KLEENE CHAIN COMPLETENESS AND FIXEDPOINT PROPERTIES

Tsutomu KAMIMURA and Adrian TANG
Department of Computer Science. University of Kansas, Lawrence, KS 66045, U.S.A.

Communicated by M. Nivat
Received April 1981
Revised June 1982

Introduction

Fixedpoint theorems play a fundamental role in denotational semantics of programming languages. In 1955, Tarski [6] and Davis [1] showed that a lattice L is complete if and only if every monotonic function $f: L \rightarrow L$ has a fixedpoint. Since then, other fixedpoint properties are considered, by imposing either the function to be ω-continuous or the fixedpoint to be the least fixedpoint. The key question is whether such fixedpoint properties can as well be characterized by some completeness properties of the given partially ordered set. In this direction, Markowsky [2] showed that a partially ordered set is chain-complete if and only if every monotonic function $f: D \rightarrow D$ has a least fixedpoint. Suppose we replace monotonic functions by ω-continuous functions which play a prominent role in Scott's theory of computation $[4,5]$. A slight modification of Tarski's proof shows that if a partially ordered set D with a least element L is ω-chain complete, then every ω-continuous function $f: D \rightarrow D$ has a least fixedpoint given by $\bigsqcup_{n \in \omega} f^{n}(\perp)$. The latter result is the wellknown Tarski-Kleene-Knaster theorem. In 1978, Plotkin asked the validity of the converse of Tarski-Kleene-Knaster theorem because an affirmative answer would give us a characterization of ω-chain complete partially ordered sets in terms of the least fixedpoint property for ω-conti.iuous functions.

Throughout the paper, D stands for a partially ordered set with a least element 1 . Let us consider Plotkin's puzzle in the following version: Given a D, if every ω-continuous function $f: D \rightarrow D$ has a least fixedpoint given by $\bigsqcup_{n \in \omega} f^{n}(\perp)$, is D ω-chain complete? In this paper, we answer the problem negatively (Mashburn obtained the same result independently in [3]). Despite this negative answer, we show a rather astonishing result, namely: If D is either countable or countably algebraic, then the converse of Tarski-Kleene-Knaster theorem is true. This positive answer is rather pleasing because most of the D 's used in denotational semantics are either countable or countably algebraic.

During our studies, we introduce the notion of a Kleene chain as follows: an ω-chain $\left\{a_{n}\right\}_{n \in \omega}$ is Kleenc if there exists some ω-continuous function $f: D \rightarrow D$ such that $a_{n}=f^{n}(\perp)$ for every n. D is Kleene-chain complete if every Kleene chain has a least upper bound. Using this notion of Kleene chains, we can rephrase the converse of Tarski-Kleene-Knaster theorem as follows: Is Kleene-chain completeness identical to ω-chain completeness? The following seems to be the key question: When is a strict ω-chain Kleene? Clearly, if every strict ω-chain is Kleene, then the two notions of chain completeness must coincide. To this end, we show
(a) if D is ω-chain complete, then every strict ω-chain is Kleene;
(b) if D is either countable or countably algebraic, then every strict ω-chain is Kleene; and
(c) non-Kleene ω-chains exist.

It follows from (b) that if D is either countable or countably algebraic, then the converse of Tarski-Kleene-Knaster theorem is valid.

We also study the following question: Suppose every ω-continuous function $f: D \rightarrow D$ has a least fixedpoint, does it follow that the least fixedpoint is given by D.e. $f^{\prime \prime}(1) ?$ An affirmative answer would clearly give us a syntactic characterization of the least fixedpoint. However, we show that even if D is countable or countably algebraic, the answer may be negative.

1. Notations

An ω-chain $\left\{a_{n}\right\}_{n \in \omega}$ in D is any ascending chain; $\left\{a_{n}\right\}_{n \in \omega}$ is strict if it is strictly increasing and $a_{0}=1$. D is ω-chain complete if every ω-chain has a least upper hound (l.u.b.). E is an ω-chain semi-complete subset of D if the l.u.b. (in D) of any ω-chain in E, whenever it exists, lies in E.
$f: D \rightarrow D$ is ω-continuous if $\bigsqcup_{n \in \omega} f\left(a_{n}\right)=f\left(\bigsqcup_{n \in \omega} a_{n}\right)$ for every ω-chain $\left\{a_{n}\right\}_{n \in \omega}$ whose l.u.b. exists. A stronger notion of continuity is directed-continuity which is $\rfloor f(H)=f(\bigsqcup H)$ for every directed set H whose l.u.b. exists.
x in D is an algebraic element if whenever $x \sqsubseteq \bigsqcup H$ for some directed set H, we must have $x \sqsubseteq h$ for some h in $H . D$ is algehraic if every x in D is the l.u.b. of some directed set of algebraic elements. D is countably algebraic if D is algebraic and there are countably many algebraic elements. An ω-chain $\left\{a_{n}\right\}_{n \in \omega}$ is algebraic if all the a_{n} 's are algebraic elements in D.

2. Kleene chains

An $\omega-\operatorname{com}_{\text {min }}\left\{a_{n}\right\}_{n \in \omega}$ is Kleene if fri some ω continuous function $f: D \rightarrow D, a_{n}=$ 1 L) foi very n. In the study of chain completeness, we are only interested in mfinite chains. Every infinite Kleene chain, according to our definition, must be
strict. We can easily see that a strict ω-chain $\left\{a_{n}\right\}_{n \in \omega}$ is Kleene if and only if for some ω-continuous function $f: D \rightarrow D, f\left(a_{n}\right)=a_{n+1}$. In this section, we study the following problem: when is a strict ω-chain Kleene? First, we give some positive answers.

