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Abstract

We study the near diagonal asymptotic expansion of the generalized Bergman kernel of the renormalized
Bochner-Laplacian on high tensor powers of a positive line bundle over a compact symplectic manifold.
We show how to compute the coefficients of the expansion by recurrence and give a closed formula for the
first two of them. As a consequence, we calculate the density of states function of the Bochner-Laplacian
and establish a symplectic version of the convergence of the induced Fubini–Study metric. We also dis-
cuss generalizations of the asymptotic expansion for non-compact or singular manifolds as well as their
applications. Our approach is inspired by the analytic localization techniques of Bismut and Lebeau.
© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

The Bergman kernel for complex projective manifolds is the smooth kernel of the orthogonal
projection from the space of smooth sections of a positive line bundle L on the space of holomor-
phic sections of L, or, equivalently, on the kernel of the Kodaira-Laplacian �L = ∂L∂L∗ +∂L∗∂L
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on L. It was studied in various generalities in [6,17,30–32,42,48,50,51], where the diagonal
asymptotic expansion for high powers of L was established. Moreover, the coefficients in the
diagonal asymptotic expansion encode geometric information about the underlying complex pro-
jective manifolds. The diagonal asymptotic expansion plays a crucial role in the recent work of
Donaldson [26] where the existence of Kähler metrics with constant scalar curvature is shown to
be closely related to Chow–Mumford stability.

Dai, Liu and Ma [20] studied the asymptotic expansion of the Bergman kernel of the spinc

Dirac operator associated to a positive line bundle on a compact symplectic manifold by relating
it to that of the corresponding heat kernel. As a by product, they gave a new proof of the above
results. Their approach is inspired by Local Index Theory, especially by the analytic localization
techniques of Bismut and Lebeau [4, §11].

Another natural generalization of the operator �L in symplectic geometry was initiated by
Guillemin and Uribe [28]. In this very interesting short paper, they introduce a renormalized
Bochner-Laplacian (cf. (0.4)) which is exactly 2�L in the Kähler case. The asymptotic of
the spectrum of the renormalized Bochner-Laplacian on Lp when p → ∞ is studied in vari-
ous generalities in [9,15,28] by applying the analysis of Toeplitz structures (generalized Szegő
projections) by Boutet de Monvel and Guillemin [13], and in [33] as a direct application of Lich-
nerowicz formula.

A large and important body of work about the Bergman kernel (to quote just a few [7,10,43])
uses yet another replacement of the ∂-operator and of the notion of holomorphic section. It is
based on a construction by Boutet de Monvel and Guillemin [13] of a first-order pseudodifferen-
tial operator Db on the circle bundle associated to L, which imitates the ∂b operator. However,
Db is neither canonically defined nor unique.

In this paper we will study the asymptotic expansion of the generalized Bergman kernel of
the renormalized Bochner-Laplacian, namely the smooth kernel of the projection on its bound
states as p → ∞. Our motivation is to deal with a concrete, geometrically and canonically de-
fined operator which allows detailed calculations of the expansion coefficients. Our method is
different from the one using the parametrix construction of Boutet de Monvel and Guillemin and
continues the line of thought of [20], having origins in the works of Demailly [22], Bismut [2]
and Bismut and Vasserot [5]. We use the spectral gap of the renormalized Bochner-Laplacian, fi-
nite propagation speed for wave equations and rescaling of the renormalized Bochner-Laplacian
near the diagonal. We can work directly on the base manifold and the passage to the associated
circle bundle is not necessary.

We now explain our results in more detail. We work on a compact symplectic manifold (X,ω)

of real dimension 2n. Let (L,hL) and (E,hE) be two Hermitian vector bundles on X, endowed
with Hermitian connections ∇L and ∇E . The curvatures of these connections are given by RL =
(∇L)2 and RE = (∇E)2. We will assume throughout the paper that L is a line bundle satisfying
the pre-quantization condition:

√−1

2π
RL = ω. (0.1)

We choose an arbitrary1 Riemannian metric gT X on X. Let J : T X → T X be the skew-
adjoint linear map which satisfies the relation

1 Usually one takes as primary data the symplectic form ω and an almost complex structure J with ω(Ju,Jv) =
ω(u, v) for each u,v ∈ T X and ω(·,J ·) > 0, then defines gT X(u, v) := ω(u,Jv). In this case J = J . We prefer however
to work with an arbitrary Riemannian metric in view of the applications, e.g., Theorem 3.11.
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ω(u, v) = gT X(Ju,v) for u,v ∈ T X. (0.2)

Since J x ∈ End(TxX) we can define the determinant function detJ on T X by (detJ )(x) :=
detJ x for each x ∈ X.

There exists an almost complex structure J : T X → T X such that gT X(Ju,Jv) = gT X(u, v),
ω(Ju,Jv) = ω(u, v) for every u,v ∈ T X and ω(· , J ·) defines a metric on T X. Indeed, if J sat-
isfies these conditions, then J commutes with J and −JJ ∈ End(T X) is positive, so necessarily
J = J (−J 2)−1/2.

We introduce the Levi-Civita connection ∇T X on (T X,gT X) and let RT X denote its curvature
and rX its scalar curvature (cf. (2.22)). By ∇XJ ∈ T ∗X ⊗ End(T X) we mean the covariant
derivative of J induced by ∇T X .

Pursuant to the above choices of connections, we consider the induced Bochner-Laplacian
�Lp⊗E acting on C ∞(X,Lp ⊗ E) (cf. (1.2)), where Lp := L⊗p . Further, we fix a smooth Her-
mitian section Φ of End(E) on X and define:

τ(x) = −π Tr |T X[JJ ],
μ0 = inf

u∈TxX, x∈X

√−1RL
x (u,Ju)/|u|2

gT X > 0, (0.3)

�p,Φ = �Lp⊗E − pτ + Φ. (0.4)

Note that for a local orthonormal frame {ei}i of (T X,gT X) near x ∈ X, we have τ(x) =√−1
2

∑
j RL(ej , J ej ). By (0.1) and since ω(· , J ·) is a metric, we obtain τ(x) > 0 for every

x ∈ X.
Let Spec(A) denote the spectrum of an operator A. By [33, Cor. 1.2] (cf. also [5,9,15,28]),

there exists CL > 0 independent of p such that

Spec(�p,Φ) ⊂ [−CL,CL] ∪ [2pμ0 − CL,+∞[. (0.5)

The constant CL can be estimated precisely by using the C 0-norms of RT X , RE , RL, ∇XJ

and Φ , cf. [33, pp. 656–658].
Since �p,Φ is an elliptic operator on a compact manifold, it has discrete spectrum and its

eigensections are smooth. Let Hp ⊂ C ∞(X,Lp ⊗ E) be the direct sum of eigenspaces of �p,Φ

corresponding to the eigenvalues belonging to [−CL,CL]. By [33, Cor. 1.2] (also cf. [9,28] for
the case E trivial and J = J ) we have the following formula for p large enough:

dimHp = dp =
∫
X

Td(T X) ch
(
Lp ⊗ E

)

= rk(E)

∫
X

c1(L)n

n! pn +
∫
X

(
c1(E) + rk(E)

2
c1(T X)

)
c1(L)n−1

(n − 1)! pn−1

+ O
(
pn−2). (0.6)

As usual, ch(·), c1(·), Td(·) are the Chern character, the first Chern class and the Todd class of
the corresponding complex vector bundles (we consider here T X as a complex vector bundle
with complex structure J ).



X. Ma, G. Marinescu / Advances in Mathematics 217 (2008) 1756–1815 1759
The restriction to the diagonal of the generalized Bergman kernels (Definition 1.1, (1.3)) can

be introduced as follows. We consider an arbitrary orthonormal basis {Sp
i }dp

i=1 of Hp with respect
to the inner product (1.1) such that �p,ΦS

p
i = λi,pS

p
i . We adhere to the convention that λ0 = 1

for each λ ∈ R. For q ∈ N, we define Bq,p ∈ C ∞(X,End(E)) by

Bq,p(x) =
dp∑
i=1

λ
q
i,pS

p
i (x) ⊗ (

S
p
i (x)

)∗
. (0.7)

Clearly, Bq,p(x) does not depend on the choice of {Sp
i } but is by construction dependent on the

data gT X , hL, ∇L, hE , ∇E , J and Φ .
In general, on any given manifold we fix a Riemannian metric and a covariant derivative.

Pursuant to this choices, we form the pointwise norms, covariant derivative of order l ∈ N and
the C l-norm of tensors.

Let GX denote the set of Riemannian metrics on X. We say that a subset G ⊂ GX is bounded
below, if there exists gT X

0 ∈ GX such that gT X � gT X
0 for all gT X ∈ G.

A corollary of Theorem 1.19 is one of our main results:

Theorem 0.1. There exist smooth coefficients bq,r (x) ∈ End(E)x such that

b0,0 = (detJ )1/2 IdE, (0.8)

and for every k, l ∈ N there exists Ck,l > 0 such that for every x ∈ X, p ∈ N,∣∣∣∣∣ 1

pn
Bq,p(x) −

k∑
r=0

bq,r (x)p−r

∣∣∣∣∣
C l

� Ck,lp
−k−1. (0.9)

The coefficients bq,r (x) are polynomials in RT X , RE , Φ (and RL), their derivatives of order
� 2(r + q)− 2 (resp. 2(r + q)), and reciprocals of linear combinations of eigenvalues of J at x.

The expansion is uniform in the following sense. For a subset M of D , the infinite dimensional
manifold of all compatible tuples (gT X,hL,∇L,hE,∇E,J,Φ), assume that:

(i) for each fixed k, l ∈ N the covariant derivatives in the direction X up to order 2n+2k+2q +
l + 5 of elements of M form a set of tensors on X × M which is bounded in the C l-norm
calculated in the direction of M;

(ii) the projection of M on the space of Riemannian metrics GX is bounded below.

Then there exists Ck,l = Ck,l(M) such that (0.9) holds for all tuples of data from M. Moreover,
the C l-norm in (0.9) can be taken to be the C l norm on X ×M.

We calculate further the coefficients b0,1 and bq,0, q � 1 as follows.2

2 If {ej } is a local orthonormal frame of (T X,gT X), then |∇XJ |2 = ∑
ij |(∇X

ei
J )ej |2; this is two times the corre-

sponding |∇XJ |2 from [34].
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Theorem 0.2. If J = J , then for q � 1,

b0,1 = 1

8π

[
rX + 1

4

∣∣∇XJ
∣∣2 + 2

√−1RE(ej , J ej )

]
, (0.10)

bq,0 =
(

1

24

∣∣∇XJ
∣∣2 +

√−1

2
RE(ej , J ej ) + Φ

)q

. (0.11)

Let us verify the compatibility of (0.10) with the Atiyah–Singer formula (0.6). Let T (1,0)X =
{v ∈ T X ⊗R C; Jv = √−1v} be the almost complex tangent bundle on X and let P 1,0 =
1
2 (1−√−1J ) be the natural projection from T X⊗R C onto T (1,0)X. Then ∇1,0 = P 1,0∇T XP 1,0

is a Hermitian connection on T (1,0)X, and the Chern–Weil representative of c1(T X) is

c1(T
(1,0)X,∇1,0) =

√−1
2π

Tr |T (1,0)X(∇1,0)2. By (1.95),

(∇1,0)2 = P 1,0
[
RT X − 1

4

(∇XJ
)∧ (∇XJ

)]
P 1,0. (0.12)

Thus if J = J , (0.12), (2.13), (2.15), (2.21) and (2.22) imply

〈
c1
(
T (1,0)X,∇1,0),ω〉= 1

4π

(
rX + 1

4

∣∣∇XJ
∣∣2). (0.13)

Therefore, by integrating over X the expansion (0.9) for k = 1 we obtain (0.6), so (0.10) is
compatible with (0.6).

Theorem 0.1 for q = 0 and (0.10) generalize the results of [17,31,51] and [50] to the sym-
plectic case. The term rX + 1

4 |∇XJ |2 in (0.10) is called the Hermitian scalar curvature in the
literature [27, Chap. 10] and is a natural substitute for the Riemannian scalar curvature in the
almost-Kähler case. It was used by Donaldson [25] to define the moment map on the space of
compatible almost-complex structures. We can view (0.11) as an extension and refinement of
the results of [11], [28, §5] about the density of states function of �p,Φ (cf. Remark 3.2 for the
details).

To clarify the relation between the renormalized Bochner-Laplacian and the pseudodifferen-
tial operator D2

b introduced by Boutet de Monvel and Guillemin [13], let us notice that (0.11) for
E = C and J = J shows that these two operators could be equal only if Φ = − 1

24 |∇XJ |2.
Let us explain the strategy we apply in this paper. In the case considered in Dai, Liu and

Ma [20] there is a spectral gap in the sense that the eigenvalues of the Laplacian are either 0
or tend to +∞. This allows to obtain the key equation [20, (4.89)] and to prove the full off-
diagonal expansion (cf. [20, Theorem 4.18]), which is needed to study the Bergman kernel on
orbifolds.

However, in the current situation we have possibly different bounded eigenvalues (cf. (0.5)
and (0.6)) so we proceed as follows. The first step is to use the spectral gap (0.5) and the finite
propagation speed of solutions of hyperbolic equations which permit to localize the asymptotics
near the diagonal. Then we rescale the renormalized Bochner–Laplace operator and obtain a
formal expansion of the operator as p → ∞. Finally we combine the Sobolev norm estimates
contained in [20] and a formal power series technique to show that the formal expansion is indeed
the real expansion.
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In the course of the proof we also develop a method to compute the coefficients (cf. (1.110),
(1.114)) which is new with respect to [31] and [20]. The final result is Theorem 1.19 where we
obtain the near diagonal expansion of the generalized Bergman kernels. This result is enough
for most applications.

We treat several applications of the asymptotic expansion of the renormalized Bochner-
Laplacian. First we calculate the density of bounded eigenvalues of �p,Φ . We show then how our
method can be employed to study the Bergman kernel of the operator ∂ +∂∗ when X is Kähler but
J �= J . This discussion applies also to the first-order pseudodifferential operator Db of Boutet de
Monvel and Guillemin [13], which was studied extensively by Shiffman and Zelditch [43]. We
give further a symplectic version of the convergence of the induced Fubini–Study metric [48].

We include also generalizations for non-compact or singular manifolds. We have thus a unified
treatment of the convergence of the induced Fubini–Study metric [10,12,43,48], the holomorphic
Morse inequalities [2,8,22] and the characterization of Moishezon spaces [8,22,29,45] from the
point of view of Bergman kernels.

Let us provide a short road-map of the paper. In Section 1, we prove Theorem 0.1. In Section 2,
we compute the coefficients bq,r , and thus establish Theorem 0.2. In Section 3, we explain the
applications.

Some results of this paper have been announced in [34]. In [35] we shall study the Berezin–
Toeplitz quantization on symplectic manifolds as an application of the asymptotic expansion of
the Bergman kernel. We refer also the readers to our forthcoming book [36] for a comprehensive
study of the Bergman kernels along the lines of the present paper.

1. Generalized Bergman kernels

As pointed out in Introduction, we will apply the same strategy as in [20]. However, we have
to deal with the following problem. In the situation of [20] the operators D2

p have only one
bounded eigenvalue as p → ∞, namely 0, whereas in the present paper, we could have different
eigenvalues of �p,Φ in the interval [−CL,CL] as p → ∞ (cf. (0.5) and (0.6); it is in principle
possible to have dp different eigenvalues of multiplicity one in [−CL,CL]). This prevents us to
use directly the key equation [20, (4.89)] in order to get a full off-diagonal asymptotic expansion
of the generalized Bergman kernels.

To overcome this difficulty, we first localize the asymptotics near the diagonal and by rescaling
arguments we obtain a formal expansion of the considered operators as p → ∞. In order to
show that the formal expansion is indeed the real expansion we need to prove the vanishing of
the coefficients Fq,r (r < 2q) in the expansion (1.77). We will introduce a formal power series
technique which permits to show the vanishing of the latter coefficients and allows us also to give
a method to compute the coefficients from (0.9).

The ideas used here are inspired by the technique of Local Index Theory, especially by [4,
§10, 11].

This section is organized as follows. In Section 1.1, we explain that the asymptotic expansion
of the generalized Bergman kernel Pq,p(x, x′) is local on X by using the spectral gap (0.5) and
the finite propagation speed of solutions of hyperbolic equations. In Section 1.2, we obtain an
asymptotic expansion of �p,Φ in normal coordinates. In Section 1.3, we adapt to our problem
the Sobolev norm estimates developed in [20] and we study the uniform estimate of the gen-
eralized Bergman kernels of the renormalized Bochner-Laplacian Lt . In Section 1.4, we study
the Bergman kernel of the limit operator L0. In Section 1.5, we compute some coefficients Fq,r



1762 X. Ma, G. Marinescu / Advances in Mathematics 217 (2008) 1756–1815
(r � 2q) of the asymptotic expansion from Theorem 1.13. Finally, we prove Theorem 0.1 in
Section 1.6.

1.1. Localization of the problem

Let aX be the injectivity radius of (X,gT X). We fix ε ∈ ]0, aX/4[. We denote by BX(x, ε)

and BTxX(0, ε) the open balls in X and TxX with center x and radius ε, respectively. Then the
exponential map TxX � Z → expX

x (Z) ∈ X is a diffeomorphism from BTxX(0, ε) on BX(x, ε)

for ε � aX . From now on, we identify BTxX(0, ε) with BX(x, ε) for ε � aX .
Let 〈· , ·〉Lp⊗E be the metric on Lp ⊗ E induced by hL and hE and dvX be the Riemannian

volume form of (T X,gT X). The L2-Hermitian product on C ∞(X,Lp ⊗E), the space of smooth
sections of Lp ⊗ E, is given by

〈s1, s2〉 =
∫
X

〈
s1(x), s2(x)

〉
Lp⊗E

dvX(x). (1.1)

We denote the corresponding norm with ‖ · ‖L2 .
Let ∇T X be the Levi-Civita connection of the metric gT X and ∇Lp⊗E be the connection on

Lp ⊗ E induced by ∇L and ∇E . Let {ei}i be an orthonormal frame of T X. Then the Bochner-
Laplacian on Lp ⊗ E is given by

�Lp⊗E = −
∑

i

[(∇Lp⊗E
ei

)2 − ∇Lp⊗E

∇T X
ei

ei

]
. (1.2)

We consider the vector subspace Hp spanned by the eigensections of �p,Φ = �Lp⊗E −pτ +Φ

corresponding to eigenvalues in [−CL,CL]. Let PHp
be the orthonormal projection from

C ∞(X,Lp ⊗ E) onto Hp .

Definition 1.1. The smooth kernel of (�p,Φ)qPHp
, q � 0 (where (�p,Φ)0 = 1), with respect to

dvX(x′) is denoted Pq,p(x, x′) and is called a generalized Bergman kernel of �p,Φ .

The kernel Pq,p(x, x′) is a section of π∗
1 (Lp ⊗E)⊗π∗

2 (Lp ⊗E)∗ over X ×X, where π1 and
π2 are the projections of X × X on the first and second factor. Using the notations of (0.7) we
can write

Pq,p(x, x′) =
dp∑
i=1

λ
q
i,pS

p
i (x) ⊗ (

S
p
i (x′)

)∗ ∈ (Lp ⊗ E
)
x

⊗ (
Lp ⊗ E

)∗
x′ . (1.3)

Since L
p
x ⊗ (L

p
x )∗ is canonically isomorphic to C, the restriction of Pq,p to the diagonal

{(x, x): x ∈ X} can be identified to Bq,p ∈ C ∞(X,E ⊗ E∗) = C ∞(X,End(E)).
Let f : R → [0,1] be a smooth even function such that f (v) = 1 for |v| � ε/2, and f (v) = 0

for |v| � ε. Set F : R → R

F(a) =
( +∞∫

f (v) dv

)−1 +∞∫
eivaf (v) dv. (1.4)
−∞ −∞
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Then F(a) is an even function and lies in the Schwartz space S(R) and F(0) = 1. Let F̃ be the
holomorphic function on C such that F̃ (a2) = F(a), for a ∈ R. The restriction of F̃ to R lies in
the Schwartz space S(R).

We define by recurrence the functions F̃k : R → R, for k ∈ N, and the constants ck , for k ∈ N
∗,

as follows. We set F̃0(a) := F̃ (a) and c1 := 1
1! F̃

′
0(0). If F̃0, . . . , F̃k−1 and c1, . . . , ck are already

defined, set

F̃k(a) = F̃ (a) −
k∑

j=1

cja
j F̃ (a), ck+1 = 1

(k + 1)! F̃
(k+1)
k (0). (1.5)

Then F̃k verifies

F̃
(i)
k (0) = 0 for every 0 < i � k. (1.6)

Proposition 1.2. For every k,m ∈ N, there exists Ck,m > 0 such that for all p � 1 we have∣∣∣∣F̃k

(
1√
p

�p,Φ

)
(x, x′) − P0,p(x, x′)

∣∣∣∣
C m(X×X)

� Ck,mp− k
2 +4(m+n+1). (1.7)

Here the C m norm is induced by ∇L, ∇E , hL, hE and gT X .

