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For k big enough, set

1 +hk—1\" _
For=omm <qk—1 ) fkﬁkl Y afA¥(,0)dA,

5 &)l ,
1 0"
Fyrp = EW,P(/,[ —Fy . (1.66)

Let Fy,(-,) € €°(TX xx TX,n*End(E)) be the smooth kernel of F,, with respect to
dvrx(Z'). In what follows we need the following observation: the limit of || - ||;, for + — 0
exists, and we denote it by || - [|0,-

Theorems 1.11, 1.12 are the analogues of [20, Theorems 4.14, 4.15]. We include the proofs
for the sake of completeness.

Theorem 1.11. For every r > 0, k > 0, there exists C > 0 such that for t € [0, tp], A €6,

)s
t=0

ar
H (F(k — k- Z ak Ak, 0))s
t 0,0

k)€l

at” at”

sCr Z |\Z°‘S||o,1a

(Ca
-1 lo|<r+3

<Ct Y|z, (167
| <Ar-+3 ’

Proof. Note that by (1.35), (1.38),fort € [0, 1], k > 1, s € €°° (X0, Ex,),

Isllo=lslloo.  lslex <C D 2% g (1.68)
lo| <k

Using the Taylor expansion in the variable 7 in (1.34), we are lead to the following estimate for
compactly supported s, s':
)4
=0 0,0

Thus we get the first inequality of (1.67). Note that

at” at”

<Ctls'lin Y | Zz%s ], - (1.69)
lor| <r+3

(5 -5

=L -0 -L) =00 L)L - L) - L) (1.70)

After taking the limit, we know that Theorems 1.7-1.9 still hold for t = 0. Now from Theorem
1.9 for %, (1.69) and (1.70),

H(O‘ -2 -0 - 30)_1)”‘0‘0 <Gt Z H ZaS”o,O' (1.7D)

o] <3

Note that V.., = V.. + 2 RE (R, e;) by (1.35). If we denote by %, ; = A —.%, then
€ J J y y ,

27%x0



1776 X. Ma, G. Marinescu / Advances in Mathematics 217 (2008) 1756—1815

—ki —k;
)gx,o o 'g)\,()

at’i ot'i

Ao — ARG = 7 P

i=1

j < g o,

=0

) LY (1T2)
t=0 ’

j -
—k —k; ki (04
+;gwo...(gw —fx,o)< Py

From the discussion after (1.64), formulas (1.42), (1.63) and (1.71), we get the second inequality
of (1.67). O

Theorem 1.12. For o > 0, there exists C > 0 such that for t € 10,10], Z,Z" € Ty, X,
1Z|,1Z'| <o,

|Fyri(Z,2))] < CeVCFD, (1.73)
Proof. By (1.61), (1.66) and (1.67), there exists C > 0 such that for # € 0, o],
1 Fg,rello) < Ct. (1.74)

Let ¢ : R*" — [0, 1] be a smooth function with compact support, which equals 1 near 0 and such
that fT x ?(Z)dvrx(Z) = 1. Take v € ]0, 1]. By the proof of Theorem 1.10 and (1.66), Fy ,
XO

verifies the similar inequality as in (1.54) with r = 0. Thus by (1.54), there exists C > 0 such
that

(Fgri(Z,ZHU,U") — / (Fri(Z=W,Z' —WHU, U')

Ty X X Ty X

1
x Wd’(W/v)d)(W’/v)dvrx(W)dvrx(W’) <Ov|U|IU'l, (1.75)

forall |Z|,|Z'| <o and U, U’ € E,,. On the other hand, by (1.74),
0 y

’ / (Fgri(Z =W, Z' —=WHU, U')
Tog X x Ty X

1 1
x W(IS(W/V)Qj(W//V)dUTX(W)dUTX(W/) < CtﬁlUllU/I- (1.76)

By combining (1.75) with (1.76) and taking v = r!/"+1) we obtain (1.73). O

Finally, we prove the following off-diagonal estimate for the kernel of P, ;.
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Theorem 1.13. For every j,m,m’ €N, o > 0, there exists C > 0 such that

glel+e| Xj: / -
s 2 P -3 F,, 2z 2) <Ct) (1.77)
jal+lal<m| 82492\ r=0 " €' (X)
forallt €10, 1] and all Z,Z’ € Ty, X satisfying |Z|,|Z'| < o.
Proof. By (1.66) and (1.73) we have
1 9"
o Pa = Fy.r. (1.78)

Recall that the Taylor expansion with integral rest of some G € ¢ J+L([0, 1]) is

r! ot" ti+l

j r ! j+1
G(t) — Z 196 )¢ = %/(r —10)! 0" G (to)dty, t€[0,1]. (1.79)
r=0 ’ 0

Theorem 1.10 and (1.66) show that the estimate (1.54) holds if we replace li’Pq,t with F ;.

r!ot”

Using this new estimate together with (1.54), (1.66), (1.79), we obtain (1.77). O
1.4. Bergman kernel of £

The almost complex structure J induces a splitting TX ®g C=T10X @ 7OV X, where
TUOX and TODX are the eigenbundles of J corresponding to the eigenvalues /—1 and
— /=T respectively. We denote by detc the determinant function on the complex bundle 709 X .
Set

J=-2nv—11]. (1.80)

By (0.2), J € End(T "9 X) is positive, and 7 acting on T X is skew-adjoint. For each tensor v
on X, we denote by VX the covariant derivative of ¥ induced by VI'X. Thus VX7, VX J ¢
T*X @ End(TX), VXVX T e T*X ® T*X ® End(T X).

We also adopt the convention that all tensors will be evaluated at the base point xo € X, and
most of the time, we will omit the subscript xg.

Let PV be the orthogonal projection from (L*(R?, Ex)s I-llo=1"-1ls,0) onto N = Ker(%p),
and let PV(Z, Z') be the smooth kernel of PV with respect to dvrx(Z). Then PN (Z, Z') is the
Bergman kernel of .%. For Z, Z' € Ty, X, we have

detc Jy,

N N _
PNZ.2) ==

! 1
exP(‘g((@z{))l/z(z = Z).(Z = Z))+ 3T Z. Z’>>. (1.81)

Now we discuss the eigenvalues and eigenfunctions of % in detail. We choose an orthonor-
mal basis {w;}_, of Tx(ol’O)X, such that

Tvo = diag(ay, ..., ay) € End(T -0 X), (1.82)
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with 0 <a; <ap <--- < ay, and let {u)f};f:1 be its dual basis. Then ez 1 = %(wj +w;) and
e = —V\[_zl (w; —wj), j=1,...,n, form an orthonormal basis of T,,X. We use the coordinates

on Ty X = R?" induced by {e;} as in (1.19) and in what follows we also introduce the complex
coordinates z = (z1,...,2,) on C" ~R¥ Thus Z =z + Z, and w; = \/53%_, w; = 23%_. We

will also identify z to ), z,'a% and Zto ) ; Ziaiz- when we consider z and Z as vector fields.
Remark that

2 2

0

9z

0

0Z;

1 1
=, that |z)? =1z]> = =|Z|% 1.83
5 sotha |z|* =z 2| | (1.83)

It is very useful to rewrite .4 by using the creation and annihilation operators. Set
1
Vo.=V.+ = R “(R,), b =—2V0,3L, bi+=2V0’aL, b=(b1,...,by). (1.84)

Then by (1.80) and (1.82), we have

bi 28+1 b 23+1 (1.85)
=—2— a;zi, S =2— + —a;z;, .
39z ) iZi i 9z, 5 i Zi

and for every polynomial g(z, z) on z and Z,
[bi, bT] =bib} = b bi = —2a;5;;,
[bi,bj]= [b,+ bf] =0,

9 9
[2(z,2). b)] =25—8(2.2). [¢(z,2),b]] = —zafg(z 2). (1.86)
J

By (0.3) and (1.82), 7y, = Y _; a;. Thus from (1.30), (1.82), (1.84)—(1.86), we deduce

Lo=) bib}. (1.87)

Remark 1.14. Let L = C be the trivial holomorphic line bundle on C* with the canonical Sec-

1 n a2
tion 1. Let 2% be the metric on L defined by |1],.(z) :=e ™ # 2j=1915i1" —: p(z) for z € C™. Let
g7 be the Euclidean metric on C”. Then .% is twice the corresponding Kodaira-Laplacian
— — 1 n —
aL*3L under the trivialization of L by using the unit section e* Xi-1ail3P 1 Let 3* be the ad-
joint of the Dolbeault operator 9 associated to L with the trivial metric on L. In fact, under the

canonical trivialization by 1,
=3 9L = h=29%h?.

Set

Q|
*
=

dw=hon"t, 3 =n""
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Then

Under the trivialization by h~'.1, we know the Kodaira-Laplacian 9%*3~ + 9% 8% is h(9L*9L +
dLaL*)h=1 = 9%0, + 9,9}, and its restriction on functions is %.,%.

Theorem 1.15. The spectrum of the restriction of £y on L*(R*") is given by

n
Spec(Lol 2 rany) = [ZZaiai: a=(ay,...,0,) € N"} (1.88)

i=1

and an orthogonal basis of the eigenspace of 2 i, aja; is given by
1
b (Zﬂ exp(—ZZa,~|zi|2>>, with B € N". (1.89)
l

Proof. First observe that for all € N” the functions z? exp(—% > ai|zi|?) are annihilated
by the operators b}', Jj=1,...,n, thus they are in the kernel of Zy|;2g2). Using (1.86) we

see that the functions (1.89) are eigenfunctions of £p|; 22 Wwith eigenvalue 2370 eia;.
But the space spanned by (1.89) includes all the rescaled Hermite polynomials multiplied by
exp(—1 3°; ailzi1?), which is an orthogonal basis of L2(R?") by [46, §8.6]. Thus the eigen-
functions in (1.89) are all the eigenfunctions of Zy|;2(g2:). The proof of Theorem 1.15 is
complete. O

We deduce from Theorem 1.15 that the following functions build an orthonormal basis of
Ker($0|Lz(Rzn)):

1/2
ﬁ n 1 n
<m l—[di) Zﬂexp(—z Zaj|Zj|2>, ,BGN”. (190)

i=1 j=1

Calculating the Schwartz kernel of PN using the basis (1.90), we recover (1.81):

n

1 1 _
PNz, 7)) = Gy [ ]a exp(—Z Y ai(jzil® + 1217 - 2z,-z;)>. (1.91)
i

i=1

Recall that the operators Oy, O were defined in (1.30). Theorem 1.16 below is crucial in proving
the vanishing result of Fy , (cf. Theorem 1.18).
We denote by (-, -) the C-bilinear form on T X ®g C induced by the metric g7 X.
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Theorem 1.16. We have the relation
PNo, PN =0. (1.92)
Proof. From (0.2), for U, V, W € TX, (VEJ)V, W) = (Viw)(V, W), thus
(VEDV. W)+ ((VEDW, U)+ (Vg J)U, V)=dw(U,V, W) =0. (1.93)
By (0.2) and (0.3),

REU,v)=(JU, V),
(VERM)(V, W)y =((VFT)V, W),

Tr|  [ViUD] (1.94)
TX

Vyt=—

Since J and J € End(T X) are skew-adjoint and commute, Vﬁ J, Vf/( J are skew-adjoint and
VX(JJ) is symmetric. From J? = —1Id, we know that

J(V¥I)+ (V¥I)T =0, (1.95)

thus V?J{J exchanges T30 X and 7OV X. From (1.82), (1.93) and (1.94), we have

o 0 a 0
(VRT)x = —2v—1 <(v;{(w>) e —_> = 2<(v7éj) >

0z; a_Zi’ B_Z,

3 3
(3R"), (R e) =2<(vxij)7z, F>+2<(vz‘%j)7z, a_zi>

Z; i

9 3 9
=4<(VXL~7)R’ a_z,> - 2<(V7’§J)8—Zi, 8_zl> (1.96)

az;

From (1.30), (1.86), (1.94) and (1.96), we infer

0= -3 |((EIR 5o - ((VEIR.

