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Abstract

In the paper versal deformations of matrices are considered. The versal deformation is
a matrix family inducing an arbitrary multi-parameter deformation of a given matrix by an
appropriate smooth change of parameters and basis. Given a deformation of a matrix, it is
suggested to find transformation functions (the change of parameters and the change of basis
dependent on parameters) in the form of Taylor series. The general method of construction of
recurrent procedures for calculation of coefficients in the Taylor expansions is developed and
used for the cases of real and complex matrices, elements of classical Lie and Jordan alge-
bras, and infinitesimally reversible matrices. Several examples are given and studied in detail.
Applications of the suggested approach to problems of stability, singularity, and perturbation
theories are discussed. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Versal deformation; Normal form; Transformation; Lie algebra; Jordan algebra; Reversible
matrix

1. Introduction

Analysis of normal forms and spectra of matrices is a very important problem both
from theoretical and practical points of view. This analysis becomes very complicat-
ed, when we study multi-parameter families of matrices. Introducing parameters, we
obtain many new phenomena like singularities and bifurcations leading to qualitative
changes in the behavior of systems described by these matrices. In this paper we
study properties of square matrick§) smoothly depending on a vector of param-
etersp and determined in the vicinity of the origim= 0. Such a matrix family is
called a deformation of a matrikg = A(0). Arnold [1,3] defined and studied nor-
mal forms of deformations of complex matrices (called versal deformations). These
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normal forms are special matrix familiBgq) possessing properties of all other fami-
lies, i.e., we can get an arbitrary deformation of the maigXrom the corresponding
versal deformation by a smooth change of parametetsy(p) and a change of basis
x' = C(p)x smoothly dependent on parameters

A(p) = C(MB@E@E)HC1(p).

It was shown that the versal deformati@dq) is determined only by the matrix
Ao. The study of versal deformations for different types of matrices (real, Ham-
iltonian, reversible, etc.) was continued by many authors [12,13,16,21-23,27]; for
more references see a short survey in [4, pp. 172-177]. In papers [6,11,15,16] versal
deformations were found in the cases of pairs, triples, and quadruples of matrices,
where the change of basis is substituted by another equivalence transformation.

Applications of versal deformations are based on the fact that the spectrum of the
matrix family coincides with the spectrum of its versal deformation, while the versal
deformation has a very simple form. This property allows using the versal deforma-
tion theory for multi-parameter analysis of the spectrum in problems of stability and
dynamics. Versal deformations without knowledge about the change of parameters
and basis were used for the classification of singularities of bifurcation diagrams,
decrement diagrams, and stability boundaries [2,3,12,13,19,21,23].

The problem of finding the change of parameters and basis (the transformation
functionsq(p) andC(p)) for a given matrix familyA(p) was considered by sever-
al authors. Cushman et al. [9] studied this problem for a specific family »f44
Hamiltonian matrices. Schmidt [25,26] used the computer algebra for finding the
transformation functions in the case, when the change of parameters can be explicitly
found by comparing corresponding characteristic equations. Stolovitch [28] used the
Newton method for numerical calculations of the functioigs) andC(p) at given
values of the parameters; in the case of simplified versal deformations corresponding
to one-parameter matrix families of special type he constructed an algorithm for find-
ing the transformation functions in the form of Taylor series. For real and complex
matrix families Mailybaev [18] proposed to find the transformation functions in the
form of Taylor series, whose coefficients are calculated by an explicit recurrent pro-
cedure. It turns out that Taylor expansions of the functopip andC(p) provide the
most useful information for applications, where the most important are the first order
terms [7,17-20]. This is a consequence of the local nature of a versal deformation.

This paper represents the further development of ideas of paper [18] for versal de-
formations of matrices of different types (Hamiltonian, reversible, symmetric, etc.).
Following [18] it is suggested to find the transformation functions in the form of Tay-
lor series. A general method of construction of recurrent procedures for calculation
of coefficients in the Taylor expansions is developed. This method provides “almost
ready” recurrent formulae, which can be easily completed for any type of matrices.
For several important cases (real and complex matrices, elements of classical Lie
and Jordan algebras, and infinitesimally reversible matrices) explicit recurrent pro-
cedures are given. Three examples are studied showing efficiency of the method and
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possibilities for its application to problems of stability, singularity, and perturbation
theories.

The paper is organized as follows. General concepts of the versal deformation
theory are given in Section 2. The method of construction of recurrent procedures is
described in Section 3. In Sections 4 and 5 the developed method is applied to sev-
eral specific types of matrices. Section 6 shows how the recurrent procedure can be
optimized, when we need only a partial information on the transformation functions
and the versal deformation. Conclusion gives a short outline of the obtained results.

In the paper the matrices are denoted by bold capital letters, vectors take the form
of bold lower-case letters, and scalars are represented by lower-case italic characters.

2. Normal forms and ver sal deformations

Let M be a manifold ands be a Lie group acting oM by conjugation; for the
definition and properties of a Lie group see [8,24]. In this paper we consider the case,
whenM is a submanifold of the space(gl, D) of m x m matrices with elements
from D, andG is a subgroup of the group Giz, D) of nonsingular x m matrices;

D stands for the space of real numb&somplex numberg, or quaternionéi. The
adjoint action ofC € G determines an equivalence transformatioMias follows:

A~A =CACleM, Acwm. (1)
If the matrix A € M is considered as an operator in the spaee D™, then the
adjoint action ofC € G represents the change of basis= Cx.

