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Abstract

In the paper versal deformations of matrices are considered. The versal deformation is
a matrix family inducing an arbitrary multi-parameter deformation of a given matrix by an
appropriate smooth change of parameters and basis. Given a deformation of a matrix, it is
suggested to find transformation functions (the change of parameters and the change of basis
dependent on parameters) in the form of Taylor series. The general method of construction of
recurrent procedures for calculation of coefficients in the Taylor expansions is developed and
used for the cases of real and complex matrices, elements of classical Lie and Jordan alge-
bras, and infinitesimally reversible matrices. Several examples are given and studied in detail.
Applications of the suggested approach to problems of stability, singularity, and perturbation
theories are discussed. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Analysis of normal forms and spectra of matrices is a very important problem both
from theoretical and practical points of view. This analysis becomes very complicat-
ed, when we study multi-parameter families of matrices. Introducing parameters, we
obtain many new phenomena like singularities and bifurcations leading to qualitative
changes in the behavior of systems described by these matrices. In this paper we
study properties of square matricesA(p) smoothly depending on a vector of param-
etersp and determined in the vicinity of the originp = 0. Such a matrix family is
called a deformation of a matrixA0 = A(0). Arnold [1,3] defined and studied nor-
mal forms of deformations of complex matrices (called versal deformations). These
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normal forms are special matrix familiesB(q) possessing properties of all other fami-
lies, i.e., we can get an arbitrary deformation of the matrixA0 from the corresponding
versal deformation by a smooth change of parametersq = q(p) and a change of basis
x′ = C(p)x smoothly dependent on parameters

A(p) = C(p)B(q(p))C−1(p).

It was shown that the versal deformationB(q) is determined only by the matrix
A0. The study of versal deformations for different types of matrices (real, Ham-
iltonian, reversible, etc.) was continued by many authors [12,13,16,21–23,27]; for
more references see a short survey in [4, pp. 172–177]. In papers [6,11,15,16] versal
deformations were found in the cases of pairs, triples, and quadruples of matrices,
where the change of basis is substituted by another equivalence transformation.

Applications of versal deformations are based on the fact that the spectrum of the
matrix family coincides with the spectrum of its versal deformation, while the versal
deformation has a very simple form. This property allows using the versal deforma-
tion theory for multi-parameter analysis of the spectrum in problems of stability and
dynamics. Versal deformations without knowledge about the change of parameters
and basis were used for the classification of singularities of bifurcation diagrams,
decrement diagrams, and stability boundaries [2,3,12,13,19,21,23].

The problem of finding the change of parameters and basis (the transformation
functionsq(p) andC(p)) for a given matrix familyA(p) was considered by sever-
al authors. Cushman et al. [9] studied this problem for a specific family of 4× 4
Hamiltonian matrices. Schmidt [25,26] used the computer algebra for finding the
transformation functions in the case, when the change of parameters can be explicitly
found by comparing corresponding characteristic equations. Stolovitch [28] used the
Newton method for numerical calculations of the functionsq(p) andC(p) at given
values of the parameters; in the case of simplified versal deformations corresponding
to one-parameter matrix families of special type he constructed an algorithm for find-
ing the transformation functions in the form of Taylor series. For real and complex
matrix families Mailybaev [18] proposed to find the transformation functions in the
form of Taylor series, whose coefficients are calculated by an explicit recurrent pro-
cedure. It turns out that Taylor expansions of the functionsq(p) andC(p) provide the
most useful information for applications, where the most important are the first order
terms [7,17–20]. This is a consequence of the local nature of a versal deformation.

This paper represents the further development of ideas of paper [18] for versal de-
formations of matrices of different types (Hamiltonian, reversible, symmetric, etc.).
Following [18] it is suggested to find the transformation functions in the form of Tay-
lor series. A general method of construction of recurrent procedures for calculation
of coefficients in the Taylor expansions is developed. This method provides “almost
ready” recurrent formulae, which can be easily completed for any type of matrices.
For several important cases (real and complex matrices, elements of classical Lie
and Jordan algebras, and infinitesimally reversible matrices) explicit recurrent pro-
cedures are given. Three examples are studied showing efficiency of the method and
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possibilities for its application to problems of stability, singularity, and perturbation
theories.

The paper is organized as follows. General concepts of the versal deformation
theory are given in Section 2. The method of construction of recurrent procedures is
described in Section 3. In Sections 4 and 5 the developed method is applied to sev-
eral specific types of matrices. Section 6 shows how the recurrent procedure can be
optimized, when we need only a partial information on the transformation functions
and the versal deformation. Conclusion gives a short outline of the obtained results.

In the paper the matrices are denoted by bold capital letters, vectors take the form
of bold lower-case letters, and scalars are represented by lower-case italic characters.

2. Normal forms and versal deformations

Let M be a manifold andG be a Lie group acting onM by conjugation; for the
definition and properties of a Lie group see [8,24]. In this paper we consider the case,
whenM is a submanifold of the space gl(m,D) of m × m matrices with elements
from D, andG is a subgroup of the group GL(m,D) of nonsingularm × m matrices;
D stands for the space of real numbersR, complex numbersC, or quaternionsH. The
adjoint action ofC ∈ G determines an equivalence transformation inM as follows:

A ∼ A′ = CAC−1 ∈ M, A ∈ M. (1)

If the matrix A ∈ M is considered as an operator in the spacex ∈ Dm, then the
adjoint action ofC ∈ G represents the change of basisx′ = Cx.

To simplify the analysis we will consider the case whenM is a linear space.
This corresponds to many important cases including symmetric, Hamiltonian, in-
finitesimally reversible, and other types of matrices. The general case, whenM is an
arbitrary submanifold of gl(m,D) (this corresponds, for example, to the space of
symplectic matrices), can be considered similarly.

