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Abstract Prognostic models based on survival data frequently make use of the Cox proportional

hazards model. Developing reliable Cox models with few events relative to the number of predictors

can be challenging, even in low-dimensional datasets, with a much larger number of observations

than variables. In such a setting we examined the performance of methods used to estimate a

Cox model, including (i) full model using all available predictors and estimated by standard tech-

niques, (ii) backward elimination (BE), (iii) ridge regression, (iv) least absolute shrinkage and selec-

tion operator (lasso), and (v) elastic net. Based on a prospective cohort of patients with manifest
nces and
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coronary artery disease (CAD), we performed a simulation study to compare the predictive accu-

racy, calibration, and discrimination of these approaches. Candidate predictors for incident cardio-

vascular events we used included clinical variables, biomarkers, and a selection of genetic variants

associated with CAD. The penalized methods, i.e., ridge, lasso, and elastic net, showed a compara-

ble performance, in terms of predictive accuracy, calibration, and discrimination, and outperformed

BE and the full model. Excessive shrinkage was observed in some cases for the penalized methods,

mostly on the simulation scenarios having the lowest ratio of a number of events to the number of

variables. We conclude that in similar settings, these three penalized methods can be used

interchangeably. The full model and backward elimination are not recommended in rare event scenarios.
Introduction

The applications of prognostic models, that is, models that pre-
dict the risk of a future event, include among others [1]: (i)
informing individuals about a disease course or the risk of

developing a disease, (ii) guiding further treatment decisions,
and (iii) selecting patients for therapeutic research. Prognostic
models derived using time-to-event (or survival) data often

make use of the Cox proportional hazards model. Thernau
and Grambsch [2] describe this model as the ‘‘workhorse of
regression analysis for censored data”. When the number of

events is small relative to the number of variables, the develop-
ment of a reliable Cox model can be difficult. This can be
challenging even in a low-dimensional setting where the number
of predictors is much smaller than the number of observations.

Existing rules of thumb are based on the number of events per
variable (EPV), which is recommended to be between 10 and 20
[3,4]. When performing variable selection, these EPV rules are

applied to the number of candidate variables considered, not
just those in the final model [3,4]. Penalized regression methods
that shrink the regression coefficients towards 0 are an option

in a rare event setting, which may effectively increase the
EPV [5], thus producing better results. Examples of these meth-
ods include ridge regression [6], the least absolute shrinkage
and selection operator (lasso) [7], and the elastic net [8], which

is a combination of the former two. Backward elimination (BE)
is another widely used method [9] that seemingly reduces the
number of predictors by applying P values and a significance

level a to discard predictors (a = 0.05 is often used).
Our aim in this work was to compare, in a low EPV and

low-dimensional setting, the performance of different

approaches to computing the Cox proportional hazards
model. We consider the following methods: (i) full model,
computed using all predictors considered via maximization

of the partial log-likelihood (termed ‘‘full” model), (ii) BE with
significance levels a= 0.05 and a = 0.5 (BE 0.05 and BE 0.5),
(iii) ridge, (iv) lasso, and (v) elastic net (for simplicity termed
‘‘elastic” thereafter).

Results

Simulation results

Simulations were used to compare different methods based on
a prospective cohort study of patients with manifest coronary
artery disease (CAD) [10]. Two main scenarios were consid-
ered: (1) clinical variables relevant to CAD such as age, gender,

body mass index (BMI), high density lipoprotein (HDL) over
low density lipoprotein (LDL) cholesterol ratio, current
smoking, diabetes, and hypertension, as well as blood-based
biomarkers such as C-reactive protein (CRP) and creatinine

as predictors; and (2) information on 55 genetic variants in
addition to the variables used in scenario 1. These variants
represented either loci that have been previously shown to be

associated, at the genome-wide significance level, with CAD,
or recently-identified CAD loci [11]. Baseline characteristics
are shown in Table S1. There are 1731 participants involved,

with a median age of 63 years and 77.6% male. Table S2 pro-
vides information of the genetic variants used. The median
follow-up was 5.7 years. In each scenario, a Weibull ridge