To simplify the analysis we will consider the case whdnis a linear space.
This corresponds to many important cases including symmetric, Hamiltonian, in-
finitesimally reversible, and other types of matrices. The general case,M/izean
arbitrary submanifold of @in, D) (this corresponds, for example, to the space of
symplectic matrices), can be considered similarly.

The adjoint action oz determinesn orbit (a G-conjugacy class) of an element
A € M as follows:

Orb(A) = {CAC™!: CeG}. )
Any elementA’ € Orb(A) is a representative of O¢h) since OrlgA’) = Orb(A).
The problem of the normal form theory is to find representatives having simple form
and to classify them. The choice of the normal form varies in different studies de-
pending on the problem under consideration. A famous example is the Jordan normal
form in the case = gl(m, C), G = GL(m, C). Normal forms are well studied and
their classification for many important caseshvfandG is performed; see [10,27]
and references therein.

A deformation A(p) of a matrixAg € M is a smooth mappind : (F*,0) —

(M, Ap) determined in the vicinity of the origip = O; " is a space of real or com-
plex parameterp = (p1, ..., pn) (F=RorCforD = C,andF = RforD = Ror
H). A deformationA (p) is also calledh matrix family. A deformationB(q), q € F¢,
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of a matrixAg is calleda versal deformation if any deformationA(p) of Ag can be
represented in the vicinity gf = 0 in the form

Ap) = C(PB@E)HCt(p), ®)

whereC : (F*, 0) — (G, |) is a smooth mapping (deformation of the identity matrix
I in G); q(p) is a smooth function fronf”" to the parameter space of the versal
deformationF? such tha(0) = 0 [1,3]. Expression (3) means that any deformation
A(p) can be obtained from the versal deformat®fq) by a change of basis and
a change of parameters. Thus, the versal deformation represents the most general
matrix family possessing (in some sense) properties of all deformations of the matrix
Ao.

Versal deformation with the minimal number of parametkisscalledminiversal.
It was proved in [1,3] that the deformati®{q) of Ag is versal iffB(q) is transversal
in the spacé/ to the orbit Orl§Ap) atAg. This condition gives a constructive method
of finding versal deformations, which was used in all papers devoted to this problem.
It is clear that the number of parameters of a miniversal deformation is equal to the
codimension of OrpAp) in M [1,3].

Note that it is sufficient to consider versal deformations of normal forms of
matrices. Indeed, let us consider a ma&kixwhose normal form ig\g, i.e.,

KO = Cvocal, Co eG. (4)

Then the versal (miniversal) deformationzwﬁ is §(q) = COB(q)Cal, whereB(Qq)
is the versal (miniversal) deformation of the normal foAm For any deformation
A(p) of Ag we have

A(p) = CoC(P)B(@(P))(CoC(p)

=C(PB@@P)C (P, C(p)=CoC(pPCy™, ()
where the function€(p) andq(p) transform the deformation
A(p) = Cy*A(p)Co (6)

of the normal formAg to the versal deformatioB(q) (3).

3. Transformation to ver sal defor mations

Let a deformatiorA (p) and a versal deformatidd(q) of a matrixAg be given. In
this section we find the transformation functions (the change of basis and the change
of parametersC(p) andq(p) satisfying relation (3). We will consider miniversal
deformationsB(q) (a versal deformatio(q) can be made miniversal by taking
some of the parameters equal to zero).

The smooth functioné (p), C(p), andq(p) are determined in the vicinity of the
origin p = 0. Thus, they can be represented in the form of Taylor series with the
accuracy 0|p|/¥), wherek is the maximal order of terms kept in the expansigmi|
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is the norm in the parameter spdeck In applications we usually need only a finite
number of terms in the Taylor expansion, where the most important are the first order
terms.

Let us introduce some notations. Uet= (h1,...,h,) € Z" be a vector with
nonnegative integer componetits Then we denotp" = pﬁl e pff”, h!=hq!-.-
hy!,In| =h1+---+ hy,, and

8|h|A ’ ! i !
s N TR R
opyt---0py" " JWa@ = )!

where derivatives are evaluatedpat 0; #; = 0 means that we do not take the de-
rivative with respect tg;. The Taylor series for the functiof(p) is represented in
the form

AN — h,

A(h) h
AP = Y S ollpl), AC = Ao, (®)

[hi<k

where the sum is taken over &lle 7', of order|h| < k. SubstitutingA by C or q
in (8), we obtain Taylor expansions of the functidbg) andq(p), whereC© = |
andq@ = 0. To determine the Taylor series 6fp) andq(p), the derivativesC™
andq™ should be found using derivativés™. In this section we derive recurrent
formulae for derivative<C™ andq®™ assuming that all the derivatived™ and
q™ of lower ordersh’ < h are knownh’ < h means that, < h; fori=1,...,n
andn’; < h; for somej.

First, let us analyze the structure 6{p). Let Q : (GL(m, D), 1) — (Q, 0) be
a smooth function determined in the vicinity bfwhere the rang® is a space of
matrices or vectors, such that the equation

Q(C) =0 9)
determines the manifol@ in the vicinity of |. The tangent space @at| is denoted
by TG and determined by the expression

TG = {X € gl(m, D): dQ(X) = 0}, (10)
where @) is the differential ofQ at|. The spacdG determines the tangent space
T Orb(Ap) to the orbit Orl§Ag) atAg in the form [1,3]

TOrb(Ag) = {[Ao. X]: X € TG}. (11)

The matrix [Ag, X] = AgX — XAqg is the derivative of the functioml’(C) =
C~1A¢C, C € G, atl along the directiorX € TG. SinceM is a linear space, we
haveT Orb(Ag) C M.