The adjoint action ofG determinesan orbit (a G-conjugacy class) of an element
A ∈ M as follows:

Orb(A) = {
CAC−1 : C ∈ G

}
. (2)

Any elementA′ ∈ Orb(A) is a representative of Orb(A) since Orb(A′) = Orb(A).
The problem of the normal form theory is to find representatives having simple form
and to classify them. The choice of the normal form varies in different studies de-
pending on the problem under consideration. A famous example is the Jordan normal
form in the caseM = gl(m,C),G = GL(m,C). Normal forms are well studied and
their classification for many important cases ofM andG is performed; see [10,27]
and references therein.

A deformation A(p) of a matrix A0 ∈ M is a smooth mappingA : (Fn, 0) →
(M,A0) determined in the vicinity of the originp = 0; Fn is a space of real or com-
plex parametersp = (p1, . . . , pn) (F = R or C for D = C, andF = R for D = R or
H). A deformationA(p) is also calleda matrix family. A deformationB(q), q ∈ Fd ,
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of a matrixA0 is calleda versal deformation if any deformationA(p) of A0 can be
represented in the vicinity ofp = 0 in the form

A(p) = C(p)B(q(p))C−1(p), (3)

whereC : (Fn, 0) → (G, I) is a smooth mapping (deformation of the identity matrix
I in G); q(p) is a smooth function fromFn to the parameter space of the versal
deformationFd such thatq(0) = 0 [1,3]. Expression (3) means that any deformation
A(p) can be obtained from the versal deformationB(q) by a change of basis and
a change of parameters. Thus, the versal deformation represents the most general
matrix family possessing (in some sense) properties of all deformations of the matrix
A0.

Versal deformation with the minimal number of parametersd is calledminiversal.
It was proved in [1,3] that the deformationB(q) of A0 is versal iffB(q) is transversal
in the spaceM to the orbit Orb(A0) atA0. This condition gives a constructive method
of finding versal deformations, which was used in all papers devoted to this problem.
It is clear that the number of parameters of a miniversal deformation is equal to the
codimension of Orb(A0) in M [1,3].

Note that it is sufficient to consider versal deformations of normal forms of
matrices. Indeed, let us consider a matrixÃ0 whose normal form isA0, i.e.,

Ã0 = C0A0C−1
0 , C0 ∈ G. (4)

Then the versal (miniversal) deformation ofÃ0 is B̃(q) = C0B(q)C−1
0 , whereB(q)

is the versal (miniversal) deformation of the normal formA0. For any deformation
Ã(p) of Ã0 we have

Ã(p)= C0C(p)B(q(p))(C0C(p))−1

= C̃(p)B̃(q(p))C̃−1(p), C̃(p) = C0C(p)C−1
0 , (5)

where the functionsC(p) andq(p) transform the deformation

A(p) = C−1
0 Ã(p)C0 (6)

of the normal formA0 to the versal deformationB(q) (3).

3. Transformation to versal deformations

Let a deformationA(p) and a versal deformationB(q) of a matrixA0 be given. In
this section we find the transformation functions (the change of basis and the change
of parameters)C(p) andq(p) satisfying relation (3). We will consider miniversal
deformationsB(q) (a versal deformationB(q) can be made miniversal by taking
some of the parameters equal to zero).

The smooth functionsA(p),C(p), andq(p) are determined in the vicinity of the
origin p = 0. Thus, they can be represented in the form of Taylor series with the
accuracy o(‖p‖k), wherek is the maximal order of terms kept in the expansion;‖p‖
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is the norm in the parameter spaceFn. In applications we usually need only a finite
number of terms in the Taylor expansion, where the most important are the first order
terms.

Let us introduce some notations. Leth = (h1, . . . , hn) ∈ Zn+ be a vector with

nonnegative integer componentshi . Then we denoteph = p
h1
1 · · ·phn

n , h! = h1! · · ·
hn!, |h| = h1 + · · · + hn, and

A(h) = �|h|A
�ph1

1 · · · �phn
n

, Ch′
h = C

h′
1

h1
· · ·Ch′

n

hn
, C

j
i = i!

j !(i − j)! , (7)

where derivatives are evaluated atp = 0; hi = 0 means that we do not take the de-
rivative with respect topi . The Taylor series for the functionA(p) is represented in
the form

A(p) =
∑
|h|�k

A(h)ph

h! + o(‖p‖k), A(0) = A0, (8)

where the sum is taken over allh ∈ Zn+ of order|h| � k. SubstitutingA by C or q
in (8), we obtain Taylor expansions of the functionsC(p) andq(p), whereC(0) = I
andq(0) = 0. To determine the Taylor series ofC(p) andq(p), the derivativesC(h)

andq(h) should be found using derivativesA(h). In this section we derive recurrent
formulae for derivativesC(h) and q(h) assuming that all the derivativesC(h′) and
q(h

′) of lower ordersh′ < h are known;h′ < h means thath′
i � hi for i = 1, . . . , n

andh′
j < hj for somej.

First, let us analyze the structure ofC(p). Let Q : (GL(m,D), I) → (Q, 0) be
a smooth function determined in the vicinity ofI, where the rangeQ is a space of
matrices or vectors, such that the equation

Q(C) = 0 (9)

determines the manifoldG in the vicinity of I. The tangent space toG at I is denoted
by TG and determined by the expression

TG = {
X ∈ gl(m,D) : dQ(X) = 0

}
, (10)

where dQ is the differential ofQ at I. The spaceTG determines the tangent space
TOrb(A0) to the orbit Orb(A0) at A0 in the form [1,3]

TOrb(A0) = {[A0, X] : X ∈ TG
}
. (11)

The matrix [A0,X] = A0X − XA0 is the derivative of the functionA′(C) =
C−1A0C,C ∈ G, at I along the directionX ∈ TG. SinceM is a linear space, we
haveTOrb(A0) ⊂ M.

The miniversal deformationB(p) is usually chosen to be a linear function of the
parameters

B(q) = A0 +
d∑

i=1

Biqi , q = (q1, . . . , qd). (12)
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LetB ⊂ M be a linear space determined by the matricesBi , i = 1, . . . , d. According
to the versal deformation theory [1,3]B(q) is a miniversal deformation iffM =
TOrb(A0) + B andd = dim(M) − dim(TOrb(A0)).