model was fitted in the cohort. Each fitted model was consid-
ered the true model and was used to simulate the survival time.
Censored Weibull quantile–quantile (Q–Q) plots of the models’
exponentiated residuals are shown in Figure S1. Deviations

from the Weibull distribution are observed in both scenarios.
Cox proportional hazards models were calculated on the

simulated datasets using the different methods considered (full

model, BE, ridge, lasso, and elastic net) for EPV equal to 2.5,
5, and 10, respectively. BE 0.05 selected no variable in 64%
(scenario 1) and 62% (scenario 2) of the simulations performed

with EPV = 2.5. For the same EPV, BE 0.5 selected no vari-
able in 18% and 10% of the simulations for scenarios 1 and
2, respectively. This resulted in a model that predicted the same

survival probability for all individuals in the dataset (this
model is basically a Kaplan–Meier estimator). The same
occurred for BE with other EPV values and also for the lasso
(32% and 25%) and the elastic net (8% and 2%) with

EPV = 2.5. The ridge method also produced constant predic-
tions (10% and 4% of the simulations, EPV = 2.5) as a con-
sequence of shrinking the coefficients too strongly (in all

cases where the elastic net gave constant predicted survival
probabilities it was equal to or very close to the ridge model
in the sense that elastic net mixing parameter was zero or

almost zero). Consequently, the computation of the calibration
slope and the concordance becomes impossible.

The calibration slope could not be calculated either, when a
model assigned a predicted survival probability of 1 to at least

one individual. This occurred for the full model in 72
(EPV= 2.5) and 3 (EPV= 5) simulations in scenario 1, and
in 12 simulations in scenario 2 (EPV= 2.5). BE and the penal-

ized models (ridge, lasso, and elastic net) had 62 and 8 simula-
tions, respectively, that predicted a survival probability of 1
(all of them in scenario 1). The root mean square error

(RMSE) could be computed in all these cases. However for
consistency, the results shown below only reported the RMSE
for the simulations where the concordance and calibration

slope could be computed. Table 1 gives the number of simula-
tions used to compute RMSE, calibration slope, and concor-
dance on each scenario.



Table 1 Number of simulations used when presenting results for different models out of a maximum of 1000 simulations

Scenario EPV Full BE 0.05 BE 0.5 Lasso Ridge Elastic

1 2.5 928 345 785 681 903 913

1 5 997 649 945 871 976 983

1 10 1000 938 997 979 1000 1000

2 2.5 988 383 897 747 957 977

2 5 1000 784 992 938 994 997

2 10 1000 991 1000 998 1000 1000

Note: Presented in the table are the numbers of simulations where the model computed did not produce constant predictions nor predicted survival

probabilities equal to 1. Scenario 1 candidate predictors include clinical variables and biomarkers. Scenario 2 candidate predictors include clinical

variables, biomarkers, and genetic variants. BE, backward elimination; EPV, events per variable.
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For both scenarios we found a decrease of the RMSE as the
EPV increases (Figure 1). The penalized methods (ridge, lasso,

and elastic net) have lower RMSE than the full model and the
two BE variants considered. BE with a lower significance level
(BE 0.05) showed a better RMSE than a higher significance

level (BE 0.5) in our simulations. In both scenarios 1 (Fig-
ure 1A) and 2 (Figure 1B), the elastic net had the best RMSE,
that is, the RMSE that was closer to zero.

Looking at the average of the calibration slope across the
simulations (Figure 2), the lasso method showed the best per-
formance, being of all the methods the one with an average cal-
ibration slope closest to the ideal value of 1. Here, we observed

that the average calibration slope for the ridge and the elastic
net for scenario 1 and EPV = 2.5 was above 10 (above 5 for
EPV = 5, Figure 2A). A similar but less extreme average cal-

ibration slope was observed in scenario 2 (Figure 2B). These
extreme average calibration slopes for the ridge and elastic
net were caused by excessive shrinkage of the regression coef-

ficients. The extreme calibration slopes corresponded almost
exclusively to models where the elastic net equalled or was
comparable to the ridge model.