Proof. By (1.4), for each m ∈ N, there exists C′
k,m > 0 such that

sup
a∈R

|a|m∣∣F̃k(a)
∣∣� C′

k,m. (1.8)

Set

Gk,p(a) = 1[√pμ0,+∞[(a)F̃k(a), Hk,p(a) = 1[0,
CL√

p
]
(|a|)F̃k(a). (1.9)

By (0.5), for p big enough,

F̃k

(
1√
p

�p,Φ

)
= Gk,p

(
1√
p

�p,Φ

)
+ Hk,p

(
1√
p

�p,Φ

)
. (1.10)

Since X is compact, there exist {xi}ri=1 such that {Ui = BX(xi, ε)}ri=1 is a covering of X. We
identify BTxi

X(0, ε) with BX(xi, ε) by the exponential map as above. We identify (Lp ⊗ E)Z
for Z ∈ BTxi

X(0, ε) to (Lp ⊗ E)xi
by parallel transport with respect to the connection ∇Lp⊗E

along the curve γZ : [0,1] � u → expX
xi

(uZ). Let us take an orthonormal basis {ei}i of Txi
X and

let ẽi (Z) be the parallel transport of ei with respect to ∇T X along the above curve γZ . We denote
by Γ E,Γ L the corresponding connection forms of ∇E , ∇L with respect to some fixed frame for
E,L which is parallel along the curve γZ under the trivialization on Ui . Denote by ∇U is the
ordinary differentiation operator on Txi

X in the direction U . Then

∇Lp⊗E
e = ∇ej

+ pΓ L(ej ) + Γ E(ej ). (1.11)

j
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Let ϕi be a partition of unity associated to {Ui}. We define a Sobolev norm on the lth Sobolev
space H l(X,Lp ⊗ E) by

‖s‖2
Hl

p
=
∑

i

l∑
k=0

2n∑
i1,...,ik=1

∥∥∇ei1
· · ·∇eik

(ϕis)
∥∥2

L2 . (1.12)

Then by (0.4), (1.2), (1.11), there exists C > 0 such that for any p � 1, s ∈ H 2(X,Lp ⊗ E),

‖s‖H 2
p

� C
(‖�p,Φs‖L2 + p2‖s‖L2

)
. (1.13)

Let Q be a differential operator of order m ∈ N with scalar principal symbol and with compact
support in Ui . Since [�p,Φ,Q] is a differential operator of order m + 1 in which the coefficient
of p2 is a differential operator of order m − 1, (1.13) implies

‖Qs‖H 2
p

� C
(‖�p,ΦQs‖L2 + p2‖Qs‖L2

)
� C

(‖Q�p,Φs‖L2 + p‖s‖
Hm+1

p
+ p2‖s‖

Hm−1
p

+ p2‖Qs‖L2

)
. (1.14)

Hence for every m ∈ N there exists Cm > 0 such that for all p we have

‖s‖
H 2m+2

p
� Cmp4m+2

m+1∑
j=0

∥∥�j
p,Φs

∥∥
L2 . (1.15)

Moreover, if Gk,p is one of the operators Gk,p or Hk,p , then 〈�m′
p,ΦGk,p( 1√

p
�p,Φ)Qs, s′〉 =

〈s,Q∗Gk,p( 1√
p
�p,Φ)�m′

p,Φs′〉. Hence from (1.6), (1.8), we infer that for l,m′ ∈ N, there exist

C, C′ > 0 such that for p > 1,∥∥∥∥�m′
p,ΦGk,p

(
1√
p

�p,Φ

)
Qs

∥∥∥∥
L2

� Cp−l‖s‖L2,∥∥∥∥�m′
p,Φ

(
Hk,p

(
1√
p

�p,Φ

)
− PHp

)
Qs

∥∥∥∥
L2

� C′p2m− k
2 ‖s‖L2 . (1.16)

We deduce from (1.15) and (1.16) that if P,Q are differential operators with compact support in
Ui , Uj respectively, then for each l ∈ N, there exists C > 0 such that for p � 1,∥∥∥∥PGk,p

(
1√
p

�p,Φ

)
Qs

∥∥∥∥
L2

� Cp−l‖s‖L2,∥∥∥∥P(Hk,p

(
1√
p

�p,Φ

)
− PHp

)
Qs

∥∥∥∥
L2

� Cp2(m+m′)− k
2 ‖s‖L2 . (1.17)

Using the Sobolev inequality on Ui × Uj we see for every l,m ∈ N, there exist Cl,m > 0 and
Cm > 0 such that for all p � 1 the following estimates hold:
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∣∣∣∣Gk,p

(
1√
p

�p,Φ

)
(x, x′)

∣∣∣∣
C m

� Cl,mp−l ,∣∣∣∣(Hk,p

(
1√
p

�p,Φ

)
− P0,p

)
(x, x′)

∣∣∣∣
C m

� Cmp4(m+n+1)− k
2 . (1.18)

By (1.10) and (1.18), we get our Proposition 1.2. �
Using (1.4), (1.5) and the finite propagation speed [19, §7.8], [47, §4.4], it is clear that for

x, x′ ∈ X, F̃k(
1√
p
�p,Φ)(x, ·) only depends on the restriction of �p,Φ to BX(x, εp− 1

4 ), and

F̃k(
1√
p
�p,Φ)(x, x′) = 0, if d(x, x′) � εp− 1

4 . This means that the asymptotic of Pq,p(x, ·) when

p → +∞, modulo O(p−∞) (i.e. terms whose C m norm is O(p−l ) for every l,m ∈ N), only

depends on the restriction of �p,Φ to BX(x, εp− 1
4 ).

1.2. Rescaling and a Taylor expansion of the operator �p,Φ

We fix x0 ∈ X. From now on, we identify BTx0 X(0,4ε) with BX(x0,4ε). For Z ∈
BTx0X(0,4ε) we identify LZ,EZ and (Lp ⊗ E)Z to Lx0 ,Ex0 and (Lp ⊗ E)x0 by parallel trans-
port with respect to the connections ∇L, ∇E and ∇Lp⊗E along the curve γZ : [0,1] � u →
expX

x0
(uZ). Let {ei}i be an oriented orthonormal basis of Tx0X, and let {ei}i be its dual basis.

Let us identify R
2n � Tx0X by

R
2n � (Z1, . . . ,Z2n) �−→

∑
i

Ziei ∈ Tx0X. (1.19)

For ε > 0 small enough, we will extend the geometric objects from BTx0 X(0, ε) to R
2n � Tx0X

such that �p,Φ becomes the restriction of a renormalized Bochner-Laplacian on R
2n associated

to a Hermitian line bundle with positive curvature. In this way, we are able to replace X by R
2n.

We denote in the sequel X0 = R
2n � Tx0X. We consider the trivial bundles L0, E0 with fibers

Lx0,Ex0 on X0. We still denote by ∇L,∇E , hL, etc. the connections and metrics on L0, E0

on BTx0X(0,4ε) induced by the above identification. Then hL, hE get identified to the constant
metrics hL0 = hLx0 , hE0 = hEx0 .

Let ρ : R → [0,1] be a smooth even function such that

ρ(v) =
{

1 if |v| < 2,

0 if |v| > 4.
(1.20)

Let ϕε : R
2n → R

2n is the map defined by ϕε(Z) = ρ(|Z|/ε)Z. Then Φ0 = Φ ◦ ϕε is a smooth
self-adjoint section of End(E0) on X0. We equip X0 with the metric gT X0(Z) = gT X(ϕε(Z))

and with the complex structure J0(Z) = J (ϕε(Z)). Set ∇E0 = ϕ∗
ε ∇E . Then ∇E0 is the extension

of ∇E on BTx0 X(0, ε). If R=∑
i Ziei = Z denotes the radial vector field on R

2n, then we define
the Hermitian connection ∇L0 on (L0, h

L0) by

∇L0
∣∣
Z

= ϕ∗
ε ∇L + 1

2

(
1 − ρ2(|Z|/ε))RL

x0
(R, ·). (1.21)

Then we calculate easily that its curvature RL0 = (∇L0)2 is
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RL0(Z) = ϕ∗
ε RL + 1

2
d
((

1 − ρ2(|Z|/ε))RL
x0

(R, ·))
= (

1 − ρ2(|Z|/ε))RL
x0

+ ρ2(|Z|/ε)RL
ϕε(Z)

− (ρρ′)
(|Z|/ε)Zie

i

ε|Z| ∧ [
RL

x0
(R, ·) − RL

ϕε(Z)(R, ·)]. (1.22)

Recall that μ0 was defined in (0.3) as the infimum on X of the smallest eigenvalue of√−1RL(· , J ·) with respect to gT X . Formula (1.22) shows that for ε > 0 small enough RL0

is positive, i.e.,
√−1

∑
j RL0(ej , J0ej ) > 0 for every local orthonormal frame {ej } of T X0 and

satisfies the following estimate for any x0 ∈ X,

inf
{√−1R

L0
Z (u,J0u)/|u|2

gT X0
: u ∈ TZX0, Z ∈ X0

}
� 4

5
μ0.

From now on we fix such an ε > 0.
Let �

X0
p,Φ0

= �L
p
0 ⊗E0 − pτ0 + Φ0 be the renormalized Bochner-Laplacian on X0 = R

2n �
Tx0X associated to the above data, as in (0.4). Observe that by the previous estimate RL0 is

uniformly positive on R
2n, so by [33, (3.2), (3.11) and (3.12), pp. 656–658] the operator �

X0
p,Φ0

admits a spectral gap analogous to (0.5). Specifically, there exists CL0 > 0 such that

Spec
(
�

X0
p,Φ0

)⊂ [−CL0 ,CL0] ∪
[

8

5
pμ0 − CL0 ,+∞

[
. (1.23)

Let SL be a unit vector of Lx0 . Using SL and the above discussion, we get an isometry

E0 ⊗ L
p

0 � Ex0 . Let P0,Hp
be the spectral projection of �

X0
p,Φ0

from C ∞(X0,L
p

0 ⊗ E0) �
C ∞(X0,Ex0) corresponding to the interval [−CL0 ,CL0], and let P0,q,p(x, x′) (q � 0) be the

smooth kernels of P0,q,p = (�
X0
p,Φ0

)qP0,Hp
(we set (�

X0
p,Φ0

)0 = 1) with respect to the volume
form dvX0(x

′). The following proposition shows that Pq,p and P0,q,p are asymptotically close
on BTx0 X(0, ε) in the C ∞-topology, as p → ∞.

The following result is an analogue of [20, Proposition 4.4].

Proposition 1.3. For every l,m ∈ N, there exists Cl,m > 0 such that for x, x′ ∈ BTx0X(0, ε),
x0 ∈ X, ∣∣(P0,q,p − Pq,p)(x, x′)

∣∣
C m � Cl,mp−l . (1.24)

Proof. Using (1.4) and (1.23), we know that for x, x′ ∈ BTx0 X(0, ε),∣∣∣∣F̃k

(
1√
p

�p,Φ

)
(x, x′) − P0,0,p(x, x′)

∣∣∣∣
C m

� Ck,mp− k
2 +4(m+n+1). (1.25)

Thus from (1.7) and (1.25) for k big enough, we infer (1.24) in the particular case q = 0. Taking
into account the definition of P0,q,p and Pq,p , (1.11) and the q = 0 case of (1.24) entail (1.24) in
general. �
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It suffices therefore to study the kernel P0,q,p and for this purpose we rescale the operator

�
X0
p,Φ0

. Let dvT X be the Riemannian volume form of (Tx0X,gTx0X). Let κ(Z) be the smooth
positive function defined by the equation

dvX0(Z) = κ(Z)dvT X(Z), (1.26)

with κ(0) = 1. Denote by ∇U the ordinary differentiation operator on Tx0X in the direction U ,
and set ∂i = ∇ei

. If α = (α1, . . . , α2n) is a multi-index, then set Zα = Z
α1
1 · · ·Zα2n

2n . We also
denote by (∂αRL)x0 the tensor (∂αRL)x0(ei, ej ) = ∂α(RL(ei, ej ))x0 . Denote by t = 1√

p
. For

s ∈ C ∞(R2n,Ex0) and Z ∈ R
2n, set

(St s)(Z) = s(Z/t), ∇t = tS−1
t κ

1
2 ∇L

p
0 ⊗E0κ− 1

2 St ,

Lt = S−1
t

1

p
κ

1
2 �

X0
p,Φ0

κ− 1
2 St . (1.27)

The operator Lt is the rescaled operator, which we now develop in Taylor series. In the following
result we draw on [20, Theorem 4.6] and calculate two more terms of the asymptotic expansion
of Lt .

Theorem 1.4. There exist polynomials Ai,j,r (resp. Bi,r , Cr ) (r ∈ N, i, j ∈ {1, . . . ,2n}) in Z with
the following properties:

(i) their coefficients are polynomials in RT X (resp. RT X , RE , Φ , RL) and their derivatives at
x0 up to order r − 2 (resp. r − 2, r − 2, r − 2, r),

(ii) Ai,j,r is a homogeneous polynomial in Z of degree r , the degree in Z of Bi,r is � r + 1
(resp. Cr is � r + 2), and has the same parity with r − 1 (resp. r),

(iii) if we denote by

Or = Ai,j,r∇ei
∇ej

+Bi,r∇ei
+ Cr , (1.28)

then

Lt = L0 +
m∑

r=1

t rOr + O
(
tm+1), (1.29)

and there exists m′ ∈ N so that for every k ∈ N, t � 1, the derivatives up to order k of the
coefficients of the operator O(tm+1) are dominated by Ctm+1(1 + |Z|)m′

. Moreover

L0 = −
∑
j

(
∇ej

+ 1

2
RL

x0
(Z, ej )

)2

− τx0,

O1(Z) = −2(
∂jR

L
)
x0

(R, ei)Zj

(
∇ei

+ 1
RL

x0
(R, ei)

)
− 1(

∂iR
L
)
x0

(R, ei) − (∇Rτ)x0 ,
3 2 3
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O2(Z) = 1

3

〈
RT X

x0
(R, ei)R, ej

〉
x0

(
∇ei

+ 1

2
RL

x0
(R, ei)

)(
∇ej

+ 1

2
RL

x0
(R, ej )

)
+
[

2

3

〈
RT X

x0
(R, ej )ej , ei

〉
x0

−
(

1

2

∑
|α|=2

(
∂αRL

)
x0

Zα

α! + RE
x0

)
(R, ei)

]

×
(

∇ei
+ 1

2
RL

x0
(R, ei)

)

− 1

4
∇ei

( ∑
|α|=2

(
∂αRL

)
x0

Zα

α! (R, ei)

)
− 1

9

∑
i

[∑
j

(
∂jR

L
)
x0

(R, ei)Zj

]2

− 1

12

[
L0,

〈
RT X

x0
(R, ei)R, ei

〉
x0

]−
∑
|α|=2

(
∂ατ

)
x0

Zα

α! + Φx0 . (1.30)

Proof. Set gij (Z) = gT X(ei, ej )(Z) = 〈ei, ej 〉Z and let (gij (Z)) be the inverse of the matrix
(gij (Z)). By [1, Proposition 1.28], the Taylor expansion of gij (Z) with respect to the basis {ei}
up to order r is a polynomial of the Taylor expansion of RT X up to order r − 2, moreover

gij (Z) = δij + 1

3

〈
RT X

x0
(R, ei)R, ej

〉
x0

+ O
(|Z|3),

κ(Z) = ∣∣det
(
gij (Z)

)∣∣1/2 = 1 + 1

6

〈
RT X

x0
(R, ei)R, ei

〉
x0

+ O
(|Z|3). (1.31)

If Γ l
ij is the connection form of ∇T X with respect to the basis {ei}, then we have (∇T X

ei
ej )(Z) =

Γ l
ij (Z)el . Owing to (1.31),

Γ l
ij (Z) = 1

2
glk(∂igjk + ∂jgik − ∂kgij )(Z)

= 1

3

[〈
RT X

x0
(R, ej )ei, el

〉
x0

+ 〈
RT X

x0
(R, ei)ej , el

〉
x0

]+ O
(|Z|2). (1.32)

Now by (1.2),

�p,Φ = −gij
(∇Lp⊗E

ei
∇Lp⊗E

ej
− ∇Lp⊗E

∇T X
ei

ej

)− pτ + Φ, (1.33)

so from (1.27) and (1.33) we infer the expression

Lt = −gij (tZ)
[∇t,ei

∇t,ej
− tΓ l

ij (tZ)∇t,el

]− τ(tZ) + t2Φ(tZ). (1.34)

Let Γ E , Γ L be the connection forms of ∇E and ∇L with respect to some fixed frames for E, L

which are parallel along the curve γZ under our trivializations on BTx0X(0, ε). (1.27) yields on
BTx0 X(0, ε/t)

∇t,ei
|Z = κ

1
2 (tZ)

(
∇ei

+ 1
Γ L(ei)(tZ) + tΓ E(ei)(tZ)

)
κ− 1

2 (tZ). (1.35)

t
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Let Γ • = Γ E,Γ L and R• = RE,RL, respectively. By [1, Proposition 1.18] the Taylor coeffi-
cients of Γ •(ej )(Z) at x0 up to order r are only determined by those of R• up to order r − 1, and

∑
|α|=r

(
∂αΓ •)

x0
(ej )

Zα

α! = 1

r + 1

∑
|α|=r−1

(
∂αR•)

x0
(R, ej )

Zα

α! . (1.36)

Owing to (1.31), (1.36)

Lt = −
(

δij − t2

3

〈
RT X

x0
(R, ei)R, ej

〉+ O
(
t3))κ

1
2 (tZ)

×
{[

∇ei
+
(

1

2
RL

x0
+ t

3

(
∂kR

L
)
x0

Zk + t2

4

∑
|α|=2

(
∂αRL

)
x0

Zα

α! + t2

2
RE

x0

)
(R, ei) + O

(
t3)]

×
[
∇ej

+
(

1

2
RL

x0
+ t

3

(
∂kR

L
)
x0

Zk + t2

4

∑
|α|=2

(
∂αRL

)
x0

Zα

α! + t2

2
RE

x0

)
(R, ej ) + O

(
t3)]

− tΓ l
ij (tZ)

(
∇el

+ 1

2
RL

x0
(R, el) + O(t)

)}
κ− 1

2 (tZ)

− τx0 − t (∇Rτ)x0 − t2
∑
|α|=2

(
∂ατ

)
x0

Zα

α! + t2Φx0 + O
(
t3). (1.37)

Relations (1.31) and (1.34)–(1.37) settle our theorem. �
1.3. Uniform estimate of the generalized Bergman kernels

We shall estimate the Sobolev norm of the resolvent of Lt so we introduce the following
norms. We denote by 〈·,·〉0,L2 and ‖ · ‖0,L2 the inner product and the L2 norm on C ∞(X0,Ex0)

induced by gT X0, hE0 as in (1.1). For s ∈ C ∞
0 (X0,Ex0) set

‖s‖2
t,0 = ‖s‖2

0 =
∫

R2n

∣∣s(Z)
∣∣2
h

Ex0 dvT X(Z),

‖s‖2
t,m =

m∑
l=0

2n∑
i1,...,il=1

‖∇t,ei1
· · ·∇t,eil

s‖2
t,0. (1.38)

We denote by 〈s′, s〉t,0 the inner product on C ∞(X0,Ex0) corresponding to ‖ · ‖2
t,0. Let Hm

t

be the Sobolev space of order m with norm ‖ · ‖t,m. Let H−1
t be the Sobolev space of order

−1 and let ‖ · ‖t,−1 be the norm on H−1
t defined by ‖s‖t,−1 = sup0�=s′∈H 1

t
|〈s, s′〉t,0|/‖s′‖t,1. If

A ∈ L (Hm
t ,Hm′

t ) for m,m′ ∈ Z, then we denote by ‖A‖m,m′
t the norm of A with respect to the

norms ‖ · ‖t,m and ‖ · ‖t,m′ .

Remark 1.5. Note that �
X0
p,Φ0

is self-adjoint with respect to ‖ · ‖0, thus by (1.26), (1.27) and
(1.38), Lt is a formally self-adjoint elliptic operator with respect to ‖ · ‖0, and is a smooth
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family of operators with the parameter x0 ∈ X. Thus L0 and Or are also formally self-adjoint
with respect to ‖ · ‖0. This will simplify the computation of the coefficients b0,1 in (0.11) (cf.
Section 2.3) and explains why we prefer to conjugate with κ1/2 comparing to [20, (3.38)].

Theorems 1.6–1.9 are the analogues of [20, Theorems 4.7–4.10]. We include the proofs for
the sake of completeness.

Theorem 1.6. There exist constants C1,C2,C3 > 0 such that for t ∈ ]0,1] and every s, s′ ∈
C ∞

0 (R2n,Ex0),

〈Lt s, s〉t,0 � C1‖s‖2
t,1 − C2‖s‖2

t,0,∣∣〈Lt s, s
′〉t,0

∣∣� C3‖s‖t,1‖s′‖t,1. (1.39)

Proof. Relations (0.4) and (1.2) yield

〈�p,Φs, s〉0,L2 = ∥∥∇L
p
0 ⊗E0s

∥∥2
0,L2 − 〈

(pτ − Φ)s, s
〉
0,L2 . (1.40)

Thus (1.27), (1.38) and (1.40) applied to κ−1/2St s instead of s, yield

〈Lt s, s〉t,0 = ‖∇t s‖2
t,0 − 〈(

S−1
t

(
τ − t2Φ

))
s, s

〉
t,0, (1.41)

which implies (1.39). �
Let δ be the counterclockwise oriented circle in C of center 0 and radius μ0/4.

Theorem 1.7. There exists t0 > 0 such that the resolvent (λ − Lt )
−1 exists for all λ ∈ δ,

t ∈ ]0, t0]. There exists C > 0 such that for all t ∈ ]0, t0], λ ∈ δ, and all x0 ∈ X we have∥∥(λ − Lt )
−1
∥∥0,0

t
� C,

∥∥(λ − Lt )
−1
∥∥−1,1

t
� C. (1.42)

Proof. By (1.23), (1.27), for t small enough,

Spec(Lt ) ⊂ [−CL0 t
2,CL0 t

2]∪ [μ0,+∞[. (1.43)

Thus the resolvent (λ−Lt )
−1 exists for λ ∈ δ and t small enough, and we get the first inequality

of (1.42). By (1.39), (λ0 − Lt )
−1 exists for λ0 ∈ R, λ0 � −2C2, and ‖(λ0 − Lt )

−1‖−1,1
t � 1

C1
.