Let (A,B) = trace(ATB) be a scalar product in gl(m,D), whereAT is the trans-
posed matrix andB is the complex (or quaternionic) conjugate matrix in the case
D = C (or D = H). We denote byNOrb(A0) the normal complement ofTOrb(A0)

in M, i.e.,M = TOrb(A0) + NOrb(A0) and(T,N) = 0 for anyT ∈ TOrb(A0),N ∈
NOrb(A0). Let Ni , i = 1, . . . , d, be a basis ofNOrb(A0) normalized with respect
to Bj such that

(Ni ,Bj ) = δij , δij =
{

1, i = j,

0, i /= j,
i, j = 1, . . . , d. (13)

A centralizer of A0 is a set of matricesX ∈ TG commuting withA0 [1,3]:

Cent(A0) = {
X ∈ TG : [A0,X] = 0

}
. (14)

Note that Cent(A0) is the tangent space to thestabilizer of A0 atI, where Stab(A0) =
{C ∈ G : CA0C−1 = A0}. Let f = dim(Cent(A0)), where in many (but not all)
casesf = d. Since Cent(A0) is a linear space, we can choose the orthogonal basis
Ri , i = 1, . . . , f , of Cent(A0) such that

(Ri ,Rj ) = δij , i, j = 1, . . . , f. (15)

It is known [1,3] that the mappingC(p) is uniquely determined on any smooth sur-
faceP ⊂ G, which is transversal to Cent(A0) at I and dim(P ) = dim(G) − f . This
surface can be taken in the form

P = {
C ∈ G : (C − I,Ri ) = 0, i = 1, . . . , f

}
. (16)

The surfaceP is the intersection ofG with the planeI + NCent(A0), where
NCent(A0) is the normal complement of Cent(A0) in TG. ConditionC(p) ∈ P leads
to the following equalities for derivativesC(h):

(C(h),Ri ) = 0, i = 1, . . . , f. (17)

Taking the derivative of order|h| > 0 of Eq. (9), we get

(Q(C(p)))(h) = dQ(C(h)) + Qh = 0, (18)

whereQh contains all the other terms obtained after differentiatingQ(C(p)) as a
composite function. The value ofQh depends only on derivativesC(h′) of lower
ordersh′ < h. Since we assumed that the derivativesC(h′), h′ < h, are known, the
value ofQh is determined. Eq. (18) describes all possible values ofC(h). Let Ch be
an arbitrary matrix satisfying (18). Then the matrixC(h) belongs to the set

C(h) ∈ {Ch + X : X ∈ TG
}
. (19)

Let us rewrite Eq. (3) in the equivalent form with the use of (12)

A(p)C(p) − C(p)

(
A0 +

d∑
i=1

Biqi(p)

)
= 0. (20)
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Taking derivative of order|h| > 0 of (20), we obtain

∑
h′+h′′=h

Ch′
h

A(h′)C(h′′) − C(h′′)
(

A0 +
d∑

i=1

Biqi(p)

)(h′) = 0. (21)

Rearranging terms in (21) and substituting

C(h) = Ch + X, X ∈ TG, (22)

we get equation

[A0,X] = Yh, X ∈ TG, (23)

where

Yh =
d∑

i=1

Biq
(h)
i + Dh,

Dh = −[A0,Ch] − A(h)

−
∑

h′+h′′=h,
h′,h′′ /=h

Ch′
h

(
A(h′)C(h′′) − C(h′′)

d∑
i=1

Biq
(h′)
i

)
. (24)

The matrixDh ∈ M, sinceBi ∈ M and [A0,X] ∈ M for X ∈ TG. Eq. (23) has a
solution X ∈ TG iff the matrix Yh belongs toTOrb(A0). This condition can be
written with the use of the basisNi , i = 1, . . . , d, of NOrb(A0) as follows:

(Yh, Ni ) =
 d∑

j=1

Bj q
(h)
j + Dh, Ni

 = 0, i = 1, . . . , d. (25)

Eq. (25) and condition (13) yield

q
(h)
i = −(Dh,Ni ), i = 1, . . . , d. (26)

Substituting (26) into (24), we determine the matrixYh such that the solutionX ∈
TG of Eq. (23) exists. LetXh ∈ TG be an arbitrary particular solution of (23). Then
all solutions of (23) form the setXh + Cent(A0) and can be expressed as

X = Xh +
f∑
i=1

γiRi . (27)

The coefficientsγi can be found from (17) and (22) in the form

γi = −(Ch + Xh,Ri ), i = 1, . . . , f. (28)

Therefore, we obtained the recurrent formulae for calculation of the derivatives
C(h) andq(h) = (q

(h)
1 , . . . , q

(h)
d ).
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Theorem 1. Derivatives C(h) and q(h) of the functions transforming the matrix fam-
ily A(p) to the miniversal deformation B(q) (3) can be found using recurrent ex-
pressions (22), (24) and (26)–(28), where C(0) = I, q(0) = 0, and Ch,Xh are any
particular solutions of (18) and (23).

For practical realization of the method in each particular case ofM and G we
should specify the matricesBi ,Ni ,Rj (i = 1, . . . , d, j = 1, . . . , f ) and obtain for-
mulae for the matricesCh, Xh. This is usually a straightforward technical work.
To find a particular solutionXh it is convenient to use a matrixM(A0,Yh) giv-
en in Appendix A, which provides a particular solution of Eq. (23) in gl(m,D).
Then the matrixXh can be expressed in the formXh = M(A0,Yh) + Zh, where
Zh ∈ gl(m,D) is any matrix commuting withA0 such thatXh ∈ TG. Explicit form
of matricesZh is given in Appendix A.