0z
X K x 0 9
+ 2<(v£ij)7z, 3 > + 2<(VRJ) 5% 3%, >]
_ _%|:<(VXJ)’R i>b.+ _b~<(VXJ)R i>] (1.97)
3 R "9z ! R Tzl '

Note that by (1.85) and (1.91),

(b PV)(z,2") =0, LiPY)(Z,Z))=ai(z; —Z)PN(2,2)). (1.98)
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We learn from (1.98) that for every polynomial g(z, Z) in z, Z we can write g(z, 2) PN (Z, Z’) as
sums of bﬂgﬁ (z,7)PN(Z, Z') with gp(z, ) polynomials in z, Z’. By Theorem 1.15,

PNpg(z, ) PN =0, for|a| >0, (1.99)
and relations (1.97)—(1.99) yield the desired relation (1.92). O

1.5. Evaluation of Fy ,

For s € R, let | s] denote the greatest integer which is less than or equal to s. Let f(A,7) be a
formal power series with values in End(L%(R?", E))

o
fO, 1) = Zt’f,(,\), f+(A) € End(L*(R*, E,,)). (1.100)
r=0
By (1.29), consider the equation of formal power series for A € §,
o
(_gO+k_ZtrOr>f(A7t)=IdL2(R2”,ExO)‘ (1101)
r=1
Let N+ be the orthogonal space of N in L?(R>", Ey,), and PN be the orthogonal projec-

tion from L2(R2", Ey) to N L. We decompose f(A,t) according the splitting LR, Ey) =
N@® N+,

g =PYf0),  fru=PY f0). (1.102)

Using (1.102) and identifying the powers of ¢ in (1.101), we find that
1 L
oM =P fro=0-2)" PV,

fFoy=0— 21y PV O frm 00,

j=1

1 r
gr(x):XZPNojfr_j(x). (1.103)
j=1

Lemma 1.17. For r € N, )LL%ngr ), pi er(A.) are holomorphic functions for |A| < po/4
and

(W *g5)(0) = (PN O, PN — PNO .27 PN 0, PY) PV, (1.104)
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Proof. By (1.103) we know that Lemma 1.17 is true for » = 0. Assume that Lemma 1.17 is
true for r < m. Now, by Theorem 1.15, (1.103) and the recurrence assumption, it follows that
ALz J'Hfrjgr () is holomorphic for |A| < po/4, and

m+1
m+1 m+1
W g ) =S PO [gna1—i ) + fh ()], (1.105)
i=1
By our recurrence assumption, Al lg, o), A" H- Yom—j—1 (M), AL’";IJ*]fnf_j()»),
'"HJfJ-()L) AL%] L . Thus by Theorem 1.16,

(1) are holomorphic for |A| < wo/4, j 2
<

2
(1.103) and (1.105), )»Lm+ JJrlngr] () is also holomorphic for |A| < @o/4, and

(/\LmTHJ“gmH)(O) — (,\L'"T“J (PNO frr + PN Os(gm—1 + f_1) + PY O3gm—2))(0)
= (-PNOLZLT PN Oy + PN OY) (1 (gt + £11))(0)

+(=PNOLLT PV 0y + PNO) (AT g, ) (0). (1.106)

If m is odd, then LmT“J = L%J + 1, so by (1.106) and the recurrence assumption,

(AT )@ = PY (~01.2, PV 01 + 02) PV (11T 41 g, 1) 0)

=(PNO,PY — PNO 27 PN OIPN)LTJPN. (1.107)
The proof of Lemma 1.17 is complete. O
Theorem 1.18. There exist polynomials J, ,(Z,Z') in Z,Z" with the same parity as r and
deg J,.r(Z, Z") < 3r, whose coefficients are polynomials in RTX RE o (and RL) and their
derivatives of order <r — 2 (resp. < r), and reciprocals of linear combinations of eigenvalues
of J at xo, such that

Fy,(Z2,2)=J,,(Z,2YPN(Z,Z)). (1.108)
Moreover,

Foo= PV,
Fyr=0, forq>0,r<2gq,
Fyag=(PNO.PY — PNO,Z7 PN O, PY) PN forgq>0. (1.109)

Proof. Recall that P, ; = (£})9Py,;. By (1.55), P, = 2—7111 fa M=)~ dr . Thus by (1.61),
(1.66), (1.78) and (1.102),

1 1
Fy,= _,/Mg,(x)d,w —./Mff(,\)dx. (1.110)
’ 27 2mi
$ S
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From Lemma 1.17 and (1.110), we get (1.109). Generally, from Theorems 1.4, 1.15, Remark 1.5,
(1.91), (1.103), (1.110) and the residue formula, we conclude that F; , has the form (1.108). O

From Theorems 1.15, 1.16, (1.103), (1.110) and the residue formula, we can get F; , by using
the operators Zo_l, PN pN L, Ok (with k < r). This gives us a direct method to compute Fy ,
in view of Theorem 1.15. In particular, we get 3

Fo1=—PNO g ' PN — PV 270, PV,

1 1
For=>— / [(A — L) PV (O fi 4+ O2f0)(0) + XP’V(Ol fi+ Ozfo)(?n)} dx
)

=7 PN OLZ PNV o PY — 27 PN 0, PY
+PNOLZLT PN 0,27 PN - PN O P
+ PV Z7 0 PNO L2 P — PNOLZ PN O PY. (1.111)
1.6. Proof of Theorem 0.1

Xo

Recall that Po g, = (A} s,

)4 Pox,- Owing to (1.26), (1.27) we have

Pog.p(Z.2)) =172~ 1 (2P ((Z/1. Z' /)" 1(Z)), forall Z,Z' eR*. (1.112)

By (1.24), (1.112), Proposition 1.3, Theorems 1.13 and 1.18, we get the following main technical
result of this paper, called the near off-diagonal expansion of the generalized Bergman kernels:

Theorem 1.19. For every j,m,m’ € N, j > 2q and o > 0, there exists C > 0 such that the
estimate

glaltle’l [ 1 ,
——— | = Py.p(Z,2Z))
altle|<m| 02292 \ p" TP

Jj—m+1

<Cp~ 77z 11 (1.113)

J
- 2 Far VP2 ﬁZ’)xé(zwi(z@pw)

r=2q &' (X)
holds forall p > 1 and all Z, Z' € T, X with |Z|,|Z'| < o/ /P.
Setnow Z =Z'=01in (1.113). By Theorem 1.18, we obtain (0.9) and
bg.r(x0) = Fy.2r424(0,0). (1.114)

Hence (0.8) follows from (1.81) and (1.114). The statement about the structure of b, , follows
from Theorems 1.15 and 1.18.

3 The formula Fo,2 in [34, (20)] missed the last two terms here which are zero at (0, 0) if J = J, cf. (2.32).
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To prove the uniformity statement of Theorem 0.1, we notice that in the proof of Theo-
rem 1.10, we only use the derivatives up to order 2n + m + m’ + r 4 2 of the coefficients of .%;.
Therefore, in view of (1.79), the constants in Theorems 1.10, 1.12 (resp. Theorem 1.13) are uni-
formly bounded, if the €2+ +m'+7+3_norms (resp. €2+ +i+4_norms) on X (with respect
to a fixed metric gOTX) of a family M of (gTX, hl, VL hE VE J, @) are bounded and the fam-
ily of components g”X of M is bounded below. (Note that AL”®E includes one derivative on
vL, VE; that is why we have to add one derivative to the orders 2n +m + m’ + r + 2 and
2n +m +m' + j + 3 respectively.)

Moreover, taking derivatives with respect to the data (gTX, nt vL hE VE J, @) we obtain
an equation similar to (1.65), where xg € X plays now the role of a parameter. Thus the &m'-
norm in (1.113) can also include the data (gTX, Wl VL hE VE J &) if the %™ _norms (with
respect to the parameter xo € X) of the derivatives of the above data up to order 2n +m + j + 4
are bounded. Hence we can determine a constant Cy ; such that (0.9) holds uniformly for all data
in a set M satisfying conditions (i) and (ii) of Theorem 0.1. To obtain (0.9) we apply (1.113)
with j =2k 4+ 2q + 1. This completes the proof of Theorem 0.1.

2. Computing the coefficients b, ,

In principle, Theorem 1.15, Eqgs. (1.103), (1.110) and the residue formula give us a direct
method to calculate b, , by recurrence. Actually, it is computable for the first few terms by ,
in (0.9) in this way.

This section is organized as follows. In Section 2.1, we will give a simplified formula for
0, PN without the assumption J = J. In Sections 2.2, 2.3, we will compute b, o and by ; under
the assumption J = J, thus proving Theorem 0.2.

In this section, we use the notation in Section 1.4, and all tensors will be evaluated at the base
point xg € X. Recall that the operators O, O, were defined in (1.30). We denote by (-, -) the
C-bilinear form on TX ®g C induced by the metric g7 X.

2.1. A formula for O, PN
We will use the following lemma to evaluate by , in (0.9).

Lemma 2.1. The following relation holds:

0,PY = Lo (r7¥ (R, L )R, LV 4 L, > (0°RY) (R 2\
37 "9z ) ez 2 l|a|:2 W0\ 9z ) a!

4 a 0 ad ad o 0 0
Al (Y (e ) (e )
3 d0z; 0Z; 0z dz; ] 0z; j 0Z;

d 0 o 0 0
+ VXVXJ —,—_>+4<RTX(—,—>—_,T>}PN
<< )(R’R) dz; 0Z; dz; 0zj/)0dz; 0z;

+ (—%$0<RTX (R i)R i> + $|(V7’§j)7€}2 -> (a“r)xoi—o; + cD)PN.

Y
0z 0z =2

[SLEES L)
all

2.1
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Proof. The definition of VXVX 7, RTX and (1.93) imply, for U, V, W, Y € TX,

(R™* W, v)W,Y)=(R"* (W, 1)U, V),
R™X WU, V)W + RTX(v, W)U + RTX(W,U)V =0,
(VXVXJ)(U,V) - (VXVXJ) [RTX(U V), j]
(VYD) .0y Vo W H(VIVET) 4y W U+ (VEVET) oy U V) =00 (22)

w.0)

Set

1 : VA
L= 5 Z (B“R )XO (R, a—zl> ?bl

|lo]=2

19 a \ Z* 10 a \zZ“
e PRY) (R, — )= }-z— IRY) (R, — )=
(2< bo(® ) 2r) = 2 ( 2w (m 5 ) o)
1 a
L=—Z(R R— R, — |bib;
3 0Z; 0z

4 d 0 0 d 0
: [<Rm<n, D m ) e e
3 *0 0z; ) 0z; 0z; dz; ) 9z; 0Z;

Note that for every 1-form  we have ¥ (e;)Vo,., = —w(a%)b,- + w(a%)b;r. Due to (1.30),
(1.80), (1.86), (1.94), (2.3), the first formula of (2.2), and since J is purely imaginary, we obtain

1 d d
Or=1 +12——|:$0,<RTX<R )R —>]+RE<R —_>bi
3 0z 0z 0z
1 d 9 9 9
+= <RTX<R —)R, T>(—2b,-b+ 2a;8;;) + <RTX<R —)R —>b+b+
3 3zi) 9z d 9
2/ rx 9 1 Ly E 9

la|=2

1 7
+ §|(v7’gj)7z|2 — 3 (8% 1)y o TP (2.4)

o] =2

In normal coordinates we have (VeT,_ Xe )xo = 0. So we deduce from (1.32) that the following
relation holds at xq:

Ve;Ve(Ter,en) =((VEVET)ex + T (VX Vi Xer), et) +(Tew, Vi Vi el
1
= <(Ve)§ Ve)fj)ek, er)— g(RTX(ej, ei)er + R ¥ (ej, ex)ei, Tey)
1
+ §(
From (1.94) and (2.5) we obtain