Now,

(λ − Lt )
−1 = (λ0 − Lt )

−1 − (λ − λ0)(λ − Lt )
−1(λ0 − Lt )

−1. (1.44)

Thus for λ ∈ δ, from (1.44), we get

∥∥(λ − Lt )
−1
∥∥−1,0

t
� 1

(
1 + 4 |λ − λ0|

)
. (1.45)
C1 μ0
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Changing the last two factors in (1.44) and applying (1.45) we get

∥∥(λ − Lt )
−1
∥∥−1,1

t
� 1

C1
+ |λ − λ0|

C1
2

(
1 + 4

μ0
|λ − λ0|

)
� C. (1.46)

The proof of our theorem is complete. �
Proposition 1.8. Take m ∈ N

∗. There exists Cm > 0 such that for t ∈ ]0,1], Q1, . . . ,Qm ∈
{∇t,ei

,Zi}2n
i=1 and s, s′ ∈ C ∞

0 (X0,Ex0),∣∣〈[Q1,
[
Q2, . . . , [Qm,Lt ] . . .

]]
s, s′〉

t,0

∣∣� Cm‖s‖t,1‖s′‖t,1. (1.47)

Proof. Note that [∇t,ei
,Zj ] = δij , hence (1.34) implies that [Zj ,Lt ] verifies (1.47). On the

other hand, we obtain from (1.27)

[∇t,ei
,∇t,ej

] = (
RL0(tZ) + t2RE0(tZ)

)
(ei, ej ). (1.48)

Thus from (1.34) and (1.48), we know that [∇t,ek
,Lt ] has the same structure as Lt for t ∈ ]0,1],

i.e. [∇t,ek
,Lt ] has the same type as

∑
ij

aij (t, tZ)∇t,ei
∇t,ej

+
∑

i

bi(t, tZ)∇t,ei
+ c(t, tZ), (1.49)

and aij (t,Z), bi(t,Z), c(t,Z) and their derivatives in Z are uniformly bounded for Z ∈ R
2n,

t ∈ [0,1]. Moreover they are polynomials in t .
If (∇t,ei

)∗ is the adjoint of ∇t,ei
with respect to 〈· , ·〉t,0, then (1.38) yields

(∇t,ei
)∗ = −∇t,ei

− t
(
κ−1(eiκ)

)
(tZ). (1.50)

Thus by (1.49) and (1.50), (1.47) is verified for m = 1.
By recurrence, it follows that [Q1, [Q2, . . . , [Qm,Lt ] . . .]] has the same structure (1.49)

as Lt , so from (1.50) we get the required assertion. �
Theorem 1.9. For every t ∈ ]0, t0], λ ∈ δ, m ∈ N, the resolvent (λ − Lt )

−1 maps Hm
t into

Hm+1
t . Moreover, for every α ∈ N

2n, there exists Cα,m > 0 such that for t ∈ ]0, t0], λ ∈ δ, s ∈
C ∞(X0,Ex0), ∥∥Zα(λ − Lt )

−1s
∥∥

t,m+1 � Cα,m

∑
α′�α

∥∥Zα′
s
∥∥

t,m
. (1.51)

Proof. For Q1, . . . ,Qm ∈ {∇t,ei
}2n
i=1, Qm+1, . . . ,Qm+|α| ∈ {Zi}2n

i=1, we can express
Q1 · · ·Qm+|α|(λ − Lt )

−1 as a linear combination of operators of the type

[
Q1,

[
Q2, . . . ,

[
Qm′ , (λ − Lt )

−1] . . .]]Qm′+1 · · ·Qm+|α|, m′ � m + |α|. (1.52)
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Let Rt be the family of operators Rt = {[Qj1 , [Qj2 , . . . , [Qjl
,Lt ] . . .]]}. Clearly, every commu-

tator [Q1, [Q2, . . . , [Qm′ , (λ − Lt )
−1] . . .]] is a linear combination of operators of the form

(λ − Lt )
−1R1(λ − Lt )

−1R2 · · ·Rm′(λ − Lt )
−1 (1.53)

with R1, . . . ,Rm′ ∈ Rt .
From Proposition 1.8 we deduce that the norm ‖ · ‖1,−1

t of the operators Rj ∈ Rt is uniformly
bounded from above by a constant. Hence by Theorem 1.7 there exists C > 0, such that the norm
‖ · ‖0,1

t of operators (1.53) is dominated by C. �
The next step is to convert the estimates for the resolvent into estimates for the spec-

tral projection P0,t : (C ∞(X0,Ex0),‖ · ‖0) → (C ∞(X0,Ex0),‖ · ‖0) of Lt corresponding to
the interval [−CL0 t

2,CL0 t
2]. Let Pq,t (Z,Z′) = Pq,t,x0(Z,Z′) (with Z,Z′ ∈ X0, q � 0) be

the smooth kernel of Pq,t = (Lt )
qP0,t (we set (Lt )

0 = 1) with respect to dvT X(Z′). Note
that Lt is a family of differential operators on Tx0X with coefficients in End(E)x0 . Let π :
T X ×X T X → X be the natural projection from the fiberwise product of T X on X. Then we can
view Pq,t (Z,Z′) as a smooth section of π∗(End(E)) over T X ×X T X by identifying a section
S ∈ C ∞(T X ×X T X,π∗ End(E)) with the family (Sx)x∈X , where Sx = S|π−1(x). Let ∇End(E)

be the connection on End(E) induced by ∇E . Then ∇π∗ End(E) induces naturally a C m-norm of
S for the parameter x0 ∈ X.

In the following result we adapt [20, Theorem 4.11] to the present situation.

Theorem 1.10. For every m,m′, r ∈ N, σ > 0, there exists C > 0, such that for t ∈ ]0, t0], Z,Z′ ∈
Tx0X, |Z|, |Z′| � σ ,

sup
|α|+|α′|�m

∣∣∣∣ ∂ |α|+|α′|

∂Zα∂Z′α′
∂r

∂tr
Pq,t (Z,Z′)

∣∣∣∣
C m′

(X)

� C. (1.54)

Here C m′
(X) is the C m′

norm for the parameter x0 ∈ X.

Proof. By (1.43), for every k ∈ N∗, q � 0,

Pq,t = (Lt )
qP0,t = 1

2πi

(
q + k − 1

k − 1

)−1 ∫
δ

λq+k−1(λ − Lt )
−k dλ. (1.55)

For m ∈ N, let Qm be the set of operators {∇t,ei1
· · ·∇t,eij

}j�m. From Theorem 1.9, we deduce
that if Q ∈ Qm, then there is Cm > 0 such that∥∥Q(λ − Lt )

−m
∥∥0,0

t
� Cm, for all λ ∈ δ. (1.56)

Observe that Lt is formally self-adjoint with respect to ‖ · ‖t,0, so after taking the adjoint of
(1.56), we have ∥∥(λ − Lt )

−mQ
∥∥0,0 � Cm. (1.57)
t



X. Ma, G. Marinescu / Advances in Mathematics 217 (2008) 1756–1815 1773
From (1.55), (1.56) and (1.57), we obtain

‖QPq,tQ
′‖0,0

t � Cm, for Q,Q′ ∈ Qm. (1.58)

Let | · |(σ ),m be the usual Sobolev norm on C ∞(BTx0 X(0, σ + 1),Ex0) induced by hEx0

and the volume form dvT X(Z) as in (1.38). Let ‖A‖(σ ) be the operator norm of A ∈
L (L2(BTx0 X(0, σ + 1),Ex0)) with respect to | · |(σ ),0. Observe that by (1.35), (1.38), for m > 0,
there exists Cσ > 0 such that for s ∈ C ∞(X0,Ex0), supp(s) ⊂ BTx0 X(0, σ + 1),

1

Cσ

‖s‖t,m � |s|(σ ),m � Cσ ‖s‖t,m. (1.59)

Now (1.58) and (1.59) together with Sobolev’s inequalities imply

sup
|Z|,|Z′|�σ

∣∣QZQ′
Z′Pq,t (Z,Z′)

∣∣� C, for Q,Q′ ∈Qm. (1.60)

Thanks to Γ L(ei)(0) = 0, (1.35) and (1.60), estimate (1.54) holds for r = m′ = 0. To obtain
(1.54) for r � 1 and m′ = 0, note that from (1.55),

∂r

∂tr
Pq,t = 1

2πi

(
q + k − 1

k − 1

)−1 ∫
δ

λq+k−1 ∂r

∂tr
(λ − Lt )

−k dλ, for k � 1. (1.61)

Set

Ik,r =
{

(k, r) = (ki, ri)

∣∣∣ j∑
i=0

ki = k + j,

j∑
i=1

ri = r, ki, ri ∈ N
∗
}

. (1.62)

Then there exist ak
r ∈ R such that

Ak
r (λ, t) = (λ − Lt )

−k0
∂r1Lt

∂t r1
(λ − Lt )

−k1 · · · ∂rj Lt

∂t rj
(λ − Lt )

−kj ,

∂r

∂tr
(λ − Lt )

−k =
∑

(k,r)∈Ik,r

ak
r Ak

r (λ, t). (1.63)

We claim that Ak
r (λ, t) is well defined and for every m ∈ N, k > 2(m + r + 1), Q,Q′ ∈ Qm,

there exists C > 0 such that for λ ∈ δ, t ∈ ]0, t0],
∥∥QAk

r (λ, t)Q′s
∥∥

t,0 � C
∑

|β|�2r

∥∥Zβs
∥∥

t,0. (1.64)
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In fact, by (1.34), ∂r

∂tr
Lt is a combination of

∂r1

∂tr1

(
gij (tZ)

) ·
(

∂r2

∂tr2
∇t,ei

)
·
(

∂r3

∂tr3
∇t,ej

)
,

∂r1

∂tr1

(
d(tZ)

)
,

∂r1

∂tr1

(
di(tZ)

) ·
(

∂r2

∂tr2
∇t,ei

)
.

If r1 � 1, then ∂r1

∂tr1
(d(tZ)) (resp. ∂r1

∂tr1
∇t,ei

), are functions of the type d ′(tZ)Zβ , where |β| � r1
(resp. |β| � r1 +1) and d ′(Z) and its derivatives with respect to Z are bounded smooth functions
in Z.

Let R ′
t be the family of operators of the type

R ′
t = {[

fj1Qj1,
[
fj2Qj2, . . . , [fjl

Qjl
,Lt ] . . .

]]}
where fji

are smooth functions with bounded derivatives, and Qji
∈ {∇t,el

,Zl}2n
l=1.

To handle the operator Ak
r (λ, t)Q′, we will, as above, move all the terms Zβ in d ′(tZ)Zβ to

the right-hand side of this operator. To do so, we always use the commutator relations, in the
sense that each time we consider only the commutator only for Zi , and not for Zβ with |β| > 1.
Then Ak

r (λ, t)Q′ turns out to be of the form
∑

|β|�2r Lt
βQ′′

βZβ , and Q′′
β is obtained from Q′ and

its commutation with Zβ . Next we move all the terms ∇t,ei
in ∂

rj Lt

∂t
rj

to the right-hand side of the

operator Lt
β . Then as in the proof of Theorem 1.9, we get finally that QAk

r (λ, t)Q′ is of the form∑
|β|�2r L t

βZβ , where L t
β is a linear combination of operators of the form

Q(λ − Lt )
−k′

0R1(λ − Lt )
−k′

1R2 · · ·Rl′(λ − Lt )
−k′

l′ Q′′′Q′′,

with R1, . . . ,Rl′ ∈ R ′
t , Q′′′ ∈ Q2r , Q′′ ∈ Qm, |β| � 2r , and Q′′ is obtained from Q′ and its

commutation with Zβ . Since k > 2(m + r + 1), we can use the same argument as in (1.56) and
(1.57) to split the above operator in the following two parts

Q(λ − Lt )
−k′

0R1(λ − Lt )
−k′

1R2 · · ·Ri(λ − Lt )
−k′′

i ,

(λ − Lt )
−(k′

i−k′′
i ) · · ·Rl′(λ − Lt )

−k′
l′ Q′′′Q′′,

such that the ‖ · ‖0,0
t -norm of each part is bounded by C for λ ∈ δ. Thus the proof of (1.64) is

complete.
By (1.61), (1.63) and the above argument, we get the estimate (1.54) with m′ = 0. Finally, for

every vector U on X we have

∇π∗ End(E)
U Pq,t = 1

2πi

(
q + k − 1

k − 1

)−1 ∫
δ

λq+k−1∇π∗ End(E)
U (λ − Lt )

−k dλ. (1.65)

Now we use a similar formula as (1.63) for ∇π∗ End(E)
U (λ − Lt )

−k by replacing ∂r1Lt

∂tr1
by

∇π∗ End(E)
U Lt , and remark that ∇π∗ End(E)

U Lt is a differential operator on Tx0X with the same
structure as Lt . Then by the above argument, we conclude that (1.54) holds for m′ � 1. �
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For k big enough, set

Fq,r := 1

2πir!
(

q + k − 1
k − 1

)−1 ∫
δ

λq+k−1
∑

(k,r)∈Ik,r

ak
r Ak

r (λ,0) dλ,

Fq,r,t := 1

r!
∂r

∂tr
Pq,t − Fq,r . (1.66)

Let Fq,r (· , ·) ∈ C ∞(T X ×X T X,π∗ End(E)) be the smooth kernel of Fq,r with respect to
dvT X(Z′). In what follows we need the following observation: the limit of ‖ · ‖t,m for t → 0
exists, and we denote it by ‖ · ‖0,m.

Theorems 1.11, 1.12 are the analogues of [20, Theorems 4.14, 4.15]. We include the proofs
for the sake of completeness.

Theorem 1.11. For every r � 0, k > 0, there exists C > 0 such that for t ∈ [0, t0], λ ∈ δ,∥∥∥∥(∂rLt

∂t r
− ∂rLt

∂t r

∣∣∣∣
t=0

)
s

∥∥∥∥
t,−1

� Ct
∑

|α|�r+3

∥∥Zαs
∥∥

0,1,∥∥∥∥( ∂r

∂tr
(λ − Lt )

−k −
∑

(k,r)∈Ik,r

ak
r Ak

r (λ,0)

)
s

∥∥∥∥
0,0

� Ct
∑

|α|�4r+3

∥∥Zαs
∥∥

0,0. (1.67)

Proof. Note that by (1.35), (1.38), for t ∈ [0,1], k � 1, s ∈ C ∞(X0,Ex0),

‖s‖t,0 = ‖s‖0,0, ‖s‖t,k � C
∑

|α|�k

∥∥Zαs
∥∥

0,k
. (1.68)

Using the Taylor expansion in the variable t in (1.34), we are lead to the following estimate for
compactly supported s, s′:∣∣∣∣〈(∂rLt

∂t r
− ∂rLt

∂t r

∣∣∣∣
t=0

)
s, s′

〉
0,0

∣∣∣∣� Ct‖s′‖t,1

∑
|α|�r+3

∥∥Zαs
∥∥

0,1. (1.69)

Thus we get the first inequality of (1.67). Note that

(λ − Lt )
−1 − (λ − L0)

−1 = (λ − Lt )
−1(Lt − L0)(λ − L0)

−1. (1.70)

After taking the limit, we know that Theorems 1.7–1.9 still hold for t = 0. Now from Theorem
1.9 for L0, (1.69) and (1.70),∥∥((λ − Lt )

−1 − (λ − L0)
−1)s∥∥0,0 � Ct

∑
|α|�3

∥∥Zαs
∥∥

0,0. (1.71)

Note that ∇0,ej
= ∇ej

+ 1RL
x (R, ej ) by (1.35). If we denote by Lλ,t = λ − Lt , then
2 0
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Ak
r (λ, t) − Ak

r (λ,0) =
j∑

i=1

L −k0
λ,t · · ·

(
∂ri Lt

∂t ri
− ∂ri Lt

∂t ri

∣∣∣∣
t=0

)
L −ki

λ,0 · · ·L −kj

λ,0

+
j∑

i=0

L −k0
λ,t · · · (L −ki

λ,t − L −ki

λ,0

)(∂ri+1Lt

∂t ri+1

∣∣∣∣
t=0

)
· · ·L −kj

λ,0 . (1.72)

From the discussion after (1.64), formulas (1.42), (1.63) and (1.71), we get the second inequality
of (1.67). �
Theorem 1.12. For σ > 0, there exists C > 0 such that for t ∈ ]0, t0], Z,Z′ ∈ Tx0X,
|Z|, |Z′| � σ ,

∣∣Fq,r,t (Z,Z′)
∣∣� Ct1/(2n+1). (1.73)

Proof. By (1.61), (1.66) and (1.67), there exists C > 0 such that for t ∈ ]0, t0],

‖Fq,r,t‖(σ ) � Ct. (1.74)

Let φ : R
2n → [0,1] be a smooth function with compact support, which equals 1 near 0 and such

that
∫
Tx0X

φ(Z)dvT X(Z) = 1. Take ν ∈ ]0,1]. By the proof of Theorem 1.10 and (1.66), Fq,r

verifies the similar inequality as in (1.54) with r = 0. Thus by (1.54), there exists C > 0 such
that

∣∣∣∣〈Fq,r,t (Z,Z′)U,U ′〉− ∫
Tx0X×Tx0X

〈
Fq,r,t (Z − W,Z′ − W ′)U,U ′〉

× 1

ν4n
φ(W/ν)φ(W ′/ν)dvT X(W)dvT X(W ′)

∣∣∣∣� Cν|U ||U ′|, (1.75)

for all |Z|, |Z′| � σ and U,U ′ ∈ Ex0 . On the other hand, by (1.74),

∣∣∣∣ ∫
Tx0X×Tx0X

〈
Fq,r,t (Z − W,Z′ − W ′)U,U ′〉

× 1

ν4n
φ(W/ν)φ(W ′/ν)dvT X(W)dvT X(W ′)

∣∣∣∣� Ct
1

ν2n
|U ||U ′|. (1.76)

By combining (1.75) with (1.76) and taking ν = t1/(2n+1) we obtain (1.73). �
Finally, we prove the following off-diagonal estimate for the kernel of Pq,t .
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Theorem 1.13. For every j,m,m′ ∈ N, σ > 0, there exists C > 0 such that

sup
|α|+|α′|�m

∣∣∣∣∣ ∂ |α|+|α′|

∂Zα∂Z′α′

(
Pq,t −

j∑
r=0

Fq,r t
r

)
(Z,Z′)

∣∣∣∣∣
C m′

(X)

� Ctj+1 (1.77)

for all t ∈ ]0,1] and all Z,Z′ ∈ Tx0X satisfying |Z|, |Z′| � σ .

Proof. By (1.66) and (1.73) we have

1

r!
∂r

∂tr
Pq,t

∣∣∣∣
t=0

= Fq,r . (1.78)

Recall that the Taylor expansion with integral rest of some G ∈ C j+1([0,1]) is

G(t) −
j∑

r=0

1

r!
∂rG

∂tr
(0)tr = 1

j !
t∫

0

(t − t0)
j ∂j+1G

∂tj+1
(t0) dt0, t ∈ [0,1]. (1.79)

Theorem 1.10 and (1.66) show that the estimate (1.54) holds if we replace 1
r!

∂r

∂tr
Pq,t with Fq,r .

Using this new estimate together with (1.54), (1.66), (1.79), we obtain (1.77). �
1.4. Bergman kernel of L0

The almost complex structure J induces a splitting T X ⊗R C = T (1,0)X ⊕ T (0,1)X, where
T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to the eigenvalues

√−1 and
−√−1 respectively. We denote by detC the determinant function on the complex bundle T (1,0)X.
Set

J = −2π
√−1J . (1.80)

By (0.2), J ∈ End(T (1,0)X) is positive, and J acting on T X is skew-adjoint. For each tensor ψ

on X, we denote by ∇Xψ the covariant derivative of ψ induced by ∇T X . Thus ∇XJ ,∇XJ ∈
T ∗X ⊗ End(T X), ∇X∇XJ ∈ T ∗X ⊗ T ∗X ⊗ End(T X).

We also adopt the convention that all tensors will be evaluated at the base point x0 ∈ X, and
most of the time, we will omit the subscript x0.