The miniversal deformatioB(p) is usually chosen to be a linear function of the
parameters

d

B@=Ao+ ) Bigi, d=(q1-..qa). (12)
i=1
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Let B ¢ M be alinear space determined by the matrBg$ = 1, ..., d. According
to the versal deformation theory [1,8(q) is a miniversal deformation ifif =
TOrb(Ag) + B andd = dim(M) — dim(T Orb(Ap)).

Let (A, B) = tracg ATB) be a scalar product in gk, D), whereAT is the trans-
posed matrix andB is the complex (or quaternionic) conjugate matrix in the case
D = C (or D = H). We denote by Orb(Ag) the normal complement & Orb(Ag)
inM, i.e.,M = TOrb(Ag) + NOrb(Ag) and(T, N) = O foranyT € TOrb(Ag), N €
NOrb(Ag). LetN;,i =1,...,d, be a basis oNOrb(Ap) normalized with respect
to B; such that

1, i=j,
(Ni, Bj) = 8ij, (Sij:{o, i#j.’

A centralizer of Ag is a set of matriceX € TG commuting withAg [1,3]:
Cen(Ag) = {X € TG: [Ao, X] = 0}. (14)
Note that CentAp) is the tangent space to th@bilizer of Ag atl, where StabAg) =
{CeG: CAC1=Ap). Let f =dim(Cen(Ap)), where in many (but not all)

casesf = d. Since CenAp) is a linear space, we can choose the orthogonal basis
R;,i=1,..., f,of CentAp) such that

(R,’,Rq,’) =34, I,j= 1,..., f (15)
It is known [1,3] that the mappin@(p) is uniquely determined on any smooth sur-

face P C G, which is transversal to Cei#{p) atl and dim(P) = dim(G) — f. This
surface can be taken in the form

P={CeG: (C—1,R)=0,i=1,...,f}. (16)

The surfaceP is the intersection ofG with the planel + NCen{Ag), where
NCeni(Ay) is the normal complement of C&htp) in TG. ConditionC(p) € P leads
to the following equalities for derivatived™:

ij=1,....d. (13)

cMRrR)y=0 i=1...°71 (17)
Taking the derivative of ordgh| > 0 of Eq. (9), we get
QCEN™ =dCc™) +Qn =0, (18)

whereQy, contains all the other terms obtained after differentiath@(p)) as a
composite function. The value @y depends only on derivative8™) of lower

ordersh’ < h. Since we assumed that the derivati@8’, h' < h, are known, the
value ofQp, is determined. Eq. (18) describes all possible valued®¥. Let Cy, be

an arbitrary matrix satisfying (18). Then the mat@%" belongs to the set

cMelCh+X: XeTG). (19)
Let us rewrite Eqg. (3) in the equivalent form with the use of (12)

d
AP)C(p) — C(p) (Ao +Y Big; (p)) =0. (20)

i=1
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Taking derivative of ordefh| > 0 of (20), we obtain
d )

h-+h"=h i=1

Rearranging terms in (21) and substituting

ch=c,+X, XeTgG, (22)
we get equation

[Ao, X]=Yh, XeTG, (23)
where

d
Yh=> Big{" + Dn,
i=1

Dh = —[Ao, Ch] — AM™

d
/ / " " h
- Y (A“”dh '—cM™ Y Big, >>. (24)
h+h"=h, i=1
W, h’#h

The matrixDy, € M, sinceB; € M and[Ag, X] € M for X e TG. Eq. (23) has a
solution X € TG iff the matrix Yy, belongs toT Orb(Ap). This condition can be
written with the use of the basld;,i =1, ..., d, of NOrb(Ag) as follows:

d
(Yn, Ny = (Z Bjg!” +Dn. N; | =0, i=1....d. (25)
j=1

Eqg. (25) and condition (13) yield
g™ =—On Ny, i=1....d. (26)

Substituting (26) into (24), we determine the matyix such that the solutioX <
TG of Eq. (23) exists. LeX, € TG be an arbitrary particular solution of (23). Then
all solutions of (23) form the sety + Cen(Ag) and can be expressed as

f
X =Xn+>_ vR. (27)
i=1

The coefficienty; can be found from (17) and (22) in the form
ylz_(ch+xthl)1 i=17""f‘ (28)

Therefore, we %btained ﬁhe recurrent formulae for calculation of the derivatives
c™ andq® = (¢, ..., ¢M).



94 A.A. Mailybaev / Linear Algebra and its Applications 337 (2001) 87-108

Theorem 1. Derivatives C™ and g of the functions transforming the matrix fam-
ily A(p) to the miniversal deformation B(q) (3) can be found using recurrent ex-
pressions (22), (24) and (26)—(28), where C©@ =1, q©@ =0, and Cy, Xy, are any
particular solutions of (18) and (23).

For practical realization of the method in each particular caskel @ind G we
should specify the matricd®;, N;,R; (i =1,...,d, j =1,..., f) and obtain for-
mulae for the matrice€y, Xp. This is usually a straightforward technical work.
To find a particular solutiorXy, it is convenient to use a matrid (Ag, Yr) giv-
en in Appendix A, which provides a particular solution of Eq. (23) iGwgID).
Then the matrixX, can be expressed in the forky, = M (Ao, Yh) + Zn, where
Zn € gl(m, D) is any matrix commuting witl such thaiXy, € T G. Explicit form
of matricesZy, is given in Appendix A.