R™X(ej, ei)e; + R™X (e}, enei, Tex). (2.5)
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o

Z
2 (0RY)  (enen oy =

1
=(Ve; Ve, (Tex, el))x0 ZiZ;

2
la|=2
1 1
= 5((v’(v’(j)am)ek, el)+ 8[(RT"(R, eNR, Jex)
—(R™*(R, e0)R, Tei)]. (2.6)
Thus
VAR 1
Y (0°RY), (R, en—r ={(VVT) mr)Roe) + S (RTN R, TRIR ). 2.7)
loe|=2 )
Using (1.86), (2.3) and (2.7) we compute
_L o gL )\
I =5b; laZ_%(a RY). (R %) ~
13 TX 0 TX i>]
+ 12[ o <R (R, IR)R, azl> 9 <Rx0 (R, IR)R, T

T8 [ yy O\ 9 [ yy 9
VeV R, A% R,—)|. 2.8
+ 4[% <( I)w.R) 32i> 8z,<( I)w.R) 0z 2.8)

Note that 7 and (VX VX 7)y,y) are skew-adjoint, by (1.82) and (2.2). Hence
0

XX d d XX 0
a_z,<(v v j)(R,R)R’ 3_51> 311<(v v j)(R,R)R’ £>

d d 3
XX XX TX
=<2(v \Y ~7)<R,my+2(v \Y% j)(R%)R+[R (—aZi,R),j]R, —82i>
3
_ XX TX
<2(v v j)(R’aa )R—i—[R (a' R) j:|R, Bzi>

9 9 9
=4 (V¥vX — — 2¢;, RT*( R, — |R — RTX(R, TR)— —>
<( j)(R,R)aZi 8Zl>+< di az, ( J )321 0z;
(2.9)
and

d

<RTX(R JR)R, a> i<RTX(R,JR)R,i>
811 Z[ 8

0z; Zi

9 d 9

=2(RTX(R, TR 2a;( RTX( R, —>R—>
< R TR 5 azl>+ a< 27 )" oz

9 9 9

RTX[ — IR IR, — RTX , R)R —

+< <8Zi J ) azz> < 321 J 0z

) 9 )
<RTX(R jR) > + 2a,<RTX <R, —)R, —_>.
07 0z; 0z
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Thus by (2.8)—(2.9),

h=ab 307, (R -2V (VXV5 ) iy e i>
) ' 0\ 9z, ) ol R-R) 9z;" 8%

2 0 0
Zai(RTX (R, — |R, —). 2.10
+3“’< ( az,-) az,»> (2.10)
Now by (1.86), (2.2) and (2.3) we calculate:
4 a 0 d d d d
12 == —bj |:<RTX<—, —_)R, T> - <RTX <R, —> “ > T>:|
3 d0z; 0Z; 9z dz; ) 0z; 0Z;
1 0 0 8 0 0 0 0
+ —bibj<RTX (R, —_>R, T> - —<RTX<—, —>—_, T>
3 0z 0z 3 dz; 0z; ) 0z; 0%
+ f[(R”(i, i)i, i_>—<RTX(i, i)i, iﬂ
3 dz; 0z; ) 0zj 0% dz; 0z; ) dz; 07
4 0 0 0 0 0 0
=4, RR”(—, —_)R, T> - <R” (n, —) o —>]
3 d0z; 0Z; 9z dz; ) 0z; 0Z;

1 d d 3 a\o 9
+ —b,-bj<RTX (R, —_>R, —> +4<RTX(—, —)—_, —> 2.11)
3 9Z; 07 dz; 0zj )0z 0Z;

Finally (1.87), (1.98), (2.4), (2.10) and (2.11) yield (2.1). O

Now (1.94), (1.97), (1.99), (1.108), (1.109) and (2.1) entail

- (e am) 7 G S g ) o)
dz; " 9% dz; 0z;) 9z 0%;

9
+PN<<(VXVXJ) ’ ii)—i—\/__lTr

(VIV¥ D)

TX (R.R)

4

1 4 d 9
+ §|(v7’§j)7z\2 + §<(v7’§j)7z, a—z_>bi+$0—1bi<(v7’§j)7z, 8—Z>>PN. (2.12)

1

2.2. The coefficients by o

In the rest of this section we assume that J = J. A very useful observation is that (1.93) and
(1.95) imply
J =-2n~—1J and q; =27 in (1.82), T =2nn.
sz J is skew-adjoint and the tensor ((V_X J) -, ) is of the type
(T*(1,0>X)®3 o (T*(o,1>X)®3, (2.13)
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Before computing by o, we establish the relation between the scalar curvature rX and |VX J |2.

Lemma 2.2.
0 d 0 d 1 2
X_g(rTX( =, 2 )2 2 |vXyn 2.14
" < <3Zi 321')31]' 8Zi> 4| | ( )
Proof. By (2.13),
X112 al(vX Nes (VX Net—sl(vX N2 (vx 2
VP =4V ey (V) )ej)_8<(V%J)8Zj,(V8%J) azj>. @.15)

Using (1.83), (1.93) and (2.13) we get

x n 9 ox 9
(7% 150 (7% N3]

9z az;

a0 a0
=2((vX J)—, — v’?J—,—>
<( - )Bzi azk><( 7 >az,- 97k

PN v A9 D >< PN a>
= . — (Vv — (VX ) — —
Z<(Va"7ij)azk ( %J)az,-’azj ( a%")azk’azj
3 3 3 3
={(V% J)—, (VX )—)={(V% J)—., (VX J)—). 2.16
(8950 L5205 05 19
By (2.15) and (2.16),
b'e d X 3> I ox, 2
N - (VX)) = — _ 2.17
<(V%J)az,-’(vﬁj)azj 16|V | @17)
Now, from (1.95), we get
(VIVYI) gy + (V5 T) o (V) + (Vi) o (V5 I) + T (VIVET) () =0, (2.18)

We infer from (2.2), (2.13) and (2.18) that for all ui,uz,u3 € THOX, 51,0, € TODX the
following holds:

(V¥v¥ J)(ulyuz)lm, (V¥v¥ J)(ﬁljz)ug, eTO®Vx,

(VXVED) uz e T,

2V/—1{(VEVEY)

(u1,02)

uz, 02) = (VX J)uz, (V3 1) 2). (2.19)

(u1,01)

(The second equation of (2.19) follows from the first line and (2.2)). Formulas (2.2) and (2.19)
yield
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<(VXVXJ)(M.,MZ)’_’1’ 52) = _((VXVXJ)(M,T;])’_’Z’ ”2) - <(VXVXJ)(M.,52)”2’ 51)
1
= 2—\/__1((v;‘1 D, (VX T2 = (Vi T)01). (2.20)

From (2.2), (2.16), (2.17) and (2.20), we deduce
< RTX ( 8 i) K i>
dz; 9z, ) 9z 9%

~ () )
) dz; 9z ) " 19z 9z

N XyX XyX 3 9
=Py = D )5 )
_Hox 9 ox 9
_4<(Vai,- J)azj"(v a, J)a ]>
=$|VX]|2. 2.21)

The scalar curvature rX of (X, g7%) is given by
rX:—(RTX(e- ej)ei,ej)=—4 RTX K e; 9 e;
1y *] 1y &g BZI s & 82[ s ©J

g 0 g 0 a 0 g 0
= —8<RTX(—, —>—_, T> - 8<RTX<—, T) > —> (2‘22)
dz; 0z;)0z; 9z dz; 0z;)0z; 0z

In conclusion, relations (2.21) and (2.22) imply (2.14). O

From (1.97) and (2.13) we know

2o lovx gz 2N 2 wx . L\
0= 3b,<(VZ J)z. azi> 3<(VZ J)z, . >bi . (2.23)

Hence by (1.86), (1.98), (2.13) and (2.23),

2 9
(0:1PY)(z,2)) = 3 (bi<(ij)Z, 8_2->PN) (Z,7)

_2 bib; X _,, 0 ‘ X o 0 N ’
_§{<ﬁ<(vij)z’a_z,->+b’<(VZ’j)Z’a_z>)P }(Z,Z)~ (2.24)

E)Ej 1
By Theorem 1.15, (1.99) and (2.24), we have
(&' PN O PNz, 2)

2(( bib; Lo\ b s /
(e o) i )l

61_/ Zi
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2
PNOZT PN O PN = 3PN<(VXJ) 0 >b,j$ 'PNTO PN, (225)
Now, (1.83), (1.86), (1.98), (2.23) and (2.25) imply

2

3<<(vxj)z, >b,j,$ LpN OlPN>(Z VA

—i X 9 _ﬂ X i X i =/
- 9{<(VZ 7)e 3Zk>< 4ﬂ<(V%j)3Zk + %j)aii’z>

ad
st e

[ oo onoio

_ i X i X i X i X 0
97T<(VZ Nzt (V%j)z’ dzk ><(v%j) iz T Ve j) 9z; Z>
+ %((ij)zﬁ (Vz’fj)i’)] PN}(Z, ). (2.26)

Thanks to (1.98), (2.13), (2.15) and (2.16) we obtain

1
Sl(VRNRI PYz.2)

- 8’9’ (VXD)z, (VEDNZ)PY(zZ, 7))
877 X bibj _x 9 b_ X )i 4 (vX 3]
-5 {<(v 1 AL D) [(Vm D+ (VE0)

4

872 ([|bibj ,_x & b PN PN ¥
= \Y — 4+ = XnN—). v
5 m 4712( B%J)az, + ((Vzgl)z + (V; J)az,-) (V! J)z>

1

bi X x 9 (ux 9 X i>
+ 5 2<(v i1 J)z+ (V) azj’(V%J)azj +(vde)aZi
+ 1 (VA D)z + (VET)— i (VY J)"Jr(v?fJ)i
4 % z 8Z[ az; < 82,
+((VXN)z, (VEI)Z)+ = 2\VXJ| }PN}(Z z). (2.27)

Taking into account (2.2), (2.19) and the equality ([R7X(Z, z), J1-L T az 4y =0, we get
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XX 0 0 _ XX 0 XX 0 0
<(v \Y J)<R’R>a_zi’a_z,~>_<(v \Y 1)(”)8—Zl+(v \Y J)<f’z>a_zl~’8—z,->
=—«/—1<(VZXJ)81 (VXJ)aa > (2.28)
Zi

From (1.98), (2.15) and (2.28),
(VXVET) O 2 \eNz.z)
RR) 9z;" 8z;

3 3
= —27r<(VZXJ)a—Zi, (foj)a_z,->PN(Z’ Z)

— X d b] X i X P v )

a 27T{<(V 1)321 2 (Vagj j)azi +(VZ’j)aZi>P }(Z,Z)

:‘W”'(Vx J) 2 (V) o (V1) >+1|V"J|2}PN}(Z 7). (2.29)
! % 9Z; az;" Y g 4 s L), .

Recall that the polynomial J, 24(Z, Z") was defined in (1.108) and (1.109). The equality J .7 =
2+/—1, and (1.99), (2.12), (2.21), (2.23)—(2.29) show that J; 2(Z, Z') is a polynomial in z, 7/,
and each monomial of J; » has the same degree in z and Z’; moreover

1 ) 9 9
J1200,0) = —|VXJ 2RE(—, — |+ @,,. 2.30
12(0,0) 24| |y + X(’(Bzi 82,-)+ o (2.30)

Using (1.91) with a; = 27, (1.109) and the recurrence, we infer that each monomial of J; 4 has
the same degree in z and 7/, and

J4.24(0,0) = (J12(0,0))%. (2.31)
In view of (1.91), (1.108), (1.114), (2.30) and (2.31) we obtain (0.11).
2.3. The coefficient by 1
By (1.114), we need to compute Fp2(0, 0). By (1.98), (2.24) and (2.25), we know that
(01PY)(Z,00=0, (& 'PY 0,P)0,2)=0. (2.32)

Thus the first and last two terms in (1.111) are zero at (0, 0). Thus we only need to compute
—(Zo_l pNt 0, PN)(0,0), since the third and fourth terms in (1.111) are adjoint of the first two
terms by Remark 1.5.