Let P N be the orthogonal projection from (L2(R2n,Ex0),‖ · ‖0 = ‖·‖t,0) onto N = Ker(L0),
and let P N(Z,Z′) be the smooth kernel of P N with respect to dvT X(Z). Then P N(Z,Z′) is the
Bergman kernel of L0. For Z,Z′ ∈ Tx0X, we have

P N(Z,Z′) = detC Jx0

(2π)n
exp

(
−1

4

〈(
J 2

x0

)1/2
(Z − Z′), (Z − Z′)

〉+ 1

2
〈Jx0Z,Z′〉

)
. (1.81)

Now we discuss the eigenvalues and eigenfunctions of L0 in detail. We choose an orthonor-
mal basis {wi}ni=1 of T

(1,0)
x0 X, such that

Jx0 = diag(a1, . . . , an) ∈ End
(
T (1,0)

x X
)
, (1.82)
0
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with 0 < a1 � a2 � · · · � an, and let {wj }nj=1 be its dual basis. Then e2j−1 = 1√
2
(wj + wj) and

e2j =
√−1√

2
(wj − wj), j = 1, . . . , n, form an orthonormal basis of Tx0X. We use the coordinates

on Tx0X � R
2n induced by {ei} as in (1.19) and in what follows we also introduce the complex

coordinates z = (z1, . . . , zn) on Cn � R2n. Thus Z = z + z, and wi = √
2 ∂

∂zi
, wi = √

2 ∂
∂zi

. We

will also identify z to
∑

i zi
∂

∂zi
and z to

∑
i zi

∂
∂zi

when we consider z and z as vector fields.
Remark that ∣∣∣∣ ∂

∂zi

∣∣∣∣2 =
∣∣∣∣ ∂

∂zi

∣∣∣∣2 = 1

2
, so that |z|2 = |z|2 = 1

2
|Z|2. (1.83)

It is very useful to rewrite L0 by using the creation and annihilation operators. Set

∇0,· = ∇· + 1

2
RL

x0
(R, ·), bi = −2∇0, ∂

∂zi

, b+
i = 2∇0, ∂

∂zi

, b = (b1, . . . , bn). (1.84)

Then by (1.80) and (1.82), we have

bi = −2
∂

∂zi

+ 1

2
aizi, b+

i = 2
∂

∂zi

+ 1

2
aizi, (1.85)

and for every polynomial g(z, z) on z and z,

[
bi, b

+
j

]= bib
+
j − b+

j bi = −2aiδij ,

[bi, bj ] = [
b+
i , b+

j

]= 0,[
g(z, z), bj

]= 2
∂

∂zj

g(z, z),
[
g(z, z), b+

j

]= −2
∂

∂zj

g(z, z). (1.86)

By (0.3) and (1.82), τx0 =∑
i ai . Thus from (1.30), (1.82), (1.84)–(1.86), we deduce

L0 =
∑

i

bib
+
i . (1.87)

Remark 1.14. Let L = C be the trivial holomorphic line bundle on C
n with the canonical Sec-

tion 1. Let hL be the metric on L defined by |1|hL(z) := e
− 1

4

∑n
j=1 aj |zj |2 =: h(z) for z ∈ C

n. Let
gT C

n
be the Euclidean metric on C

n. Then L0 is twice the corresponding Kodaira-Laplacian

∂L∗∂L under the trivialization of L by using the unit section e
1
4

∑n
j=1 aj |zj |2 1. Let ∂∗ be the ad-

joint of the Dolbeault operator ∂ associated to L with the trivial metric on L. In fact, under the
canonical trivialization by 1,

∂L = ∂, ∂L∗ = h−2∂∗h2.

Set

∂h = h∂h−1, ∂∗
h = h−1∂∗h.
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Then

b+
j = 2[i ∂

∂zj

, ∂h], bj = [
∂∗

h, dzj∧
]
,

∂h = 1

2

∑
j

dzj ∧ b+
j , ∂∗

h =
∑
j

i ∂
∂zj

bj .

Under the trivialization by h−1 ·1, we know the Kodaira-Laplacian ∂L∗∂L +∂L∂L∗ is h(∂L∗∂L +
∂L∂L∗)h−1 = ∂∗

h∂h + ∂h∂
∗
h, and its restriction on functions is 1

2L0.

Theorem 1.15. The spectrum of the restriction of L0 on L2(R2n) is given by

Spec(L0|L2(R2n)) =
{

2
n∑

i=1

αiai : α = (α1, . . . , αn) ∈ N
n

}
(1.88)

and an orthogonal basis of the eigenspace of 2
∑n

i=1 αiai is given by

bα

(
zβ exp

(
−1

4

∑
i

ai |zi |2
))

, with β ∈ N
n. (1.89)

Proof. First observe that for all β ∈ Nn the functions zβ exp(− 1
4

∑
i ai |zi |2) are annihilated

by the operators b+
j , j = 1, . . . , n, thus they are in the kernel of L0|L2(R2n). Using (1.86) we

see that the functions (1.89) are eigenfunctions of L0|L2(R2n) with eigenvalue 2
∑n

i=1 αiai .
But the space spanned by (1.89) includes all the rescaled Hermite polynomials multiplied by
exp(− 1

4

∑
i ai |zi |2), which is an orthogonal basis of L2(R2n) by [46, §8.6]. Thus the eigen-

functions in (1.89) are all the eigenfunctions of L0|L2(R2n). The proof of Theorem 1.15 is
complete. �

We deduce from Theorem 1.15 that the following functions build an orthonormal basis of
Ker(L0|L2(R2n)):(

aβ

(2π)n2|β|β!
n∏

i=1

ai

)1/2

zβ exp

(
−1

4

n∑
j=1

aj |zj |2
)

, β ∈ N
n. (1.90)

Calculating the Schwartz kernel of P N using the basis (1.90), we recover (1.81):

P N(Z,Z′) = 1

(2π)n

n∏
i=1

ai exp

(
−1

4

∑
i

ai

(|zi |2 + |z′
i |2 − 2ziz

′
i

))
. (1.91)

Recall that the operators O1, O2 were defined in (1.30). Theorem 1.16 below is crucial in proving
the vanishing result of Fq,r (cf. Theorem 1.18).

We denote by 〈· , ·〉 the C-bilinear form on T X ⊗R C induced by the metric gT X .
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Theorem 1.16. We have the relation

P NO1P
N = 0. (1.92)

Proof. From (0.2), for U,V,W ∈ T X, 〈(∇X
U J )V ,W 〉 = (∇X

U ω)(V,W), thus

〈(∇X
U J

)
V,W

〉+ 〈(∇X
V J

)
W,U

〉+ 〈(∇X
WJ

)
U,V

〉= dω(U,V,W) = 0. (1.93)

By (0.2) and (0.3),

RL(U,V ) = 〈JU,V 〉,(∇X
U RL

)
(V ,W) = 〈(∇X

UJ
)
V,W

〉
,

∇Uτ = −
√−1

2
Tr

∣∣∣∣
T X

[∇X
U (JJ )

]
. (1.94)

Since J and J ∈ End(T X) are skew-adjoint and commute, ∇X
U J , ∇X

UJ are skew-adjoint and
∇X

U (JJ ) is symmetric. From J 2 = − Id, we know that

J
(∇XJ

)+ (∇XJ
)
J = 0, (1.95)

thus ∇X
U J exchanges T (1,0)X and T (0,1)X. From (1.82), (1.93) and (1.94), we have

(∇Rτ)x0 = −2
√−1

〈(∇X
R(JJ )

) ∂

∂zi

,
∂

∂zi

〉
= 2

〈(∇X
RJ

) ∂

∂zi

,
∂

∂zi

〉
,

(
∂iR

L
)
x0

(R, ei) = 2

〈(∇X
∂

∂zi

J
)
R,

∂

∂zi

〉
+ 2

〈(∇X
∂

∂zi

J
)
R,

∂

∂zi

〉
= 4

〈(∇X
∂

∂zi

J
)
R,

∂

∂zi

〉
− 2

〈(∇X
RJ

) ∂

∂zi

,
∂

∂zi

〉
. (1.96)

From (1.30), (1.86), (1.94) and (1.96), we infer

O1 = −2

3

[〈(∇X
RJ

)
R,

∂

∂zi

〉
b+
i −

〈(∇X
RJ

)
R,

∂

∂zi

〉
bi

+ 2

〈(∇X
∂

∂zi

J
)
R,

∂

∂zi

〉
+ 2

〈(∇X
RJ

) ∂

∂zi

,
∂

∂zi

〉]
= −2

3

[〈(∇X
RJ

)
R,

∂

∂zi

〉
b+
i − bi

〈(∇X
RJ

)
R,

∂

∂zi

〉]
. (1.97)

Note that by (1.85) and (1.91),(
b+P N

)
(Z,Z′) = 0,

(
biP

N
)
(Z,Z′) = ai(zi − z′

i )P
N(Z,Z′). (1.98)
i
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We learn from (1.98) that for every polynomial g(z, z) in z, z we can write g(z, z)P N(Z,Z′) as
sums of bβgβ(z, z′)P N(Z,Z′) with gβ(z, z′) polynomials in z, z′. By Theorem 1.15,

P Nbαg(z, z)P N = 0, for |α| > 0, (1.99)

and relations (1.97)–(1.99) yield the desired relation (1.92). �
1.5. Evaluation of Fq,r

For s ∈ R, let �s� denote the greatest integer which is less than or equal to s. Let f (λ, t) be a
formal power series with values in End(L2(R2n,Ex0))

f (λ, t) =
∞∑

r=0

t rfr (λ), fr(λ) ∈ End
(
L2(

R
2n,Ex0

))
. (1.100)

By (1.29), consider the equation of formal power series for λ ∈ δ,

(
−L0 + λ −

∞∑
r=1

t rOr

)
f (λ, t) = IdL2(R2n,Ex0 ) . (1.101)

Let N⊥ be the orthogonal space of N in L2(R2n,Ex0), and P N⊥
be the orthogonal projec-

tion from L2(R2n,Ex0) to N⊥. We decompose f (λ, t) according the splitting L2(R2n,Ex0) =
N ⊕ N⊥,

gr(λ) = P Nfr(λ), f ⊥
r (λ) = P N⊥

fr(λ). (1.102)

Using (1.102) and identifying the powers of t in (1.101), we find that

g0(λ) = 1

λ
P N, f ⊥

0 (λ) = (λ − L0)
−1P N⊥

,

f ⊥
r (λ) = (λ − L0)

−1
r∑

j=1

P N⊥Oj fr−j (λ),

gr(λ) = 1

λ

r∑
j=1

P NOj fr−j (λ). (1.103)

Lemma 1.17. For r ∈ N, λ� r
2 �+1gr(λ), λ� r+1

2 �f ⊥
r (λ) are holomorphic functions for |λ| � μ0/4

and

(
λr+1g2r

)
(0) = (

P NO2P
N − P NO1L

−1
0 P N⊥O1P

N
)r

P N . (1.104)
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Proof. By (1.103) we know that Lemma 1.17 is true for r = 0. Assume that Lemma 1.17 is
true for r � m. Now, by Theorem 1.15, (1.103) and the recurrence assumption, it follows that
λ� m

2 �+1f ⊥
m+1(λ) is holomorphic for |λ| � μ0/4, and

λ� m+1
2 �+1gm+1(λ) = λ� m+1

2 �
m+1∑
i=1

P NOi

[
gm+1−i (λ) + f ⊥

m+1−i (λ)
]
. (1.105)

By our recurrence assumption, λ� m
2 �gm−2(λ), λ� m+1

2 �−1gm−j−1(λ), λ� m+1
2 �−1f ⊥

m−j (λ),

λ� m+1
2 �f ⊥

m (λ), λ� m
2 �f ⊥

m−1(λ) are holomorphic for |λ| � μ0/4, j � 2. Thus by Theorem 1.16,

(1.103) and (1.105), λ� m+1
2 �+1gm+1(λ) is also holomorphic for |λ| � μ0/4, and

(
λ� m+1

2 �+1gm+1
)
(0) = (

λ� m+1
2 �(P NO1f

⊥
m + P NO2

(
gm−1 + f ⊥

m−1

)+ P NO3gm−2
))

(0)

= (−P NO1L
−1

0 P N⊥O1 + P NO2
)(

λ� m+1
2 �(gm−1 + f ⊥

m−1

))
(0)

+ (−P NO1L
−1

0 P N⊥O2 + P NO3
)(

λ� m+1
2 �gm−2

)
(0). (1.106)

If m is odd, then �m+1
2 � = �m

2 � + 1, so by (1.106) and the recurrence assumption,

(
λ� m+1

2 �+1gm+1
)
(0) = P N

(−O1L
−1

0 P N⊥O1 +O2
)
P N

(
λ� m−1

2 �+1gm−1
)
(0)

= (
P NO2P

N − P NO1L
−1

0 P N⊥O1P
N
)� m+1

2 �
P N. (1.107)

The proof of Lemma 1.17 is complete. �
Theorem 1.18. There exist polynomials Jq,r (Z,Z′) in Z,Z′ with the same parity as r and
degJq,r (Z,Z′) � 3r , whose coefficients are polynomials in RT X , RE , Φ (and RL) and their
derivatives of order � r − 2 (resp. � r), and reciprocals of linear combinations of eigenvalues
of J at x0, such that

Fq,r (Z,Z′) = Jq,r (Z,Z′)P N(Z,Z′). (1.108)

Moreover,

F0,0 = P N,

Fq,r = 0, for q > 0, r < 2q,

Fq,2q = (
P NO2P

N − P NO1L
−1

0 P N⊥O1P
N
)q

P N for q > 0. (1.109)

Proof. Recall that Pq,t = (Lt )
qP0,t . By (1.55), Pq,t = 1

2πi

∫
δ
λq(λ−Lt )

−1 dλ . Thus by (1.61),
(1.66), (1.78) and (1.102),

Fq,r = 1

2πi

∫
λqgr(λ) dλ + 1

2πi

∫
λqf ⊥

r (λ) dλ. (1.110)
δ δ
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From Lemma 1.17 and (1.110), we get (1.109). Generally, from Theorems 1.4, 1.15, Remark 1.5,
(1.91), (1.103), (1.110) and the residue formula, we conclude that Fq,r has the form (1.108). �

From Theorems 1.15, 1.16, (1.103), (1.110) and the residue formula, we can get Fq,r by using

the operators L −1
0 , P N , P N⊥

, Ok (with k � r). This gives us a direct method to compute Fq,r

in view of Theorem 1.15. In particular, we get 3

F0,1 = −P NO1L
−1
0 P N⊥ − P N⊥

L −1
0 O1P

N,

F0,2 = 1

2πi

∫
δ

[
(λ − L0)

−1P N⊥
(O1f1 +O2f0)(λ) + 1

λ
P N(O1f1 +O2f0)(λ)

]
dλ

= L −1
0 P N⊥O1L

−1
0 P N⊥O1P

N − L −1
0 P N⊥O2P

N

+ P NO1L
−1

0 P N⊥O1L
−1

0 P N⊥ − P NO2L
−1

0 P N⊥

+ P N⊥
L −1

0 O1P
NO1L

−1
0 P N⊥ − P NO1L

−2
0 P N⊥O1P

N. (1.111)

1.6. Proof of Theorem 0.1

Recall that P0,q,p = (�
X0
p,Φ0

)qP0,Hp
. Owing to (1.26), (1.27) we have

P0,q,p(Z,Z′) = t−2n−2qκ− 1
2 (Z)Pq,t (Z/t,Z′/t)κ− 1

2 (Z′), for all Z,Z′ ∈ R
2n. (1.112)

By (1.24), (1.112), Proposition 1.3, Theorems 1.13 and 1.18, we get the following main technical
result of this paper, called the near off-diagonal expansion of the generalized Bergman kernels:

Theorem 1.19. For every j,m,m′ ∈ N, j � 2q and σ > 0, there exists C > 0 such that the
estimate

sup
|α|+|α′|�m

∣∣∣∣∣ ∂ |α|+|α′|

∂Zα∂Z′α′

(
1

pn
Pq,p(Z,Z′)

−
j∑

r=2q

Fq,r (
√

pZ,
√

pZ′)κ− 1
2 (Z)κ− 1

2 (Z′)p− r
2 +q

)∣∣∣∣∣
C m′

(X)

� Cp− j−m+1
2 +q (1.113)

holds for all p � 1 and all Z,Z′ ∈ Tx0X with |Z|, |Z′| � σ/
√

p.

Set now Z = Z′ = 0 in (1.113). By Theorem 1.18, we obtain (0.9) and

bq,r (x0) = Fq,2r+2q(0,0). (1.114)

Hence (0.8) follows from (1.81) and (1.114). The statement about the structure of bq,r follows
from Theorems 1.15 and 1.18.

3 The formula F0,2 in [34, (20)] missed the last two terms here which are zero at (0,0) if J = J , cf. (2.32).
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To prove the uniformity statement of Theorem 0.1, we notice that in the proof of Theo-
rem 1.10, we only use the derivatives up to order 2n + m + m′ + r + 2 of the coefficients of Lt .
Therefore, in view of (1.79), the constants in Theorems 1.10, 1.12 (resp. Theorem 1.13) are uni-
formly bounded, if the C 2n+m+m′+r+3-norms (resp. C 2n+m+m′+j+4-norms) on X (with respect
to a fixed metric gT X

0 ) of a family M of (gT X,hL,∇L,hE,∇E,J,Φ) are bounded and the fam-
ily of components gT X of M is bounded below. (Note that �Lp⊗E includes one derivative on
∇L, ∇E ; that is why we have to add one derivative to the orders 2n + m + m′ + r + 2 and
2n + m + m′ + j + 3 respectively.)

Moreover, taking derivatives with respect to the data (gT X,hL,∇L,hE,∇E,J,Φ) we obtain
an equation similar to (1.65), where x0 ∈ X plays now the role of a parameter. Thus the C m′

-
norm in (1.113) can also include the data (gT X,hL,∇L,hE,∇E,J,Φ) if the C m′

-norms (with
respect to the parameter x0 ∈ X) of the derivatives of the above data up to order 2n + m + j + 4
are bounded. Hence we can determine a constant Ck,l such that (0.9) holds uniformly for all data
in a set M satisfying conditions (i) and (ii) of Theorem 0.1. To obtain (0.9) we apply (1.113)
with j = 2k + 2q + 1. This completes the proof of Theorem 0.1.

2. Computing the coefficients bq,r

In principle, Theorem 1.15, Eqs. (1.103), (1.110) and the residue formula give us a direct
method to calculate bq,r by recurrence. Actually, it is computable for the first few terms bq,r

in (0.9) in this way.
This section is organized as follows. In Section 2.1, we will give a simplified formula for

O2P
N without the assumption J = J . In Sections 2.2, 2.3, we will compute bq,0 and b0,1 under

the assumption J = J , thus proving Theorem 0.2.
In this section, we use the notation in Section 1.4, and all tensors will be evaluated at the base

point x0 ∈ X. Recall that the operators O1,O2 were defined in (1.30). We denote by 〈· , ·〉 the
C-bilinear form on T X ⊗R C induced by the metric gT X .

2.1. A formula for O2P
N

We will use the following lemma to evaluate bq,r in (0.9).

Lemma 2.1. The following relation holds:

O2P
N =

{
1

3
bibj

〈
RT X

(
R,

∂

∂zi

)
R,

∂

∂zj

〉
+ 1

2
bi

∑
|α|=2

(
∂αRL

)
x0

(
R,

∂

∂zi

)
Zα

α!

+ 4

3
bj

[〈
RT X

(
∂

∂zi

,
∂

∂zi

)
R,

∂

∂zj

〉
−
〈
RT X

(
R,

∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉]
+ RE

(
R,

∂

∂zi

)
bi

+
〈(∇X∇XJ

)
(R,R)

∂

∂zi

,
∂

∂zi

〉
+ 4

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zi

,
∂

∂zj

〉}
P N

+
(

−1

3
L0

〈
RT X

(
R,

∂

∂zj

)
R,

∂

∂zj

〉
+ 1

9

∣∣(∇X
RJ

)
R
∣∣2 −

∑
|α|=2

(
∂ατ

)
x0

Zα

α! + Φ

)
P N.

(2.1)



X. Ma, G. Marinescu / Advances in Mathematics 217 (2008) 1756–1815 1785
Proof. The definition of ∇X∇XJ , RT X and (1.93) imply, for U,V,W,Y ∈ T X,〈
RT X(U,V )W,Y

〉= 〈
RT X(W,Y )U,V

〉
,

RT X(U,V )W + RT X(V,W)U + RT X(W,U)V = 0,(∇X∇XJ
)
(U,V )

− (∇X∇XJ
)
(V ,U)

= [
RT X(U,V ),J

]
,〈(∇X∇XJ

)
(Y,U)

V ,W
〉+ 〈(∇X∇XJ

)
(Y,V )

W,U
〉+ 〈(∇X∇XJ

)
(Y,W)

U,V
〉= 0. (2.2)

Set

I1 = 1

2

∑
|α|=2

(
∂αRL

)
x0

(
R,

∂

∂zi

)
Zα

α! bi

− 1

2

∂

∂zi

( ∑
|α|=2

(
∂αRL

)
x0

(
R,

∂

∂zi

)
Zα

α!
)

− 1

2

∂

∂zi

( ∑
|α|=2

(
∂αRL

)
x0

(
R,

∂

∂zi

)
Zα

α!
)

,

I2 = 1

3

〈
RT X

x0

(
R,

∂

∂zi

)
R,

∂

∂zj

〉
bibj

− 4

3

[〈
RT X

x0

(
R,

∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉
+
〈
RT X

x0

(
R,

∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉]
bj . (2.3)

Note that for every 1-form ψ we have ψ(ei)∇0,ei
= −ψ( ∂

∂zi
)bi + ψ( ∂

∂zi
)b+

i . Due to (1.30),
(1.80), (1.86), (1.94), (2.3), the first formula of (2.2), and since J is purely imaginary, we obtain

O2 = I1 + I2 − 1

3

[
L0,

〈
RT X

(
R,

∂

∂zj

)
R,

∂

∂zj

〉]
+ RE

(
R,

∂

∂zi

)
bi

+ 1

3

[〈
RT X

(
R,

∂

∂zi

)
R,

∂

∂zj

〉(−2bjb
+
i − 2aiδij

)+
〈
RT X

(
R,

∂

∂zi

)
R,

∂

∂zj

〉
b+
i b+

j

]
+
(

2

3

〈
RT X(R, ej )ej ,

∂

∂zi

〉
−
(

1

2

∑
|α|=2

(
∂αRL

)
x0

Zα

α! + RE

)(
R,

∂

∂zi

))
b+
i

+ 1

9

∣∣(∇X
RJ

)
R
∣∣2 −

∑
|α|=2

(
∂ατ

)
x0

Zα

α! + Φ. (2.4)

In normal coordinates we have (∇T X
ei

ej )x0 = 0. So we deduce from (1.32) that the following
relation holds at x0:

∇ej
∇ei

〈J ek, el〉 = 〈(∇X
ej

∇X
ei
J
)
ek +J

(∇T X
ej

∇T X
ei

ek

)
, el

〉+ 〈
J ek,∇T X

ej
∇T X

ei
el

〉
= 〈(∇X

ej
∇X

ei
J
)
ek, el

〉− 1

3

〈
RT X(ej , ei)ek + RT X(ej , ek)ei,J el

〉
+ 1

3

〈
RT X(ej , ei)el + RT X(ej , el)ei,J ek

〉
. (2.5)

From (1.94) and (2.5) we obtain
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∑
|α|=2

(
∂αRL

)
x0

(ek, el)
Zα

α! = 1

2

(∇ej
∇ei

〈J ek, el〉
)
x0

ZiZj

= 1

2

〈(∇X∇XJ
)
(R,R)

ek, el

〉+ 1

6

[〈
RT X(R, el)R,J ek

〉
− 〈

RT X(R, ek)R,J el

〉]
. (2.6)

Thus ∑
|α|=2

(
∂αRL

)
x0

(R, el)
Zα

α! = 1

2

〈(∇X∇XJ
)
(R,R)

R, el

〉+ 1

6

〈
RT X(R,JR)R, el

〉
. (2.7)

Using (1.86), (2.3) and (2.7) we compute

I1 = 1

2
bi

∑
|α|=2

(
∂αRL

)
x0

(
R,

∂

∂zi

)
Zα

α!