The case, when the manifol is not a linear space, is studied similarly. Non-
linear manifoldsM are considered, when we study symplectic, reversible, or other
types of matrices. In this case the miniversal deformaBog) is generally not a
linear function ofg. The procedure of Theorem 1 can be used in the case of the
nonlinearM if we take the matrixDy, in the form

Dh = — (A(P)C(p) — C(p)B(q(p)))™

d
+[Ao, C™ —Chl = 3" Big]", (29)
i=1

whereB; = 0B/dq; (the derivative is calculated gt= 0). Expression (29) after tak-
ing the derivative of the expression in parenthesis contains only deriv&tilésind
qi(h/) of lower orderh’ < h. Thus, the matrixDy, is determined at the corresponding
step of the recurrent procedure.

In the following two sections it will be shown how the recurrent procedure for
calculation of the derivative€™ andq™ can be completed in several important

cases oMl andG.

4. Versal deformations of real and complex matrices

Let us consider the cagé¢ = gl(m, D) andG = GL(m, D). The normal form of
a matrixAg € gl(m, D) is the Jordan normal form in the caBe= C or its mod-
ification in the case®) = R or H. Miniversal deformations of complex and real
matrices transformed to the normal form are studied in [1,3,12]. Although miniversal
deformations of quaternionic matricds € gl(m, H) are not given in the literature,
their construction is an easy straightforward matter after the works of Arnold [1,3]
and Patera et al. [23]. Using results of these papers, it is straightforward to construct
the matrices3;, N;, andR;. In the case under consideratign= d and we can take
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Ch = 0 andXp = M(Ag, Yh), where the matriXM (Ao, Yy,) is defined in Appen-
dix A. Therefore, we obtain explicit recurrent formulae for calculation of derivatives
c®™ andq™ in the form

g™ =—On Ny, i=1....4
d
Dh=-AM— > ¢ <A<h’>c<h"> —cM3™ Biqi(h/)> :
h’+h”=h, i=1
b, h/#h
d
C™ =M(Ao. Yn) + ) _¥R;, (30)

i=1
d
h
Yh=) Big” +Dn. ¥ =—(M(Ao,Yh). Ri).
i=1

Formulae (30) represent the algorithm similar to the that given in [18].

4.1. Example

For example, let us consider a two-parameter real matrix family

N 1-pf 1+ pf
AP =|1-p2 pip2 —-1+4+p2|. p=(p1p2). (31)
1+p3 —pip2 1+p3

The matrixﬂo = K(O) has the Jordan normal fordyg consisting of two Jordan
blocks of dimensions 2 and 1 corresponding to a double eigenvald® and a

simple eigenvalug = 2. The matrice#\g andCy in the normal form transformation
(4) have the form

0 1 0 0 12 12
Ao=[0 0 o], co=|1 1 0. (32)
0 0 2 0 -1/2 1/2

Then the matrix familyA(p) = cglﬂ(p)co, which is a deformation of the normal
form Ag, is equal to

—p1 1—p1—p2+pd  p
AMP)=|pr+pip2 p1—pi+pip2 —p5 |. (33)
p1—pip2  p1— P% —pip2 2+ P%

In this casel! = 3 and the matriceB;, N;, andR;,i = 1, 2, 3, can be taken as fol-
lows [3,12]:

1 0 0 0 0 0 0 0 0
Bi=|0 1 o], Bo=[1 0 of, Bs=(0 0 o], (34
0 0 0 0 0 0 0 0 1
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N1=B1/2, Ri=B1/v2, Np=R]=B; N3z=R3=Bs
Using (32)—(34) in (30), after three iterations we find

q1(p) 1 0
B@@®) = q2(p) q1(p) 0 , 4=1(q1, 92, q3),
0

0 24 q3(p)
q1(p) = —p2/2+ p1p2/2+ p1p3/8+ o(lpll®),
q2(p) = p1— p1p3/2+ o(lpI®), (35)

q3(p) = p3 — p1p2/4+o(lpl®)

1—p1/2—p2/2 0 0
Cp) = D1 1+ p1/2+ p2/2 O] +odlpl).
-p1/2 —3p1/4 1

Since the expression f@(p) is too large, only the first order terms of the expansion
of C(p) are given in (35). The original matrix familk(p) is expressed in the form
(5) with the matrice€g, C(p), andB(q(p)) from (32) and (35).

Using transformation to the miniversal deformation, we can obtain important lo-
cal information about the behavior of the spectrunigp). SinceA(p) ~ B(q(p)),
the spectra of the matrices(p) and B(q(p)) coincide. From (35) it follows that
2+ q3(p) represents the value of the perturbed simple eigenvalse?. The bifur-
cation diagram (the set of values pfwhere the matriXA(p) has a multiple eigen-
value) is given by the equatiapp(p) = 0, and the multiple (double) eigenvalue on
the bifurcation diagram is equal ta (p).

5. Versal deformations of elements of classical Lie and Jordan algebras and
infinitesimally reversible matrices

Let us consider a classical Lie algelaunder the adjoint action of a correspond-
ing classical Lie grougs [8,24]. Following notations of [10], we define

M = {A e glim, D): KAT+AK =0},

G = {C e GL(m, D): CKCT =K}, (36)

whereK e gl(m, D) is a nonsingular matrix such thit! = ¢K, ¢ = +1, and the
matrixAT is defined a#\" = o (AT) with o being the operator of complex (quatern-
ionic) conjugation or the identity operator. Choosing differ&nte = +1, o, and
D, F, we get different types of classical Lie algebMawith the involutiona(A) =
KATK =1 (@(A) = —A for A € M) and the corresponding classical Lie groujis
see Table 1 [10].

