51st Academy of Aphasia Proceedings

Diminutivization in patients with aphasia and children.

Franceschet R.a,*, Bertocci D.a, De Pellegrin S.b, Dressler W.c, Semenza C.d

a University of Padua
b Azienda Ospedaliera di Padova
c University of Vienna
d University of Padua, IRCCS S. Camillo Venezia

Introduction

How are diminutives represented in the mental lexicon? Which processes are involved in their production? A comparison was made between selected cases of people with aphasia, healthy young and elderly adults, and preschool children.

Method

Tasks:

1) Diminutive construction: “If I want another way to say \textit{small chair} I would say \textit{chair-DIM}. What would be another way to say \textit{small house}?” This task included 54 masculine and 50 feminine gender-bases.

2) Picture naming: two pictures appeared on a computer representing the same entity, the rightmost picture smaller than the one on the left. The name of the entity portrayed was written under the leftmost picture. The task was to name the second picture. This task included 43 masculine and 38 feminine gender-bases.

3) Lexical decision: participants had to classify items (216 diminutives: 54 existent, high-frequency, e.g. \textit{pecor-ella}, ‘sheep-DIM’; 54 existent, low-frequency a, e.g. \textit{pecor-etta}, ‘sheep-DIM’; 54 potential, e.g. \textit{pecor-uzza} and 54 illegal diminutives, e.g. \textit{pecor-ic-etta}) as words or nonwords. Reaction times were recorded.

Patients TG (Broca), BR and RC (Anomics); eleven 4-5 years-old children; 29 adult controls.

Results

Diminutive construction and picture naming: (a) Only children produced simple diminutives (e.g. \textit{radio} > \textit{*rad-ina instead of radi-ol-ina}, ‘radio-DIM-DIM’) and augmentatives (e.g. \textit{muro}, ‘wall’ > \textit{*mur-er-one instead of mur-etto, ‘wall-DIM’}). (b) only patients and children produced inadequate responses as analytic forms, e.g., \textit{insetto}, ‘insect’ > \textit{piccolo insetto}, ‘small insect’, instead of \textit{insettino}, ‘insect-DIM’).

Lexical decision: (a) Controls and RC were faster with high-frequency, than with illegal, than with potential, than with low-frequency diminutives. (b) Children only distinguished existing (faster) vs. non-existing and were not sensitive to frequency and potentiality/ illegality. (c) TG was not sensitive

* Corresponding author.
E-mail address: roberta.franceschet@hotmail.it.
to the difference between potential and illegal diminutives; unlike children, he was sensitive to frequency. (d) BR was faster with high frequency than with low frequency, but did not make any difference between potential and illegal diminutives.

Discussion

Patients with different lesions seem differentially sensitive to different aspects of the diminutivization process. The error distribution in patients differed from the error distribution in children. This result is not fully consistent with a regression hypothesis.

Frequency plays a role only in adults – both in control subjects and in patients – whose lexicon is completely formed. On the contrary, it does not yet seem to play a role in children. The difference between potential and illegal diminutives does not play any role in the recognition of the items. Children as well as patients are not sensitive to illegal diminutives. For both groups potential and illegal – and not only potential – diminutives seem to remain as options and the patterns contained both in potential and in illegal diminutives are overgeneralized.