+ 1

12

[
∂

∂zi

〈
RT X

x0
(R,JR)R,

∂

∂zi

〉
− ∂

∂zi

〈
RT X

x0
(R,JR)R,

∂

∂zi

〉]
+ 1

4

[
∂

∂zi

〈(∇X∇XJ
)
(R,R)

R,
∂

∂zi

〉
− ∂

∂zi

〈(∇X∇XJ
)
(R,R)

R,
∂

∂zi

〉]
. (2.8)

Note that J and (∇X∇XJ )(Y,U) are skew-adjoint, by (1.82) and (2.2). Hence

∂

∂zi

〈(∇X∇XJ
)
(R,R)

R,
∂

∂zi

〉
− ∂

∂zi

〈(∇X∇XJ
)
(R,R)

R,
∂

∂zi

〉
=
〈
2
(∇X∇XJ

)
(R,R)

∂

∂zi

+ 2
(∇X∇XJ

)
(R, ∂

∂zi
)
R+

[
RT X

(
∂

∂zi

,R
)

,J
]
R,

∂

∂zi

〉
−
〈
2
(∇X∇XJ

)
(R, ∂

∂zi
)
R+

[
RT X

(
∂

∂zi

,R
)

,J
]
R,

∂

∂zi

〉
= 4

〈(∇X∇XJ
)
(R,R)

∂

∂zi

,
∂

∂zi

〉
+
〈
2aiR

T X

(
R,

∂

∂zi

)
R− RT X(R,JR)

∂

∂zi

,
∂

∂zi

〉
,

(2.9)

and

∂

∂zi

〈
RT X(R,JR)R,

∂

∂zi

〉
− ∂

∂zi

〈
RT X(R,JR)R,

∂

∂zi

〉
= 2

〈
RT X(R,JR)

∂

∂zi

,
∂

∂zi

〉
+ 2ai

〈
RT X

(
R,

∂

∂zi

)
R,

∂

∂zi

〉
+
〈
RT X

(
∂

∂zi

,JR
)
R,

∂

∂zi

〉
−
〈
RT X

(
∂

∂zi

,JR
)
R,

∂

∂zi

〉
= 3

〈
RT X(R,JR)

∂
,

∂
〉
+ 2ai

〈
RT X

(
R,

∂
)
R,

∂
〉
.

∂zi ∂zi ∂zi ∂zi
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Thus by (2.8)–(2.9),

I1 = 1

2
bi

∑
|α|=2

(
∂αRL

)
x0

(
R,

∂

∂zi

)
Zα

α! +
〈(∇X∇XJ

)
(R,R)

∂

∂zi

,
∂

∂zi

〉

+ 2

3
ai

〈
RT X

(
R,

∂

∂zi

)
R,

∂

∂zi

〉
. (2.10)

Now by (1.86), (2.2) and (2.3) we calculate:

I2 = 4

3
bj

[〈
RT X

(
∂

∂zi

,
∂

∂zi

)
R,

∂

∂zj

〉
−
〈
RT X

(
R,

∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉]
+ 1

3
bibj

〈
RT X

(
R,

∂

∂zi

)
R,

∂

∂zj

〉
− 8

3

〈
RT X

(
∂

∂zj

,
∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉
+ 4

3

[〈
RT X

(
∂

∂zi

,
∂

∂zi

)
∂

∂zj

,
∂

∂zj

〉
−
〈
RT X

(
∂

∂zj

,
∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉]
= 4

3
bj

[〈
RT X

(
∂

∂zi

,
∂

∂zi

)
R,

∂

∂zj

〉
−
〈
RT X

(
R,

∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉]
+ 1

3
bibj

〈
RT X

(
R,

∂

∂zi

)
R,

∂

∂zj

〉
+ 4

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zi

,
∂

∂zj

〉
. (2.11)

Finally (1.87), (1.98), (2.4), (2.10) and (2.11) yield (2.1). �
Now (1.94), (1.97), (1.99), (1.108), (1.109) and (2.1) entail

F1,2 = J1,2P
N

=
(

2RE

(
∂

∂zi

,
∂

∂zi

)
+ 4

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zi

,
∂

∂zj

〉
+ Φ

)
P N

+ P N

(〈(∇X∇XJ
)
(R,R)

∂

∂zi

,
∂

∂zi

〉
+

√−1

4
Tr

∣∣∣∣
T X

(∇X∇X(JJ )
)
(R,R)

+ 1

9

∣∣(∇X
RJ

)
R
∣∣2 + 4

9

〈(∇X
RJ

)
R,

∂

∂zi

〉
b+
i L −1

0 bi

〈(∇X
RJ

)
R,

∂

∂zi

〉)
P N. (2.12)

2.2. The coefficients bq,0

In the rest of this section we assume that J = J . A very useful observation is that (1.93) and
(1.95) imply

J = −2π
√−1J and ai = 2π in (1.82), τ = 2πn.

∇X
U J is skew-adjoint and the tensor 〈(∇X· J ) · , ·〉 is of the type(
T ∗(1,0)X

)⊗3 ⊕ (
T ∗(0,1)X

)⊗3
. (2.13)
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Before computing bq,0, we establish the relation between the scalar curvature rX and |∇XJ |2.

Lemma 2.2.

rX = 8

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zj

,
∂

∂zi

〉
− 1

4

∣∣∇XJ
∣∣2. (2.14)

Proof. By (2.13),

∣∣∇XJ
∣∣2 = 4

〈(∇X
∂

∂zi

J
)
ej ,

(∇X
∂

∂zi

J
)
ej

〉= 8

〈(∇X
∂

∂zi

J
) ∂

∂zj

,
(∇X

∂
∂zi

J
) ∂

∂zj

〉
. (2.15)

Using (1.83), (1.93) and (2.13) we get

〈(∇X
∂

∂zj

J
) ∂

∂zi

,
(∇X

∂
∂zi

J
) ∂

∂zj

〉
= 2

〈(∇X
∂

∂zj

J
) ∂

∂zi

,
∂

∂zk

〉〈(∇X
∂

∂zi

J
) ∂

∂zj

,
∂

∂zk

〉
= 2

〈(∇X
∂

∂zi

J
) ∂

∂zk

− (∇X
∂

∂zk

J
) ∂

∂zi

,
∂

∂zj

〉〈(∇X
∂

∂zi

J
) ∂

∂zk

,
∂

∂zj

〉
=
〈(∇X

∂
∂zi

J
) ∂

∂zk

,
(∇X

∂
∂zi

J
) ∂

∂zk

〉
−
〈(∇X

∂
∂zk

J
) ∂

∂zi

,
(∇X

∂
∂zi

J
) ∂

∂zk

〉
. (2.16)

By (2.15) and (2.16), 〈(∇X
∂

∂zj

J
) ∂

∂zi

,
(∇X

∂
∂zi

J
) ∂

∂zj

〉
= 1

16

∣∣∇XJ
∣∣2. (2.17)

Now, from (1.95), we get(∇X∇XJ
)
(U,V )

J + (∇X
U J

) ◦ (∇X
V J

)+ (∇X
V J

) ◦ (∇X
U J

)+ J
(∇X∇XJ

)
(U,V )

= 0. (2.18)

We infer from (2.2), (2.13) and (2.18) that for all u1, u2, u3 ∈ T (1,0)X, v1, v2 ∈ T (0,1)X the
following holds:

(∇X∇XJ
)
(u1,u2)

u3,
(∇X∇XJ

)
(v1,v2)

u3 ∈ T (0,1)X,(∇X∇XJ
)
(u1,v2)

u3 ∈ T (1,0)X,

2
√−1

〈(∇X∇XJ
)
(u1,v1)

u2, v2
〉= 〈(∇X

u1
J
)
u2,

(∇X
v1

J
)
v2
〉
. (2.19)

(The second equation of (2.19) follows from the first line and (2.2)). Formulas (2.2) and (2.19)
yield
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〈(∇X∇XJ
)
(u1,u2)

v1, v2
〉= −〈(∇X∇XJ

)
(u1,v1)

v2, u2
〉− 〈(∇X∇XJ

)
(u1,v2)

u2, v1
〉

= 1

2
√−1

〈(∇X
u1

J
)
u2,

(∇X
v1

J
)
v2 − (∇X

v2
J
)
v1
〉
. (2.20)

From (2.2), (2.16), (2.17) and (2.20), we deduce〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zi

,
∂

∂zj

〉
=

√−1

2

〈[
RT X

(
∂

∂zi

,
∂

∂zj

)
, J

]
∂

∂zi

,
∂

∂zj

〉
=

√−1

2

〈((∇X∇XJ
)
( ∂

∂zi
, ∂
∂zj

)
− (∇X∇XJ

)
( ∂

∂zj
, ∂
∂zi

)

) ∂

∂zi

,
∂

∂zj

〉
= 1

4

〈(∇X
∂

∂zi

J
) ∂

∂zj

,
(∇X

∂
∂zi

J
) ∂

∂zj

〉
= 1

32

∣∣∇XJ
∣∣2. (2.21)

The scalar curvature rX of (X,gT X) is given by

rX = −〈RT X(ei, ej )ei, ej

〉= −4

〈
RT X

(
∂

∂zi

, ej

)
∂

∂zi

, ej

〉
= −8

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zi

,
∂

∂zj

〉
− 8

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zi

,
∂

∂zj

〉
. (2.22)

In conclusion, relations (2.21) and (2.22) imply (2.14). �
From (1.97) and (2.13) we know

O1 = 2

3
bi

〈(∇X
z J

)
z,

∂

∂zi

〉
− 2

3

〈(∇X
z J

)
z,

∂

∂zi

〉
b+
i . (2.23)

Hence by (1.86), (1.98), (2.13) and (2.23),

(
O1P

N
)
(Z,Z′) = 2

3

(
bi

〈(∇X
z J

)
z,

∂

∂zi

〉
P N

)
(Z,Z′)

= 2

3

{(
bibj

2π

〈(∇X
∂

∂zj

J
)
z′, ∂

∂zi

〉
+ bi

〈(∇X
z′ J

)
z′, ∂

∂zi

〉)
P N

}
(Z,Z′). (2.24)

By Theorem 1.15, (1.99) and (2.24), we have(
L −1

0 P N⊥O1P
N
)
(Z,Z′)

= 2

3

{(
bibj

16π2

〈(∇X
∂

∂z

J
)
z′, ∂

∂z

〉
+ bi

4π

〈(∇X
z′ J

)
z′, ∂

∂z

〉)
P N

}
(Z,Z′),
j i i
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P NO1L
−1

0 P N⊥O1P
N = −2

3
P N

〈(∇X
z J

)
z,

∂

∂zk

〉
b+
k L −1

0 P N⊥O1P
N. (2.25)

Now, (1.83), (1.86), (1.98), (2.23) and (2.25) imply

2

3

(〈(∇X
z J

)
z,

∂

∂zk

〉
b+
k L −1

0 P N⊥O1P
N

)
(Z,Z′)

= 4

9

{〈(∇X
z J

)
z,

∂

∂zk

〉(
− bi

4π

〈(∇X
∂

∂zi

J
) ∂

∂zk

+ (∇X
∂

∂zk

J
) ∂

∂zi

, z′
〉

+
〈(∇X

z′ J
)
z′, ∂

∂zk

〉)
P N

}
(Z,Z′)

=
{[

− bi

9π

〈(∇X
z J

)
z,

∂

∂zk

〉〈(∇X
∂

∂zi

J
) ∂

∂zk

+ (∇X
∂

∂zk

J
) ∂

∂zi

, z′
〉

− 2

9π

〈(∇X
z J

) ∂

∂zi

+ (∇X
∂

∂zi

J
)
z,

∂

∂zk

〉〈(∇X
∂

∂zi

J
) ∂

∂zk

+ (∇X
∂

∂zk

J
) ∂

∂zi

, z′
〉

+ 2

9

〈(∇X
z J

)
z,
(∇X

z′ J
)
z′〉]P N

}
(Z,Z′). (2.26)

Thanks to (1.98), (2.13), (2.15) and (2.16) we obtain

1

9

∣∣(∇X
RJ

)
R
∣∣2P N(Z,Z′)

= 8π2

9

〈(∇X
z J

)
z,
(∇X

z J
)
z
〉
P N(Z,Z′)

= 8π2

9

{〈(∇X
z J

)
z,

bibj

4π2

(∇X
∂

∂zi

J
) ∂

∂zj

+ bi

2π

[(∇X
∂

∂zi

J
)
z′ + (∇X

z′ J
) ∂

∂zi

]
+ (∇X

z′ J
)
z′
〉
P N

}
(Z,Z′)

= 8π2

9

{[〈
bibj

4π2

(∇X
∂

∂zi

J
) ∂

∂zj

+ bi

2π

((∇X
∂

∂zi

J
)
z′ + (∇X

z′ J
) ∂

∂zi

)
, (∇X

z J )z

〉
+ bi

2π2

〈(∇X
∂

∂zj

J
)
z + (∇X

z J
) ∂

∂zj

,
(∇X

∂
∂zi

J
) ∂

∂zj

+ (∇X
∂

∂zj

J
) ∂

∂zi

〉

+ 1

π

〈(∇X
∂

∂zi

J
)
z + (∇X

z J
) ∂

∂zi

,
(∇X

∂
∂zi

J
)
z′ + (∇X

z′ J
) ∂

∂zi

〉
+ 〈(∇X

z J
)
z,
(∇X

z′ J
)
z′〉+ 3

16π2

∣∣∇XJ
∣∣2]P N

}
(Z,Z′). (2.27)

Taking into account (2.2), (2.19) and the equality 〈[RT X(z, z), J ] ∂ , ∂ 〉 = 0, we get

∂zi ∂zi
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〈(∇X∇XJ
)
(R,R)

∂

∂zi

,
∂

∂zi

〉
=
〈(∇X∇XJ

)
(z,z)

∂

∂zi

+ (∇X∇XJ
)
(z,z)

∂

∂zi

,
∂

∂zi

〉
= −√−1

〈(∇X
z J

) ∂

∂zi

,
(∇X

z J
) ∂

∂zi

〉
. (2.28)

From (1.98), (2.15) and (2.28),〈(∇X∇XJ
)
(R,R)

∂

∂zi

,
∂

∂zi

〉
P N(Z,Z′)

= −2π

〈(∇X
z J

) ∂

∂zi

,
(∇X

z J
) ∂

∂zi

〉
P N(Z,Z′)

= −2π

{〈(∇X
z J

) ∂

∂zi

,
bj

2π

(∇X
∂

∂zj

J
) ∂

∂zi

+ (∇X
z′ J

) ∂

∂zi

〉
P N

}
(Z,Z′)

= −
{[〈

bj

(∇X
∂

∂zj

J
) ∂

∂zi

+ 2π
(∇X

z′ J
) ∂

∂zi

,
(∇X

z J
) ∂

∂zi

〉
+ 1

4

∣∣∇XJ
∣∣2]P N

}
(Z,Z′). (2.29)

Recall that the polynomial Jq,2q(Z,Z′) was defined in (1.108) and (1.109). The equality JJ =
2π

√−1, and (1.99), (2.12), (2.21), (2.23)–(2.29) show that J1,2(Z,Z′) is a polynomial in z, z′,
and each monomial of J1,2 has the same degree in z and z′; moreover

J1,2(0,0) = 1

24

∣∣∇XJ
∣∣2
x0

+ 2RE
x0

(
∂

∂zi

,
∂

∂zi

)
+ Φx0 . (2.30)

Using (1.91) with ai = 2π , (1.109) and the recurrence, we infer that each monomial of Jq,2q has
the same degree in z and z′, and

Jq,2q(0,0) = (
J1,2(0,0)

)q
. (2.31)

In view of (1.91), (1.108), (1.114), (2.30) and (2.31) we obtain (0.11).

2.3. The coefficient b0,1

By (1.114), we need to compute F0,2(0,0). By (1.98), (2.24) and (2.25), we know that(
O1P

N
)
(Z,0) = 0,

(
L −1

0 P N⊥O1P
N
)
(0,Z′) = 0. (2.32)

Thus the first and last two terms in (1.111) are zero at (0,0). Thus we only need to compute
−(L −1

0 P N⊥O2P
N)(0,0), since the third and fourth terms in (1.111) are adjoint of the first two

terms by Remark 1.5.
Let hi(z) and fij (z) (i, j = 1, . . . , n) be arbitrary polynomials in z. By Theorem 1.15, (1.86),

(1.91) and (1.98) with ai = 2π , we have

(
bihiP

N
)
(0,0) = −2

∂hi

∂zi

(0),
(
bibjfijP

N
)
(0,0) = 4

∂2fij

∂zi∂zj

(0),

(
L −1

0 bifij bjP
N
)
(0,0) = − 1

2π

∂2fij

∂z ∂z
(0). (2.33)
i j
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Owing to Theorem 1.15, (2.15), (2.17), (2.27) and (2.33),

−1

9

(
L −1

0 P N⊥ ∣∣(∇X
RJ

)
R
∣∣2P N

)
(0,0)

= −8

9

{[
bibj

32π

〈(∇X
z J

)
z,
(∇X

∂
∂zi

J
) ∂

∂zj

〉
+ bi

8π

〈(∇X
∂

∂zj

J
)
z + (∇X

z J
) ∂

∂zj

,
(∇X

∂
∂zi

J
) ∂

∂zj

+ (∇X
∂

∂zj

J
) ∂

∂zi

〉]
P N

}
(0,0)

= 1

9π

〈(∇X
∂

∂zi

J
) ∂

∂zj

+ (∇X
∂

∂zj

J
) ∂

∂zi

,
(∇X

∂
∂zi

J
) ∂

∂zj

+ 2
(∇X

∂
∂zj

J
) ∂

∂zi

〉
= 1

16π

∣∣∇XJ
∣∣2, (2.34)

and by Theorem 1.15, (2.15), (2.29) and (2.33),

−
(

L −1
0 P N⊥

〈(∇X∇XJ
)
(R,R)

∂

∂zi

,
∂

∂zi

〉
P N

)
(0,0)

=
(

bj

4π

〈(∇X
z J

) ∂

∂zi

,
(∇X

∂
∂zj

J
) ∂

∂zi

〉
P N

)
(0,0)

= − 1

16π

∣∣∇XJ
∣∣2. (2.35)

Observe that (1.98) shows that for every polynomial g(z) in z, the constant term of 1
PN

bα

2|α| g(z)P N

is the constant term of ( ∂
∂z

)αg. Thus, in view of (1.98), when calculating −L −1
0 P N⊥O2P

N , the

contribution of 1
2bi

∑
|α|=2(∂

αRL)x0(R, ∂
∂zi

)Zα

α! in O2 consists of the terms whose total degree
of bi and zj is the same as the degree of z. Hence we only need to consider the contribution from
the terms where the degree of z is 2. Using (2.2), (2.7), (2.13), (2.19), (2.20) and the equality
〈[RT X(z, z),J ]z, ∂

∂zi
〉 = 0, this contribution is

I3 = 1

4
bi

[〈(∇X∇XJ
)
(z,z)

z + (∇X∇XJ
)
(z,z)

z + (∇X∇XJ
)
(z,z)

z,
∂

∂zi

〉
+ 1

3

〈
RT X(z,J z)z + RT X(z,J z)z,

∂

∂zi

〉]
= −π

4
bi

[〈(∇X
z J

)
z,3

(∇X
z J

) ∂

∂zi

− (∇X
∂

∂zi

J
)
z

〉
+ 4

3

〈
RT X(z, z)z,

∂

∂zi

〉]
. (2.36)

Therefore, from (1.98), (2.2), (2.17), (2.21), (2.33) and (2.36), we get

−(L −1
0 P N⊥

I3P
N
)
(0,0)

= π

4

{
L −1

0 bi

[
4

3

〈
RT X

(
z,

∂

∂z

)
z,

∂

∂z

〉

j i
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+
〈(∇X

z J
)
z,3

(∇X
∂

∂zj

J
) ∂

∂zi

− (∇X
∂

∂zi

J
) ∂

∂zj

〉]
bj

2π
P N

}
(0,0)

= − 1

16π

[
4

3

〈
RT X

(
∂

∂zj

,
∂

∂zj

)
∂

∂zi

+ RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zj

,
∂

∂zi

〉
+
〈(∇X

∂
∂zi

J
) ∂

∂zj

+ (∇X
∂

∂zj

J
) ∂

∂zi

,3
(∇X

∂
∂zi

J
) ∂

∂zj

− (∇X
∂

∂zj

J
) ∂

∂zi

〉]
= − 5

192π

∣∣∇XJ
∣∣2 − 1

6π

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zj

,
∂

∂zi

〉
. (2.37)

Thanks to (1.98), (2.21) and (2.33) we have

1

3

(
P N⊥

〈
RT X

(
R,

∂

∂zi

)
R,

∂

∂zi

〉
P N

)
(0,0)

= 1

3

(
P N⊥

〈
RT X

(
z,

∂

∂zi

)
∂

∂zj

+ RT X

(
∂

∂zj

,
∂

∂zi

)
z,

∂

∂zi

〉
bj

2π
P N

)
(0,0)

= − 1

3π

[〈
RT X

(
∂

∂zj

,
∂

∂zi

)
∂

∂zj

+ RT X

(
∂

∂zj

,
∂

∂zi

)
∂

∂zj

,
∂

∂zi

〉]
= − 1

96π

∣∣∇XJ
∣∣2 + 1

3π

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zj

,
∂

∂zi

〉
. (2.38)

By (2.1), (2.13), (2.33), (2.34), (2.35), (2.37), (2.38) and the discussion above (2.36), we have

−(L −1
0 P N⊥O2P

N
)
(0,0)

= −
{[

bibj

24π

〈
RT X

(
z,

∂

∂zi

)
z,

∂

∂zj

〉
+ bi

4π
RE

(
z,

∂

∂zi

)
+ bj

3π

(〈
RT X

(
∂

∂zi

,
∂

∂zi

)
z,

∂

∂zj

〉
−
〈
RT X

(
z,

∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉)]
P N

}
(0,0)

+ 1

3

(
P N⊥

〈
RT X

(
R,

∂

∂zi

)
R,

∂

∂zi

〉
P N

)
(0,0) − (

L −1
0 P N⊥

I3P
N
)
(0,0)

= − 1

6π

〈
RT X

(
∂

∂zi

,
∂

∂zi

)
∂

∂zj

+ RT X

(
∂

∂zj

,
∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉
+ 1

2π
RE

(
∂

∂zi

,
∂

∂zi

)
+ 2

3π

[〈
RT X

(
∂

∂zi

,
∂

∂zi

)
∂

∂zj

,
∂

∂zj

〉
−
〈
RT X

(
∂

∂zj

,
∂

∂zi

)
∂

∂zi

,
∂

∂zj

〉]
− 7

192π

∣∣∇XJ
∣∣2 + 1

6π

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zj

,
∂

∂zi

〉
= 1

2π

〈
RT X

(
∂

∂zi

,
∂

∂zj

)
∂

∂zj

,
∂

∂zi

〉
+ 1

2π
RE

(
∂

∂zi

,
∂

∂zi

)
. (2.39)

Formulas (2.14), (2.39) and the discussion at the beginning of Section 2.3 yield finally
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b0,1(x0) = F0,2(0,0) = −(L −1
0 P N⊥O2P

N
)
(0,0) − ((

L −1
0 P N⊥O2P

N
)
(0,0)

)∗
= 1

8π

[
rX
x0

+ 1

4

∣∣∇XJ
∣∣2
x0

+ 2
√−1RE

x0
(ej , J ej )

]
. (2.40)

The proof of Theorem 0.2 is complete.