The normal form theory for classical Lie algebras suggests using transformation
(4) with a matrixCo € GL(m, D). Then an elemerA& of a Lie algebral/ determined
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Table 1
Classical Lie algebras with involutions

AlgebraM GroupG m D F o(n) P Signature oK
o(p. q) O, q) p+q R R n 1 . q)

sp(%, R) SP(%, R) 2k R R n -1

ok, C) O(k, C) K C C n 1

sp(%, C) SP(%, C) 2k C C n -1

u(p, q) U(p. q) p+q C R n 1 . q)

sp@, ) SPp, q) p+q H R n 1 (., q)

0*(2k) O*(2k) k H R 7 -1

by a matrixK is transformed to an elemeag of another Lie algebr&l determined
by a matrixK such that

A = CoAoCyt, K =CoKC]. (37)

Therefore, normal forms of elements of classical Lie algebras are represented by
pairs(A, K), where bothA andK have simple form an& defines the Lie algebra.
Such normal forms are studied and listed in [10]. Note that the same n@jrix
transforms a deformation of the matiy in the spaceV to a deformation of the
normal formAg in the spacev (6).

Miniversal deformations of elements of classical Lie algebras (transformed to the
normal form) are given in [21,23] together with explicit forms of the centralizers
CentAop). In this caseNOrb(Ag) = (Ceni{Ap))" under the scalar product consid-
ered, i.e.,NOrb(Ap) = {YT : X € Cen{Ap)}. Hence, it is straightforward to con-
struct the matriceB;, N;, andR;.

The manifoldG ¢ GL(m, D) is defined by the equation

Q) =CKC'—K =0. (38)
The tangent space ® atl is determined by
dQ(X) = KX+ XK =0, (39)

i.e., TG = M. Let C(p) be a deformation of in G. Taking the derivative of order
|h| > 0 of (38), we obtain

QECE)® =K (c<h>)T L+ ek

+ Y ek (c:<h”>)T —o. (40)

h+h"=h,
W, W #h

A particular solutionC™ = Cy, of (40) can be taken in the form

1 ! ’ " T
Ch=—3 > chchk (c™) k™, (41)
h+h'=h,
W, h+h
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which can be checked by substitution of (41) into (40) and using equdlity-
eK, e = £1.

To complete the procedure of Theorem 1, we need to find a particular sokion
of the equation

[Ao, Xhl=Yh, XneTG=M, (42)
whereYy, € M is defined in (24) and the existence of the solution is assumed. Using
the matrixM (Ao, Yn) from Appendix A, we can tak¥p, in the form

Xp = (M (Ao, Yn) —K (M(Ao, Yn)TK™Y). (43)

Substituting (43) into equatiori$\g, Xn] = Yh, KXE + XpK = 0 and using equali-
tiesKAD + AoK = 0,KY] + YLK = 0, and[Ag, M (Ao, Yn)] = Y, it can be eas-
ily shown thatXy, is a particular solution of (42).
Therefore, we completed the recurrent procedure for finding deriva@if&sind
q™ in the case of classical Lie algebras. This procedure consists of expressions of
Theorem 1 and formulae (41) and (43).
The same formulae (41) and (43) can be used in the case of classical Jordan
algebras determined by the expressions
M = |A e gl(m, D): KAT — AK =0},
G = {C e GL(m, D): CKCT =K}.
Miniversal deformations and centralizers of elements of classical Jordan algebras
are given in [22]. Note that in this case the tangent sgaGe= {X € gl(m, D):
KXT + XK = 0} is the corresponding Lie algebra determined by the métrix
Analogously, we can study miniversal deformations of infinitesimally reversible
matrices
M ={A €glim,R): KA+AK =0},

G ={CeGL(m, R): KC—CK =0},

where the matriXK € GL(m, R) satisfies the conditiok? = |. Normal forms and
miniversal deformations of infinitesimally reversible matrices are listed in [27]. In
this case the matricés, andX;, can be chosen as follows:
Ch=0,
Xh = 2 (M(Ao, Yn) + KM (Ao, Yn) K).

(44)

(45)

(46)

5.1. Example

Let us consider the symplectic Lie algebida= sp(4, R) with the corresponding
symplectic Lie grougs = SR4, R), where the matriX is as follows:

0

0 1

~ 0 0

R=|_ 0 47)
0 0

= O O
O O
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The matricesA € sp(2k, R) are also called Hamiltonian matrices. Lfé(p), p=
(p1, p2), be a two-parameter matrix family i of the form

0 0 10
~ | -» 0 0 1
0 4pr—p?> —p O

wherep = /(4 + p1)(3/4 + pz)/Z. Matrix family (48) corresponds to the Hamil-
tonian equatiorx = f&(p)x describing oscillations of a simply supported elastic pipe
conveying fluid withp; = A4 — 4, p» = o — 3/4; A is the parameter proportional to
a squared velocity of the fluid; depends on the ratio of masses of the tube and the
fluid [19,29]. _ ~

The matrixAg = A(0) has the quadruple zero eigenvalue with the corrgspgnding
Jordan block of dimension 4. Hence, the normal feAg, K) for the matriced\g, K
is [10]

01 0 0 0 0 -1
00 1 0 O 01 0

Ao=10 0 o 1|° X=|o -1 0 o (49)
00 0 O 1 00 o0

Calculating the Jordan chain for the zero eigenvalué(p@an eigenvector and asso-
ciated vectors), we find the matr® in transformation (37) as follows:

0 1 0 16
-3 0 J3/6 0
Co=132 o 34 o | (50)