The case, when the manifoldM is not a linear space, is studied similarly. Non-
linear manifoldsM are considered, when we study symplectic, reversible, or other
types of matrices. In this case the miniversal deformationB(q) is generally not a
linear function ofq. The procedure of Theorem 1 can be used in the case of the
nonlinearM if we take the matrixDh in the form

Dh = − (A(p)C(p) − C(p)B(q(p)))(h)

+ [A0,C(h) − Ch] −
d∑

i=1

Biq
(h)
i , (29)

whereBi = �B/�qi (the derivative is calculated atq = 0). Expression (29) after tak-
ing the derivative of the expression in parenthesis contains only derivativesC(h′) and

q
(h′)
i of lower ordersh′ < h. Thus, the matrixDh is determined at the corresponding

step of the recurrent procedure.
In the following two sections it will be shown how the recurrent procedure for

calculation of the derivativesC(h) andq(h) can be completed in several important
cases ofM andG.

4. Versal deformations of real and complex matrices

Let us consider the caseM = gl(m,D) andG = GL(m,D). The normal form of
a matrixA0 ∈ gl(m,D) is the Jordan normal form in the caseD = C or its mod-
ification in the casesD = R or H. Miniversal deformations of complex and real
matrices transformed to the normal form are studied in [1,3,12]. Although miniversal
deformations of quaternionic matricesA0 ∈ gl(m,H) are not given in the literature,
their construction is an easy straightforward matter after the works of Arnold [1,3]
and Patera et al. [23]. Using results of these papers, it is straightforward to construct
the matricesBi ,Ni , andRj . In the case under considerationf = d and we can take
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Ch = 0 andXh = M(A0,Yh), where the matrixM(A0,Yh) is defined in Appen-
dix A. Therefore, we obtain explicit recurrent formulae for calculation of derivatives
C(h) andq(h) in the form

q
(h)
i = −(Dh,Ni ), i = 1, . . . , d,

Dh = −A(h) −
∑

h′+h′′=h,
h′,h′′ /=h

Ch′
h

(
A(h′)C(h′′) − C(h′′)

d∑
i=1

Biq
(h′)
i

)
.

C(h) = M(A0,Yh) +
d∑

i=1

γiRi , (30)

Yh =
d∑

i=1

Biq
(h)
i + Dh, γi = − (M(A0,Yh), Ri ) .

Formulae (30) represent the algorithm similar to the that given in [18].

4.1. Example

For example, let us consider a two-parameter real matrix family

Ã(p) =
1 − p2

1 p1 1 + p2
1

1 − p2 p1p2 −1 + p2

1 + p2
2 −p1p2 1 + p2

2

 , p = (p1, p2). (31)

The matrix Ã0 = Ã(0) has the Jordan normal formA0 consisting of two Jordan
blocks of dimensions 2 and 1 corresponding to a double eigenvalueλ = 0 and a
simple eigenvalueλ = 2. The matricesA0 andC0 in the normal form transformation
(4) have the form

A0 =
0 1 0

0 0 0
0 0 2

 , C0 =
0 1/2 1/2

1 1 0
0 −1/2 1/2

 . (32)

Then the matrix familyA(p) = C−1
0 Ã(p)C0, which is a deformation of the normal

form A0, is equal to

A(p) =
 −p1 1 − p1 − p2 + p2

1 p2
2

p1 + p1p2 p1 − p2
1 + p1p2 −p2

2

p1 − p1p2 p1 − p2
1 − p1p2 2 + p2

2

 . (33)

In this cased = 3 and the matricesBi ,Ni , andRi , i = 1, 2, 3, can be taken as fol-
lows [3,12]:

B1 =
1 0 0

0 1 0
0 0 0

 , B2 =
0 0 0

1 0 0
0 0 0

 , B3 =
0 0 0

0 0 0
0 0 1

 , (34)
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N1 = B1
/

2, R1 = B1
/√

2, N2 = RT
2 = B2, N3 = R3 = B3.

Using (32)–(34) in (30), after three iterations we find

B(q(p)) =
q1(p) 1 0
q2(p) q1(p) 0

0 0 2+ q3(p)

 , q = (q1, q2, q3),

q1(p)= −p2
1/2 + p1p2/2 + p1p

2
2/8 + o(‖p‖3),

q2(p)= p1 − p1p
2
2/2 + o(‖p‖3), (35)

q3(p)= p2
2 − p1p

2
2/4 + o(‖p‖3),

C(p) =
1 − p1/2 − p2/2 0 0

p1 1 + p1/2 + p2/2 0
−p1/2 −3p1/4 1

+ o(‖p‖).

Since the expression forC(p) is too large, only the first order terms of the expansion
of C(p) are given in (35). The original matrix familỹA(p) is expressed in the form
(5) with the matricesC0, C(p), andB(q(p)) from (32) and (35).

Using transformation to the miniversal deformation, we can obtain important lo-
cal information about the behavior of the spectrum ofÃ(p). SinceÃ(p) ∼ B(q(p)),
the spectra of the matrices̃A(p) and B(q(p)) coincide. From (35) it follows that
2 + q3(p) represents the value of the perturbed simple eigenvalueλ = 2. The bifur-
cation diagram (the set of values ofp, where the matrix̃A(p) has a multiple eigen-
value) is given by the equationq2(p) = 0, and the multiple (double) eigenvalue on
the bifurcation diagram is equal toq1(p).

5. Versal deformations of elements of classical Lie and Jordan algebras and
infinitesimally reversible matrices

Let us consider a classical Lie algebraM under the adjoint action of a correspond-
ing classical Lie groupG [8,24]. Following notations of [10], we define

M = {
A ∈ gl(m,D) : KA† + AK = 0

}
,

G = {
C ∈ GL(m,D) : CKC† = K

}
,

(36)

whereK ∈ gl(m,D) is a nonsingular matrix such thatK† = εK, ε = ±1, and the
matrixA† is defined asA† = σ(AT) with σ being the operator of complex (quatern-
ionic) conjugation or the identity operator. Choosing differentK, ε = ±1, σ , and
D, F, we get different types of classical Lie algebrasM with the involutionα(A) =
KA†K−1 (α(A) = −A for A ∈ M) and the corresponding classical Lie groupsG;
see Table 1 [10].