Let hi(z) and f;j(z) (i, j =1, ...,n) be arbitrary polynomials in z. By Theorem 1.15, (1.86),
(1.91) and (1.98) with a@; =27, we have

82 r
f’,(O),

oh;
bihi PN)(0,0) = —2—(0), bib;i f:: PN)(0,0) = 4
( i )( ) 8Zi( ) ( i JflJ )( ) BZiazj

18f,j

b £::6:PN)(0,0
( 0 lfl] J )( ) 2 8Z18ZJ

0). (2.33)
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Owing to Theorem 1.15, (2.15), (2.17), (2.27) and (2.33),
1 1 Nt (oXx 25N
5 (% PV (VAR PY)0,0)

8 ([hibj [, x v 0
= _5{[3271 <(vZ J)z, (va%_ J)g_j

b; 9 J 0
(VX Nz+ (VX Vi ) g+ (Vi J)5= ) [PV 0.0
+8n<( 7% Jot (V2 )aj 3 % )351+( % )35i>] }( :

1 9 9 9 9
=—((VX )— + (VX J vX J)— +2(V% J)—
9n<( %% )azj+( 7 )az, ( G )az,-+ ( 7 ) z,->
=T |VX J| (2.34)

and by Theorem 1.15, (2.15), (2.29) and (2.33),
o pN(vXvX 7 99 \p¥)0.0
—\-%0 ( )(RR)Eg_Zl ©,0)

bj d 0
VX \ —>PN> 0,0
<4n<( )az, o 7 )azi ©.0)
1 2
=——|VXJ|". 2.35

167 ’ ( )
Observe that (1.98) shows that for every polynomial g(z) in z, the constant term of ﬁ 2}"—; gz PN
is the constant term of (£)g. Thus, in view of (1.98), when calculating —%;"! PN O, PN the

contribution of %bi Zlm:z(a“ RL) xo (R, e )Z r in O, consists of the terms whose total degree

of b; and z; is the same as the degree of z. Hence we only need to consider the contribution from
the terms where the degree of z is 2. Using (2.2), (2.7), (2.13), (2.19), (2.20) and the equality
([RTX(z,2), Tz, 3%) =0, this contribution is

1 XX = XX XX 0
= Zbi |:<(V v j)(z,z)z + (V v j)(z,i)z + (V v j)(i,z)z’ a_zl
1 d
+(RT™X Gz, Tz + R"X (2, TD)z, —
3 0Z;
a9

_ T X xn 9 ox na\ A erx s, O
= 4b,[<(VZ J)z,3(V; J)8 (V4 J)>+3<R (z,2)z, az,->]' (2.36)

Zi 9z;

Therefore, from (1.98), (2.2), (2.17), (2.21), (2.33) and (2.36), we get

—(Z PN 1PY)(0,0)

=il 5 e ) w)
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+<(vz"J)z,3(v"8 J)i —(v% J)i_ﬂ bj PN}(O 0)

iz 07 i 0z /]2

L[ ) ()0
16 | 3 dz; 0z ) 0z dz; 0zj )0z 0z

a ad a a
VA T)—+ (V5 J)—.3(VE T VXJ—H
(V5 D)+ (VD) A (VE D)~ (V)

5 1 d d a0 d
=——— |V = —(RTY (= ) ). (2.37)
1927 6 dz; 9zj ) dz; 9z
Thanks to (1.98), (2.21) and (2.33) we have
1 0
(PNL<RTX<R —)R —>PN)(O 0)
3 9z a9z;
1 1 0 d 0 0 o\b
=—(PN RTX(Z,—>—+RTX(—,—) > ]PN> 0,0
3( < dz; ) 9z 0z; 0z 0zi [ 2 ©.0
() () )]
3m dzj 0z; ) 0% 0z 0z; ) 0z; 0%
1 2 1 d d d d
——|VXy —(RTX _—, — |, — ). 2.38
9671| | +37t< dz; 0z; ) 0z; 0% (238)

By (2.1), (2.13), (2.33), (2.34), (2.35), (2.37), (2.38) and the discussion above (2.36), we have

—(Z ' PY 0, PY)(0,0)
bib; d a3\ b 9
= RTX , — , —— _lRE , —
{|:247r< (Z azi>z az,~>+4n “ 9z
w i ((rrx (2 20 2N (ke (o 2 2 W evlo.0)
37 dz; 0z; ) 07 "9z ) 0z 9% ’
J J
1
- 3<PNL<RTX(R i)R 3—>PN>(O 0) — (Z ' PN 1PY)(0,0)
1
B 1<RTX<3 a>a+RTX(a a)a a>+1RE(a a)
T 6w dz; 9z ) 9z dz; 0z ) 9z; 9z;[  2m dz; " 9%
+i[<RTX<i i)i i>_<RTX<i i)i iﬂ
37 dz; 9Z; ) 9z 9Z; dz; 9z ) 9zZ; " 0z
7 X 2 1 TX a 8 3 8
_19271|V d +6_7T<R 0z; 9z ) 0z; 9z
13 J J 1

1) 7x( 9 9\ 0 I g3 0
27 8z’ Bz] dz; 0z 27 dz; 0z

Formulas (2.14), (2.39) and the discussion at the beginning of Section 2.3 yield finally
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_ L _ 1
bo,1(x0) = Fo2(0,0) = —(Z; ' PN 02PV)(0,0) — (&' PY 02PV)(0,0))"

1 1 )
:S—nlir;g—l—Z|VXJ|XO+2«/—1Rfo(ej,Jej):|. (2.40)

The proof of Theorem 0.2 is complete.

Remark 2.3. In the Kihler case, i.e., if J is integrable and L, E are holomorphic, then O =0,
and the above computation simplifies a lot.

3. Applications

In this section, we discuss various applications of our results. In Section 3.1, we study the
density of states function of A, ¢. In Section 3.2, we explain how to handle the first-order
pseudodifferential operator Dj of Boutet de Monvel and Guillemin [13] which was studied ex-
tensively by Shiffman and Zelditch [43]. In Section 3.3, we prove a symplectic version of the
convergence of the Fubini—Study metric of an ample line bundle [48]. In Section 3.4, we show
how to handle the operator d + 9* when X is Kihler but J # J. Finally, in Sections 3.5, 3.6, we
establish some generalizations for non-compact or singular manifolds.

3.1. Density of states function

Let (X, w) be a compact symplectic manifold of real dimension 2n and (L, VE, hL) is a pre-
quantum line bundle as in (0.1). Assume that E is the trivial bundle C, ® =0 and J = J. The
latter means, by (0.2), that g7X is the Riemannian metric associated to @ and J. We denote by
vol(X) = f Xl the Riemannian volume of (X, g7 X). Recall that d), is defined in (0.6).

Our aim is to describe the asymptotic distribution of the energies of the bound states as p tends
to infinity. We define the spectrum counting function of A, := A, o by Ny(A) =#{i: A; p, <A}
with A; , the eigenvalues of A, as in (0.7), and the spectral density measure on [-Cp, Cr] by

d
—N,( re[-CL,CL] 3.1
vp = 4, ), [-Cr,CL] 3.1
Clearly, v, is a sum of Dirac measures supported on Spec(A ) N[—-Cr, Cr]. Set

1
0:X — R, Q(x)=ﬁ|VXJ|2. (3.2)

Theorem 3.1. The weak limit of the sequence {vp},>1 is the direct image measure Q*(ﬁ(x) o)

that is, for every continuous function f € %O([—C L, CL]), we have

Cr

im [ fdv Vol(X) / (fo0 ™. (33)

p~>oo
—CL
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Proof. By (0.7), we have for ¢ > 1 (now E is trivial): B, ,(x) = Zfil Al p|S{’ (x)|?, which
yields by integration over X,

1 1 & i
d—/Bq pdvx =— A, = / A dvy(2), (3.4)
P % P i “c

since Sip have unit L2 norm. On the other hand, (0.6), (0.9) and (0.11) entail for p — 00,

1 pn ﬁ(pnfl)
— | B, ,dvx=— [ b, 0d _—
d[’/ 4-p X dP/ @0 e dl’
X X
1
= 94 o(p™h). 3.5
VOl(X)fQ vx+O0(p~") (3.5)
X

We infer from (3.4) and (3.5) that (3.3) holds for f(X) = A%, ¢ > 1. Since this is obviously
true for f(X) = 1, too, we deduce it holds for all polynomials. Upon invoking the Weierstrass
approximation theorem, we get (3.3) for all continuous functions on [—Cy,, Cr]. This completes
the proof. O

Remark 3.2. A function o satisfying (3.3) is called spectral density function. Its existence and
uniqueness were demonstrated by Guillemin and Uribe [28]. What concerns the explicit for-
mula of g, the paper [11] is dedicated to its computation. Our formula (3.2) is different from
[11, Theorem 1.2].%

An interesting corollary of (3.2) and (3.3) is the following result which was first stated in [11,
Cor. 1.3].

Corollary 3.3. The spectral density function is identically zero if and only if (X, J, ) is Kdhler.

Remark 3.4. Theorem 3.1 can be slightly generalized. Assume namely that J = J and E is a
Hermitian vector bundle as in the Introduction such that R = 5 ® Idg where 7 is a 2-form.
Suppose that @ = ¢ Idg where ¢ a real function on X. Then there exists a spectrum density
function satisfying (3.3) given by

1 RS
0:X — R, Q(x)=ﬂ|vx.]|+Tn(ej,.]€j)+§0. (3.6)

The proof is similar to the previous one, since Trg, [By, p(x)] = 2?21 A?P|Sl.p (x) |2.

4 Indeed, [11, Theorem 1.2] gives o(x) = —% IVXJ|2. Note that [11, equation after (3.11)] shows that the principal

terms of % % are 9, TJ( dy, respectively. Hence the leading term of G in [11, (3.7)] should be K_l/zb;.l) (but this

was missed therein). Now, from [11, (3.5)], b;l) is %(Jz, le. 7). Thus the expression of L in [11, (3.8)] is incorrect.
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3.2. Almost-holomorphic Szegd kernels

We use the notations and assumptions from Section 3.1, especially, J = J. Then t = 2nn.
LetY ={u € L*, |u|,.+ = 1} be the unit circle bundle in L*. Then the smooth sections of L”
can be identified to the smooth functions

)y ={f €C,C); f(ye'?) =€ f(y)fore® eS', yev},

here ye'? is the S! action on Y.

The connection VX on L induces a connection on the S!-principal bundle 77 : ¥ — X and this
induces a corresponding horizontal bundle 7#Y c TY. We denote by d#? the standard metric on
S' =R/2nZ. We introduce the metric g7¥ = 7*¢"* @ d6? on TY corresponding to the direct
sum TY =THY @ TS' . Associated to (Y, g77) there is the Bochner-Laplacian Ay acting on
functions on Y. By construction, Ay commutes with the generator dy of the circle action, and so
it commutes with the horizontal Laplacian

Ay =Ay + 8. (3.7

Ay, acting on €°(Y), is identical to AL” on € (X, LP) (cf. [10, §2.1]).
By the construction of [13, Lemma 14.11, Theorem A 5.9], [14], [28, (3.13)], there exists a
self-adjoint second-order pseudodifferential operator Q on Y such that

V=A++—1t9— 0 (3.8)

is a self-adjoint pseudodifferential operator of order zero on Y, and V and Q commute with the
S1-action. The orthogonal projection IT onto the kernel of Q is called the Szegd projector asso-
ciated with the almost CR manifold Y. In fact, the Szegd projector is not unique or canonically
defined, but the above construction defines a canonical choice of /T modulo smoothing operators.
In the complex case, the construction produces the usual Szeg6 projector /1.