Theorem 1. Given a strict ω-chain $\left\{a_{n}\right\}_{n \in \omega}$ in D, if the l.u.b. of $\left\{a_{n}\right\}_{n \in \omega}$ exists, then $\left\{a_{n}\right\}_{n \in \omega}$ is Kleene.

Proof. Let a be the l.u.b. of $\left\{a_{n}\right\}_{n \in \omega}$. Define $f: D \rightarrow D$ as follows:

$$
f(x)= \begin{cases}a & \text { if } x \nsubseteq a_{n} \text { for every } n, \\ a_{n+1} & \text { if otherwise and } n \text { is the smallest integer } \\ & \text { satisfying } x \sqsubseteq a_{n} .\end{cases}
$$

The ω-continuity of f is obvious; in fact, f is directed-continuous. Clearly $f\left(a_{n}\right)=a_{n+1}$ for every n, hence $\left\{a_{n}\right\}_{n \in \omega}$ is Kleene.

Corollary 1. If \boldsymbol{D} is ω-chain complete, then every ω-chain is Kleene.

Theorem 2. If D is countable, then every strict ω-chain is Kleene.

Proof. Let $\left\{a_{n}\right\}_{n \in \omega}$ be any strict ω-chain in D. Without loss of generality, assume that $\left\{a_{n}\right\}_{n \in \omega}$ does not have any l.u.b. (otherwise, $\left\{a_{n}\right\}_{n \in \omega}$ is Kieene by Theorem 1). Define the set C as follows:

$$
C=\left\{x \in D \mid x \sqsubseteq \text { every upper bound of }\left\{a_{n}\right\}_{n \in \omega}\right\}
$$

Note that all the a_{n} 's are in C, C ' is an ω-chain semi-complete set, and furthermore, C does not contain any upper bound of the chain $\left\{a_{n}\right\}_{n \in \omega}$. If $\left\{a_{n}\right\}_{n \in \omega}$ does not have any upper bound at all, then C is equal to the entire set D. Since D is countable, we can find some countable enumeration of C, let it be $\left\{c_{n}\right\}_{n \in \omega}$. For every pair (i, j) in $\omega \times \omega$, we define the set $B_{i, j}$ as follows:

$$
B_{i, j}= \begin{cases}\emptyset & \text { if } a_{i} \sqsubseteq c_{i}, \\ \downarrow_{1} & \text { otherwise }\end{cases}
$$

where $\downarrow c_{j}$ is the principal ideal $\left\{x \in D \mid x \sqsubseteq c_{j}\right\}$ determined by c_{j}. Now we define a partition $\left\{C_{i}\right\}_{F \omega}$ of the set C.

$$
C_{0}=\{\perp\}, \quad C_{i+1}=\left[\downarrow a_{i+1} \cup \bigcup_{i+1}^{\bigcup} B_{i+1, j}\right] \backslash \bigcup_{i-i} C_{i} .
$$

Claim 1. $\left\{C_{n}\right\}_{n \in \omega}$ defines a partition of the set C.

Proof. Given an arbitrary c_{j} in the set C, there exists some a_{i+1} with $j \leqslant i+1$ such that a_{i+1} 电: (because the set C does not contain any upper bound of the chain $\left.\left\{a_{n}\right\}_{n \in \omega}\right)$. Hence $c_{j} \in B_{i+1, j}$. So if c_{j} is not in $\bigcup_{t * i} C_{t}$, it must be in C_{i+1}

Claim 2. If $x \sqsubseteq y$ and $y \in C_{i+1}$, then $x \in C_{t}$ for some $t \leqslant i+1$.
Proof. Since $y \in C_{i+1}, y$ belongs to the set $\downarrow a_{i+1} \cup \bigcup_{i \leqslant i+1} B_{i+1, j}$ which is closed downwards. Hence x must also belong to the set $\downarrow a_{i+1} \cup \bigcup_{i<i+1} B_{i+1, j}$. So if x is not in $\bigcup_{t \cdot i} C_{i}$, it must be in C_{i+1}.

Claim 3. $a_{i} \in C_{i}$ for every i.
Proof. We prove by induction. Clearly $a_{0}(=1) \in C_{0}$. Assume $a_{i} \in C_{i}$. If $a_{i+1} \notin C_{i+1}$, then a_{i+1} must belong to C_{i} by Claim 2 , hence $a_{i+1} \in B_{i, j}$ for some $j \leqslant i$. The non-emptiness of $B_{i, j}$ implies $a_{i} \nsubseteq c_{j}$. However, $a_{i+1} \in B_{i . j}\left(=\downarrow c_{j}\right)$ implies $a_{i+1} \sqsubseteq c_{i,}$ contradicting a_{i} 化 ${ }_{j}$.

Claim 4. Each C_{i} is an ω-chain semi-complete set.
Proof. Note that ω-chain semi-complete sets are closed under Boolean operations. Since each C_{i} is some Boolean combination of ω-chain semi-complete sets, the claim immediately follows.