Remark 2.3. In the Kähler case, i.e., if J is integrable and L,E are holomorphic, then O1 = 0,
and the above computation simplifies a lot.

3. Applications

In this section, we discuss various applications of our results. In Section 3.1, we study the
density of states function of �p,Φ . In Section 3.2, we explain how to handle the first-order
pseudodifferential operator Db of Boutet de Monvel and Guillemin [13] which was studied ex-
tensively by Shiffman and Zelditch [43]. In Section 3.3, we prove a symplectic version of the
convergence of the Fubini–Study metric of an ample line bundle [48]. In Section 3.4, we show
how to handle the operator ∂ + ∂∗ when X is Kähler but J �= J . Finally, in Sections 3.5, 3.6, we
establish some generalizations for non-compact or singular manifolds.

3.1. Density of states function

Let (X,ω) be a compact symplectic manifold of real dimension 2n and (L,∇L,hL) is a pre-
quantum line bundle as in (0.1). Assume that E is the trivial bundle C, Φ = 0 and J = J . The
latter means, by (0.2), that gT X is the Riemannian metric associated to ω and J . We denote by
vol(X) = ∫

X
ωn

n! the Riemannian volume of (X,gT X). Recall that dp is defined in (0.6).
Our aim is to describe the asymptotic distribution of the energies of the bound states as p tends

to infinity. We define the spectrum counting function of �p := �p,0 by Np(λ) = #{i: λi,p � λ}
with λi,p the eigenvalues of �p as in (0.7), and the spectral density measure on [−CL,CL] by

νp = 1

dp

d

dλ
Np(λ), λ ∈ [−CL,CL]. (3.1)

Clearly, νp is a sum of Dirac measures supported on Spec(�p) ∩ [−CL,CL]. Set

� : X −→ R, �(x) = 1

24

∣∣∇XJ
∣∣2. (3.2)

Theorem 3.1. The weak limit of the sequence {νp}p�1 is the direct image measure �∗( 1
vol(X)

ωn

n! ),
that is, for every continuous function f ∈ C 0([−CL,CL]), we have

lim
p→∞

CL∫
−CL

f dνp = 1

vol(X)

∫
X

(f ◦ �)
ωn

n! . (3.3)
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Proof. By (0.7), we have for q � 1 (now E is trivial): Bq,p(x) = ∑dp

i=1 λ
q
i,p|Sp

i (x)|2, which
yields by integration over X,

1

dp

∫
X

Bq,p dvX = 1

dp

dp∑
i=1

λ
q
i,p =

CL∫
−CL

λq dνp(λ), (3.4)

since S
p
i have unit L2 norm. On the other hand, (0.6), (0.9) and (0.11) entail for p → ∞,

1

dp

∫
X

Bq,p dvX = pn

dp

∫
X

bq,0 dvX + O(pn−1)

dp

= 1

vol(X)

∫
X

�q dvX + O
(
p−1). (3.5)

We infer from (3.4) and (3.5) that (3.3) holds for f (λ) = λq , q � 1. Since this is obviously
true for f (λ) ≡ 1, too, we deduce it holds for all polynomials. Upon invoking the Weierstrass
approximation theorem, we get (3.3) for all continuous functions on [−CL,CL]. This completes
the proof. �
Remark 3.2. A function � satisfying (3.3) is called spectral density function. Its existence and
uniqueness were demonstrated by Guillemin and Uribe [28]. What concerns the explicit for-
mula of �, the paper [11] is dedicated to its computation. Our formula (3.2) is different from
[11, Theorem 1.2].4

An interesting corollary of (3.2) and (3.3) is the following result which was first stated in [11,
Cor. 1.3].

Corollary 3.3. The spectral density function is identically zero if and only if (X,J,ω) is Kähler.

Remark 3.4. Theorem 3.1 can be slightly generalized. Assume namely that J = J and E is a
Hermitian vector bundle as in the Introduction such that RE = η ⊗ IdE where η is a 2-form.
Suppose that Φ = ϕ IdE where ϕ a real function on X. Then there exists a spectrum density
function satisfying (3.3) given by

� : X −→ R, �(x) = 1

24

∣∣∇XJ
∣∣2 +

√−1

2
η(ej , J ej ) + ϕ. (3.6)

The proof is similar to the previous one, since TrEx [Bq,p(x)] =∑dp

i=1 λ
q
i,p|Sp

i (x)|2.

4 Indeed, [11, Theorem 1.2] gives �(x) = − 5
24 |∇XJ |2. Note that [11, equation after (3.11)] shows that the principal

terms of ∂
∂s

, ∂

∂yj are ∂0, T l
j
∂l , respectively. Hence the leading term of G0j in [11, (3.7)] should be κ−1/2b

(1)
j

(but this

was missed therein). Now, from [11, (3.5)], b
(1)
j

is 1
2 〈Jz,T l

j
∂l〉. Thus the expression of L0 in [11, (3.8)] is incorrect.
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3.2. Almost-holomorphic Szegő kernels

We use the notations and assumptions from Section 3.1, especially, J = J . Then τ = 2πn.
Let Y = {u ∈ L∗, |u|hL∗ = 1} be the unit circle bundle in L∗. Then the smooth sections of Lp

can be identified to the smooth functions

C ∞(Y )p = {
f ∈ C ∞(Y,C); f

(
yeiθ

)= eipθf (y) for eiθ ∈ S1, y ∈ Y
}
,

here yeiθ is the S1 action on Y .
The connection ∇L on L induces a connection on the S1-principal bundle π : Y → X and this

induces a corresponding horizontal bundle T H Y ⊂ T Y . We denote by dθ2 the standard metric on
S1 = R/2πZ. We introduce the metric gT Y = π∗gT X ⊕ dθ2 on T Y corresponding to the direct
sum T Y = T H Y ⊕ T S1 . Associated to (Y, gT Y ) there is the Bochner-Laplacian �Y acting on
functions on Y . By construction, �Y commutes with the generator ∂θ of the circle action, and so
it commutes with the horizontal Laplacian

�h = �Y + ∂2
θ . (3.7)

�h acting on C ∞(Y )p is identical to �Lp
on C ∞(X,Lp) (cf. [10, §2.1]).

By the construction of [13, Lemma 14.11, Theorem A 5.9], [14], [28, (3.13)], there exists a
self-adjoint second-order pseudodifferential operator Q on Y such that

V = �h + √−1τ∂θ − Q (3.8)

is a self-adjoint pseudodifferential operator of order zero on Y , and V and Q commute with the
S1-action. The orthogonal projection Π onto the kernel of Q is called the Szegő projector asso-
ciated with the almost CR manifold Y . In fact, the Szegő projector is not unique or canonically
defined, but the above construction defines a canonical choice of Π modulo smoothing operators.
In the complex case, the construction produces the usual Szegő projector Π .

We denote the operators on C ∞(X,Lp) corresponding to Q, V , Π by Qp,Vp , Πp , especially,

Vp(x, y) = 1
2π

∫ 2π

0 e−ipθV (xeiθ , y) dθ . Then by (3.8),

Qp = �Lp − pτ − Vp. (3.9)

By [28, §4], there exists μ1 > 0 such that for p large,

Spec(Qp) ⊂ {0} ∪ [μ1p,+∞[. (3.10)

Since the operator Vp is uniformly bounded in p, (0.5), (0.6) imply that for p large we have

dim Ker(Qp) = dp =
∫
X

Td(T X) ch
(
Lp
)
. (3.11)

Formula (3.11) was first obtained by Borthwick and Uribe [9].
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Now we explain how to study the Szegő projector Πp
5 using the methods of the present paper.

Recall that F̃ is the function defined after (1.4). Let Πp(x, x′), F̃ (Qp)(x, x′) be the smooth
kernels of Πp , F̃ (Qp) with respect to the Riemannian volume form dvX(x′).

Note that Vp is a 0-order pseudodifferential operator on X induced from a 0-order pseudodif-
ferential operator on Y . Thus (3.9) and (3.10) entail the analogue of [20, Proposition 3.1] (cf.
Proposition 1.2): for every l,m ∈ N, there exists Cl,m > 0 such that for p � 1,∣∣F̃ (Qp)(x, x′) − Πp(x, x′)

∣∣
C m(X×X)

� Cl,mp−l . (3.12)

By finite propagation speed [47, §4.4], we know that F̃ (Qp)(x, x′) only depends on the restric-
tion of Qp to BX(x, ε), and is zero if d(x, x′) � ε. It follows that the asymptotic of Πp(x, x′)
as p → ∞ is localized on a neighborhood of x. Thus we can translate our analysis from X to
the manifold R2n � Tx0X =: X0 as in Section 1.2. Proceeding as in Section 1.2 we extend ∇L to
a Hermitian connection ∇L0 on (L0, h

L0) = (X0 × Lx0 , h
Lx0 ) on Tx0X such that the curvature

RL0 is positive and RL0 = RL
x0

outside a compact set.
Now, by using a micro-local partition of unity, one can still construct the operator QX0 as

in [13, Lemma 14.11, Theorem A 5.9], [14], [28, (3.13)], such that V X0 differs from V by a
smooth operator in a neighborhood of 0 in X0, and QX0 still verifies (3.10). Thus we can work
on C ∞(X0,C) as in Section 1.3. Similar to (1.27) we rescale then the coordinates and use the
norm (1.38). Then V

X0
p is a 0th order pseudodifferential operator on X0 induced from a 0th order

pseudodifferential operator on Y0. This guarantees that the operator obtained by rescaling V
X0
p

has an expansion similar to (1.29) with leading term t2R2, in the sense of pseudodifferential
operators.

Using (3.10), [20, (3.89)] and similar arguments to those from [20, Theorem 4.18], we can
also get the following full off-diagonal expansion (3.13) of the Szegő kernel Πp . More precisely,
recalling that P N(Z,Z′) is the Bergman kernel of L0 as in (1.81) and (1.91) with aj = 2π , we
have:

Theorem 3.5. For every r � 0 there exist a polynomial j r (Z,Z′) in Z,Z′ with the same parity
as r , such that j0 = 1, and a constant C′′ > 0 with the property that for every k,m,m′ ∈ N and
ε > 0 there exist N ∈ N, C > 0 so that the following estimate holds∣∣∣∣ ∂ |α|+|α′|

∂Zα∂Z′α′

(
1

pn
Πp(Z,Z′) −

k∑
r=0

(
j rP

N
)
(
√

pZ,
√

pZ′)κ− 1
2 (Z)κ− 1

2 (Z′)p−r/2
)∣∣∣∣

C m′
(X)

� Cp−(k+1−m)/2(1 + |√pZ| + |√pZ′|)N exp
(−√C′′μ1

√
p|Z − Z′|)+ O

(
p−∞), (3.13)

for all x0 ∈ X and α,α′ ∈ Z
2n with |α| + |α′| � m, Z,Z′ ∈ Tx0X with |Z|, |Z′| � ε, and all

p � 1.

In (3.13) we use the trivializations from Section 1.2; C m′
(X) is the C m′

-norm for the parame-
ter x0 ∈ X. A function is said to be O(p−∞) if for every l, l1 ∈ N, there exists Cl,l1 > 0 such that

5 As Professor Sjőstrand pointed out to us, in general, Πp − P0,p is not O(p−∞) as p → ∞, where P0,p is the
smooth kernel of the operator �0,p (Definition 1.1). This can also be seen from the presence of a contribution coming
from Φ in the expression (0.9) of the coefficient b0,2.
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its C l1 -norm is dominated by Cl,l1p
−l . The term κ− 1

2 in (3.13) comes from the conjugation of
the operators as in (1.113). We leave the details and the generalization in the case of the presence
of a non-trivial twisting vector bundle E to the interested reader.

Theorem 3.5 is closely related to [10,30,43]. More precisely, Shiffman and Zelditch [43, The-
orem 1] prove a similar result for two cases: either for |Z|, |Z′| � C/

√
p or for Z = 0, |Z′| �

Cp−1/3, with C > 0 fixed. This is explained in detail in the recent [44, Theorem 2.4] of the same
authors.

3.3. Symplectic version of Kodaira embedding theorem

Let (X,ω) be a compact symplectic manifold of real dimension 2n and let (L,∇L,hL) be a
pre-quantum line bundle and let gT X be a Riemannian metric on X as in Introduction.

Recall that Hp ⊂ C ∞(X,Lp) is the vector subspace spanned of those eigensections of �p =
�Lp −τp corresponding to eigenvalues from [−CL,CL]. We denote by PH∗

p the projective space
associated to the dual of Hp and we identify PH∗

p with the Grassmannian of hyperplanes in Hp .
The base locus of Hp is the set Bl(Hp) = {x ∈ X: s(x) = 0 for all s ∈ Hp}. As in algebraic
geometry, we define the Kodaira map

Φp : X \ Bl(Hp) −→ PH∗
p,

Φp(x) = {
s ∈ Hp: s(x) = 0

}
(3.14)

which sends x ∈ X \ Bl(Hp) to the hyperplane of sections vanishing at x. Note that Hp is en-
dowed with the induced L2 Hermitian product (1.1) so there is a well-defined Fubini–Study
metric gFS on PH∗

p with the associated form ωFS.

Theorem 3.6. Let (L,∇L) be a pre-quantum line bundle over a compact symplectic manifold
(X,ω). The following assertions hold true:

(i) For large p, the Kodaira maps Φp : X → PH∗
p are well defined.

(ii) The induced Fubini–Study metric 1
p
Φ∗

p(ωFS) converges in the C ∞ topology to ω; for each
l � 0 there exists Cl > 0 such that∣∣∣∣ 1

p
Φ∗

p(ωFS) − ω

∣∣∣∣
C l

� Cl

p
. (3.15)

(iii) For large p the Kodaira maps Φp are embeddings.

Remark 3.7. (1) Assume that X is Kähler and L is a holomorphic bundle. If �Lp
denotes the

Kodaira-Laplacian on Lp , then �p = 2�Lp
, so Hp coincides with the space H 0(X,Lp) of holo-

morphic sections of Lp . Then (i) and (iii) are simply the Kodaira embedding theorem. Assertion
(ii) is due to Tian [48, Theorem A] as an answer to a conjecture of Yau. In [48] the case l = 2
is considered and the left-hand side of (3.15) is estimated by Cl/

√
p. Ruan [42] proved the C ∞

convergence and improved the bound to Cl/p. Both papers use the peak section method, based
on L2-estimates for ∂ . Finally, Catlin and Zelditch, independently, deduced (ii) from the asymp-
totic expansion of the Szegő kernel [17,51]. Bouche [12] proved that the induced Fubini–Study
metric (Φ∗

phO(1))1/p on L converges in the C 0 topology to the initial metric hL.
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(2) Borthwick and Uribe [10, Theorem 1.1], Shiffman and Zelditch [43, Theorems 2, 3] prove
a different symplectic version of [48, Theorem A] when J = J . Instead of Hp , they use the
space H 0

J (X,Lp) := Im(Πp) (cf. [10, p. 601], [43, §2.3] and Section 3.2 of the present paper) of
‘almost holomorphic sections’ proposed by Boutet de Monvel and Guillemin [13,14].

Proof. Let us first give an alternate description of the map Φp which relates it to the Bergman

kernel. Let {Sp
i }dp

i=1 be an arbitrary orthonormal basis of Hp with respect to the Hermitian product
(1.1). Once we have fixed a basis, we obtain an identification Hp

∼= H∗
p

∼= C
dp and PH∗

p
∼=

CP
dp−1. Consider the commutative diagram:

X \ Bl(Hp)

Id

Φp
PH∗

p

∼=

X \ Bl(Hp)
Φ̃p

CP
dp−1.

(3.16)

Then

Φ∗
p(ωFS) = Φ̃∗

p

(√−1

2π
∂∂ log

dp∑
j=1

|wj |2
)

, (3.17)

where [w1, . . . ,wdp ] are homogeneous coordinates in CPdp−1. To describe Φ̃p in a neighbor-

hood of a point x0 ∈ X \ Bl(Hp), we choose a local unity frame eL of L and write S
p
i = f

p
i e

⊗p
L

for some smooth functions f
p
i . Then

Φ̃p(x) = [
f

p

1 (x), . . . , f
p
dp

(x)
]
, (3.18)

and this does not depend on the choice of the frame eL.
(i) Let us choose an unit frame eL of L. Then |Sp

i |2 = |f p
i |2|eL|2p = |f p

i |2, hence

B0,p =
dp∑
i=1

∣∣Sp
i

∣∣2 =
dp∑
i=1

∣∣f p
i

∣∣2.
Since b0,0 > 0, the asymptotic expansion (0.9) shows that B0,p does not vanish on X for p large

enough, so the sections {Sp
i }dp

i=1 have no common zeroes. Therefore Φp and Φ̃p are defined on
all X.