0 —v32 0 J3/4
The versal deformation corresponding(#y, K) depends on two parameteys=
(91, g2) and has the fornB(q) = Ao + ¢1B1 + ¢2B2. The matrice8;, N;, R;,i =
1, 2, can be taken in the form [23]

B1 = , Ba=

[eNeoNeoNe]
Or OO
[eNeoNeoNe]

Ny =

oOoOPro rOoOOoOo
oOr OO0 OO0OO0OOo
RPOOO OO0OO0OOo

o009 QOoo9

Ny =Bi, Ri=B], Rx=N]/V3

The original matrix familyf&(p) is represented using the versal deformation as
follows:



100 A.A. Mailybaev / Linear Algebra and its Applications 337 (2001) 87-108

A(p) = CoC(PB@(P)C(P)Cq ™
Using the recurrent procedure of Theorem 1 and formulae (41) and (43), we can
find Taylor expansions of the functiol®(p) andq(p) up to the terms of arbitrary
order. The results of calculations fq(p) = (¢1(p), g2(p)) are as follows:

0 1 0 )
0 0 1 0] P =-12p1—4pi,
5 _ ’ 51
Q(p)) 0 g2 0 1| gy(p)=17p1/4—4ps — PlPZ(- :
e 0 00

Calculations show that the higher order terms in expansiogs(p) andgz(p) are
ZEeros.

Eigenvalues of the matrice?!s(p) andB(q(p)) coincide. The characteristic equa-
tion for the miniversal deformation has the form

IB@(P) — M| = 2% = q2(m)A% — q1(p). (52)
Hence, the stability domain (the set of values of the parametersch that all ei-
genvalues oA (p) are purely imaginary and semisimple) in the vicinitypo& 0O is
described by the inequalities

D(P) = (q2(p))? +4q1(p) > 0, q1(p) <O, ga2(p) <O. (53)

Direct calculations show that relations (51) and (53) determine exact form of the
stability domain neap = 0 [19].

Though the stability analysis for simple matrix family (48) can be performed
without miniversal deformations, the same method can be used for a matrix family
of any dimensionn = 2k dependent on arbitrary number of parameterBue to
the block-diagonal structure of the versal deformation, the stability conditions (in the
case, wher\g has the quadruple zero eigenvalue with the Jordan block of dimension
4) have the same form (53), where Taylor series of the functjof® andg2(p) can
be found by the explicit recurrent procedure.

6. Partial transformation to a ver sal defor mation

Transformation of a matrix familﬁ(p) to a versal deformation (5) consists of
two steps: transformation &g to the normal form (4) and then computation of the
functionsC(p), q(p) by the recurrent procedure of Theorem 1. It should be noted
that though the first step (transformation of the mafixto the normal form) is
clear from the theoretical point of view, it represents a very complicated problem of
numerical computations due to its instability (high sensitivity of multiple eigenvalues
to perturbations of parameters) [3,30]. Below it will be shown how in some cases
we can avoid a considerable part of calculations associated with the normal form
transformation.

Applications of versal deformations are based on the fact that the spectra of the
matricesA(p) and B(q(p)) coincide, whileB(q(p)) has a very simple structure.
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In many stability and dynamics problems we are interested only in a part of the
spectrum, which lies, for example, on the imaginary axis or the unit circle. Versal de-
formations have usually a block-diagonal structure. Hence, we need for applications
only the blocks ofB(q(p)) corresponding to the eigenvalues under consideration
while the information about other blocks in not important. Let us modify the re-
current procedure for calculations of a specific blockBgfj(p)) in the caseM =
gl(m, D), G = GL(m, D).

Eqg. (5) of the transformation to the versal deformation can be written in the form

A(P)S(p) = S(PIB@((P)), S(p) = CoC(p). (54)

Let the versal deformation be a block-diagonal matrix family

B/ / ,
B(a) = ( @ B,,(q,,)) . 9=, ). (55)
We will be interested in the x s block
d/
B'(d'(P) = Ag + ) Bigi(p), (56)
i=1
where the vectoq' = (q3, ..., q),) has dimensionl’; Aj is a part of the Jordan

normal formAg = B(0) = diag(A;, Ap) (in the casedd = R or H the matrixAg
represents the real or quaternionic equivalent of the Jordan normal form [10]).

Eq. (54) splits into two independent parts corresponding to the b®’ckadB”,
where the first part takes the form

A(P)S(p) = S(PB'( (p)). (57)

HereS is anm x s matrix consisting of the firs§ columns ofS. Let us assume that
the matrixAj is known as well as the: x s matricesS; = S'(0) andV satisfying
equations

A0Sy = A, VTAg=AVT, Vig=1. (58)

Columns of the matriceS;, andV form the right and left Jordan chains correspond-
ing to the partA;, of the Jordan normal form. The last equality of (58) represents
the normalization condition uniquely determiniNgfor given S;,. As in Section 3

let us defines x s matricesB’, N}, andR},i =1, ...,d’, for the matrixAj, where
{B!} is a basis of some complement B0rb(Ap) in gi(s, D), {N;} is a basis of
NOTrb(Ap) satisfying conditiongN;, B’j) = §;j, and{R}} is a basis of CeltA() =
(NOrb(Af)))T satisfying(R}, R’j) = §;;. Taking derivative of Eq. (57) with respect
to the parameters, we find

AoS™ —sMAy = v| (59)

where
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d/
I 7 1(h /
Y =% Big/™ +Dp,
i=1

d' (60)
D;, = —A(h)% _ Z CR (A(h)sf(h ) _ g )ZB;ql{(h)) .