The normal form theory for classical Lie algebras suggests using transformation
(4) with a matrixC0 ∈ GL(m,D). Then an element̃A of a Lie algebrãM determined
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Table 1
Classical Lie algebras with involutions

AlgebraM GroupG m D F σ(η) ε Signature ofK

o(p, q) O(p, q) p + q R R η 1 (p, q)
sp(2k,R) SP(2k,R) 2k R R η −1
o(k,C) O(k,C) k C C η 1
sp(2k,C) SP(2k,C) 2k C C η −1
u(p, q) U(p, q) p + q C R η 1 (p, q)
sp(p, q) SP(p, q) p + q H R η 1 (p, q)
o∗(2k) O∗(2k) k H R η −1

by a matrixK̃ is transformed to an elementA0 of another Lie algebraM determined
by a matrixK such that

Ã = C0A0C−1
0 , K̃ = C0KC†

0. (37)

Therefore, normal forms of elements of classical Lie algebras are represented by
pairs(A, K), where bothA andK have simple form andK defines the Lie algebra.
Such normal forms are studied and listed in [10]. Note that the same matrixC0
transforms a deformation of the matrix̃A0 in the spacẽM to a deformation of the
normal formA0 in the spaceM (6).

Miniversal deformations of elements of classical Lie algebras (transformed to the
normal form) are given in [21,23] together with explicit forms of the centralizers
Cent(A0). In this caseNOrb(A0) = (Cent(A0))

T under the scalar product consid-

ered, i.e.,NOrb(A0) = {XT : X ∈ Cent(A0)}. Hence, it is straightforward to con-
struct the matricesBi ,Ni , andRi .

The manifoldG ⊂ GL(m,D) is defined by the equation

Q(C) = CKC† − K = 0. (38)

The tangent space toG at I is determined by

dQ(X) = KX† + XK = 0, (39)

i.e., TG = M. Let C(p) be a deformation ofI in G. Taking the derivative of order
|h| > 0 of (38), we obtain

(Q(C(p)))(h) = K
(

C(h)
)† + C(h)K

+
∑

h′+h′′=h,
h′,h′′ /=h

Ch′
h C(h′)K

(
C(h′′)

)† = 0. (40)

A particular solutionC(h) = Ch of (40) can be taken in the form

Ch = − 1

2

∑
h′+h′′=h,

h′,h′′ /=h

Ch′
h C(h′)K

(
C(h′′)

)†
K−1, (41)



98 A.A. Mailybaev / Linear Algebra and its Applications 337 (2001) 87–108

which can be checked by substitution of (41) into (40) and using equalityK† =
εK, ε = ±1.

To complete the procedure of Theorem 1, we need to find a particular solutionXh
of the equation

[A0, Xh] = Yh, Xh ∈ TG = M, (42)

whereYh ∈ M is defined in (24) and the existence of the solution is assumed. Using
the matrixM(A0,Yh) from Appendix A, we can takeXh in the form

Xh = 1
2(M(A0,Yh) − K (M(A0,Yh))

† K−1). (43)

Substituting (43) into equations[A0,Xh] = Yh, KX†
h + XhK = 0 and using equali-

tiesKA†
0 + A0K = 0, KY†

h + YhK = 0, and[A0,M(A0,Yh)] = Yh, it can be eas-
ily shown thatXh is a particular solution of (42).

Therefore, we completed the recurrent procedure for finding derivativesC(h) and
q(h) in the case of classical Lie algebras. This procedure consists of expressions of
Theorem 1 and formulae (41) and (43).

The same formulae (41) and (43) can be used in the case of classical Jordan
algebras determined by the expressions

M = {
A ∈ gl(m,D) : KA† − AK = 0

}
,

G = {
C ∈ GL(m,D) : CKC† = K

}
.

(44)

Miniversal deformations and centralizers of elements of classical Jordan algebras
are given in [22]. Note that in this case the tangent spaceTG = {X ∈ gl(m,D) :
KX† + XK = 0} is the corresponding Lie algebra determined by the matrixK.

Analogously, we can study miniversal deformations of infinitesimally reversible
matrices

M = {
A ∈ gl(m,R) : KA + AK = 0

}
,

G = {
C ∈ GL(m,R) : KC − CK = 0

}
,

(45)

where the matrixK ∈ GL(m,R) satisfies the conditionK2 = I. Normal forms and
miniversal deformations of infinitesimally reversible matrices are listed in [27]. In
this case the matricesCh andXh can be chosen as follows:

Ch = 0,

Xh = 1
2 (M(A0,Yh) + K M(A0,Yh)K) .

(46)

5.1. Example

Let us consider the symplectic Lie algebrãM = sp(4,R) with the corresponding
symplectic Lie group̃G = SP(4,R), where the matrix̃K is as follows:

K̃ =


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

 . (47)
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The matricesA ∈ sp(2k,R) are also called Hamiltonian matrices. LetÃ(p), p =
(p1, p2), be a two-parameter matrix family iñM of the form

Ã(p) =


0 ρ 1 0

−ρ 0 0 1
3 + p1 − ρ2 0 0 ρ

0 4p1 − ρ2 −ρ 0

 , (48)

whereρ = √
(4 + p1)(3/4 + p2)

/
2. Matrix family (48) corresponds to the Hamil-

tonian equatioṅx = Ã(p)x describing oscillations of a simply supported elastic pipe
conveying fluid withp1 = � − 4, p2 = α − 3/4; � is the parameter proportional to
a squared velocity of the fluid;α depends on the ratio of masses of the tube and the
fluid [19,29].

The matrixÃ0 = Ã(0) has the quadruple zero eigenvalue with the corresponding
Jordan block of dimension 4. Hence, the normal form(A0,K) for the matrices̃A0, K̃
is [10]

A0 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , K =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 . (49)

Calculating the Jordan chain for the zero eigenvalue ofÃ0 (an eigenvector and asso-
ciated vectors), we find the matrixC0 in transformation (37) as follows:

C0 =


0 1 0 1/6

−√
3 0

√
3/6 0

3/2 0 3/4 0
0 −√

3/2 0
√

3/4

 . (50)

The versal deformation corresponding to(A0,K) depends on two parametersq =
(q1, q2) and has the formB(q) = A0 + q1B1 + q2B2. The matricesBi ,Ni ,Ri , i =
1, 2, can be taken in the form [23]

B1 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , B2 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 ,

N2 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 ,

N1 = B1, R1 = BT
1, R2 = NT

2

/√
3.