We are now ready to demonstrate that $\left\{a_{n}\right\}_{n \in \omega}$ is Kleene. If $\left\{a_{n}\right\}_{n \in \omega}$ does have an upper bound, let a be any one of them. Now define $f: D \rightarrow D$ as follows:

$$
f(x)= \begin{cases}a & \text { if } x \notin C, \\ a_{i+1} & \text { if } x \in C_{i} .\end{cases}
$$

That f is well-defined follows from Claim 1. Claim 2 says that f is monotonic. The ω-continuity of f follows from Claim 4. Finally $f\left(a_{i}\right)=a_{i+1}$ follows from Claim 3, hence $\left\{a_{n}\right\}_{n \in \omega}$ is Kleene.

Now we turn to countably algebraic domains. First, we show the following.
Theorem 3. Every strict algebraic ω-chain is Kleene.
Proof. Let $\left\{a_{n}\right\}_{n=\omega}$ be any strict algebraic ω-chain. Without loss of generality, assume that $\left\{a_{n}\right\}_{n, \ldots}$ does not have any l.u.b. If $\left\{a_{n}\right\}_{n \in \omega}$ does have an upper bound, let a be any one of them. As in Theorem 2, we define C to be the set $\{x \in D \mid$. every upper bound of $\left.\left\{a_{n}\right\}_{n \in \omega}\right\}$. We remind the reader that C is ω-chain semi-complete and does not contain any upper bound of the chain $\left\{a_{n}\right\}_{n \in \omega}$. Now define the function $f: D \rightarrow D$ as follows:

$$
f(x)= \begin{cases}a & \text { if } x \notin C, \\ a_{1}, 1 & \text { if otherwise and } i \text { is the largest integer satisfying } a_{i} \subseteq x .\end{cases}
$$

f is well-defined because when $x \in C$, there is always a largest integer i satisfying $a_{i} ᄃ x$, otherwise such an x would be an upper bound of the chain $\left\{a_{n}\right\}_{n \in \jmath}$. To check the ω-continuity of f, suppose $f\left(\bigsqcup_{n \in \omega} d_{n}\right)=a_{i+1}$ for some ω-chain $\left\{d_{n}\right\}_{n \in \omega}$. Since $a_{i} \sqsubseteq \bigsqcup_{n \in \omega} d_{n}$ and a_{i} is compact, we must have $a_{i} \sqsubseteq d_{k}$ for some k, hence $f\left(d_{k}\right)=a_{i+1}$. Thus, the ω-continuity of f follows from the ω-chain semi-completeness of C. \square

Theorem 4. If D is countably algebraic, then every strict ω-chain is Kleene.

Proof. Let $\left\{b_{i}\right\}_{i \in \omega}$ be any strict ω-chain. Without loss of generality, assume that $\left\{b_{i}\right\}_{i=\omega}$ does not have any l.u.b. Since D is countably algebraic, we can find an algebraic ω-chain $\left\{b_{i, n}\right\}_{n \in \omega}$ for each i satisfying the following properties:
(i) each b_{i} is the l.u.b. of the chain $\left\{b_{i, n}\right\}_{n \in \omega}$;
(ii) $b_{i, n} \sqsubseteq b_{i+1, n}$ and
(iii) $b_{i+1, n} \nsubseteq b_{i}$ for every n.

Consider the strict algebraic chain $\left\{a_{i}\left(=b_{i, i}\right)\right\}_{i \in \omega}$ - that $\left\{a_{i}\right\rangle_{i \in \omega}$ forms a chain follows from property (ii) above. Note that the chains $\left\{a_{i}\right\}_{i \in \omega}$ and $\left\{b_{i}\right\}_{i \in \omega}$ both have the same set of upper bounds; consequently, $\left\{a_{i}\right\}_{i \in \omega}$ does not have any ${ }^{\text {f.u.b. in } D \text {. By Theorem }}$ 3 , we can find some ω-continuous function $f: D \rightarrow D$ such that
(1) $f\left(a_{i}\right)=a_{i+1}$ for every i;
(2) the range of f is given by the set $\left\{a_{i} \mid i \in \omega\right\} \cup\{a\}$ where a is some upper bound of the chain $\left\{a_{i}\right\}_{i \in \omega}$ whenever it exists; and
(3) $f\left(b_{i}\right)=a_{i+1}$ - this follows from our definition of f in Theorem 3 and property (iii) above.

Now define the function $g:\left\{a_{i} \mid i \geqslant 1\right\} \cup\{a\} \rightarrow\left\{b_{i} \mid i \geqslant 1\right\} \cup\{a\}$ as follows:

$$
g(a)=a, \quad g\left(a_{i}\right)=b_{i} .
$$

Clearly the composition function $g \circ f: D \rightarrow D$ is ω-continuous. Also $g \circ f\left(b_{i}\right)=b_{i+1}$ for every i, hence $\left\{b_{i}\right\}_{i \in \omega}$ is Kleene.

Corcllary 2. If D is either countable or countably algebraic, then ω-chain completeness coincides with Kleene chain completeness, hence the validity of the converse' of Tarski's fixedpoint theorem.