Using a trimmed mean, 5% on each tail of the distribution,

as a robust estimator of the mean, reduced the extreme calibra-
tion slopes in scenario 1 and EPV = 2.5 from approximately
15 to 9 for the ridge and from 12 to 6 for the elastic net. In sce-

nario 2, the trimmed mean reduced the average calibration
slope from approximately 4 to 2.26 for the ridge and from
2.4 to 1.12 for the elastic net (data not shown). Examining

the median calibration slope (Figure S2), we observed that
the ridge has the best calibration slope in both scenarios with
EPV = 2.5 and the elastic net with EPV = 5. The distribution

of the calibration slope across simulations is shown as box-
plots in Figures S3 (scenario 1) and S4 (scenario 2). On the
boxplots we see how the interquartile range (IQR) of the cali-
bration slopes becomes narrower with increasing EPV, and

that in both scenarios the ridge has the greatest calibration
slope IQR for EPV = 2.5. For both the ridge and the elastic
net, the increase in IQR with the decreasing EPV is propor-

tionally larger on the 75th percentile-median difference, than
in the median-25th percentile difference. A particular simula-
tion in scenario 2 with EPV = 2.5 that produced extreme cal-

ibration slopes was examined. The calibration slopes for this
simulation were 22 for the elastic net and 52.5 for the ridge.
A scatterplot of the points (log odds) used to compute the cal-

ibration slope is shown in Figure S5. Here we observed that the
range of the estimated log odds of event is much shorter than
that of the true log odds, indicating that too much shrinkage
was applied.

In both scenarios and all EPV values tested, the concor-
dance was higher for the 3 penalized methods considered,
except scenario 1 with EPV = 2.5, for which BE 0.05 had

the highest concordance (Figure 3). In those cases for which
the penalized methods showed better discrimination, either
lasso or ridge had the highest concordance.

BE and ridge

To further explore the methods considered, a hybrid method
was considered, where BE was followed by an application of

ridge regression, that is, the coefficients of the variables
selected by BE were shrunk using ridge. Both BE 0.05 and
BE 0.5 were examined. The results showed that RMSE of both

BE 0.05 and BE 0.5 was improved by the application of ridge
(Figure S6), but it was still higher than that when using ridge,
lasso, or elastic net alone. With the application of ridge, both

the average and the median calibration slope of BE came clo-
ser to the ideal value of 1 (Figures S7 and S8), whereas the con-
cordance of BE (Figure S9) improved only slightly.

Additional simulations

The three penalized methods considered have a tuning param-
eter, which gives the amount of shrinkage that is applied to the

regression coefficients. The elastic net has an additional tuning
parameter which determines how close the elastic net fit is to
the lasso or ridge fit. These tuning parameters were selected

in our simulations by 10-fold cross-validation. We next
explored the sensitivity of the simulation results (RMSE, cali-
bration slope, and concordance) for the penalized methods to

the number of folds used in the cross-validation during the
selection of tuning parameters. In particular, we wanted to
examine whether the extreme calibration slopes observed in
some of the simulations were attributed to the method used

to select the tuning parameters. To do this, the simulations
were repeated using 5-fold cross-validation (instead of 10-
fold cross-validation as was done in the analyses shown

above). RMSE, calibration slope, and concordance were over-
all similar to the previous results using 10-fold cross-validation
(data not shown), including the distribution of the calibration

slopes, in particular, the extreme values observed in some
simulations.
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Figure 1 Average RMSEs across simulations for both scenarios using different models

Average RMSEs of simulated datasets were calculated using different models in scenario 1 (A) and scenario 2 (B), respectively, with

different EPV. The models examined include full model, BE with significance levels a= 0.05 and a= 0.5 (BE 0.05 and BE 0.5), ridge,

lasso, and elastic net. Scenario 1 considers patients’ clinical variables relevant to CAD and blood-based biomarkers as predictors.