The original matrix familyÃ(p) is represented using the versal deformation as
follows:
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Ã(p) = C0C(p)B(q(p))C−1(p)C−1
0 .

Using the recurrent procedure of Theorem 1 and formulae (41) and (43), we can
find Taylor expansions of the functionsC(p) andq(p) up to the terms of arbitrary
order. The results of calculations forq(p) = (q1(p), q2(p)) are as follows:

B(q(p)) =


0 1 0 0
0 0 1 0
0 q2(p) 0 1

q1(p) 0 0 0

 ,
q1(p) = −12p1 − 4p2

1,

q2(p) = 17p1/4 − 4p2 − p1p2.
(51)

Calculations show that the higher order terms in expansions ofq1(p) andq2(p) are
zeros.

Eigenvalues of the matrices̃A(p) andB(q(p)) coincide. The characteristic equa-
tion for the miniversal deformation has the form

|B(q(p)) − λI| = λ4 − q2(p)λ2 − q1(p). (52)

Hence, the stability domain (the set of values of the parametersp such that all ei-
genvalues of̃A(p) are purely imaginary and semisimple) in the vicinity ofp = 0 is
described by the inequalities

D(p) = (q2(p))2 + 4q1(p) > 0, q1(p) < 0, q2(p) < 0. (53)

Direct calculations show that relations (51) and (53) determine exact form of the
stability domain nearp = 0 [19].

Though the stability analysis for simple matrix family (48) can be performed
without miniversal deformations, the same method can be used for a matrix family
of any dimensionm = 2k dependent on arbitrary number of parametersn. Due to
the block-diagonal structure of the versal deformation, the stability conditions (in the
case, wheñA0 has the quadruple zero eigenvalue with the Jordan block of dimension
4) have the same form (53), where Taylor series of the functionsq1(p) andq2(p) can
be found by the explicit recurrent procedure.

6. Partial transformation to a versal deformation

Transformation of a matrix familỹA(p) to a versal deformation (5) consists of
two steps: transformation of̃A0 to the normal form (4) and then computation of the
functionsC(p), q(p) by the recurrent procedure of Theorem 1. It should be noted
that though the first step (transformation of the matrixÃ0 to the normal form) is
clear from the theoretical point of view, it represents a very complicated problem of
numerical computations due to its instability (high sensitivity of multiple eigenvalues
to perturbations of parameters) [3,30]. Below it will be shown how in some cases
we can avoid a considerable part of calculations associated with the normal form
transformation.

Applications of versal deformations are based on the fact that the spectra of the
matricesA(p) and B(q(p)) coincide, whileB(q(p)) has a very simple structure.
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In many stability and dynamics problems we are interested only in a part of the
spectrum, which lies, for example, on the imaginary axis or the unit circle. Versal de-
formations have usually a block-diagonal structure. Hence, we need for applications
only the blocks ofB(q(p)) corresponding to the eigenvalues under consideration
while the information about other blocks in not important. Let us modify the re-
current procedure for calculations of a specific block ofB(q(p)) in the caseM =
gl(m,D),G = GL(m,D).

Eq. (5) of the transformation to the versal deformation can be written in the form

Ã(p)S(p) = S(p)B(q(p)), S(p) = C0C(p). (54)

Let the versal deformation be a block-diagonal matrix family

B(q) =
(

B′(q′)
B′′(q′′)

)
, q = (q′, q′′). (55)

We will be interested in thes × s block

B′(q′(p)) = A′
0 +

d ′∑
i=1

B′
iq

′
i (p), (56)

where the vectorq′ = (q ′
1, . . . , q

′
d ′) has dimensiond ′; A′

0 is a part of the Jordan
normal formA0 = B(0) = diag(A′

0,A′′
0) (in the casesD = R or H the matrixA0

represents the real or quaternionic equivalent of the Jordan normal form [10]).
Eq. (54) splits into two independent parts corresponding to the blocksB′ andB′′,

where the first part takes the form

Ã(p)S′(p) = S′(p)B′(q′(p)). (57)

HereS′ is anm × s matrix consisting of the firsts columns ofS. Let us assume that
the matrixA′

0 is known as well as them × s matricesS′
0 = S′(0) andV satisfying

equations

Ã0S′
0 = S′

0A′
0, VTÃ0 = A′

0VT, VTS′
0 = I. (58)

Columns of the matricesS′
0 andV form the right and left Jordan chains correspond-

ing to the partA′
0 of the Jordan normal form. The last equality of (58) represents

the normalization condition uniquely determiningV for given S′
0. As in Section 3

let us defines × s matricesB′
i ,N′

i , andR′
i , i = 1, . . . , d ′, for the matrixA′

0, where
{B′

i} is a basis of some complement ofTOrb(A′
0) in gl(s,D), {N′

i} is a basis of
NOrb(A′

0) satisfying conditions(N′
i ,B′

j ) = δij , and{R′
i} is a basis of Cent(A′

0) =
(NOrb(A′

0))
T satisfying(R′

i ,R′
j ) = δij . Taking derivative of Eq. (57) with respect

to the parameters, we find

Ã0S′(h) − S′(h)A′
0 = Y′

h, (59)

where
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Y′
h = S′

0

d ′∑
i=1

B′
iq

′
i
(h) + D′

h,

D′
h = −A(h)S′

0 −
∑

h′+h′′=h,
h′,h′′ /=h

Ch′
h

̃A(h′)S′(h′′) − S′(h′′)
d ′∑
i=1

B′
iq

′
i
(h′)

 .