Next we show that non-Kleene strict ω-chains exist. We define the following partially ordered set D_{1}. The underlying set of D_{1} consists of $\left\{a_{l} \mid i \in \omega\right\} \cup$ $\{(i+1, j) \mid i, j \in \omega\} \cup[\omega \rightarrow N]$ where N is the 'flat' partially ordered set of natural numbers with the least clement \perp_{N} and $[\omega \rightarrow N j$ stands for the set of all functions from ω to N. The partial order \sqsubseteq on D_{1} is defined as follows:
(1) a_{0} is the bottom element 1 of D_{1};
(2) $a_{i} \sqsubseteq a_{j}$ if and only if $i \leqslant j$;
(3) $(i, j) \sqsubseteq a_{k}$ if and only if $i \leqslant k$;
(4) $(i, s) \sqsubseteq(i, t)$ if and only if $s \leqslant t$;
(5) $(i, j) \sqsubseteq f$ for $f \in[\omega \rightarrow N]$ if and only if $f(i) \neq \perp_{N}$ and $j \leqslant f(i)$; and
(6) for $f, g \in[\omega \rightarrow N], f \sqsubseteq g$ if and only if f is 'less defined than' g, i.e., for every $i \in \omega, f(i) \sqsubseteq_{N} g(i)$ where \sqsubseteq_{N} is the partial ordering on N.

It should be clear that this relation \subseteq is indeed a partial order. The strict ω-chain $\left\{a_{i}\right\}_{: \in \omega}$ has no upper bound in D_{1}, but for each $i>0$, the chain $(i, 0),(i, 1), \ldots$, $(i, j), \ldots$ has a least upper bound a_{i}. Figure 1 illustrates this domain D_{1}.

Fig. 1.
D_{1} is not countably algebraic because elements like (i, j) which have to belong 10 any basis of D_{1} are not algebraic - the ascending chain $\left.\{i i+1, k) \mid k \in \omega\right\}$ with the l.u.b. $a_{1,}$ is $\equiv(i, j)$ but none of $(i+1, k)$ is $\equiv(i, j)$.

Theorem 5. There exists a strict ω-chain which is not Kleene.

Proof. Consider D_{1} in Fig. 1. We claim that any strict ω-chain in D_{1} which has some $a_{k}(k>0)$ in it cannot be Kleene. We prove by contradiction. Suppose $\left\{f^{n}(\perp) \mid n \in \omega\right\} \cap\left\{a_{1} \mid i \in \omega\right\} \neq \emptyset$ for some ω-continuous function $f: D_{1} \rightarrow D_{1}$ and $\left\{f^{\prime \prime}(1)_{n \in \omega}\right.$ is strictly increasing. There are two cases to consider.

Case 1: $f(\perp) \in\left\{a_{1} \mid i>0\right\}$. In this case, the chain $\left\{f^{n}(\perp)\right\}_{n \in \omega}$ must be of the form $1, a_{p ; 0,}, a_{p, i} \ldots, a_{p i t}, \ldots$ for some strictly inc.easing function $p: \omega \rightarrow \omega$. For each i, since $f\left(a_{p(i)}\right)=a_{p(i+1}$, and $a_{p(i)}$ is the l.u.b. of the increasing chain $\{(p(i), s)\}_{\text {s } \in \omega}$, there exists some $q(i) \in \omega$ such that $f[(p(i), q(i))]=a_{p(i+1)}$. Consider the following function $h \in[\sim N]$:

$$
h(x)= \begin{cases}q(i) & \text { if } x=p(i) \text { for some } i, \\ \perp, & \text { otherwise } .\end{cases}
$$

From our definition of the partial ordering on D_{1}, we can see that h is an upper bound of the set $\{(p(i), q(i)!i \in \omega\}$. Since f is monotonic and f maps each $(p(i), q(i))$
to $a_{p(i+1)}, f$ must map h to some upper bound of the chain $\left\{a_{i}\right\}_{i \in \omega}$ which, however, does not exist in D_{1}. Contradiction.

Case 2: $f(\perp) \notin\left\{a_{i}{ }^{\prime} i>0\right\}$. In this case, $f(\perp)$ must be equal to some pair $\left(i, j_{0}\right)$ and the chain $\left\{f^{n}(\perp\}_{n \in G}\right.$, must be of the form $\perp,\left(i, j_{0}\right),\left(i, j_{1}\right), \ldots,\left(i, j_{t}\right), a_{p(1)}, a_{p, 11}$, $\ldots, a_{p(t)}, \ldots$ wherf, we have $j_{0}<j_{1}<\cdots<j_{t}$ and p is some strictly increasing function from ω to ω wit! $i \leqslant p(0)$. Also note that the range of f must be a subset of all the upper bouids of the pair (i, j_{0}). As in Case 1, we can find some function $q: \omega \rightarrow \omega$ such that f inaps $(p(i), q(i))$ to $a_{p(i+1)}$ for each $i \in \omega$. The rest of the proof is similar to the proof in Case 1.

Theorem 6. ω-chain completeness is not identical to Kleene chain completeness, hence the con'orse of Tarski's fixedpoint theorem is not valid.

Proof. Consider D_{1} in Fig. 1. Clearly D_{1} is not ω-chain complete. We claim that D_{1} is Kleene-chain complete. Take any strictly increasing Kleene chain $\left.\left\{f^{n}: 1\right)\right\}_{n \in \omega}$ in D_{1}. Our proof in Theorem 5 says that $\left\{f^{n}(\perp)\right\}_{n \in \omega}$ cannot contain any $a_{k}(k>0)$. There are two possible cases:

Case 1: Some $f^{n}(\perp)$ belongs to the function space $[\omega \rightarrow N]$; in this case, $\left\{f^{\prime \prime}(\perp)\right\}_{n \in \omega}$ must have a l.u.b. in D_{1} because $[\omega \rightarrow N]$ is ω-chain complete.

Case 2: Otherwise, the l.u.b. of $\left\{f^{n}(\perp)\right\}_{n \in \omega}$ must be a_{i}, assuming $f(\perp)=(i, k)$ for some $k \in \omega$.