Predicted event probabilities were computed at time points 0.08, 0.17, and 0.25 years, respectively. In scenario 2, information on 55 genetic

variants is also considered besides the predictors used in scenario 1, while predicted event probabilities were computed at time points 1,

2.5, and 5 years, respectively. BE, backward elimination; RMSE, root mean square error; EPV, events per variable.
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Further additional simulations were run for the penalized
methods using the predictor variables to balance the 10-folds
used in the cross-validation. The observations were clustered

in 10 groups via K-means and then each of the 10-folds used
was chosen randomly so that it would contain approximately
one tenth of the individuals on each cluster. Here again, the

results for the RMSE, calibration slope, and concordance
were similar to those for the initial simulations using
10-fold cross-validation, including the extreme values for
the calibration slopes observed in some simulations (results

not shown).
Application to clinical data

The different methods considered, to compute a Cox model,
were applied to the clinical data that were used as the basis
of our simulations. We used the same scenarios as in the sim-
ulations (which are defined in terms of the candidate predictors

used). The regression coefficients for both scenarios considered
are shown in Tables S3 and S4. In scenario 1 (EPV = 23.2),
creatinine was selected by all models performing selection

(BE 0.05, BE 0.5, lasso, and elastic net), representing the only
predictor selected by BE 0.05. BE 0.5 additionally selected age
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Figure 2 Average calibration slopes across simulations using different models

Average calibration slopes of simulated datasets were calculated using different models in scenario 1 (A) and scenario 2 (B), respectively.

Dashed line depicts ideal calibration slope of 1. See legend of Figure 1 for more details of the models used and the scenarios examined.
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and C-reactive protein. The lasso and elastic net selected, on

top of these two, LDL/HDL ratio, hypertension, and gender.
In scenario 2 (EPV= 3.3), creatinine was the only predictor
selected by BE 0.05, while BE 0.5 selected age additionally.

None of the 55 variants considered was selected by these two
methods. Lasso and the elastic net selected the same number
of variables (24), of which 23 variables were selected by both
methods. To quantify the discrimination of the different mod-

els we used the C-index [12], which estimates the probability
that for a pair of individuals the one with the longest survival
has also the longest predicted survival probability. The

C-index is an extension of the area under the Receiver
Operating Characteristics (ROC) curve (AUC) and has a sim-
ilar interpretation [13]. In scenario 1, the full model had a

C-index of 0.599 (Table 2). The highest C-index (0.601) was
attained using ridge, followed by the elastic net and lasso
(0.600). For scenario 2, the highest C-index was attained by

the ridge (0.607), followed by the lasso (0.603) and the full
model (0.601), while the elastic net had a C-index of 0.600.
Both BE regressions considered had C-indices 6 0.577. The

BE C-indices improved slightly after applying ridge regression.
The full model had the calibration slope further away from

the ideal value of 1 in both scenarios considered (0.868 and 0.5,
respectively). The best calibration slope was achieved in sce-

nario 1 by the lasso (1.012), followed by the combinations of
BE 0.05 and BE 0.5 with the ridge (0.974 and 0.960, respec-
tively), the elastic net (1.05), and the ridge method (1.065).

The fact that these calibration slopes for the penalized meth-
ods were higher than 1 indicates that slightly too much shrink-
age was applied by these three methods. In scenario 2, the best

calibration slope was produced by the elastic net, followed by
the lasso and ridge. Both BE methods had a calibration slope
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Figure 3 Average concordance across simulations using different models

Average concordance of simulated datasets was calculated using different models in scenario 1 (A) and scenario 2 (B), respectively. See

legend of Figure 1 for more details of the models used and the scenarios examined.

Table 2 C-indices and calibration slopes for clinical data example in both scenarios considered using different models

Scenario Measure Full BE 0.05 BE 0.5 BE 0.05 + Ridge BE 0.5 + Ridge Lasso Ridge Elastic

1 C-index 0.599 0.586 0.596 0.586 0.596 0.600 0.601 0.600

2 C-index 0.601 0.574 0.577 0.574 0.578 0.603 0.607 0.600

1 Calibration slope 0.868 0.927 0.884 0.974 0.960 1.012 1.065 1.050

2 Calibration slope 0.500 0.649 0.583 0.708 0.645 0.861 1.162 0.885

Note: The C-indices and calibration slopes presented are corrected for over-optimism via the 0.632 bootstrap. BE 0.05 + ridge and BE 0.5 + ridge

refer to ridge regression applied to the variables selected by BE 0.05 and BE 0.5, respectively. BE, backward elimination.
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less than 0.65, indicating overfitting. The BE calibration slope
was improved after applying ridge regression.