We denote the operators on 4" °° (X, L?) corresponding to Q, V, I1 by Q, V,,, I, especially,

Vp(x,y) =~ 02” e~ P9V (xe'?, y)dh. Then by (3.8),

Qp=AY —pr—v,. (3.9)
By [28, §4], there exists p1 > 0 such that for p large,
Spec(Qp) C{O}U [p1p, +ool. (3.10)

Since the operator V), is uniformly bounded in p, (0.5), (0.6) imply that for p large we have

dimKer(Q,) =d, =/Td(TX)ch(Lp). 3.11)
X

Formula (3.11) was first obtained by Borthwick and Uribe [9].



X. Ma, G. Marinescu / Advances in Mathematics 217 (2008) 1756—1815 1797

Now we explain how to study the Szegd projector > p” using the methods of the present paper.
Recall that F 1s the function defined after (1.4). Let IT,(x, x"), F (Op)(x, x") be the smooth
kernels of I7,, F (Qp) with respect to the Riemannian volume form dvy (x').

Note that V), is a 0-order pseudodifferential operator on X induced from a O-order pseudodif-
ferential operator on Y. Thus (3.9) and (3.10) entail the analogue of [20, Proposition 3.1] (cf.
Proposition 1.2): for every I, m € N, there exists Cy ,;, > 0 such that for p > 1,

’F(Qp)('x’x/) - np(xvx/)|cgm(xxx) < Cl,mp_l~ (312)

By finite propagation speed [47, §4.4], we know that F(Q p)(x,x’) only depends on the restric-
tion of Q) to BX(x, ¢), and is zero if d(x, x") > e. It follows that the asymptotic of IT,(x,x")
as p — oo is localized on a neighborhood of x. Thus we can translate our analysis from X to
the manifold R ~ Ty, X =: X as in Section 1.2. Proceeding as in Section 1.2 we extend vEito
a Hermitian connection VX0 on (Lg, h%0) = (Xo x Ly, hLXO) on Ty, X such that the curvature
RL0 is positive and RL0 = Rfo outside a compact set.

Now, by using a micro-local partition of unity, one can still construct the operator Q%0 as
in [13, Lemma 14.11, Theorem A 5.9], [14], [28, (3.13)], such that vXo differs from V by a
smooth operator in a neighborhood of 0 in X, and 0% still verifies (3.10). Thus we can work
on *°(Xp, C) as in Section 1.3. Similar to (1.27) we rescale then the coordinates and use the
norm (1.38). Then Vlf( % is a Oth order pseudodifferential operator on X induced from a Oth order

pseudodifferential operator on Yj. This guarantees that the operator obtained by rescaling V;( 0
has an expansion similar to (1.29) with leading term t>R;, in the sense of pseudodifferential
operators.

Using (3.10), [20, (3.89)] and similar arguments to those from [20, Theorem 4.18], we can
also get the following full off-diagonal expansion (3.13) of the Szegd kernel IT,,. More precisely,
recalling that PN(z,Z7") is the Bergman kernel of % as in (1.81) and (1.91) with a; =27, we
have:

Theorem 3.5. For every r > 0 there exist a polynomial j.(Z,Z') in Z,Z' with the same parity
as r, such that j, =1, and a constant C” > 0 with the property that for every k,m,m’ € N and
& > 0 there exist N € N, C > 0 so that the following estimate holds

‘ glal+le|
CVAL VA

k
1
( S 1,(Z, Z)—Z(j,PN)a/Ez,\/ﬁz/)x%(zw5(2/»’”)‘

—0 %’”/(X)
<Cp~ =21 4| /pZI+ 1VPZ)Y exp(—/C i /PIZ = Z'N) + 6(p~), (3.13)

for all xo € X and a,a' € Z*" with |a| + |o'| <m, Z,Z' € TyyX with |Z|,|Z'| < &, and all
p=1

In (3.13) we use the trivializations from Section 1.2; €™ (X) is the €™ -norm for the parame-
ter xo € X. A function is said to be &' (p~>) if for every [, [; € N, there exists C;;, > 0 such that

5 As Professor Sjdstrand pointed out to us, in general, [T, — Py p is not O(p~®°) as p — oo, where Py, p is the
smooth kernel of the operator A ,, (Definition 1.1). This can also be seen from the presence of a contribution coming
from @ in the expression (0.9) of the coefficient b 5.
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its €1 -norm is dominated by Cry p~!. The term « 2 in (3.13) comes from the conjugation of
the operators as in (1.113). We leave the details and the generalization in the case of the presence
of a non-trivial twisting vector bundle E to the interested reader.

Theorem 3.5 is closely related to [10,30,43]. More precisely, Shiffman and Zelditch [43, The-
orem 1] prove a similar result for two cases: either for |Z|, |Z'| < C//p or for Z =0, |Z'| <
Cp~'73, with C > 0 fixed. This is explained in detail in the recent [44, Theorem 2.4] of the same
authors.

3.3. Symplectic version of Kodaira embedding theorem

Let (X, w) be a compact symplectic manifold of real dimension 27 and let (L, VL, hl) be a
pre-quantum line bundle and let g7 X be a Riemannian metric on X as in Introduction.

Recall that H,, C €°°(X, L”) is the vector subspace spanned of those eigensections of A, =
AL” —p corresponding to eigenvalues from [—Cy, C1.]. We denote by IP’H;‘7 the projective space
associated to the dual of H, and we identify IP’H; with the Grassmannian of hyperplanes in H .
The base locus of H, is the set BI(H,) = {x € X: s(x) =0forall s € H,}. As in algebraic
geometry, we define the Kodaira map

@, : X \Bl(H,) — PH?,
@p(x)={s € Hp: s(x) =0} (3.14)

which sends x € X \ BI(¥,) to the hyperplane of sections vanishing at x. Note that ,, is en-
dowed with the induced L? Hermitian product (1.1) so there is a well-defined Fubini—Study
metric grs on PH; with the associated form wps.

Theorem 3.6. Let (L, VL) be a pre-quantum line bundle over a compact symplectic manifold
(X, w). The following assertions hold true:

(1) For large p, the Kodaira maps @, : X — IP’H; are well defined.

(ii) The induced Fubini—Study metric %Cb;‘; (wrs) converges in the €°° topology to w; for each
[ > 0 there exists C; > 0 such that
I, C;
— @ (wps) —w| < —. (3.15)
p ¢!

(iii) For large p the Kodaira maps @, are embeddings.

Remark 3.7. (1) Assume that X is Kéhler and L is a holomorphic bundle. If oL” denotes the
Kodaira-Laplacian on L?, then A, = 2oL’ , 80 H, coincides with the space H 0(X , L?) of holo-
morphic sections of L?. Then (i) and (iii) are simply the Kodaira embedding theorem. Assertion
(ii) is due to Tian [48, Theorem A] as an answer to a conjecture of Yau. In [48] the case [ =2
is considered and the left-hand side of (3.15) is estimated by C;/,/p. Ruan [42] proved the €'
convergence and improved the bound to C;/p. Both papers use the peak section method, based
on L?-estimates for 9. Finally, Catlin and Zelditch, independently, deduced (ii) from the asymp-
totic expansion of the Szeg6 kernel [17,51]. Bouche [12] proved that the induced Fubini—Study
metric ((D;';hﬁ(l))l/ P on L converges in the € topology to the initial metric i~ .
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(2) Borthwick and Uribe [10, Theorem 1.1], Shiffman and Zelditch [43, Theorems 2, 3] prove
a different symplectic version of [48, Theorem A] when J = J. Instead of H, they use the
space H?(X, LP):=1Im(1,) (cf. [10, p. 601], [43, §2.3] and Section 3.2 of the present paper) of
‘almost holomorphic sections’ proposed by Boutet de Monvel and Guillemin [13,14].

Proof. Let us first give an alternate description of the map @, which relates it to the Bergman

d . . . .
kernel. Let {S;D };Z, be an arbitrary orthonormal basis of 7, with respect to the Hermitian product
(1.1). Once we have fixed a basis, we obtain an identification H, = H’; =~ C% and ]P’H;k7 =
CP9»—!. Consider the commutative diagram:

q)p «
X \BI(H,) —— PH;}

lld J/z (3.16)
@

X \BI(H,) ——~ Cpdp-1.

Then
V=1 L
q>;;(wps)=q§;<73310g2|wj|2>, (3.17)
j=1
where [w1q, ..., wdp] are homogeneous coordinates in CP% 1. To describe & p in a neighbor-

hood of a point xg € X \ BI(H ), we choose a local unity frame e;, of L and write Sip = fl.pe?p
for some smooth functions fl.p . Then

@,) =[fF .. ..,fd”p(x)], (3.18)

and this does not depend on the choice of the frame ey .
(i) Let us choose an unit frame e;, of L. Then |S7|? = | £/ *|e.|?? = | f7|?, hence

dp dp

2 2

Bop=) _|SII"=2_|#I"
i=1 i=1

Since by o > 0, the asymptotic expansion (0.9) shows that By, , does not vanish on X for p large

enough, so the sections {Sf }fi | have no common zeroes. Therefore @, and @ p are defined on
all X.

(i1) Let us fix xo € X. We identify a small geodesic ball BX(x, &) to BTwX (0, &) by means
of the exponential map and consider a trivialization of L as in Section 1.2, i.e. we trivialize L
by using a unit frame ez (Z) which is parallel with respect to VX along [0, 1] 3 u — uZ for

Z € BTX (0, ¢). Let lw|?= Zj{p:l |w; |2. We can express the Fubini-Study metric as

g&glog(nwnz) = g[

& &
= ‘]’ =
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and therefore, from (3.18),

V) IR S T —
B’ (wFs) (x0) = —L P Y dff ndfl - T Y R Adfk”}xo)
Jj=1 J.k=1
—1
= g[f”(m, x0) ™ ddy f7 (%, y) = [P (x0, x0) i f7 (x, )
ANy FP ]| 2y, (3.19)

where f7(x,y) =307, 7 (0) f7 () and | f7(0)> = f7(x,x). Since
Pop(x,y) = fP(x,y)ef (x) ® ef ()", (3.20)

thus Py ,(x, y) is f7(x, y) under our trivialization of L. By (1.31), Theorem 1.18, and (1.113),
we obtain

1 =1 1 1
_@;(wFS)(xO) = — —dxdyF()‘() — —deFO,O A dyFO,O (O’ 0)
p 2 | Foo FO,O
=11 1
— | — W, Fy1 Nd,F dyFoo Ady F 0,0
= ﬁ[F()zo( Fo,1 ANdyFoo+dcFooNdy 0,1)}( )
+0(1/p). (3.21)

Using again (1.91) and (1.109), we obtain
1 V=1 _ 1 1
— ) (wrs) (x0) =~ — Y ajdzj ndzjly, + ﬁ(—) = w(xo) + ﬁ(—), (3.22)
p T p p

and the convergence takes place in the €>° topology with respect to xg € X.

(iii) Since X is compact, we have to prove two things for p sufficiently large: (a) @, are
immersions and (b) @, are injective. We note that (a) follows immediately from (3.15).

To prove (b) let us assume the contrary, namely that there exists a sequence of distinct points
xp # yp such that @, (x,) = @, (y,). Relation (3.16) implies that @ p(xp) = @ »(Yp), where d)
is defined by an arbitrary choice of basis.