In either case, the l.u.b. of $\left\{f^{n}(\perp)\right\}_{n \in \omega}$ exists.
Remark. Say that x in D is weakly algebraic if whenever $x=\bigsqcup H$ for some directed set H, then $x=h$ for some h in H. Obviousiy, if x is algebraic, then x is weakly algebraic. Now consider our D_{1} in Fig. 1. One can see that all the (i, j) 's are weakly algebraic although they are not algebraic, as we pointed out earlier. Hence D_{1} has a countable basis of weakly algebraic elements. Therefore, the converse of Tarski's fixedpoint theorem may be invalid in a D which has a countable basis of weakly algebraic elements (see Corollary 2).

In our formulation of a Kleene chain, we imposed the function f to be ω continuous. It is known that the directed-continuity of a function coincides with the ω-continuity for countably algebraic partially ordered sets. However, these two notions differ in general. In fact, we can show the following.

Theorem 7. There exists a Kleene chain $\left\{a_{n}\right\}_{n \in \omega}$ in some D such that for no directedcontinuous function $f: D \rightarrow D$, we have $a_{n}=f^{n}(\perp)$ for every $i \in \omega$.

Proof. First, let us define our partially ordered set D_{2}. The underlying set of D_{2} consists of $\left\{a_{i} \mid i \in \omega\right\} \cup\{(i+1, \beta) \mid \beta<\alpha, i \in \omega\} \cup\left\{c_{\beta} \mid \beta<\alpha\right\}$ where α is some uncountable regular ordinal. The partial order on D_{2} is defined as follows: (see Fig. 2)
(1) a_{0} is the bottom element \perp of D_{2};

Fig. 2.
(2) $(i, \lambda) \subseteq(j, \eta)$ if and only if $\lambda \leqslant \eta$ and $i \leqslant j$;
(3) $a_{i} \subseteq a_{1}$ if and only if $i \leqslant j$; and
(4) $(i, \beta) \subseteq a_{k}$ if and only if $i \leqslant k$ for all $\beta<\alpha$.

Note that r_{β} is the l.u.b. of the ω-chain $\{i, \beta\}_{i>0}$ for each $\beta<\alpha, a_{i}$ is the l.u.b. of the α-chain $\{(i, \beta)\}_{\beta<\alpha}$, and the α-chain $\left\{c_{\beta}\right\}_{\beta<\alpha}$ does not have any upper bound in D_{2}. We claim that for no directed-continuous function $f: D_{2} \rightarrow D_{2}$, we have $a_{n}=f^{n}(1)$ for every $n \in \omega$. Assume not. Then because f is directed-continuous, we can find $p(i)$ for each $i>0$ such that $f[(i, p(i))]=a_{i+1}$; we may also assume that p, as a function from ω to α, is strictly increasing. Now the ω-chain $\{(i, p(i))\}_{i \rightarrow 0}$ has a l.u.b. in D_{2}, namely, c_{λ} for some $\lambda<\alpha$, because α is an uncountable regular ordinel, hence the cofinality of α cannot be ω. Since f is monotonic, f must map c to some upper bound of the chain $\left\{a_{i}\right\}_{i \in \omega}$, which, however, does not exist in D_{2}. Contradiction. It remains to show that $\left\{a_{i}\right\}_{i \in \omega}$ is Kleene. Define the following function $f: D_{2} \rightarrow D_{2}$:

$$
f(x)= \begin{cases}a_{i}, 1 & \text { if } x=a_{i} \\ a_{1} & \text { if otherwise. }\end{cases}
$$

Obriousiy, f is ω-continuous and $f^{\prime \prime}(\perp)=a_{n}$ for every $n \in \omega . \quad \square$

3. Notions weaker than Kleene-chain completeness

In this section, we study two properties of D which are weaker than Kleene-chain umpleteness. Thev are:

Property 1. Every ω-continuous function $f: D \rightarrow D$ has a least fixedpoint.
Property 2. Every ω-continuous function $f: D \rightarrow D$ has a fixedpoint.

Obviously, the following implications hold:

$$
\begin{aligned}
\omega \text {-chain completeness } & \Rightarrow \text { Kleene-chain completeness } \\
& \Rightarrow \text { Property } 1 \Rightarrow \text { Property } 2 .
\end{aligned}
$$

Theorem 6 shows that the reverse of the first implication is invalid. The following example shows that Property 2 does not imply Property 1.

Description of D_{3}

We define the partially ordered set D_{3} (see Fig. 3). Essentially, D_{3} has a top element T , a strict ω-chain $\left\{a_{n}\right\}_{n \in \omega}$ and two incomparable upper bounds \dot{b}, c of $\left\{a_{n}\right\}_{n \in \omega}$.

Fig. 3.

First we argue that every ω-continuous function $f: D_{3} \rightarrow D_{3}$ has a fixedpoint. Consider the chain $\left\{f^{n}(\perp)\right\}_{n \in \omega}$. If this chain has a l.u.b., then this l.u.b. must be the least fixedpoint of f. Now assume that this chain does not have a l.u.b. Then it must be a strict ω-chain, hence some subchain of $\left\{a_{n}\right\}_{n \in \omega}$. Since b, c are both upper bounds of $\left\{a_{n}\right\}_{n \in \omega}, f$ must map them to one of b, c or T. Hence at least one of them must be a fixedpoint of f because $f(b) \sqsubseteq f(\mathrm{~T})$ and $f(c) \sqsubseteq f(\mathrm{~T})$. This proves Property 2. Property 1 does not hold because the following function f does not have a least fixedpoint:

$$
f(x)= \begin{cases}a_{i+1} & \text { if } x=a_{i} \\ x & \text { otherwise }\end{cases}
$$

Next we show that Property 1 does not imply Kleene-chain completeness. It would be nice were it the case for the reason that Property 1 gives us no syntactical characterization of the least fixedpoint whereas Kleene-chain completeness says that the least fixedpoint is given by $\bigsqcup_{n \in \omega} f^{n}(\perp)$. It is not difficult to find a counterexample for this.