h'+h”=h, i=1
W, h’#h

Multiplication of (59) byVT from left with the use of (58) yields

A5 VTS| = VY], (61)
Hence, the right-hand side of (61) belongs to the tangent spa@ch(A). Using the
basisN;,i = 1,...,d’, of the normal complemenyOrb(A;) and the first expres-
sion of (60), we obtain

g™ =—-(VD|,N}), i=1,....d. (62)

Substituting (62) into (60), we find the matri%, standing in the right-hand side of
(59). Then the matri€™ has the form

d/
S =M'(Ro. Ap. Y) + S D iR}, (63)
i=1

where the matri’ (Ao, Ag. Y1) is a particular solution of (59) defined in Appendix
A. Using relationsS(p) = CoC(p) and (58) in conditions (17), we find

€M R)) = tracg(CM)'R))
= trace(S")T(C;HR)
= tracg(S™)TVR))
=(VTs™ R) =0, (64)

where thes x s upper left block of then x m matrix R; is equal toR; and other
entries ofR; are zeros. Substituting (63) into (64), we find the coefficients the
form
vi=— (VM (Ao, Ap, YR, R)), i=1,....d. (65)

Expressions (60), (62), (63), and (65) represent the explicit recurrent procedure
for calculation of Taylor expansions of the functigf(p) in the block of the versal
deformationB’ (g’ (p)) and the corresponding paBt(p) of the matrix familyS(p).
The advantage of the described method is that we do not need the whole Jordan
normal formAg and the calculations are restricted to a part of the versal deformation
under consideration.

Similar procedures can be obtained in some other casbbaid G, when the
equationf(S) = 0 determiningG can be divided into two independent pdi§) =
0 andf”(S") = 0 corresponding tan x s andm x (m — s) blocks of the matrix
S=1[9,9"].
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6.1. Example

Let the matrixﬂo € gl(m, R) have a real double eigenvalag with the Jordan
chainug, uz (an eigenvector and an associated vector) satisfying equatbn—
UA; = 0, whereAj = J;,(2) is the Jordan block of dimension 2 with the eigenvalue
Lo, andU = [ug, uz]. Letvy, v be the left Jordan chain (an eigenvector and an asso-
ciated vector of the matriA]) satisfying equations/TAg — ApVT = 0,VTU =1,
whereV = [vo, v1]. In this case the versal deformatiBiiq) has a block [3,12]

/

B'(d) = <A°;Léql *o Jlr q/l> . 0 =(q1,92), (66)
and we can tak&, = U, Nj = B} /2, R} = B} /v2,N}, = (R},)" = B),. Using the
recurrent procedure of this section, we can find Taylor series for the fungtjoms
q5(p), and then x 2 matrixS'(p). In particular, for matrix family (31) we will obtain
the expansions af1(p) andg2(p) given in (35).

Perturbation of the double eigenvalugin the vicinity ofp = 0 is determined by
the characteristic equatidB’(q'(p)) — Al| = 0, which yields

L =20+ q1(p) £/95(p). (67)

On the surfacg,(p) = 0, where the eigenvalue= Ao + ¢;(p) is double, columns

of the matrixS'(p) represent the corresponding Jordan chain. Note that the advan-
tage of the suggested method is that for local multi-parameter analysis of a double
eigenvalue we need only the corresponding right and left Jordan chains of the matrix
Ao and derivatives of the matrix familf(p) atp = 0. As a result, we get informa-

tion about the bifurcation of the double eigenvalug(67) and the corresponding
eigenspace determined by the column§@p) with the accuracy up to the terms of
any order.

Similarly, we can study an arbitrary multiple eigenvalue. Note that in the case
of a simple eigenvalugg a blockB’(q') = A0 + ¢4 and, hence, the recurrent pro-
cedure gives the Taylor expansion of the simple eigenvalgeio + ¢ (p) and the
corresponding eigenvect&f(p).

7. Conclusion

In this paper the problem of finding the functio@gp) andq(p) transforming
a matrix family to a versal deformation is considered. A general method for con-
struction of recurrent procedures, which allow determining the funci@ipg and
g(p) in the form of Taylor series, is developed and used for the cases of real and
complex matrices, elements of classical Lie and Jordan algebras, and infinitesimally
reversible matrices. Transformation to the versal deformation consists of determining
the versal deformatioB(q) and the transformation functio®p), q(p). Therefore,
computation of the function€(p) and q(p) represents the important part of the
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versal deformation theory (like calculation of a change of basis in the transformation
of a matrix to the Jordan normal form). The suggested approach can be extended
to the case of versal deformations studied in [6,11,15,16], where pairs, triples, or
quadruples of matrices were considered and different equivalence transformations
were used instead of the change of basis.

Results of this paper extend the application area of the versal deformation theory.
Information about the transformation functioi§) andq(p) can be used for analyt-
ical and numerical analysis of multi-parameter matrix families in stability, dynamics,
and perturbation problems.

Appendix A
A.l. Equation[A,X] =Y

Let us consider the equation
[A,X]=Y, Xedgl@m,C), (A1)

whereA andY are given matrices from @h, C). It is assumed that the solutiot
of (A.1) exists, i.e.Y belongs toI'Orb(A) in gl(m, C).