(ii) Let us fix x0 ∈ X. We identify a small geodesic ball BX(x0, ε) to BTx0 X(0, ε) by means
of the exponential map and consider a trivialization of L as in Section 1.2, i.e. we trivialize L

by using a unit frame eL(Z) which is parallel with respect to ∇L along [0,1] � u → uZ for

Z ∈ BTx0X(0, ε). Let ‖w‖2 =∑dp

j=1 |wj |2. We can express the Fubini–Study metric as

√−1

2π
∂∂ log

(‖w‖2)=
√−1

2π

[
1

‖w‖2

dp∑
dwj ∧ dwj − 1

‖w‖4

dp∑
wjwk dwj ∧ dwk

]
,

j=1 j,k=1
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and therefore, from (3.18),

Φ∗
p(ωFS)(x0) =

√−1

2π

[
1

|f p|2
dp∑

j=1

df
p
j ∧ df

p
j − 1

|f p|4
dp∑

j,k=1

f
p
j f

p
k df

p
j ∧ df

p
k

]
(x0)

=
√−1

2π

[
f p(x0, x0)

−1dxdyf
p(x, y) − f p(x0, x0)

−2dxf
p(x, y)

∧ dyf
p(x, y)

]∣∣
x=y=x0

, (3.19)

where f p(x, y) =∑dp

i=1 f
p
i (x)f

p
i (y) and |f p(x)|2 = f p(x, x). Since

P0,p(x, y) = f p(x, y)e
p
L(x) ⊗ e

p
L(y)∗, (3.20)

thus P0,p(x, y) is f p(x, y) under our trivialization of L. By (1.31), Theorem 1.18, and (1.113),
we obtain

1

p
Φ∗

p(ωFS)(x0) =
√−1

2π

[
1

F0,0
dxdyF0,0 − 1

F 2
0,0

dxF0,0 ∧ dyF0,0

]
(0,0)

−
√−1

2π

1√
p

[
1

F 2
0,0

(dxF0,1 ∧ dyF0,0 + dxF0,0 ∧ dyF0,1)

]
(0,0)

+ O(1/p). (3.21)

Using again (1.91) and (1.109), we obtain

1

p
Φ∗

p(ωFS)(x0) =
√−1

4π

n∑
j=1

ajdzj ∧ dzj |x0 + O

(
1

p

)
= ω(x0) + O

(
1

p

)
, (3.22)

and the convergence takes place in the C ∞ topology with respect to x0 ∈ X.
(iii) Since X is compact, we have to prove two things for p sufficiently large: (a) Φp are

immersions and (b) Φp are injective. We note that (a) follows immediately from (3.15).
To prove (b) let us assume the contrary, namely that there exists a sequence of distinct points

xp �= yp such that Φp(xp) = Φp(yp). Relation (3.16) implies that Φ̃p(xp) = Φ̃p(yp), where Φ̃p

is defined by an arbitrary choice of basis.
The key observation is that Theorem 1.19 ensures the existence of a sequence of peak sections

at each point of X. The construction goes like follows. Let x0 ∈ X be fixed. Since Φp is base
point free for large p, we can consider the hyperplane Φp(x0) of all sections of Hp vanishing

at x0. We construct then an orthonormal basis {Sp
i }dp

i=1 of Hp such that the first dp − 1 elements
belong to Φp(x0). Then S

p
dp

is a unit norm generator of the orthogonal complement of Φp(x0),

and will be denoted by S
p
x0 . This is a peak section at x0. We note first that |Sp

x0(x0)|2 = B0,p(x0)

and P0,p(x, x0) = S
p
x0(x) ⊗ S

p
x0(x0)

∗ and therefore

S
p
x0(x) = 1

B (x )
P0,p(x, x0) · Sp

x0(x0). (3.23)

0,p 0
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From (1.113) we deduce that for a sequence {rp} with rp → 0 and rp
√

p → ∞,∫
B(x0,rp)

∣∣Sp
x0(x)

∣∣2 dvX(x) = 1 − O(1/p), for p → ∞. (3.24)

Relation (3.24) explains the term ‘peak section’: when p grows, the mass of S
p
x0 concentrates

near x0. Since Φp(xp) = Φp(yp) we can construct as before the peak section S
p
xp

= S
p
yp

as the
unit norm generator of the orthogonal complement of Φp(xp) = Φp(yp). We fix in the sequel
such a section which peaks at both xp and yp .

We consider the distance d(xp, yp) between the two points xp and yp . By passing to a subse-
quence we have two possibilities: either

√
p d(xp, yp) → ∞ as p → ∞ or there exists a constant

C > 0 such that d(xp, yp) � C/
√

p for all p.
Assume that the first possibility is true. For large p, we learn from relation (3.24) that the

mass of S
p
xp

= S
p
yp

(which is 1) concentrates both in neighborhoods B(xp, rp) and B(yp, rp)

with rp = d(xp, yp)/2 and approaches therefore 2 if p → ∞. This is a contradiction which rules
out the first possibility.

To exclude the second possibility we follow [43]. We identify as usual BX(xp, ε) to
BTxp X(0, ε) so the point yp gets identified to Zp/

√
p where Zp ∈ BTxp X(0,C). We define then

fp : [0,1] −→ R, fp(t) = |Sp
xp

(tZp/
√

p)|2
B0,p(tZp/

√
p)

. (3.25)

We have fp(0) = fp(1) = 1 (again because S
p
xp

= S
p
yp

) and fp(t) � 1 by the definition of the
generalized Bergman kernel. We deduce the existence of a point tp ∈ ]0,1[ such that f ′′

p (tp) = 0.
The expansion (1.113) and formulas (3.23), (3.25) imply the estimate

fp(t) = e
− t2

4

∑
j aj |zp,j |2(1 + gp(tZp)/

√
p
)

(3.26)

where the C 2 norm of gp over BTxp X(0,C) is uniformly bounded in p. We infer from (3.26)
that |Zp|20 := 1

4

∑
j aj |zp,j |2 = O(1/

√
p). Using the limited expansion ex = 1 + x + x2ϕ(x) for

x = t2|Zp|20 in (3.26) and taking derivatives, we obtain

f ′′
p (t) = −2|Zp|20 + O

(|Zp|40
)+ O

(|Zp|20/
√

p
)= (−2 + O(1/

√
p )
)|Zp|20.

Evaluating the latter expression at tp we get 0 = f ′′
p (tp) = (−2 + O(1/

√
p ))|Zp|20, which is a

contradiction since by assumption Zp �= 0. This finishes the proof of (iii). �
Remark 3.8. Let us point out complementary results which are analogues of [10, (1.3)–(1.5)]
for the spaces Hp . Computing as in (3.19) the pull-back Φ∗

phFS of the Hermitian metric hFS =
gFS − √−1ωFS on PH∗

p , we get the similar inequality to (3.15) for gFS and ω(· , J ·). Thus,
Φp are asymptotically symplectic and isometric. Moreover, arguing as in [10, Proposition 4.4]
we can show that Φp are ‘nearly holomorphic’:

1 ‖∂Φp‖ � C,
1 ‖∂Φp‖ = O(1/p), for some C > 0, (3.27)
p p
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uniformly on X, where ‖ · ‖ is the pointwise operator norm.

3.4. Holomorphic case revisited

In this section we assume that (X,J,ω) is Kähler, the vector bundles E,L are holomorphic
on X, and ∇E,∇L are the holomorphic Hermitian connections on (E,hE), (L,hL). As usual,√−1

2π
RL = ω.

However, we will work with an arbitrary (non-Kähler) Riemannian metric gT X on T X com-
patible with J . That is, in general J �= J , where J is defined in (0.2). The use of non-Kähler
metrics is useful in Section 3.6, for example. Set6

Θ(X,Y ) = gT X(JX,Y ). (3.28)

Then the 2-form Θ need not to be closed. We denote by T (1,0)X, T (0,1)X the holomorphic
and anti-holomorphic tangent bundles as in Section 1.4. Let {ei} be an orthonormal frame of
(T X,gT X).

Let gT X
ω (· , ·) := ω(· , J ·) be the metric on T X induced by ω,J . We will use a subscript ω to

indicate the objects corresponding to gT X
ω , especially rX

ω is the scalar curvature of (T X,gT X
ω ),

and �ω is the Bochner-Laplacian as in (1.2) associated to gT X
ω .

Let ∂Lp⊗E,∗ be the formal adjoint of the Dolbeault operator ∂Lp⊗E on the Dolbeault complex
Ω0,•(X,Lp ⊗ E) with the Hermitian product induced by gT X , hL, hE as in (1.1). Set

Dp = √
2
(
∂Lp⊗E + ∂Lp⊗E,∗).

Then

D2
p = 2

(
∂Lp⊗E∂Lp⊗E,∗ + ∂Lp⊗E,∗∂Lp⊗E

)
preserves the Z-grading of Ω0,•(X,Lp ⊗ E). Then for p large enough,

Ker(Dp) = Ker
(
D2

p

)= H 0(X,Lp ⊗ E
)
. (3.29)

Here Dp is not a spinc Dirac operator on Ω0,•(X,Lp ⊗ E), and D2
p is not a renormalized

Bochner-Laplacian as in (0.4).
Let Pp(x, x′) (x, x′ ∈ X) be the smooth kernel of the orthogonal projection Pp from

C ∞(X,Lp ⊗ E) on Ker(D2
p) with respect to the Riemannian volume form dvX(x′) for p large

enough. Recall that we denote by detC the determinant function on the complex bundle T (1,0)X.
We denote by |J | = (−J 2)−1/2, then detC |J | = (2π)−nΠiai under the notation in (1.82). Now
we explain how to put it in the frame of our work.

6 The convention here differs from [3, (2.1)] by a factor −1.
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Theorem 3.9. The smooth kernel Pp(x, x′) has a full off-diagonal asymptotic expansion analo-
gous to (3.13) with j0 = 1 as p → ∞. The corresponding term b0,1 in the expansion (0.9) of
B0,p(x) := Pp(x, x) is given by

b0,1 = detC |J |
8π

[
rX
ω − 2�ω

(
log

(
detC|J |))+ 4RE(wω,j ,wω,j )

]
. (3.30)

here {wω,j } is an orthonormal basis of (T (1,0)X,gT X
ω ).

Proof. As pointed out in [33, Remark 3.1], [5, Theorem 1] implies that there exist μ0,CL > 0
such that for every p ∈ N and s ∈ Ω>0(X,Lp ⊗ E) :=⊕

q�1 Ω0,q (X,Lp ⊗ E),

‖Dps‖2
L2 � (2pμ0 − CL)‖s‖2

L2 . (3.31)

Moreover Spec(D2
p) ⊂ {0} ∪ [2pμ0 − CL,+∞[.

Let S−B denote the 1-form with values in antisymmetric elements of End(T X) which satisfies

〈
S−B(U)V,W

〉= √−1

2

(
(∂ − ∂)Θ

)
(U,V,W) (3.32)

for all U,V,W ∈ T X. The Bismut connection ∇−B on T X is defined by

∇−B = ∇T X + S−B. (3.33)

Then by [3, Prop. 2.5], ∇−B preserves the metric gT X and the complex structure of T X. Let ∇det

be the holomorphic Hermitian connection on det(T (1,0)X) with its curvature Rdet. Then these two
connections induce naturally a unique connection on Λ(T ∗(0,1)X) which preserves its Z-grading,
and with the connections ∇L,∇E , we get a connection ∇−B,Ep on Λ(T ∗(0,1)X) ⊗ Lp ⊗ E. Let
�−B,Ep be the Laplacian on Λ(T ∗(0,1)X) ⊗ Lp ⊗ E induced by ∇−B,Ep as in (1.2). For each
v ∈ T X with decomposition v = v1,0 + v0,1 ∈ T (1,0)X ⊕ T (0,1)X, let v∗

1,0 ∈ T ∗(0,1)X be the
metric dual of v1,0. Then

c(v) = √
2
(
v∗

1,0 ∧ −iv0,1

)
defines the Clifford action of v on Λ(T ∗(0,1)X), where ∧ and i denote the exterior and in-
terior product respectively. We define a map c : Λ(T ∗X) → C(T X), the Clifford bundle of
T X, by sending ei1 ∧ · · · ∧ eij to c(ei1) · · · c(eij ) for i1 < · · · < ij . For B ∈ Λ3(T ∗X), set
|B|2 =∑

i<j<k |B(ei, ej , ek)|2. Then we can formulate [3, Theorem 2.3] as follows:

D2
p = �−B,Ep + rX

4
+ c

(
RE + pRL + 1

2
Rdet

)
+

√−1

2
c(∂∂Θ) − 1

8

∣∣(∂ − ∂)Θ
∣∣2. (3.34)

We use now the connection ∇−B,Ep instead of ∇Ep in [20, §2]. Then by (3.31), (3.34), every-
thing goes through perfectly well and as in [20, Theorem 4.18], so we can directly apply the
result in [20] to get the full off-diagonal asymptotic expansion of the Bergman kernel. Since the
above construction preserves the Z-grading on Ω0,•(X,Lp ⊗ E), we can also directly work on
C ∞(X,Lp ⊗ E).
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Now, we need to compute the corresponding b0,1. We endow E with the metric hE
ω :=

(detC|J |)−1hE and let RE
ω be the curvature associated to the holomorphic Hermitian connec-

tion of (E,hE
ω ). Then

RE
ω = RE − ∂∂ log

(
detC|J |). (3.35)

Thus

√−1RE
ω (eω,j , J eω,j ) = 2RE

ω (wω,j ,wω,j ) = √−1RE(eω,j , J eω,j ) − �ω log
(
detC|J |).

(3.36)

Let 〈· , ·〉ω be the L2-Hermitian product on C ∞(X,Lp ⊗ E) induced by gT X
ω , hL, hE

ω . Then(
C ∞(X,Lp ⊗ E

)
, 〈· , ·〉ω

)= (
C ∞(X,Lp ⊗ E

)
, 〈· , ·〉), dvX,ω = (

detC|J |)dvX. (3.37)

Observe that H 0(X,Lp ⊗ E) does not depend on gT X , hL or hE . If Pω,p(x, x′), (x, x′ ∈ X)
denotes the smooth kernel of the orthogonal projection from (C ∞(X,Lp ⊗ E), 〈· , ·〉ω) onto
H 0(X,Lp ⊗ E) with respect to dvX,ω(x), we have

Pp(x, x′) = (
detC|J |(x′)

)
Pω,p(x, x′). (3.38)

Now for the kernel Pω,p(x, x′), we can apply Theorem 0.1 (or [20, Theorem 1.3]) since
gT X

ω (· , ·) = ω(· , J ·) is a Kähler metric on T X, and (3.30) follows from (0.8) and (3.36). �
Remark 3.10. The argument in this subsection goes through the orbifold case as in [20, Sec-
tion 4.2].

3.5. Generalizations to non-compact manifolds

As in Section 3.4, we consider a complex Hermitian manifold (X,J,Θ) of dimension n,
where J is the complex structure and Θ is the (1,1) form associated to a Riemannian metric
gT X compatible with J as in (3.28). The Hermitian torsion of Θ is T = [i(Θ), ∂Θ], where
i(Θ) = (Θ ∧ ·)∗ is the interior multiplication with Θ . Let (L,hL) and (E,hE) be holomorphic
Hermitian vector bundles over X, with rk(L) = 1. We denote by RL, RE and Rdet the curvatures
of the holomorphic Hermitian connections ∇L, ∇E and ∇det on L, E and det(T (1,0)X). Let

JL ∈ End(T X) be the endomorphism satisfying
√−1
2π

RL(· , ·) = Θ(JL · , ·). The line bundle L

is supposed to be positive and we set ω =
√−1
2π

RL. We also keep the notations gT X
ω , �ω and rX

ω

when we refer to Section 3.4.
The space of holomorphic sections of Lp ⊗ E which are L2 with respect to the norm given

by (1.1) is denoted by H 0
(2)(X,Lp ⊗ E). Let Pp(x, x′) (x, x′ ∈ X) be the Schwartz kernel of the

orthogonal projection Pp from the L2 section of Lp ⊗ E onto H 0
(2)

(X,Lp ⊗ E) with respect
to the Riemannian volume form dvX(x′) associated to (X,Θ). Then by the ellipticity of the
Kodaira-Laplacian and Schwartz kernel theorem, we know Pp(x, x′) is C ∞. We set Bp(x) :=
Pp(x, x) ∈ C ∞(X,End(E)).

For a (1,1)-form Ω , we write Ω > 0 (resp. � 0) if Ω(· , J ·) > 0 (resp. � 0). For two (1,1)-
forms Ω and Ω ′ we write Ω > Ω ′ (resp. Ω � Ω ′) if Ω − Ω ′ > 0 (resp. Ω − Ω ′ � 0). We have
the following generalization of Theorem 0.1.
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Theorem 3.11. Assume that (X,Θ) is a complete Hermitian manifold. Suppose that there exist
ε > 0, C > 0 such that:

√−1RL � εΘ,
√−1

(
Rdet + RE

)
� −CΘ IdE, |∂Θ|gT X < C. (3.39)

Then for every compact K ⊂ X, the kernel Pp(x, x′) has a full off-diagonal asymptotic expansion
analogous to (3.13) with j0 = IdE as p → ∞, uniformly for every x, x′ ∈ K . Especially there
exist coefficients br ∈ C ∞(X,End(E)), r ∈ N, such that for every compact set K ⊂ X and every
k, l ∈ N, there exists Ck,l,K > 0 with∣∣∣∣∣ 1

pn
Bp(x) −

k∑
r=0

br(x)p−r

∣∣∣∣∣
C l (K)

� Ck,l,Kp−k−1, for all p ∈ N
∗. (3.40)

Moreover, b0 = detC |JL| and b1 equals b0,1 given in (3.30).

Let us remark that if L = KX := det(T ∗(1,0)X) is the canonical line bundle on X, the first two
conditions in (3.39) are to be replaced by

hL is induced by Θ and
√−1Rdet < −εΘ,

√−1RE > −CΘ IdE (3.41)

and the conclusions are still valid. If (X,Θ) is Kähler then ∂Θ = 0, so the third condition in
(3.39) is trivially satisfied.

Proof. By the argument in Section 1.1, if the Kodaira-Laplacian �Lp⊗E = 1
2�p := 1

2�p,0 acting
on sections of Lp ⊗ E has a spectral gap as in (0.5), then we can localize the problem, and we
get directly (3.40) from Section 1.3. Observe that D2

p|Ω0,0 = �p . In general, on a non-compact

manifold, we define a self-adjoint extension of D2
p by

DomD2
p = {

u ∈ Dom ∂E
p ∩ Dom ∂E,∗

p : ∂E
p u ∈ Dom ∂E,∗

p , ∂E,∗
p u ∈ Dom ∂E

p

}
,

D2
pu = 2

(
∂E

p ∂E,∗
p + ∂E,∗

p ∂E
p

)
u, for u ∈ DomD2

p,

where we set ∂E
p := ∂Lp⊗E . The quadratic form associated to D2

p is the form pQp given by

DomQp := Dom ∂E
p ∩ Dom ∂Ep,∗,

pQp(u, v) = 2
〈
∂E

p u, ∂E
p v
〉+ 2

〈
∂E,∗

p u, ∂E,∗
p v

〉
, u, v ∈ DomQp. (3.42)

In the previous formulas ∂E
p is the maximal extension of ∂E

p to L2 forms and ∂
E,∗
p is its Hilbert

space adjoint. We denote by Ω
0,•
0 (X,Lp ⊗ E) the space of smooth compactly supported forms

and by L2
0,•(X,Lp ⊗ E) the corresponding L2-completion.

Under hypothesis (3.39) there exists μ > 0 such that for p large enough

pQp(u) � μp‖u‖2, u ∈ DomQp ∩ L2
0,q

(
X,Lp ⊗ E

)
for q > 0. (3.43)
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Indeed, the estimate holds for u ∈ Ω
0,q

0 (X,Lp ⊗E) since the Bochner–Kodaira–Nakano formula
with torsion term of Demailly ([23, Th. 0.3], [41, Th. 1.5], [5, (8)], or [36, Cor. 1.4.17]) delivers

pQp(u) � 4

3

〈(
pRL + RE + Rdet)(wi,wj )w

j ∧ iwi
u,u

〉
− 2

3

(‖T ũ‖2 + ‖T ∗ũ‖2 + ‖T ∗ũ‖2) (3.44)

for u ∈ Ω
0,q

0 (X,Lp ⊗E), where {wi} is an orthonormal frame of T (1,0)X and ũ ∈ Ω
n,q

0 (X,Lp ⊗
E ⊗ K∗

X) is induced by u and the canonical identification KX ⊗ K∗
X � C. Relations (3.44) and

(3.39) imply (3.43) for u ∈ Ω
0,q

0 (X,Lp ⊗ E). Since Ω
0,•
0 (X,Lp ⊗ E) is dense in DomQp with

respect to the graph norm (due to the completeness of the metric gT X), (3.43) holds in general.
Next, consider f ∈ Dom�p ∩ L2

0,0(X,Lp ⊗ E) and set u = ∂E
p f . It follows from the defini-

tion of the Laplacian and (3.43) that

‖�pf ‖2 = 4
〈
∂E,∗

p u, ∂E,∗
p u

〉= 2pQp(u) � 2μp‖u‖2 = μp〈�pf,f 〉. (3.45)

This clearly implies

Spec(�p) ⊂ {0} ∪ [pμ,∞[ for large p.

What concerns b1, the argument leading to (3.35)–(3.38) still holds locally, thus we get b1
from (3.30). �

Theorem 3.11 permits an immediate generalization of Tian’s convergence theorem. Tian [48,
Theorem 4.1] already generalized the convergence in the C 2 topology and convergence rate
1/

√
p to complete Kähler manifolds X with some conditions on their Ricci curvature. When X

is a quasi-projective manifold the generalization is used to prove estimates involving the Ricci
form and results about its extension to a smooth projective compactification of X.

Another easy consequence of Theorem 3.11 are holomorphic Morse inequalities for the space
H 0

(2)(X,Lp).

For simplicity we consider now rk(E) = 1, with the important case E = KX = det(T ∗(1,0)X)

in mind. Choose an orthonormal basis (S
p
i )i�1 of H 0

(2)(X,Lp ⊗ E). For each local holomorphic
frames eL and eE of L and E we have

S
p
i = f

p
i e

⊗p
L ⊗ eE (3.46)

for some local holomorphic functions f
p
i . Then Bp(x) = Pp(x, x) = ∑

i�1 |Sp
i (x)|2 =∑

i�1 |f p
i (x)|2|e⊗p

L |2
hLp |eE |2

hE is a smooth function. Observe that the quantity
∑

i�1 |f p
i (x)|2 is

not globally defined, but the current

ωp =
√−1

2π
∂∂ log

(∑∣∣f p
i (x)

∣∣2) (3.47)

i�1
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is well defined globally on X. Indeed, since RL = −∂∂ log |eL|2
hL and RE = −∂∂ log |eE |2

hE we
have

1

p
ωp −

√−1

2π
RL =

√−1

2πp
∂∂ logBp +

√−1

2πp
RE. (3.48)

If E is trivial of rank one and dimH 0
(2)(X,Lp) < ∞, we have by (3.14) that ωp = Φ∗

p(ωFS)

where Φp is defined as in (3.14) with Hp replaced by H 0
(2)(X,Lp).

We will call a connected complex manifold X Andreotti pseudoconcave if there exists a non-
empty relatively compact open set M � X with smooth boundary ∂M such that the Levi form of
M restricted to the analytic tangent space T (1,0)∂M has at least one negative eigenvalue at each
point of ∂M .