Theorem 8. Property 1 does not imply Kleene-chain completeness.
Proof. First we define $D_{4} . D_{4}$ has
(1) a strict ω-chain $\left\{a_{n}\right\}_{n \in \omega}$ with two incomparable upper bounds b and c;
(2) two ascending chains $\left\{b_{n}\right\}_{n \in \omega}$ and $\left\{c_{n}\right\}_{n \in \omega}$ whose l.u.b.'s are b and c respectively;
(3) a l.u.b. of b_{i} and c_{i} for every i where d_{i} and d_{k} are incomparable for $j \neq k$. The diagram of D_{4} is given in Fig. 4.

Fig. 4.

Next we show that every ω-continuous function f has a least fixedpoint. Let us consider the chain $\left\{f^{n}(\perp)\right\}_{n \in \omega}$. As argued in the previous theorem, if this chain has a l.u.b., then $\bigsqcup_{n \in \omega} f^{\prime \prime}(\perp)$ is the least fixedpoint of f. Thus let us assume that this chain does not have a l.u.b. Then it must be some strict subchain of $\left\{a_{n}\right\}_{n \in \omega}$, since strictly increasing subchains of $\left\{a_{n}\right\}_{n \in \omega}$ are the only chains in D_{4} with no l.u.b.'s. As b and c are the only upper bounds of $\left\{a_{n}\right\}_{\text {rei }}$ in D_{4}, we must have $f(b)=b$ or c and $f(c)=b$ or c. Assume $f(b)=b$. Since ω-continuity of f implies $b=\bigsqcup_{n \in \omega} f\left(b_{n}\right)$ and $f\left(b_{n}\right) \equiv f(\perp)=a_{1}$ for some $l>0$ for all n, there must exist some $k \in \omega$ such that $f\left(b_{n}\right)=b$ for all $n \geqslant k$. Hence $f\left(d_{n}\right)=b$ for all $n \geqslant k$ and therefore $f\left(c_{n}\right) \sqsubseteq b$ for all $n \geqslant k$, concluding that $f(c)=b$ must hold. Similarly, from $f(b)=c$, we can show $f_{i} \mathrm{c}:=c$. In either case, f has only one fixedpoint which must be the least fixedpoint. Therefore D_{4} satisfies Property 1. Note that D_{4} is countable, hence it is not Kleene-chain emplete by Theorem 2.

In summary, we have shown:
Property $2 \nRightarrow$ Property $1 \nRightarrow$ Kleene-chain completeness $\nRightarrow \omega$-chain completeness.
Because of the results we obtained on countable or countably algebraic D 's in Corollary 2, we ask the validity of the first two of these implications restricted to
such D 's. However, we note that D_{3} is countable and countably algebraic, hence the invalidity of the first implication is immediate. The question on the validity of the second implication is more difficult to settle. The following theorem gives us a negative answer.

Theorem 9. There exists a countable and algebraic D such that every ω-continuous function $f: D \rightarrow D$ has a least fixedpoint but the least fixedpoint may not be given by $\bigsqcup_{n \in \omega} f^{n}(\perp)$.

Let us describe D_{5} as in Fig. 5.

Fig. 5.
Description of D_{s}
D_{5} has three ascending chains $\left\{a_{n}\right\}_{n \in \omega}$ with $\left.a_{0}=1, b_{n}\right\}_{n \in \omega}$ and $\left\{c_{n}\right\}_{n \in \omega} ; b=\bigsqcup_{n \in \omega} b_{n}$ and $c=\bigsqcup_{n \in \omega} c_{n}$ while $\left\{a_{n}\right\}_{n \in \omega}$ has no l.u.b.; $a_{i} \sqsubseteq b_{i}$ and $a_{i} \sqsubseteq c_{i}$ for every $i \in \omega$ while $a_{i} \nsubseteq b_{i}$ and $a_{i} \nsubseteq c_{i}$ if $j<i$; the b_{i} 's and the c_{j} 's are incomparable. For each i, there is an infinite set of elements

$$
H_{i}=\left\{d_{i}, x_{1}^{i}, x_{2}^{i}, \ldots, y_{1}^{i}, y_{2}^{i}, \ldots\right\}
$$

such that $b_{i} \subseteq z$ and $c_{i} \subseteq z$ for every $z \in H_{i}$. Elements of H_{i} are ordered in the following way:
(i) $c_{i+k} \sqsubseteq x_{k}^{i}$ for every $k \in \omega$;
(ii) d_{i} is the largest element in H_{i};
(iii) $y_{k}^{i} \subseteq d_{i+1}, y_{k}^{i} \sqsubseteq x_{k}^{i}$ and $y_{k}^{i} \subseteq x_{k+1}^{i}$ for $i \in \omega$ and $k>0$; and
(iv) $x_{k}^{i} \sqsubseteq d_{i}+u_{i}(k)$ where $u_{i}(k)=i *\lfloor k / i\rfloor+i-\operatorname{Rem}(k, i)$;
$\operatorname{Rem}(k, i)$ is the remainder of integer division of k by i. Note that u_{i} is a bijection from ω to ω for each i. The ordering on D_{5} is obtained by taking the reflexivetrainsitive closure of the relations defined above.