Discussion

In this work we aimed to compare methods to compute a pro-
portional hazards model in a rare event low-dimensional set-
ting. Applying simulations based on a dataset of patients

with manifest CAD, we compared the full model that used
all predictors, BE with a = 0.05 or a= 0.5, ridge regression,
lasso, and elastic net. The penalized methods, i.e., ridge, lasso,
and elastic net, outperformed the full model and BE, Nonethe-

less, there is no single penalized method that performs best for
all metrics and both scenarios considered. BE performance was
improved by shrinking the selected variable coefficients with

ridge regression; however, this hybrid method was not better
than ridge regression, lasso, or elastic net alone.

Ambler et al. [14] observed that the lasso and the ridge for

Cox proportional hazards models have not been compared
often in a low-dimensional setting. Porzelius et al. [15] investi-
gated several methods that are usually applied in high-
dimensional settings and produced sparse model fits, including

the lasso and elastic net, in a low-dimensional setting, via sim-
ulations. They found the overall performance was similar in
terms of sparseness, bias, and prediction performance, and
no method outperforms the others in all scenarios considered.
Benner et al. [16] found on their simulations that the lasso,

ridge, and elastic net had an overall similar performance in
low-dimensional settings. Ambler et al. [14], whose approach
we follow in this paper, compared the models considered here

on two datasets. They also studied the non-negative garrotte
and shrank the coefficients of the full model by a single factor
(estimated by bootstrap [17]), but they did not examine the

elastic net. In their simulations, the ridge method performed
better, except that lasso outperformed ridge for the calibration
slope. The full model and BE performed the worst on low EPV
settings. They recommend the ridge method, except when one

is interested in variable selection where lasso would be better.
They also observed that in some cases the ridge shrunk the
coefficients slightly too much. Lin et al. [18] compared Cox

models estimated by maximization of the partial likelihood,
Firth’s penalized likelihood [19] and using the Bayesian
approaches. They focused on the estimation of the regression

coefficients and the coverage of their confidence intervals.
They recommend using Firth’s penalized likelihood method
when the predictor of interest is categorical and EPV < 6.
Firth’s method was originally proposed as a solution to the

problem of ‘monotone likelihood’ that may occur in datasets
with low EPVs and that causes the standard partial likelihood
estimates of the Cox model to break down.
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In our simulations, there was no clear-cut winner, but cer-
tainly the penalized methods (ridge, lasso, and elastic net)
performed better than the full model and BE. The elastic

net showed the best predictive accuracy and all three penal-
ized methods considered had comparable discrimination. In
some of our simulations, the penalized methods shrunk the

coefficients too much (in some cases extremely setting them
to zero, including the ridge), even though the ‘‘true” model
was being fitted. This behavior was observed both when

using 10-fold and 5-fold cross-validation to select the tuning
parameters of the penalized approaches and even after
attempting to balance the folds based on the predictors. This
suggests, as it was also pointed out previously [14], that more

work should be done in developing methods to select the tun-
ing parameters of the penalized approaches. Van Houwelin-
gen et al. [20] describe a strategy involving penalized Cox

regression, via the ridge, that can be used to obtain survival
prognostic models for microarray data. In the first step of
this approach, the global test of association [21] is applied

and ridge regression is used only if the test is significant.
Even though this approach is suggested in a high-
dimensional setting, applying this global test on a low-

dimensional setting before applying a penalized approach
may help identify situations, where a penalized method
may apply excessive shrinkage.

In our clinical dataset application on the scenario that

included clinical variables, biomarkers, and genetic variants,
the three penalized methods also had a comparable perfor-
mance in terms of calibration and discrimination and showed

better calibration than the full model and BE, in line with our
simulation results.