Corollary 3.12. Assume that rk(E) = 1 and (3.39) holds true. Then:

(a) for each compact set K ⊂ X the restriction ωp|K is a smooth (1,1)-form for sufficiently
large p; moreover, for every l ∈ N there exists a constant Cl,K such that∣∣∣∣ 1

p
ωp −

√−1

2π
RL

∣∣∣∣
C l (K)

� Cl,K

p
;

(b) the Morse inequalities hold in bidegree (0,0):

lim inf
p→∞ p−n dimH 0

(2)

(
X,Lp ⊗ E

)
� 1

n!
∫
X

(√−1

2π
RL

)n

; (3.49)

(c) if X is Andreotti pseudoconcave, then the manifold (X,Θ) has finite volume.

Proof. Due to (3.40), Bp does not vanish on any given compact set K for p sufficiently large.
Thus, (a) is a consequence of (3.40) and (3.48).

Part (b) follows from Fatou’s lemma, applied on X with the measure Θn/n! to the sequence

p−nBp which converges pointwise to (detJL)1/2 = (√−1
2π

RL
)n

/Θn on X.
If X is Andreotti pseudoconcave, then dimH 0(X,F ) < ∞ for every holomorphic line bundle

F on X. Moreover, it is shown in [37] and [36, Theorem 3.4.5] that there exists a constant C > 0
such that for all p � 1 we have dimH 0(X,Lp) � Cpn. Assertion (c) follows immediately from
the latter estimate and (3.49). �
Remark 3.13. Under the hypothesis (3.41), the inequality (3.49) (with E trivial) is [39, Theo-
rem 1.1] of Nadel and Tsuji, where Demailly’s holomorphic inequalities [22] on compact sets
K ⊂ X were used. The volume estimate is essential in their compactification theorem of complete
Kähler manifolds with negative Ricci curvature (a generalization of the fact that arithmetic va-
rieties can be complex-analytically compactified). The Morse inequalities (3.49) were also used
by Napier and Ramachandran [40] to show that some quotients of the unit ball in C

n (n > 2) hav-
ing a strongly pseudoconvex end have finite topological type (for the compactification of such
quotients see also [38]).
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Another generalization is a version of Theorem 0.1 for covering manifolds. Let X̃ be a para-
compact smooth manifold, such that there is a discrete group Γ acting freely on X̃ with a compact
quotient X = X̃/Γ . Let πΓ : X̃ → X be the projection. Assume that there exists a Γ -invariant

pre-quantum line bundle L̃ on X̃ and a Γ -invariant connection ∇L̃ such that ω̃ =
√−1
2π

(∇L̃)2

is non-degenerate. We endow X̃ with a Γ -invariant Riemannian metric gT X̃ . Let J̃ be an Γ -
invariant almost complex structure on T X̃ which is separately compatible with ω̃ and gT X̃ . Then
J̃, gT X̃ , ω̃, J̃ , L̃, Ẽ are the pull-back of the corresponding objects in Introduction by the projec-
tion πΓ : X̃ → X. Let Φ be a smooth Hermitian section of End(E), and Φ̃ = Φ ◦ πΓ . Then the
renormalized Bochner-Laplacian �̃p,Φ̃ is

�̃p,Φ̃ = �L̃p⊗Ẽ − p(τ ◦ πΓ ) + Φ̃

which is an essentially self-adjoint operator. It is shown in [33, Corollary 4.7] that

Spec(�̃p,Φ̃ ) ⊂ [−CL,CL] ∪ [2pμ0 − CL,+∞[, (3.50)

where CL is the same constant as in Introduction and μ0 is introduced in (0.3). Let H̃p be the
eigenspace of �̃p,Φ̃ with the eigenvalues in [−CL,CL]:

H̃p = RangeE
([−CL,CL], �̃p,Φ̃

)
, (3.51)

where E(· , �̃p,Φ̃) is the spectral measure of �̃p,Φ̃ . From [33, Corollary 4.7], the von Neumann

dimension of H̃p equals dp = dimHp for p large enough. Finally, we define the generalized
Bergman kernel P̃q,p of �̃p,Φ̃ as in Definition 1.1. Unlike most of the objects on X̃, P̃q,p is not
Γ -invariant.

Theorem 3.14. We fix 0 < ε0 < infx∈X{injectivity radius of x}. Then for every k, l ∈ N, there
exists Ck,l > 0 such that for all x, x′ ∈ X̃, p ∈ N

∗, the following estimates hold:∣∣P̃q,p(x, x′) − Pq,p

(
πΓ (x),πΓ (x′)

)∣∣
C l � Ck,lp

−k−1, if d(x, x′) < ε0,∣∣P̃q,p(x, x′)
∣∣
C l � Ck,l,p

−k−1, if d(x, x′) � ε0. (3.52)

Especially, P̃q,p(x, x) has uniformly on X̃ the same asymptotic expansion as that of Pq,p(πΓ (x),

πΓ (x)) given in Theorem 0.1.

Proof. Let {ϕi} be a partition of unity subordinate to {Ui = BX(xi, ε)} as in Section 1.1. Then
{ϕ̃γ,i = ϕi ◦ πΓ } is a partition of unity subordinate to {Ũγ,i} where π−1

Γ (Ui) =⋃
γ∈Γ Ũγ,i and

Ũγ1,i and Ũγ2,i are disjoint for γ1 �= γ2. The proof of Proposition 1.2 still holds for the pair
{ϕ̃γ,i}, {Ũγ,i}, since we can apply the Sobolev embedding theorems with uniform constant on
Ũγ,i . Thus, the analogue of (1.7) holds uniformly on X̃. Using the finite propagation speed as at
the end of Section 1.1, we conclude. �
Remark 3.15. Theorem 3.14 can be generalized for coverings of non-compact manifolds in the
spirit of Theorem 3.11. Let (X,Θ) be a complete Kähler manifold, (L,hL) be a holomorphic
line bundle on X and let πΓ : X̃ → X be a Galois covering of X = X̃/Γ . Let Θ̃ and (L̃, hL̃)
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be the inverse images of Θ and (L,hL) through πΓ . If (X,Θ) and (L,hL) satisfy one of the
conditions (3.39) or (3.41), (X̃, Θ̃) and (L̃, hL̃) have the same properties. We obtain therefore as
in (3.49) (by integrating over a fundamental domain):

lim inf
p→∞ p−n dimΓ H 0

(2)

(
X̃, L̃p

)
� 1

n!
∫
X

(√−1

2π
RL

)n

, (3.53)

where dimΓ is the von Neumann dimension of the Γ -module H 0
(2)

(X,Lp). Such type of inequal-
ities was proved in [49] and they imply weak Lefschetz theorems à la Nori.

The example of non-compact manifolds emphasizes very well our approach to the existence
of the asymptotic expansion of the Bergman kernel of Laplacian type operators when the power
of the line bundle tends to infinity. In fact, the argument in Section 1.1 shows that the spectral gap
property allows to localize our problem whether the manifold X is compact or not. Thus from
the argument in Section 1.3 or [20, §4.4], it implies the existence of the asymptotic expansion.
Moreover, the formal power series artifice in Section 1.5 gives a general way to compute the
coefficients. As an example, we state the following result which is an extension of [20, Theo-
rem 4.18] to non-compact case and we use the notation therein. Let (X,gT X) be a Riemannian
manifold with almost complex structure J which is compatible with gT X , and let (L,hL,∇L)

and (E,hE,∇E) be Hermitian bundles as in Introduction. We consider the associated spinc Dirac
operator Dp . Let RT (1,0)X be the curvature of the connection on T (1,0)X induced by ∇T X by
projection. We denote by IC⊗E the projection from Λ(T ∗(0,1)X) ⊗ E onto C ⊗ E under the
decomposition Λ(T ∗(0,1)X) = C ⊕ Λ>0(T ∗(0,1)X).

Theorem 3.16. Suppose that (X,gT X) is complete and the scalar curvature rX of (X,gT X), RE

and Tr[RT (1,0)X] are uniformly bounded on (X,gT X). Assume also that there exists ε > 0 such
that on X,

√−1RL(· , J ·) > εgT X(· , ·). (3.54)

Then the smooth kernel Pp(x, x′) with respect to dvX(x′) of the orthogonal projection Pp from
L2

0,•(X,Lp ⊗ E) onto Ker(Dp) has a full off-diagonal expansion as p → ∞ uniformly on com-
pact sets of X, analogous to Theorem 3.11. In the present case j0 = IC⊗E .

Proof. By the proof of [33, Theorem 2.5], we know that the spectral gap property Spec(D2
p) ⊂

{0} ∪ [2μ0p − CL,∞[ still holds under our condition. Then the arguments outlined above allow
to conclude. �
3.6. Singular polarizations

Let (X,J ) be a compact complex manifold. A singular Kähler metric on X is a closed,
strictly positive (1,1)-current ω. This means there exist locally strictly plurisubharmonic func-
tions ϕ ∈ L1

loc such that
√−1∂∂ϕ = ω.

If the cohomology class of ω in H 2(X,R) is integral, there exists a holomorphic line bundle

(L,hL), endowed with a singular Hermitian metric, such that
√−1
2π

RL = ω in the sense of cur-
rents. We call (L,hL) a singular polarization of ω. If we change the metric hL, the curvature of



1810 X. Ma, G. Marinescu / Advances in Mathematics 217 (2008) 1756–1815
the new metric will be in the same cohomology class as ω. In this case we speak of a polarization
of [ω] ∈ H 2(X,R). Our purpose is to define an appropriate notion of polarized section of Lp ,
possibly by changing the metric of L, and study the associated Bergman kernel.

First recall that a Hermitian metric hL is called singular if it is given in local trivialization by
functions e−ϕ with ϕ ∈ L1

loc. The curvature current RL of hL is well defined and given locally
by the currents ∂∂ϕ.

By the approximation theorem of Demailly [24, Theorem 1.1], we can assume that hL is
smooth outside a proper analytic set Σ ⊂ X. Using this fundamental fact, we will introduce
in the sequel the generalized Poincaré metric on X \ Σ . Let π : X̃ → X be a resolution of
singularities such that π : X̃ \ π−1(Σ) → X \ Σ is biholomorphic and π−1(Σ) is a divisor
with only simple normal crossings. Let gT X̃

0 be an arbitrary smooth J -invariant metric on X̃

and Θ ′(· , ·) = gT X̃
0 (J · , ·) the corresponding (1,1)-form. The generalized Poincaré metric on

X \ Σ = X̃ \ π−1(Σ) is defined by (cf. [16, §2], [18, §6])

Θε0 = Θ ′ − ε0
√−1

∑
i

∂∂ log
((− log‖σi‖2

i

)2)
, 0 < ε0 � 1 fixed, (3.55)

where π−1(Σ) = ⋃
i Σi is the decomposition into irreducible components Σi of π−1(Σ) and

each Σi is non-singular; σi are sections of the associated holomorphic line bundle [Σi] which
vanish to first order on Σi , and ‖σi‖i is the norm for a smooth Hermitian metric on [Σi] such that
‖σi‖i < 1. The first part of the following lemma generalizes previous work on the generalized
Poincaré metric [16,18,52].

Lemma 3.17.

(i) The generalized Poincaré metric (3.55) is a complete Hermitian metric of finite volume. Its
Hermitian torsion Tε0 = [i(Θε0), ∂Θε0 ] and the curvature Rdet are bounded.

(ii) If (E,hE) is a holomorphic vector bundle over X with smooth Hermitian metric hE and

H 0
(2)(X \ Σ,E) = {

u ∈ L2
0,0

(
X \ Σ,E,Θε0, h

E
)
: ∂Eu = 0

}
then

H 0
(2)(X \ Σ,E) = H 0(X,E).

Proof. To describe the metric more precisely we denote by D the unit disc in C and D
∗ = D\{0}.

On the product (D∗)l × D
n−l we introduce the metric

ωP =
√−1

2

l∑
k=1

dzk ∧ dzk

|zk|2(log |zk|2)2
+

√−1

2

n∑
k=l+1

dzk ∧ dzk. (3.56)

For each point x ∈ π−1(Σ) there exists a coordinate neighbourhood U of x isomorphic to D
n in

which (X̃ \ π−1(Σ)) ∩ U = {z = (z1, . . . , zn): z1 �= 0, . . . , zl �= 0}. Such coordinates are called
special. We endow (X̃ \ π−1(Σ)) ∩ U ∼= (D∗)l × D

n−l with the metric (3.56). We have

−√−1∂∂ log
((− log‖σi‖2

i

)2)= 2
√−1

(
R[Σi ]

log‖σ ‖2
+ ∂ log‖σi‖2

i ∧ ∂ log‖σi‖2
i

(log‖σ ‖2)2

)
. (3.57)
i i i i



X. Ma, G. Marinescu / Advances in Mathematics 217 (2008) 1756–1815 1811
Since the terms R[Σi ]/ log‖σi‖2
i tend to zero as we approach Σ ,

Θ ′ + 2
√−1ε0

∑
i

R[Σi ]

log‖σi‖2
i

> 0, (3.58)

for ε0 small enough. The last term in (3.57) is � 0, since
√−1∂g∧∂g � 0 for every real function

g on X̃. Thus Θε0 is positive for ε0 small enough.
We choose special coordinates in a neighborhood U of x0 in which Σj has the equation zj = 0

for j = 1, . . . , k and Σj , j > k, do not meet U . Then for 1 � i � k, ‖σi‖2
i = ϕi |zi |2 for some

positive smooth function ϕi on U and

∂ log‖σi‖2
i ∧ ∂ log‖σi‖2

i

(log‖σi‖2
i )

2
= dzi ∧ dzi + ψi

|zi |2(log‖σi‖2
i )

2
(3.59)

where ψi is a smooth (1,1)-form on U such that ψi |zi=0 = 0.
As in [52, Prop. 3.4], we show using (3.57) and (3.59) that the metrics (3.55) and (3.56) are

equivalent for |zi | small. From this the first assertion of (i) follows.
Recall that Rdet is the curvature of the holomorphic Hermitian connection on det(T (1,0)X)

with respect to the Hermitian metric induced by Θε0 . We wish to show that there exist a constant
C > 0 such that

−CΘε0 <
√−1Rdet < CΘε0 , |Tε0 |Θε0

< C, (3.60)

where Tε0 = [i(Θε0), ∂Θε0 ] is the Hermitian torsion operator of Θε0 and |Tε0 |Θε0
is its norm with

respect to Θε0 . Since ∂Θε0 = ∂Θ ′ by (3.55), ∂Θε0 extends smoothly over X̃, and thus we get the
second relation of (3.60).

We turn now to the first condition of (3.60). By (3.55), (3.57) and (3.59), we know that

Θn
ε0

= 2kεk
0 + β(z)∏k

i=1 |zi |2(log‖σi‖2
i )

2

n∏
j=1

(
√−1dzj ∧ dzj ) =: γ (z)

n∏
j=1

(
√−1dzj ∧ dzj ). (3.61)

Here β(z) is a polynomial in the functions aiα(z)|zi |2(log‖σi‖2
i )

2, biα(z)|zi |2 log‖σi‖2
i and

ciα(z) (1 � i � k), with aiα, biα smooth functions on U and ciα smooth functions on U such
that ciα(z)|zi=0 = 0. Moreover, 2kεk

0 + β(z) is positive on U as Θε0 is positive. Since

∣∣∣∣ ∂

∂z1
∧ · · · ∧ ∂

∂zn

∣∣∣∣2
Θε0

n∏
j=1

(
√−1dzj ∧ dzj ) = Θn

ε0
, (3.62)

we get from (3.61) and (3.62),

Rdet = −∂∂ logγ (z) = −∂∂ log
(
2kεk

0 + β(z)
)+

k∑
∂∂ log

((
log‖σi‖2

i

)2)
. (3.63)
i=1
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By (3.57), the last term of (3.63) is bounded with respect to Θε0 . To examine the first term of the
sum, we write

∂∂ log
(
2kεk

0 + β(z)
)= ∂∂β(z)

2kεk
0 + β(z)

− ∂β(z) ∧ ∂β(z)

(2kεk
0 + β(z))2

. (3.64)

Now we observe that for Wi(z) = |zi |2(log‖σi‖2
i )

2 or |zi |2 log‖σi‖2
i , the terms ∂∂Wi(z), ∂Wi(z),

∂Wi(z) are bounded with respect to the Poincaré metric (3.56), thus with respect to Θε0 . Com-
bining with the form of β given after (3.61), this completes the proof of (3.60).

Let us prove (ii). First observe that Θε0 dominates the Euclidean metric in special coordinates
near π−1(Σ), being equivalent with (3.56). Therefore it dominates some positive multiple of
each smooth Hermitian metric on X̃. We deduce that, given a smooth Hermitian metric Θ ′′
on X, there exists a constant c > 0 such that Θε0 � cΘ ′′ on X \ Σ . It follows that elements
of H 0

(2)(X \ Σ,E) are L2 integrable with respect to the smooth metrics Θ ′′ and hE over X,

which entails they extend holomorphically to sections of H 0(X,E) by [21, Lemme 6.9]. We
have therefore H 0

(2)(X \Σ,E) ⊂ H 0(X,E). The reverse inclusion follows from the finiteness of
the volume of X \ Σ in the Poincaré metric. �

We can construct as in [45, §4], [36, Lemma 6.2.2] a singular Hermitian line bundle (L̃, hL̃)

on X̃ which is strictly positive and L̃|X̃\π−1(Σ)
∼= π∗(Lp0), for some p0 ∈ N. We introduce on

L|X\Σ the metric (hL̃)1/p0 whose curvature extends to a strictly positive (1,1)-current on X̃.
Set

hL
ε = (

hL̃
)1/p0

∏
i

(− log‖σi‖2
i

)ε
, 0 < ε � 1, (3.65a)

H 0
(2)

(
X \ Σ,Lp

)= {
u ∈ L2

0,0

(
X � Σ,Lp,Θε0 , h

Lp

ε

)
: ∂Lp

u = 0
}
. (3.65b)

The space H 0
(2)(X \ Σ,Lp) is the space of L2-holomorphic sections relative to the metrics Θε0

on X \ Σ and hL
ε on L|X\Σ . Since (hL̃)1/p0 is bounded away from zero (having plurisubhar-

monic weights), the elements of this space are L2 integrable with respect to the Poincaré metric
and a smooth metric hL∗ of L over whole X. By Lemma 3.17(ii) we have H 0

(2)(X \ Σ,Lp) ⊂
H 0(X,Lp). (Here we cannot infer the other inclusion since hL

ε might blow up to infinity on Σ .)
The space H 0

(2)(X \ Σ,Lp) is our space of polarized sections of Lp .

Corollary 3.18. Let (X,ω) be a compact complex manifold with a singular Kähler metric with
integral cohomology class. Let (L,hL) be a singular polarization of [ω] with strictly positive
curvature current having singular support along a proper analytic set Σ . Let (E,hE) be a holo-
morphic Hermitian vector bundle on X. Then the Bergman kernel associated to the orthogonal
projection from the space of L2-sections of Lp ⊗E with respect to Θε0 , h

Lp

ε ⊗hE on X \Σ onto
the space of polarized sections

H 0
(2)

(
X \ Σ,Lp ⊗ E

)= {
u ∈ L2

0,0

(
X \ Σ,Lp ⊗ E,Θε0, h

Lp

ε ⊗ hE
)
: ∂Lp⊗Eu = 0

}
has the asymptotic expansion as in Theorem 3.11 for X \ Σ .
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Proof. We will apply Theorem 3.11 to the non-Kähler Hermitian manifold (X \ Σ,Θε0)

equipped with the Hermitian bundle (L|X\Σ,hL
ε ) and (E,hE). Certainly, RE is bounded. Thus

we have to show that there exist constants η > 0, C > 0 such that

√−1R(L|X\Σ,hL
ε ) > ηΘε0 ,

√−1Rdet > −CΘε0 , |Tε0 |Θε0
< C. (3.66)

The first relation results for all ε0 small enough from (3.55), (3.65a) and the fact that the curvature
of (hL̃)1/p0 extends to a strictly positive (1,1)-current on X̃ (dominating a small positive multiple
of Θ ′ on X̃). The second and third relations were proved in (3.60). This completes the proof of
Corollary 3.18. �
Remark 3.19. (a) Corollary 3.18 with E = C gives an alternative proof of the characterization of
Moishezon manifolds given by Ji and Shiffman [29], Bonavero [8] and Takayama [45]. Indeed,
each Moishezon manifold possesses a strictly positive singular polarization (L,hL). Conversely,
suppose X has such a polarization. Then as in (3.49), we have dimH 0

(2)(X \ Σ,Lp) � Cpn

for some C > 0 and p large enough. Since H 0
(2)

(X \ Σ,Lp) ⊂ H 0(X,Lp), it follows that L is
big and X is Moishezon. A detailed account of the characterization of Moishezon manifolds,
including the present method, can be found in [36, Chapter 2 and §6.2].

(b) Using Moishezon’s fundamental result which states that a Moishezon manifold can be
transformed into a projective manifold by a finite succession of blow-ups along smooth centers
[36, Theorem 2.2.16], one can prove that every big line bundle L on a compact complex manifold
carries a singular Hermitian metric having strictly positive curvature current with singularities
along a proper analytic set (see e.g. [36, Lemma 2.3.6]).

(c) The results of this section hold also for reduced compact complex spaces X possessing a
holomorphic line bundle L with singular Hermitian metric hL having positive curvature current
(see [45] for definitions). This is just a matter of desingularizing X. As space of polarized sections
we obtain H 0

(2)(X \ Σ,Lp) where Σ is an analytic set containing the singular set of X.
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[14] L. Boutet de Monvel, J. Sjőstrand, Sur la singularité des noyaux de Bergman et de Szegő, in: Journées: Équations
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