The following properties of D_{5} are rather easy to verify:

Properties of D_{5}
(i) D_{5} is countable and algebraic; the only non-algebraic elements are b and c.
(ii) The upper bounds of the chain $\left\{a_{n}\right\}_{n \in \omega}$ consist of b, c and d_{i} for every $i \in \omega$.
(iii) For each $z \in H_{i}$, there exists a largest j such that H_{j} contains some upper bound of z in it.
(iv) If x_{k}^{\prime} and $x_{k}^{i^{\prime}}$ have a common lower bound in some $H_{j}(j>0)$, then $i=i^{\prime}$ and $k=k^{\prime}$ or $k^{\prime}+1$ or $k^{\prime}-1$.

Obviously the following ω-continuous function f has a least fixedpoint (namely, b) different from $\bigsqcup_{n \in \omega} f^{n}(1): f(x)=a_{i+1}$ if $x=a_{i}$; otherwise $f(x)=b$. It remains to prove that every ω-continuous function from D_{5} to D_{5} has a least fixedpoint.

Let f be any ω-continuous function from D_{5} to D_{5}. Let us consider the chain $\left\{f^{\prime \prime}(L\}_{n}, \ldots\right.$. If this chain has a l.u.b., then this l.u.b. must be the least fixedpoint of f. Thus let us assume that this chain does not have a l.u.b., hence it must be some subchain of $\left\{a_{n}\right\}_{n \in \omega}$. For simplicity, let us assume that this chain is $\left\{a_{n}\right\}_{n \in \omega}$; hence $f\left(a_{n}\right)=a_{n, 1}$ for every $n \in \omega$. The case in which this chain is a proper subchain of $\left\{a_{n}\right\}_{n, \ldots}$ is proved essentially in the same way with a little more complex terminology. Under this assumption, the following lemma is easy to establish and proofs are omitted.

Lemma 1. (a) Any fixedpoint of f must be an upper bound of the chain $\left\{a_{n}\right\}_{n e \ldots}$. (h) If z is an upper bound of the chain $\left\{a_{n}\right\}_{n \in e}$, so must be $f(z)$.

A corollary of Lemma 1 is that any fixedpoint of f, if it exists, must be either h, or c. or some $d_{1}(i \in \omega)$. We now distinguish three cases.

Case 1: $f(c) \neq c$. In this case, $f(c)$ must be either b or some d_{i}. If $f(c)=b$, then $f\left(d_{i}\right)=h$ for every i because $f(c)=b \sqsubseteq f\left(d_{i}\right)$. Hence $f\left(b_{i}\right) \subseteq f\left(d_{i}\right)=b$ for every i; therefore $f(b)=f\left(\bigsqcup_{i c \ldots}, b_{i}\right)=\bigsqcup_{i E \omega} f\left(b_{i}\right)=b$ by Lemma 1(b). By Lemma $1(\mathrm{a}), b$ must be the only fixedpoint of f, hence the least fixedpoint. Now if $f(c)=d_{i}$ for some i, then $f\left(d_{i}\right)=d$ for every j since $d_{1}=f(c) \sqsubseteq f\left(d_{i}\right)$. Hence $f\left(b_{i}\right) \subseteq f\left(d_{i}\right)=d_{i}$ and then
$f(b)=f\left(\bigsqcup_{j \in \omega} b_{j}\right)=\bigsqcup_{j \in \omega} f\left(b_{i}\right) \sqsubseteq d_{i}$, concluding that $f(b) \neq b$. Thus d_{i} is the only fixedpoint of f, hence the least fixedpoint.

Case 2: $f(c)=c$ but $f(b) \neq b$. If z is any fixedpoint of f other than c, then z must be equal to some d_{i} (by Lemma 1) which is greater than c in the partial ordering. Hence c is the least fixedpoint of f.

Case 3: $f(b)=b$ and $f(c)=c$. We want to show that Case 3 is impossible. This will, of course, conclude our claim that every ω-continuous function $f: D_{5} \rightarrow D_{5}$ has a least fixedpoint. To this end, we need to establish a number of lemmas. First we note that there exists some integer $n \in \omega$ such that $b_{i} \sqsubseteq f\left(b_{i}\right) \sqsubseteq b$ and $c_{i} \sqsubseteq f\left(c_{i}\right) \sqsubseteq c$ for every $i \geqslant n$. (It is possible that $f\left(b_{i}\right)$ or $f\left(c_{i}\right)=a_{i}$ for some j if $i<n$.) Throughout the rest of the proof, we fix this integer n.

Lenmma 2. (a) $\forall i \geqslant n \forall z \in H_{i} \exists j>i\left[f(z) \in H_{i}\right]$.
(b) $f\left(\left\{x_{k}^{i} \mid k>0\right\}\right)$ is infinite for every $i \geqslant n$.
(c) $\forall i \geqslant n \forall k>0 \forall j, j^{\prime}>i\left[f\left(x_{k}^{i}\right)=x_{k^{\prime}}^{j}\right.$ and $f\left(x_{k+1}^{i}\right)=x_{k^{\prime \prime}}^{i^{\prime}} \Rightarrow j=j^{\prime}$ and $k^{\prime \prime}=k^{\prime}$ or $k^{\prime}+$ 1 or $\left.k^{\prime}-1\right\rfloor$.