Some limitations apply to our study. First, the Cox models

received as input all variables used in the true underlying mod-
els to simulate the data, that is, there were no noise predictors.
This may have given an unfair advantage to ridge regression

which does penalization but not variable selection like the
lasso or elastic net. Second, all simulations are based on a sin-
gle clinical cohort, which may be representative of other
cohorts, but we cannot compare, the similarity or dissimilarity

of the observed simulation results in other datasets. Third, we
examined only on the Cox proportional hazards model and did
not consider alternative approaches to prognostic models for

survival data like full parametric approaches or non-
parametric ones (e.g., survival random forest [22]). Future
work will address some of these limitations on other datasets

and using non-parametric models.
Conclusion

All three methods using penalization, i.e., ridge, lasso, and
elastic net, provided comparable results in the setting
considered and may be used interchangeably in a low EPV

low-dimensional scenario if the goal is to obtain a reliable
prognostic model and variable reduction is not required. If
variable selection is desired, then the lasso or the elastic net

can be used. Since too much shrinkage may be applied by a
penalized method, it is important to inspect the fitted model
to look for signs of excessive shrinkage. In a low EPV setting,
the use of the full model and BE is discouraged, even when the

coefficients of variables selected by BE are shrunk with ridge
regression. This study adds new information to the few existing
comparisons of penalized methods for Cox proportional haz-
ards regression in low-dimensional datasets with a low EPV.

Materials and methods

Data

AtheroGene [10] is a prospective cohort study of consecutive

patients with manifest CAD and at least one stenosis of 30%
or more present in a major coronary artery. For the present
study we focus on the combined outcome of non-fatal myocar-
dial infarction and cardiovascular mortality. Time to event

information was obtained by regular follow-up questionnaires
and telephone interviews, and verified by death certificates and
hospital or general practitioner charts.

Genotyping was performed in individuals of European des-
cent only using the Genome-Wide Human SNP 6.0 Array
(Affymetrix, Santa Clara, USA). The Markov chain haplotyp-

ing algorithm (MaCH v1.0.18.c) [23] was used to impute
untyped markers. The 1000 Genomes Phase I Integrated
Release Version 2 served as reference panel for the genotype

imputation. For the present study we use 55 genetic variants
(51 SNPs and 4 indels). These variants are taken from the
CAD genome-wide association meta-analysis performed by
the CARDIoGRAMplusC4D Consortium [11]. Using an addi-

tive genetic model, these variants represent the lead CARDIo-
GRAMplusC4D variants on 47 (out of 48) loci previously
identified at genome-wide significance and 8 novel CAD loci

found by this consortium. Out of the 48 loci examined [11],
rs6903956 was not nominally significant and is not used in
our analyses. All SNPs and indels are used as allele dosages,

that is, the expected number of copies of specified allele is used
in the analyses.

After exclusion of missing values, the dataset consists of
1731 individuals, 209 incident events and a median follow-up

time of 5.7 years (with a maximum of 7.6 years).

Design of simulations

We adopted the simulation design used by Ambler and col-
leagues [14] by considering two main scenarios. For scenario
1, we consider clinical variables (age, gender, BMI, HDL over

LDL cholesterol ratio, current smoking, diabetes, and hyper-
tension) and blood-based biomarkers (C-reactive protein and
creatinine) as predictors. For scenario 2, we added information

on 55 genetic variants to these variables. On each scenario, we
fit a Weibull ridge model from which we simulate the survival
time using the methods of Bender and colleagues [24]. Since the
fitted Weibull model is used to simulate the survival time, this

model provides the data generating mechanism, and as such it
plays the role of the true underlying model. The resulting val-
ues of the survival time are then right-censored with help of a

uniform random variable U on the interval (0, d), that is, if the
simulated time exceeds U, the (censored) time is set to U. The
ds are chosen to achieve an EPV of 2.5, 5, or 10 (lower d values

produce a higher percentage of censored time and therefore
fewer observed events). We generate 1000 simulated datasets.
For each scenario and EPV, and on each one of them we fit

a standard Cox model via partial likelihood, two BE models,
with a= 0.05 and a = 0.5, a lasso model, a ridge model and
elastic net model.
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Penalized models

The Cox proportional hazards model assumes the hazard as
follows,

hðtÞ ¼ h0ðtÞexp
Xp
j¼1

bjxj

 !
ð1Þ

where (x1, x2, . . ., xp) is a vector of p predictor variables (e.g.,

age, gender, and BMI) and b1, b2, . . ., bp are the corresponding
regression coefficients, which are the weights given to each
variable by the model. These coefficients are obtained by max-

imizing the partial log-likelihood function l(b), where b= (b1,
b2, . . ., bp).