First, let us study the case, wharns the Jordan normal forly = diag(Jy, ..., Jy),
J; = diagJ;, (m}), ..., I, (m}")), and

A1 0 O

3 (m!) = (A.2)

o » .0
O o0 . 1
0 0 0
is the m{ X m{ Jordan block corresponding to the eigenvalygthe eigenvalues
A, ..., As are different'ml.l > > m:l are sizes of the Jordan blocks correspond-
ing to the eigenvalug;. The Jordan structure & induces a partition of am x m
matrix X into the blocksX}]. Them; x m', block X}/ stands on the intersection of

rows corresponding td,, (mf?) and columns corresponding ich (m’j). Elements
of X¥ are denoted byf}(r, s),r=1,...,m¥ s =1,...,m’. Analogous notations
are used for the matriX. Then the particular solution of (A.l) can be found in the
form [18]

k
m;—

kl = (_1)r1Crr11+Sl ki . .
xl-j(r,s) = Z Z W)’U(”‘Frlﬁ—sll i+,

r1=0 s1=0



A.A. Mailybaev / Linear Algebra and its Applications 337 (2001) 87-108 105

§\°
§\°

NN

Fig. 1 Structure of matrices commuting with the Jordan normal form.

LA/

0’ k < l, r = 1,
N
Yo e —stsi-Ls), k<L r#l
=s'(r,s)
xHr sy =" rf(rivj (A.3)
—nyil(rl,s—r—l—rl—}—l), k>1, s;émé,
ri=r
0’ k > l, S = mé,

s'(r,s) =max(l, s —r +2), r'(r,s) = min(m*, r —s +m! - 1).

The matrixX given by (A.3) is denoted byl (A, Y). Note that another algorithm for
finding a particular solution of (A.1) for the Jordan normal foAtwas suggested
in [28].

The general solution of (A.1) is a suki= M (A, Y) + Z of the particular solu-
tion and a general solution of the homogeneous equatierCen{A) = {Z € gl(m,
C): [A,Z] = 0}. The general form of the matriX, commuting with the Jordan
normal formA, isZ = diag(Z1, ..., Z;), where each block; has the form shown
in Fig. 1 [14]. Blocks in Fig. 1 correspond to the Jordan structur® oéach slanted
segment is filled by equal complex numbers and blank places are zeros.

For an arbitrary math the particular solution of equat|c{m\ X] =Y can be
found in the formX = M(A, Y)=CM(A,C1yC)C1, whereA is the Jordan
normal form ofA = CAC~ L. Similarly, the general form of a matri commuting
with A is Z = CZC~1, whereZ is a matrix commuting with the Jordan normal
formA. ~

The same formulae for the particular solutibh(A, Y) can be used in the real
and quaternionic cases. Here it can be shown that the nidtei, Y) is real for
real matricesA andY, if we choose the columns @& corresponding to complex
conjugate eigenvalues to be complex conjugate [18]. In the BaseH we should
use the representation of quaternions by 2 complex matrices [10]. Then the ma-
trix A € gl(m, H) is substituted by the corresponding matrix fror2gt, C) and the
Jordan normal form transformatlm CAC~1 is chosen such that the obtained
2m x 2m complex matrixv A, Y) keeps the “quaternionic” structure.
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A2. Equation AX — XA’ =Y

Let us consider the equation
AX — Xy (s) =Y, (A.4)
whereA andY are given complex matrices of dimensionsx m andm x s; X
is an unknown complex matrix of dimensian x s; J; (s) is the Jordan block of
dimensions corresponding to the eigenvalaeof the matrixA. Eq. (A.4) can be
written in the form
(A —ADxy =y1,

(A — ADX2 = X1+ Y2,
. (A.5)

(A - )\I)Xs =Xs—1+Ys,

wherex; andy;, i =1...,s are golumns of the: x s matricesX andY. Sincei
is the eigenvalue oA, the matrixA — Al is singular. Letqy, ..., d, be a basis of
the null space of the matrik — Al andry, ..., r; be a basis of the null space of the
matrix (A — ADT.

We assume that the solutiohof (A.4) exists. In the paper this condition is ful-
filled automatically by the construction of the matix We refer the reader interest-
ed in necessary and sufficient conditions for the existence of solution of (A.4) to [5]
and references therein. Using (A.5), a particular solution of (A.4) can be found in the
form X = [Xq, ..., X;], where

x1 =P~ lyy,

X2 = P71(x1 + y2), A6)

Xs = P_1()(sfl + ys)

HereP = A — Al —RQ' (Q =[q, ..., q] andR = [r1, ..., r,]) is a nonsingular
matrix [31]. Note that ifA is not an eigenvalue &%, thenP = A — Al. Let us denote
the obtained particular solution B’ (A, J;.(s), Y) = [X1, ..., Xs].

Let us consider the equation

AX =Xd=Y, J=diagdi,(s0), ..., d,g)), (A7)

whereJ is the Jordan normal form of dimensien= s1 + - - - + s, with the blocks
Ji; (si); A; are not necessarily different eigenvalues. A particular solution of (A.7)
can be found in the fornM’(A,J,Y) = [M"(A, J;,(s1), Y1), ..., M'(A, 35, (s¢),
Y 1, whereY; is thes x s; part of the matrixy = [Yq,...,Y,]. ~
If A”is an arbitrarys x s matrix, then a particular solution of the equatidX —
XA’ =Y has the form

M/'(A,A,Y)=M'A,J, YW)W L, (A.8)
whereA’ = WIJW ™1 andJ is the Jordan normal form of the matm¥.
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The same formulae can be used for the particular soIMt(ﬁ, A’,Y)inthereal
and quaternionic cases. Here we should appropriately choose the kvatrixhe
caseD = R (columns ofW corresponding to complex conjugate eigenvalues should
be complex conjugate) and apply the<2 matrix representation of quaternions in
the caséD = H.

Note thatM’(A, A, Y) is a particular solution of (A.1), but generaly' (A, A, Y)
+M(A,Y).
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