The key observation is that Theorem 1.19 ensures the existence of a sequence of peak sections
at each point of X. The construction goes like follows. Let xo € X be fixed. Since @, is base
point free for large p, we can consider the hyperplane @, (xp) of all sections of H,, vanishing

at xo. We construct then an orthonormal basis {S; P }i dp Z, of H, such that the first d,, — 1 elements
belong to @, (xp). Then S aII; is a unit norm generator of the orthogonal complement of @, (xp),

and will be denoted by S4. This is a peak section at xo. We note first that | S, (x0)|* = By, (x0)
and Py p(x, x0) = Sk (x) ® Sh (x0)* and therefore

Sto(x) = Py, p(x, x0) - SE (x0). (3.23)

1
BO,p(XO)
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From (1.113) we deduce that for a sequence {r,} with r, — 0 and r,,/p — oo,

|S§’O(x)|2dvx(x) =1—-01/p), forp— oo. (3.24)

B(XQ,VI;)

Relation (3.24) explains the term ‘peak section’: when p grows, the mass of Sfo concentrates
near xo. Since @,(x,) = @,(y,) we can construct as before the peak section Sf , = 55p as the
unit norm generator of the orthogonal complement of @,(x,) = ®@,(y,). We fix in the sequel
such a section which peaks at both x,, and y,.

We consider the distance d(x, y,) between the two points x, and y,. By passing to a subse-
quence we have two possibilities: either ./pd(x,, yp) — 00 as p — oo or there exists a constant
C > O such that d(xp, y,) < C/,/p forall p.

Assume that the first possibility is true. For large p, we learn from relation (3.24) that the
mass of Sfp = Sfp (which is 1) concentrates both in neighborhoods B(x,,r,) and B(y,,rp)
with 7, =d(xp, yp)/2 and approaches therefore 2 if p — 00. This is a contradiction which rules
out the first possibility.

To exclude the second possibility we follow [43]. We identify as usual BX(x p &) to
BTX(0, &) so the point y, gets identified to Z,/,/p where Z, € BT»X(0, C). We define then

NAANAIE

. 3.25
Bo,p(tZp/\/P) (329

fp 0, 1] — R, fp(t) =

We have f,(0) = f,(1) =1 (again because S¥, = S} ) and f,(r) < 1 by the definition of the

P
generalized Bergman kernel. We deduce the existence of a point ¢, € 10, 1[ such that f 1/7/ (tp) =0.

The expansion (1.113) and formulas (3.23), (3.25) imply the estimate

12
Foty =" TEs 0 (1 4,12,/ /) (3.26)

where the 2 norm of g p over BT X (0, C) is uniformly bounded in p. We infer from (3.26)
that |Zp|<2) = é—lt Zj ajlzp,jl2 = 0(1/,/p). Using the limited expansion e* =1 +x + x%¢(x) for
x=1t%Z p |% in (3.26) and taking derivatives, we obtain

110 ==2Zp3+ 0(1Zpl3) + 6(1Z, R/ 7)) = (=2 + O/ S/P))1Z, 3.

Evaluating the latter expression at 7, we get 0= f/(t,) = (=2 + ﬁ(l/ﬁ))|2p|g, which is a
contradiction since by assumption Z, # 0. This finishes the proof of (iii). O

Remark 3.8. Let us point out complementary results which are analogues of [10, (1.3)—(1.5)]
for the spaces H . Computing as in (3.19) the pull-back @;h rs of the Hermitian metric hpg =
grs — v/ —1lwps on PH,, we get the similar inequality to (3.15) for grs and (-, J-). Thus,
®,, are asymptotically symplectic and isometric. Moreover, arguing as in [10, Proposition 4.4]
we can show that @, are ‘nearly holomorphic’:

1 1 -
—[la®,l =C, —|o®,ll=01/p), forsomeC >0, (3.27)
p p
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uniformly on X, where || - || is the pointwise operator norm.
3.4. Holomorphic case revisited

In this section we assume that (X, J, ®) is Kihler, the vector bundles E, L are holomorphic
on X, and VE, VI are the holomorphic Hermitian connections on (E, h%), (L, h"). As usual,
g Rl = w.

However, we will work with an arbitrary (non-Kdhler) Riemannian metric ng on T X com-
patible with J. That is, in general J # J, where J is defined in (0.2). The use of non-Kihler
metrics is useful in Section 3.6, for example. Set®

OX,Y)=g"*UX,Y). (3.28)

Then the 2-form @ need not to be closed. We denote by 70X, T7©O-DX the holomorphic
and anti-holomorphic tangent bundles as in Section 1.4. Let {e;} be an orthonormal frame of
(TX,g"X).

Let gIX(-,-) ;== w(-, J-) be the metric on T X induced by w, J. We will use a subscript » to
indicate the objects corresponding to g/ X, especially rX is the scalar curvature of (T X, g/ %),
and A, is the Bochner-Laplacian as in (1.2) associated to gaT)X .

Let 3-"®E-* pe the formal adjoint of the Dolbeault operator 3-"®~ on the Dolbeault complex
2%*(X, L? ® E) with the Hermitian product induced by gTX, kL, hE asin (1.1). Set

D, =+2(3""®F 4 gL ®Ex),
Then

D127 — 2(5L1’®E5L1’®E,* + 5LP®E,*5L1’®E)

preserves the Z-grading of £2%°(X, L? ® E). Then for p large enough,
Ker(Dp) =Ker(D?) = H*(X, L” ® E). (3.29)

Here D), is not a spin® Dirac operator on .QO"(X ,LP ® E), and Df, is not a renormalized
Bochner-Laplacian as in (0.4).

Let Pp(x,x’) (x,x" € X) be the smooth kernel of the orthogonal projection P, from
E>*°(X,LP ® E) on Ker(Df,) with respect to the Riemannian volume form dvy (x") for p large
enough. Recall that we denote by detc the determinant function on the complex bundle 79 X .
We denote by |J| = (—J%)~!/2, then detc | J | = (27r) " I1;a; under the notation in (1.82). Now
we explain how to put it in the frame of our work.

6 The convention here differs from [3, (2.1)] by a factor —1.
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Theorem 3.9. The smooth kernel P,(x,x") has a full off-diagonal asymptotic expansion analo-
gous to (3.13) with jo =1 as p — oo. The corresponding term by in the expansion (0.9) of
Bo,p(x) :== Py (x, x) is given by

_detc |J|

b
0.1 8

[ro — 24, (log(detc| J1)) +4R" (W, . Wa, )] (3.30)

here {w,, ;} is an orthonormal basis of(T(l'O)X, gaT)X).

Proof. As pointed out in [33, Remark 3.1], [5, Theorem 1] implies that there exist pg, Cp > 0
such that for every p e Nand s € 2”%(X, L? Q E) := D, 204(X,LP Q E),

IDpsl72 > 2puo— Co)ls|7- (3.31)

Moreover Spec(Df,) c{0}U2puo—Cr,+o0l.
Let S~ denote the 1-form with values in antisymmetric elements of End(7 X) which satisfies

JI

(s"Bwyv,w)= T((a —0)0)(U,V, W) (3.32)

forall U, V, W € T X. The Bismut connection V—58 on T X is defined by
v B=vIX g8 (3.33)

Then by [3, Prop. 2.5], V8 preserves the metric g7 X and the complex structure of 7 X. Let V4t
be the holomorphic Hermitian connection on det(T 19 X) with its curvature R, Then these two
connections induce naturally a unique connection on A(7*-D X) which preserves its Z-grading,
and with the connections VL, VE, we get a connection V~B.Ep on A(T*(O’I)X) QRLPQE. Let
A~B-Ep be the Laplacian on A(T*®VX) ® L? ® E induced by V~8-£r as in (1.2). For each
v € TX with decomposition v = v1,9 + vo,1 € 70X @ 7ODX | et 5?,0 e T*O-DX be the
metric dual of vy o. Then

c(v) =205 g A =iy, )

defines the Clifford action of v on A(T*®DX), where A and i denote the exterior and in-
terior product respectively. We define a map ¢ : A(T*X) — C(TX), the Clifford bundle of
TX, by sending "' A --- A €'V to c(ey)---c(e;;) for iy < --- <ij. For B € A3(T*X), set
|B|2 = Zi<j<k |B(ei, e, ek)|2. Then we can formulate [3, Theorem 2.3] as follows:

V-1,

X
r 1
Dy =a"0r C(RE + pR" + —Rde‘) +—

(300) — l|(a - 5)@|2. (3.34)
2 8
We use now the connection V~5-Er instead of V7 in [20, §2]. Then by (3.31), (3.34), every-
thing goes through perfectly well and as in [20, Theorem 4.18], so we can directly apply the
result in [20] to get the full off-diagonal asymptotic expansion of the Bergman kernel. Since the
above construction preserves the Z-grading on £2%*(X, L” ® E), we can also directly work on
C*(X,LP ®FE).
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Now, we need to compute the corresponding by 1. We endow E with the metric hg =
(detc|J)~'hE and let Rcf be the curvature associated to the holomorphic Hermitian connec-
tion of (E, hE). Then

RE = RF — 39 log(detc|J|). (3.35)
Thus

V=1RE (e j, Jew,)) = 2RE (we j, W, ;) = V—1R (0w, Jew,j) — Awlog(detc| T ).
(3.36)

Let (-, -),, be the L2-Hermitian product on € (X, L? ® E) induced by ggx, ht, hg. Then
(€F°(X,LP®E),(-,)o) = (€™(X. LY ® E), (-, -)), dvx,, = (detc[J|) dvx. (3.37)

Observe that HO(X, L? ® E) does not depend on g7*, L or hE. If Py, p(x,x"), (x,x" € X)
denotes the smooth kernel of the orthogonal projection from (€*°(X, L? ® E), (-, ),) onto
HY(X, LP ® E) with respect to dvy,,(x), we have

Py(x,x") = (detc|J|(x)) Poy, p(x, x"). (3.38)

Now for the kernel P, ,(x,x"), we can apply Theorem 0.1 (or [20, Theorem 1.3]) since
gl X(-,)=w(-, J-) is a Kihler metric on T X, and (3.30) follows from (0.8) and (3.36). O

Remark 3.10. The argument in this subsection goes through the orbifold case as in [20, Sec-
tion 4.2].

3.5. Generalizations to non-compact manifolds

As in Section 3.4, we consider a complex Hermitian manifold (X, J, ®) of dimension n,
where J is the complex structure and @ is the (1, 1) form associated to a Riemannian metric
gTX compatible with J as in (3.28). The Hermitian torsion of @ is 7 = [i(®), d@], where
i(®) = (O A-)* is the interior multiplication with ®. Let (L, k%) and (E, k) be holomorphic
Hermitian vector bundles over X, with rk(L) = 1. We denote by RL, RE and RY! the curvatures
of the holomorphic Hermitian connections VX, VE and V9t on L, E and det(T 19 X). Let

JL € End(T X) be the endomorphism satisfying gRL(- ,) =6~ ). The line bundle L

is supposed to be positive and we set w = gRL. We also keep the notations gZX, A, and rX
when we refer to Section 3.4.

The space of holomorphic sections of L? ® E which are L? with respect to the norm given
by (1.1) is denoted by H(Oz)(X, L? @ E). Let Py(x,x") (x,x” € X) be the Schwartz kernel of the
orthogonal projection P, from the L? section of L” ® E onto H(Oz)(X ,L? ® E) with respect
to the Riemannian volume form dvy(x") associated to (X, ®@). Then by the ellipticity of the
Kodaira-Laplacian and Schwartz kernel theorem, we know P, (x, x’) is €. We set B, (x) :=
P,(x,x) € €°°(X,End(E)).

For a (1, 1)-form £2, we write £2 > 0 (resp. > 0) if £2(-, J-) > 0 (resp. > 0). For two (1, 1)-
forms §2 and 2" we write 2 > 2’ (resp. £2 > ') if 2 — 2’ > 0 (resp. 2 — 2’ > 0). We have
the following generalization of Theorem 0.1.