For fixed non-negative k, maximization of the penalized

partial log-likelihood function,

2

n
lðbÞ � k a

Xp
j¼1

jbjj þ
1

2
ð1� aÞ

Xp
j¼1

b2
j

 !
ð2Þ

produces the regression coefficients of the elastic net. The
parameter k controls the amount of shrinkage applied to the

coefficients, higher values of lambda corresponding to lower
coefficients. The parameter a is the elastic net mixing parame-
ter and changes between 0 and 1 [25,26]. The lasso and ridge

regression coefficients are obtained by setting a to 1 and 0 in
Eq. (2), respectively, and maximizing the resulting expression.

Selection of tuning parameters for penalized models

For the lasso and the ridge, 10-fold cross validation is used and
the parameter that maximizes the cross-validated partial log-

likelihood [27] is used as the corresponding penalization
parameter. For the elastic net, we consider a course grid from
0 to 1 in steps of length 0.05 for the mixing parameter a. As for
the lasso and ridge, the cross-validated partial likelihood is

maximized.
Additional analyses were performed selecting the tuning

parameters using (1) 5-fold cross validation and (2) 10-fold

cross-validation. The folds for the latter were obtained as fol-
lows. The observations were clustered in 10 groups using the
predictors and K-means [28]. Then each fold was chosen ran-

domly so that it would contain approximately one tenth of the
individuals on each cluster.

Comparison of methods

The use of a Weibull model to generate the data allows us to
compare the ‘‘true” survival probabilities SiðtÞ of the ith indi-

vidual at time t, to the survival probabilities ŜiðtÞ estimated by
the different models we considered. To compare survival prob-

abilities, we used the same metrics as described previously [14].
RMSE for predictive accuracy is calculated as follows.

RMSEðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

SiðtÞ � ŜiðtÞ
� �2s

; ð3Þ

For calibration, the calibration slope a1 is used, which is the
slope of the model obtained by fitting a simple linear regression

to y ¼ log 1�SiðtÞ
SiðtÞ

� �
and x ¼ log 1�ŜiðtÞ

ŜiðtÞ

� �
. Ideally a1 should be 1

(overfitting occurs if a1 < 1 and underfitting occurs if a1 > 1).
For discrimination the concordance, the proportion of pairs of
patients where individuals with the higher predicted event
probability also have the higher ‘‘true” event probabilities is

used. It has a similar interpretation as the C-index and is
related to Kendall’s rank correlation s [29] according to the
formula s ¼ 2ðconcordance� 0:5Þ. For the RMSE and cali-

bration slope the predicted survival probabilities are computed
at time points 0.08, 0.17, and 0.25 years, respectively, for sce-
nario 1 and of 1, 2.5, and 5 years, respectively, for scenario

2. The concordance is computed for only one time point, since
its value does not depend on the particular time point used to
compute the predicted survival probabilities.

Analysis of the clinical dataset

The methods considered were applied to the AtheroGene
dataset [10]. As measures of performance, we computed the

C-index Cs [12] and the calibration slope. For the computation
of the C-index, the first five years of the follow-up were used.
Since estimating the performance of a model on the same data-

set the model was developed may produce over-optimistic per-
formance estimates, both the C-index and calibration slope
were corrected for over-optimism with help of the 0.632 boot-

strap estimator [30]. 1000 bootstrap replications were used in
the correction.

Software

All analyses were performed with R Version 3.2.1. The glmnet
package [25,26] was used to fit the penalized Cox regressions
(lasso, ridge, and elastic net). BE was performed with the pack-

age rms [4]. The survival package [2] was used to fit the stan-
dard Cox model. The survC1 package was used to compute Cs.
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