(60)

Multiplication of (59) byVT from left with the use of (58) yields[
A′

0,VTS′(h)] = VTY′
h. (61)

Hence, the right-hand side of (61) belongs to the tangent spaceTOrb(A′
0). Using the

basisN′
i , i = 1, . . . , d ′, of the normal complementNOrb(A′

0) and the first expres-
sion of (60), we obtain

q ′
i
(h) = − (VTD′

h,N′
i

)
, i = 1, . . . , d ′. (62)

Substituting (62) into (60), we find the matrixYh standing in the right-hand side of
(59). Then the matrixS′(h) has the form

S′(h) = M′(Ã0,A′
0,Y′

h) + S′
0

d ′∑
i=1

γiR′
i , (63)

where the matrixM′(Ã0,A′
0,Y′

h) is a particular solution of (59) defined in Appendix
A. Using relationsS(p) = C0C(p) and (58) in conditions (17), we find

(C(h),Ri )= trace((C(h))TRi )

= trace((S(h))T(C−1
0 )TRi )

= trace((S′(h))TVR
′
i )

= (VTS′(h),R′
i ) = 0, (64)

where thes × s upper left block of them × m matrix Ri is equal toR′
i and other

entries ofRi are zeros. Substituting (63) into (64), we find the coefficientsγi in the
form

γi = − (VTM′(Ã0,A′
0,Y′

h),R′
i

)
, i = 1, . . . , d ′. (65)

Expressions (60), (62), (63), and (65) represent the explicit recurrent procedure
for calculation of Taylor expansions of the functionq′(p) in the block of the versal
deformationB′(q′(p)) and the corresponding partS′(p) of the matrix familyS(p).
The advantage of the described method is that we do not need the whole Jordan
normal formA0 and the calculations are restricted to a part of the versal deformation
under consideration.

Similar procedures can be obtained in some other cases ofM andG, when the
equationf(S) = 0 determiningG can be divided into two independent partsf′(S′) =
0 and f′′(S′′) = 0 corresponding tom × s andm × (m − s) blocks of the matrix
S = [S′, S′′].
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6.1. Example

Let the matrixÃ0 ∈ gl(m,R) have a real double eigenvalueλ0 with the Jordan
chainu1, u2 (an eigenvector and an associated vector) satisfying equationÃ0U −
UA′

0 = 0, whereA′
0 = Jλ0(2) is the Jordan block of dimension 2 with the eigenvalue

λ0, andU = [u1, u2]. Let v1, v2 be the left Jordan chain (an eigenvector and an asso-
ciated vector of the matrix̃AT

0) satisfying equationsVTÃ0 − A′
0VT = 0,VTU = I,

whereV = [v2, v1]. In this case the versal deformationB(q) has a block [3,12]

B′(q′) =
(
λ0 + q ′

1 1
q ′

2 λ0 + q ′
1

)
, q′ = (q ′

1, q
′
2), (66)

and we can takeS′
0 = U, N′

1 = B′
1/2, R′

1 = B′
1

/√
2, N′

2 = (R′
2)

T = B′
2. Using the

recurrent procedure of this section, we can find Taylor series for the functionsq ′
1(p),

q ′
2(p), and them × 2 matrixS′(p). In particular, for matrix family (31) we will obtain

the expansions ofq1(p) andq2(p) given in (35).
Perturbation of the double eigenvalueλ0 in the vicinity ofp = 0 is determined by

the characteristic equation|B′(q′(p)) − λI| = 0, which yields

λ = λ0 + q ′
1(p) ±

√
q ′

2(p). (67)

On the surfaceq ′
2(p) = 0, where the eigenvalueλ = λ0 + q ′

1(p) is double, columns
of the matrixS′(p) represent the corresponding Jordan chain. Note that the advan-
tage of the suggested method is that for local multi-parameter analysis of a double
eigenvalue we need only the corresponding right and left Jordan chains of the matrix
Ã0 and derivatives of the matrix familỹA(p) at p = 0. As a result, we get informa-
tion about the bifurcation of the double eigenvalueλ0 (67) and the corresponding
eigenspace determined by the columns ofS′(p) with the accuracy up to the terms of
any order.

Similarly, we can study an arbitrary multiple eigenvalue. Note that in the case
of a simple eigenvalueλ0 a blockB′(q′) = λ0 + q ′

1 and, hence, the recurrent pro-
cedure gives the Taylor expansion of the simple eigenvalueλ = λ0 + q ′

1(p) and the
corresponding eigenvectorS′(p).

7. Conclusion

In this paper the problem of finding the functionsC(p) andq(p) transforming
a matrix family to a versal deformation is considered. A general method for con-
struction of recurrent procedures, which allow determining the functionsC(p) and
q(p) in the form of Taylor series, is developed and used for the cases of real and
complex matrices, elements of classical Lie and Jordan algebras, and infinitesimally
reversible matrices. Transformation to the versal deformation consists of determining
the versal deformationB(q) and the transformation functionsC(p), q(p). Therefore,
computation of the functionsC(p) and q(p) represents the important part of the
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versal deformation theory (like calculation of a change of basis in the transformation
of a matrix to the Jordan normal form). The suggested approach can be extended
to the case of versal deformations studied in [6,11,15,16], where pairs, triples, or
quadruples of matrices were considered and different equivalence transformations
were used instead of the change of basis.

Results of this paper extend the application area of the versal deformation theory.
Information about the transformation functionsC(p) andq(p) can be used for analyt-
ical and numerical analysis of multi-parameter matrix families in stability, dynamics,
and perturbation problems.

Appendix A

A.1. Equation [A,X] = Y

Let us consider the equation

[A,X] = Y, X ∈ gl(m,C), (A.1)

whereA andY are given matrices from gl(m,C). It is assumed that the solutionX
of (A.1) exists, i.e.,Y belongs toTOrb(A) in gl(m,C).