X. Ma, G. Marinescu / Advances in Mathematics 217 (2008) 1756—1815 1805

Theorem 3.11. Assume that (X, ®) is a complete Hermitian manifold. Suppose that there exist
e >0, C > 0 such that:

V=1RL > ¢0), V=1(R* + RE) > —CO1dg, 100 rx < C. (3.39)

Then for every compact K C X, the kernel P, (x, x") has a full off-diagonal asymptotic expansion
analogous to (3.13) with j, =1dg as p — oo, uniformly for every x,x’ € K. Especially there
exist coefficients b, € €°° (X, End(E)), r € N, such that for every compact set K C X and every
k,l €N, there exists Cy g > 0 with

k
1
—Bp(x) = Y b (x)p”" <Crrxp*7Y, forall peN*. (3.40)
p r=0 €L(K)

Moreover, by = detc |JL| and by equals by, given in (3.30).

Let us remark that if L = Ky := det(T*(1:9 X) is the canonical line bundle on X, the first two
conditions in (3.39) are to be replaced by

h" is induced by © and v/—1R%® < —¢©, V=1RF > —CO1dg (3.41)

and the conclusions are still valid. If (X, ®) is Kahler then d® = 0, so the third condition in
(3.39) is trivially satisfied.

Proof. By the argument in Section 1.1, if the Kodaira-Laplacian 0t ®F = %Ap = %Ap,o acting
on sections of L” ® E has a spectral gap as in (0.5), then we can localize the problem, and we
get directly (3.40) from Section 1.3. Observe that D127|QO.0 = A,. In general, on a non-compact

manifold, we define a self-adjoint extension of Df, by

Dome, = {u IS Dom(’;f ﬂDomég’*: 5514 IS Domég’*, 5£’*u IS Domgf},
2 SEREx | 3E*3E 2
Dpu:2(8p8p *—}—Bp *Bp)u, for u € Dom D,

where we set 9 f := dL"®E The quadratic form associated to D127 is the form pQ, given by

Dom Q) := Dom(‘;f N Dom a&r*,
pOp(u,v)= 2<5§u, 551}) + 2(55’*u, 55’*1}), u,veDomQ,. (3.42)

In the previous formulas 9 g is the maximal extension of 3 g to L2 forms and 55’* is its Hilbert

space adjoint. We denote by !28 *(X,L? ® E) the space of smooth compactly supported forms
and by L(2) (X, L? ® E) the corresponding L2-completion.
Under hypothesis (3.39) there exists > 0 such that for p large enough

pQpw) = ppllull®>, ueDomQ,NL;, (X,L” ®E) for g > 0. (3.43)
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Indeed, the estimate holds for u € (28 (X, L? ® E) since the Bochner—Kodaira—Nakano formula
with torsion term of Demailly ([23, Th. 0.3], [41, Th. 1.5], [5, (8)], or [36, Cor. 1.4.17]) delivers

Wl

pQ,) > =((pR" + RE + R®) (w;, W)@’ Aig,u, u)

2, - — .
- §(||Tu||2+ IT*i)? + 1 Tal|) (3.44)

foru e Qg’q (X, LP ® E), where {w;} is an orthonormal frame of 7" X and ii € 277 (X, L? ®
E ® K%) is induced by u and the canonical identification Ky ® K% =~ C. Relations (3.44) and
(3.39) imply (3.43) foru € Qg’q (X,L? ® E). Since .Qg"(X, L? ® E) is dense in Dom Q,, with
respect to the graph norm (due to the completeness of the metric g7 %), (3.43) holds in general.

Next, consider f € DomA, N L%’O(X, L? ® E) and set u = 55]‘. It follows from the defini-
tion of the Laplacian and (3.43) that

1A, fIP =4{00*u, 05 *u) =2pQ,w) = 2uplul’ = up(A, f, f). (3.45)
This clearly implies
Spec(Ap) C {0} U [pu, ool for large p.

What concerns bp, the argument leading to (3.35)—(3.38) still holds locally, thus we get b
from (3.30). O

Theorem 3.11 permits an immediate generalization of Tian’s convergence theorem. Tian [48,
Theorem 4.1] already generalized the convergence in the € topology and convergence rate
1/./p to complete Kihler manifolds X with some conditions on their Ricci curvature. When X
is a quasi-projective manifold the generalization is used to prove estimates involving the Ricci
form and results about its extension to a smooth projective compactification of X.

Another easy consequence of Theorem 3.11 are holomorphic Morse inequalities for the space
H(OZ) (X, LP).

For simplicity we consider now rk(E) = 1, with the important case E = Kx = det(T*1.0 x)
in mind. Choose an orthonormal basis (Sip )i>1 of H(Oz) (X, L? ® E). For each local holomorphic
frames ey, and eg of L and E we have

SP = fPe¥’ @ ex (3.46)

for some local holomorphic functions f;”. Then B,(x) = P,(x,x) = Y ;5 IS/ @) =
Zi>1 |fi‘" (x)|2|e%p|iu, leg |iE is a smooth function. Observe that the quantity Zi>1 |fi‘" () is

not globally defined, but the current

1 _
W, = gaalog(zmp(mz) (3.47)

i>1
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is well defined globally on X. Indeed, since Rl = —3d log |eL|iL and RF = —9dlog |eE|iE we
have

1 V=1 V=1 V=1
—w, — ~——RF = —881 ¢ B, + —RE. (3.48)
P 2w 27p

If E is trivial of rank one and dlmHz)(X L?) < oo, we have by (3.14) that w, = ¢;(a)FS)
where @, is defined as in (3.14) with J#, replaced by H(Oz) (X, LP).

We will call a connected complex manifold X Andreotti pseudoconcave if there exists a non-
empty relatively compact open set M € X with smooth boundary 0 M such that the Levi form of
M restricted to the analytic tangent space 799 M has at least one negative eigenvalue at each
point of M.

Corollary 3.12. Assume that tk(E) = 1 and (3.39) holds true. Then:

(a) for each compact set K C X the restriction wp|k is a smooth (1, 1)-form for sufficiently
large p; moreover, for every |l € N there exists a constant Cj g such that

1 V=1 C
‘_wp - >—R* < LK
p 2 € (K) P
(b) the Morse inequalities hold in bidegree (0, 0):
1 =1 "
liminf p* "dim H) (X, LP ® E) > / (2_ RL) : (3.49)
54

(c) if X is Andreotti pseudoconcave, then the manifold (X, ®) has finite volume.

Proof. Due to (3.40), B, does not vanish on any given compact set K for p sufficiently large.
Thus, (a) is a consequence of (3.40) and (3.48).

Part (b) follows from Fatou’s lemma, applied on X with the measure ®" /n! to the sequence
p~" B, which converges pointwise to (det J£)!/2 = (g RL)" /6" on X.

If X is Andreotti pseudoconcave, then dim H%(X, F) < oo for every holomorphic line bundle
F on X. Moreover, it is shown in [37] and [36, Theorem 3.4.5] that there exists a constant C > 0
such that for all p > 1 we have dim H Ox,LP)<C p". Assertion (c) follows immediately from
the latter estimate and (3.49). 0O

Remark 3.13. Under the hypothesis (3.41), the inequality (3.49) (with E trivial) is [39, Theo-
rem 1.1] of Nadel and Tsuji, where Demailly’s holomorphic inequalities [22] on compact sets
K C X were used. The volume estimate is essential in their compactification theorem of complete
Kéhler manifolds with negative Ricci curvature (a generalization of the fact that arithmetic va-
rieties can be complex-analytically compactified). The Morse inequalities (3.49) were also used
by Napier and Ramachandran [40] to show that some quotients of the unit ball in C* (n > 2) hav-
ing a strongly pseudoconvex end have finite topological type (for the compactification of such
quotients see also [38]).
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Another generalization is a version of Theorem 0.1 for covering manifolds. Let X bea para-
compact smooth manifold, such that there is a discrete group I” acting freely on X with a compact
quotient X = X/I". Let mr : X — X be the projection. Assume that there exists a I"-invariant
pre-quantum line bundle I on X and a I'-invariant connection V such that & = %(VZ)2
is non-degenerate. We endow X with a I'-invariant Riemannian metric gTi. Let J be an I'-
invariant almost complex structure on T X which is separately compatible with @ and g7 . Then
J gTX a) J, L, E are the pull-back of the corresponding objects in Introduction by the projec-
tion 7T : X— X.Let® bea smooth Hermitian section of End(E), and d=don r. Then the
renormalized Bochner-Laplacian A p.& 18

Zp!(i‘ = AZP(X)E _ p(‘[ omr)+ 5
which is an essentially self-adjoint operator. It is shown in [33, Corollary 4.7] that
Spec(A, 5) C [—Cr, CL1U2ppo — Cr, +o0l, (3.50)

where Cy, is the same constant as in Introduction and j is introduced in (0.3). Let H p be the
eigenspace of A ».& with the eigenvalues in [-Cp, Cp]:

H, =Range E([-CL.CL1, A, 5). (3.51)

where E (-, A p’qg) is the spectral measure of A & From [33, Corollary 4.7], the von Neumann

dimension of ﬁ,,Nequals~d p =dim™H,, for p large enough. Finally, we define the generalized
Bergman kernel P, , of A p.& A8 in Definition 1.1. Unlike most of the objects on X, P, , is not
I'-invariant.

Theorem 3.14. We fix 0 < &9 < infxex{injectivity radius of x}. Then for every k,l € N, there
exists Cx,; > 0 such that for all x,x" € X, p € N*, the following estimates hold:

| Py p(x.x') = Py p(rr (), 71 (2) | < Coup™ 7', ifd(x,x') < g0,

| Py p(e. x|y < Crap ™71, ifd(x,x") > e (3.52)

Especially, ng, p(x, x) has uniformly on X the same asymptotic expansion as that of Py, ,(mr (x),
mr(x)) given in Theorem 0.1.

Proof. Let {¢;} be a partition of unity subordinate to {U; = BX (x;, 8)} as in Section 1.1. Then
{(py i = @; omr} is a partition of unity subordinate to {Uy i} where (U )= UyEF Uy ; and
UVl ;i and U,,zl are disjoint for y; # y». The proof of Proposition 1.2 still holds for the pair
{(py it {Uy i}, since we can apply the Sobolev embeddlng theorems with uniform constant on
U, ;. Thus, the analogue of (1.7) holds uniformly on X. Using the finite propagation speed as at
the end of Section 1.1, we conclude. O

Remark 3.15. Theorem 3.14 can be generalized for coverings of non-compact manifolds in the
spirit of Theorem 3.11. Let (X, ®) be a complete Kihler manifold, (L, k%) be a holomorphic

line bundle on X and let 7 : X — X be a Galois covering of X = %/F. Let ® and (Z, ht)
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be the inverse images of & and (L, ht) through 7. If (X, ®) and (L, hl) satisfy one of the
conditions (3.39) or (3.41), (X, @) and (L, h") have the same properties. We obtain therefore as
in (3.49) (by integrating over a fundamental domain):

s = L (V=T )
1iminfp—"dimng)(x,LP)>—/ ~—R"), (3.53)
p—>00 n! 2

X

where dim is the von Neumann dimension of the /"-module H(OZ) (X, L?). Such type of inequal-
ities was proved in [49] and they imply weak Lefschetz theorems a la Nori.

The example of non-compact manifolds emphasizes very well our approach to the existence
of the asymptotic expansion of the Bergman kernel of Laplacian type operators when the power
of the line bundle tends to infinity. In fact, the argument in Section 1.1 shows that the spectral gap
property allows to localize our problem whether the manifold X is compact or not. Thus from
the argument in Section 1.3 or [20, §4.4], it implies the existence of the asymptotic expansion.
Moreover, the formal power series artifice in Section 1.5 gives a general way to compute the
coefficients. As an example, we state the following result which is an extension of [20, Theo-
rem 4.18] to non-compact case and we use the notation therein. Let (X, g7¥) be a Riemannian
manifold with almost complex structure J which is compatible with gTX , and let (L, KL, VL)
and (E, ht, VE) be Hermitian bundles as in Introduction. We consider the associated spin® Dirac
operator D . Let RT"”X be the curvature of the connection on TH9 X induced by VX by
projection. We denote by Icgr the projection from A(T*®DX) ® E onto C ® E under the
decomposition A(T*ODx)=C @ A>O(T*OD x),

Theorem 3.16. Suppose that (X, g7 X) is complete and the scalar curvature rX of (X, g7%), RE

and Tr[RT(l’O)X] are uniformly bounded on (X, gTX). Assume also that there exists ¢ > 0 such
that on X,

V=IRL(,J) > egTX(, ). (3.54)

Then the smooth kernel P,(x,x") with respect to dvx (x") of the orthogonal projection P, from
L%’.(X, L? ® E) onto Ker(D,) has a full off-diagonal expansion as p — oo uniformly on com-
pact sets of X, analogous to Theorem 3.11. In the present case jy = IcgE.

Proof. By the proof of [33, Theorem 2.5], we know that the spectral gap property Spec(Dl%) -
{0} U [2uop — Cr, ool still holds under our condition. Then the arguments outlined above allow
to conclude. O

3.6. Singular polarizations

Let (X, J) be a compact complex manifold. A singular Kdhler metric on X is a closed,
strictly positive (1, 1)-current w. This means there exist locally strictly plurisubharmonic func-
tions ¢ € L}, such that v—133¢ = o.

If the cohomology class of @ in H%(X, R) is integral, there exists a holomorphic line bundle
(L, hL), endowed with a singular Hermitian metric, such that %RL
rents. We call (L, hL) a singular polarization of w. If we change the metric KL, the curvature of

= w in the sense of cur-
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the new metric will be in the same cohomology class as w. In this case we speak of a polarization
of [w] € H*(X, R). Our purpose is to define an appropriate notion of polarized section of L?,
possibly by changing the metric of L, and study the associated Bergman kernel.

First recall that a Hermitian metric hl is called singular if it is given in local trivialization by
functions e™¢ with ¢ € L} . The curvature current R of h” is well defined and given locally
by the currents 39¢.

By the approximation theorem of Demailly [24, Theorem 1.1], we can assume that i% is
smooth outside a proper analytic set ¥ C X. Using this fundamenial fact, we will introduce
in the sequel the generalized Poincaré metric on X \ X'. Let 7 : X — X be a resolution of
singularities such that 7 : X \ 77 1(¥) - X \ ¥ is biholomorphic and 7~!(X) is a divisor

loc*

with only 51mple norrnal crossings. Let g X be an arbitrary smooth J-invariant metric on X

and O'(-, ) = g X(J-,) the corresponding (1, 1)-form. The generalized Poincaré metric on
X\ XY= X \ n_l(E) is defined by (cf. [16, §2], [18, §6])

O = O —gov/—1 Z Bélog((— log ||o; ||I-2)2), 0 < g9 <« 1 fixed, (3.55)
i

where 77 1(X) = \UJ; Zi is the decomposition into irreducible components X; of 7~ 1(X) and
each X; is non-singular; o; are sections of the associated holomorphic line bundle [X;] which
vanish to first order on X;, and ||o;||; is the norm for a smooth Hermitian metric on [ X; ] such that
lloilli < 1. The first part of the following lemma generalizes previous work on the generalized
Poincaré metric [16,18,52].

Lemma 3.17.

(i) The generalized Poincaré metric (3.55) is a complete Hermitian metric of finite volume. Its
Hermitian torsion Ty, = [i(Og,), 0O, ] and the curvature RYt qre bounded.
(i) If (E, hE) is a holomorphic vector bundle over X with smooth Hermitian metric h® and

HY(X\ £, E)={ue L} o(X\ . E, Op. h"): 3%u=0)
then
HY(X\ Z.E)=H"(X. E).

Proof. To describe the metric more precisely we denote by D the unit disc in C and D* = D\ {0}.
On the product (D*)! x D"~! we introduce the metric

VoI dy Adi V=1 & i
wp = Z + = Zdzk/\dzk. (3.56)

2 2)2
2 [z (logzP) L

For each yoint x € 7~ 1(X) there exists a coordinate neighbourhood U of x isomorphic to D" in
which (X \ n_l(E)) NU={z=(z1,..-,20): 271 #0, ..., z1 # 0}. Such coordinates are called
special. We endow (X \ » lZynu= (D*)l x D"~ with the metric (3.56). We have

= R dlogloi|I? A dlog [lo; |17
—«/—laalog((—log||c7i||%)2)=2«/—1< 5 + gloil > f” ‘”’). (3.57)
log |0 [I; (loglloi [I7)
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Since the terms R!%i!/1og |0 ||l.2 tend to zero as we approach X,

O +24/—1 802 (3.58)

1og lloi ||2

for &9 small enough. The last term in (3.57) is > 0, since V—13g Adg > 0 for every real function
gon X. Thus O, is positive for gy small enough.

We choose special coordinates in a neighborhood U of x¢ in which X'; has the equation z; =0
for j=1,...,k and ¥}, j > k, do not meet U. Then for 1 <i <k, ||Gi||12 = <,o,-|zi|2 for some
positive smooth function ¢; on U and

dloglloll7 Adloglloi|l7  dzi AdZi +

(log |07 ]?)?  lzil2(log llo; |1$)2

(3.59)

where ; is a smooth (1, 1)-form on U such that v;|;,—o = 0.

As in [52, Prop. 3.4], we show using (3.57) and (3.59) that the metrics (3.55) and (3.56) are
equivalent for |z;| small. From this the first assertion of (i) follows.

Recall that RY is the curvature of the holomorphic Hermitian connection on det(T 19 x)
with respect to the Hermitian metric induced by @,,. We wish to show that there exist a constant
C > 0 such that

—COyy < V—1R® < CO,,, | Teolo, < C. (3.60)

where 7y, = [i(Oy,), 3Oy, ] is the Hermitian torsion operator of ®¢, and |7 |0F is its norm with

respect to @y, . Since O,, = 3O’ by (3.55), 9O, extends smoothly over X, and thus we get the
second relation of (3.60).
We turn now to the first condition of (3.60). By (3.55), (3.57) and (3.59), we know that

k k
2%e5 + B(2)
On = 0 (W=ldz; ndzj) =y () | [(V=1dz; AdZ)). (3.61)
iz el aognoan)zH ,H]
Here B(z) is a polynomial in the functions ;4 (z)|zi|*(log ||crl||2)2 bia(2)zi|?* log ||crl||2 and

cio(z) (1 i <k), with a;y, by smooth functions on U and c;, smooth functions on U such
that ¢;(2)]z;,=0 = 0. Moreover, 2k ek o + B(2) is positive on U as @, is positive. Since

a n
— A A [[-1dzj ndzj) =6, (3.62)
921 92 e, j=1 '
we get from (3.61) and (3.62),
k

R%® = —33logy(z) = —ddlog(2Xef + B(2)) + Z 33 log((log llo; ||l.2)2). (3.63)
i=1
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By (3.57), the last term of (3.63) is bounded with respect to ®¢,. To examine the first term of the
sum, we write

30B(2) 3B(2) AOB(2)

8510g(2k5’5 +B(2) = 2Kk 1 () (zkgg + B(2)?%

(3.64)

Now we observe that for W; (z) = |z;|*(log |07 |)? or |z;|* log ||o; ||?, the terms 93 W; (z), dW; (2),
dW; (z) are bounded with respect to the Poincaré metric (3.56), thus with respect to &,,. Com-
bining with the form of 8 given after (3.61), this completes the proof of (3.60).

Let us prove (ii). First observe that &,, dominates the Euclidean metric in special coordinates
near 7~ !(X), being equivalent with (3.56). Therefore it dominates some positive multiple of
each smooth Hermitian metric on X. We deduce that, given a smooth Hermitian metric ®”
on X, there exists a constant ¢ > 0 such that @, > ¢®” on X \ X. It follows that elements
of HO)(X \ X, E) are L? integrable with respect to the smooth metrics @” and hf over X,

which entails they extend holomorphically to sections of H(X, E) by [21, Lemme 6.9]. We
have therefore H(Oz) (X\ X, E) c H%(X, E). The reverse inclusion follows from the finiteness of
the volume of X \ X in the Poincaré metric. O

We can construct as in [45, §4], [36 Lemma 6 2.2] a singular Hermitian line bundle (L hL )
on X which is strictly positive and L| Nr-1(z) = = w*(LP0), for some pg € N. We introduce on

L|x\x the metric (hL)l/ Po whose curvature extends to a strictly positive (1, 1)-current on X.
Set

k= (D) T(~loglloil?)’. 0<e<1, (3.652)

i

HY (X\ 2. LP)={ue L§ (X~ Z.L", O hE"): 3 u =0}, (3.65b)

The space H, 2)(X \ X, L") is the space of L2-holomorphic sections relative to the metrics O,

on X \ ¥ and hg“ on L|x\x. Since (hz)l/ Po is bounded away from zero (having plurisubhar-
monic weights), the elements of this space are L? integrable with respect to the Poincaré metric
and a smooth metric hi of L over whole X. By Lemma 3.17(ii) we have (2)(X \ X,LP) C

HO(X, LP). (Here we cannot infer the other inclusion since hf; might blow up to infinity on X'.)
The space H(%) (X \ X, L?) is our space of polarized sections of L”.

Corollary 3.18. Let (X, ) be a compact complex manifold with a singular Kdhler metric with
integral cohomology class. Let (L, h™) be a singular polarization of [w] with strictly positive
curvature current having singular support along a proper analytic set X. Let (E, h*) be a holo-
morphic Hermitian vector bundle on X. Then the Bergman kernel associated to the orthogonal
projection from the space of L*-sections of L ® E with respect to Oy, hﬁp QhE on X\ ¥ onto
the space of polarized sections

HY) (X\Z.LP® E) ={u e L§ o(X\ 2. LP @ E, O,y ht" @ h*): §1"®Eu =0}

has the asymptotic expansion as in Theorem 3.11 for X \ X.
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Proof. We will apply Theorem 3.11 to the non-Kahler Hermitian manifold (X \ X, ®g,)
equipped with the Hermitian bundle (L|x\ 5, hsL) and (E, h%). Certainly, R? is bounded. Thus
we have to show that there exist constants > 0, C > 0 such that

VEIRERSED 5 0, VIR > €O, [Tle,, <C- (3.66)

The ﬁ~rst relation results for all ¢g small enough from (3.55), (3.65a) and the fact that the curvature
of (h™)!/Po extends to a strictly positive (1, 1)-current on X (dominating a small positive multiple
of @ on X ). The second and third relations were proved in (3.60). This completes the proof of
Corollary 3.18. O

Remark 3.19. (a) Corollary 3.18 with E = C gives an alternative proof of the characterization of
Moishezon manifolds given by Ji and Shiffman [29], Bonavero [8] and Takayama [45]. Indeed,
each Moishezon manifold possesses a strictly positive singular polarization (L, h’). Conversely,
suppose X has such a polarization. Then as in (3.49), we have dim H(Oz) X\ X,LP) > Cp"

for some C > 0 and p large enough. Since H(Oz)(X \ X,L?)C HO(X, LP), it follows that L is
big and X is Moishezon. A detailed account of the characterization of Moishezon manifolds,
including the present method, can be found in [36, Chapter 2 and §6.2].

(b) Using Moishezon’s fundamental result which states that a Moishezon manifold can be
transformed into a projective manifold by a finite succession of blow-ups along smooth centers
[36, Theorem 2.2.16], one can prove that every big line bundle L on a compact complex manifold
carries a singular Hermitian metric having strictly positive curvature current with singularities
along a proper analytic set (see e.g. [36, Lemma 2.3.6]).

(c) The results of this section hold also for reduced compact complex spaces X possessing a
holomorphic line bundle L with singular Hermitian metric 4~ having positive curvature current
(see [45] for definitions). This is just a matter of desingularizing X. As space of polarized sections
we obtain H(OZ) (X \ X, L?) where X is an analytic set containing the singular set of X.
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