First, let us study the case, whenA is the Jordan normal formA = diag(J1, . . . , Js),
Ji = diag(Jλi (m

1
i ), . . . , Jλi (m

ni
i )), and

Jλi (m
j
i ) =


λi 1 0 0

0 λi
. . . 0

0 0
... 1

0 0 0 λi

 (A.2)

is themj
i × m

j
i Jordan block corresponding to the eigenvalueλi ; the eigenvalues

λ1, . . . , λs are different;m1
i � · · · � m

ni
i are sizes of the Jordan blocks correspond-

ing to the eigenvalueλi . The Jordan structure ofA induces a partition of anm × m

matrix X into the blocksXkl
ij . Themk

i × ml
j block Xkl

ij stands on the intersection of

rows corresponding toJλi (m
k
i ) and columns corresponding toJλj (m

l
j ). Elements

of Xkl
ij are denoted byxklij (r, s), r = 1, . . . , mk

i , s = 1, . . . , ml
j . Analogous notations

are used for the matrixY. Then the particular solution of (A.1) can be found in the
form [18]

xklij (r, s) =
mk
i −r∑

r1=0

s−1∑
s1=0

(−1)r1Cr1
r1+s1

(λi − λj )r1+s1+1
yklij (r + r1, s − s1), i /= j,
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Fig. 1 Structure of matrices commuting with the Jordan normal form.

xklii (r, s) =



0, k � l, r = 1,
s∑

s1=s′(r,s)
yklii (r − s + s1 − 1, s1), k � l, r /= 1,

−
r ′(r,s)∑
r1=r

yklii (r1, s − r + r1 + 1), k > l, s /= ml
i,

0, k > l, s = ml
i,

(A.3)

s′(r, s) = max(1, s − r + 2), r ′(r, s) = min(mk
i , r − s + ml

i − 1).

The matrixX given by (A.3) is denoted byM(A,Y). Note that another algorithm for
finding a particular solution of (A.1) for the Jordan normal formA was suggested
in [28].

The general solution of (A.1) is a sumX = M(A,Y) + Z of the particular solu-
tion and a general solution of the homogeneous equationZ ∈ Cent(A) = {Z ∈ gl(m,

C) : [A,Z] = 0}. The general form of the matrixZ, commuting with the Jordan
normal formA, is Z = diag(Z1, . . . ,Zs), where each blockZi has the form shown
in Fig. 1 [14]. Blocks in Fig. 1 correspond to the Jordan structure ofJi ; each slanted
segment is filled by equal complex numbers and blank places are zeros.

For an arbitrary matrix̃A the particular solution of equation[Ã,X] = Y can be
found in the formX = M(Ã,Y) = C M(A,C−1YC)C−1, whereA is the Jordan
normal form ofÃ = CAC−1. Similarly, the general form of a matrix̃Z commuting
with Ã is Z̃ = CZC−1, whereZ is a matrix commuting with the Jordan normal
form A.

The same formulae for the particular solutionM(Ã,Y) can be used in the real
and quaternionic cases. Here it can be shown that the matrixM(Ã,Y) is real for
real matrices̃A andY, if we choose the columns ofC corresponding to complex
conjugate eigenvalues to be complex conjugate [18]. In the caseD = H we should
use the representation of quaternions by 2× 2 complex matrices [10]. Then the ma-
trix Ã ∈ gl(m,H) is substituted by the corresponding matrix from gl(2m,C) and the
Jordan normal form transformatioñA = CAC−1 is chosen such that the obtained
2m × 2m complex matrixM(Ã,Y) keeps the “quaternionic” structure.
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A.2. Equation ÃX − XA′ = Y

Let us consider the equation

ÃX − XJλ(s) = Y, (A.4)

whereÃ and Y are given complex matrices of dimensionsm × m andm × s; X
is an unknown complex matrix of dimensionm × s; Jλ(s) is the Jordan block of
dimensions corresponding to the eigenvalueλ of the matrixÃ. Eq. (A.4) can be
written in the form

(Ã − λI)x1 = y1,

(Ã − λI)x2 = x1 + y2,
...

(Ã − λI)xs = xs−1 + ys ,

(A.5)

wherexi andyi , i = 1, . . . , s, are columns of them × s matricesX andY. Sinceλ
is the eigenvalue of̃A, the matrixÃ − λI is singular. Letq1, . . . ,qt be a basis of
the null space of the matrix̃A − λI andr1, . . . , rt be a basis of the null space of the

matrix (Ã − λI)T.
We assume that the solutionX of (A.4) exists. In the paper this condition is ful-

filled automatically by the construction of the matrixY. We refer the reader interest-
ed in necessary and sufficient conditions for the existence of solution of (A.4) to [5]
and references therein. Using (A.5), a particular solution of (A.4) can be found in the
form X = [x1, . . . , xs], where

x1 = P−1y1,

x2 = P−1(x1 + y2),
...

xs = P−1(xs−1 + ys).

(A.6)

HereP = Ã − λI − RQ
T

(Q = [q1, . . . ,qt ] andR = [r1, . . . , rt ]) is a nonsingular
matrix [31]. Note that ifλ is not an eigenvalue of̃A, thenP = Ã − λI. Let us denote
the obtained particular solution byM′(Ã, Jλ(s),Y) = [x1, . . . , xs].

Let us consider the equation

ÃX − XJ = Y, J = diag(Jλ1(s1), . . . , Jλq (sq)), (A.7)

whereJ is the Jordan normal form of dimensions = s1 + · · · + sq with the blocks
Jλi (si); λi are not necessarily different eigenvalues. A particular solution of (A.7)
can be found in the formM′(Ã, J,Y) = [M′(Ã, Jλ1(s1),Y1), . . . ,M′(Ã, Jλq (sq),
Yq)], whereYi is thes × si part of the matrixY = [Y1, . . . ,Yq ].

If A′ is an arbitrarys × s matrix, then a particular solution of the equationÃX −
XA′ = Y has the form

M′(Ã,A′,Y) = M′(Ã, J,YW)W−1, (A.8)

whereA′ = WJW−1 andJ is the Jordan normal form of the matrixA′.
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The same formulae can be used for the particular solutionM′(Ã,A′,Y) in the real
and quaternionic cases. Here we should appropriately choose the matrixW in the
caseD = R (columns ofW corresponding to complex conjugate eigenvalues should
be complex conjugate) and apply the 2× 2 matrix representation of quaternions in
the caseD = H.

Note thatM′(A,A,Y) is a particular solution of (A.1), but generallyM′(A,A,Y)

/= M(A,Y).
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