Prini. (a) Since $a_{i+1}=f\left(a_{i}\right) \sqsubseteq f\left(b_{i}\right) \subseteq b$ for $i \geqslant n$, we must have $b_{i+1} \sqsubseteq f\left(b_{i}\right)$. Similarly, $\therefore f\left(c_{i}\right)$. Take any z in H_{i} for $i \geqslant n$. Then $b_{i} \sqsubseteq z$ and $c_{i} \sqsubseteq z$. Hence $b_{i+1} \sqsubseteq f(z)$ and $c_{i+1} \subseteq f(z)$. Hence $f(z)$ belongs to H_{j} for some $j>i$.
(b) Consider any h distinct elements $f\left(x_{k_{1}}^{i}\right), \ldots, f\left(x_{k_{h}}^{i}\right)$ for $h>0$. By the definition of D_{5}, there exists a largest $j>i$ and some z in H_{i} such that z is an upper bound of some of $f\left(x_{k_{\mathrm{s}}}^{i}\right)$'s where $1 \leqslant s \leqslant h$. Let $k=u_{i}^{1}(j-i)$. Since $x_{k}^{i} \sqsubseteq d_{j}$ by our definition of the partial ordering, we have $f\left(x_{k}^{i}\right) \sqsubseteq f\left(d_{j}\right)$. From (a) above, $f\left(d_{i}\right)$ belongs to $H_{j^{\prime}}$ for some $j^{\prime}>j$. From the way we pick the integer j, we conclude that $f\left(x_{k}^{i}\right)$ must be different from all the $f\left(x_{k_{s}}^{i}\right)$'s, $1 \leqslant s \leqslant h$. Hence $f\left(\left\{x_{k}^{i} \mid k>0\right\}\right)$ is infinite.
(c) Let $f\left(x_{k}^{i}\right)=x_{k^{\prime}}^{i}$ and $f\left(x_{k+1}^{i}\right)=x_{k^{\prime \prime}}^{\prime \prime}$. Since $y_{k}^{i} \subseteq x_{k}^{i}$ and $y_{k}^{i} \subseteq x_{k+1}^{i}$, we have $f\left(y_{k}^{i}\right) \sqsubseteq f\left(x_{k}^{i}\right)=x_{k^{\prime}}^{i}$ and $f\left(y_{k}^{i}\right) \sqsubseteq f\left(x_{k+1}^{i}\right)=x_{k^{\prime \prime}}^{i^{\prime \prime}}$. Since $f\left(y_{k}^{i}\right)$ belongs to $D_{\text {s }}$ for some $s>i$, we conclude $j=j^{\prime}$ and $k^{\prime \prime}=k^{\prime}$, or $k^{\prime}+1$, or $k^{\prime}-1$ by Property (iv) of D_{s}.

The following is the key lemma of the whole proof.
Lemma 3. For every $i \geqslant n$, there exist some $j>i$ and $m, m^{\prime} \in \omega$ such that $f\left(d_{i}\right)=d_{1}$ and $f\left(\left\{x_{k}^{i} \mid k \geqslant m\right\}\right)=\left\{x_{k^{\prime}}^{i} \mid k^{\prime} \geqslant m^{\prime}\right\}$.

Proof. By Lemma 2(a) and (b), there is $j>_{i}$ for every $i \geqslant n$ such that $f\left(d_{i}\right)=d_{i}$. Since d_{i} is the largest element in H_{i}, for every z in $H_{i}, f(z)$ belongs to $H_{i^{\prime}}$ for some $i<j^{\prime} \leqslant j$. Let m be the smallest integer satisfying $m>j-i$ and $u_{i}(k) \geqslant j-i$ for every $k \geqslant m$ (existence of m follows from the definition of $u_{i}(k)$). Hence $x_{k}^{i} \equiv c_{j}$ and $d_{h} \equiv x_{k}^{i}$ for some $h \geqslant j$ for every $k \geqslant m$. Since $f\left(c_{i}\right) \equiv c_{i+1}, f\left(x_{k}^{i}\right) \equiv c_{j+1}$ and $d_{h^{\prime}} \equiv f\left(x_{k}^{i}\right)$ for some $h^{\prime}>j$ for every $k \geqslant m$. Thus for every $k \geqslant m, f\left(x_{k}^{i}\right)=x_{\text {, }}^{\text {s }}$ for some $t>0$ and $i<s \leqslant j$. However by Lemma 2(c), this s does not depend on k. On the other hand, $f\left(d_{i}\right)=d_{i}$ is an upper bound of the set $f\left(\left\{x_{k}^{i} \mid k \geqslant i n\right\}\right)$ which is an infinite set
by Lemma 2(b). Thus $s=j$. Let $m^{\prime}=\min \left\{t \mid x_{t}^{\prime}=f\left(x_{k}^{i}\right)\right.$ for some $\left.k \geqslant m\right\}$. Then the lemma follows from Lemma 2(b) and (c).

Using this lemma, let us define a partial function $F_{i j}: \omega \rightarrow \omega$ for $i \geqslant n$ and corresponding j as follows: if $f\left(x_{k}^{i}\right)=x_{k^{\prime}}^{i}$ for some k and k^{\prime}, then $F_{i j}\left(u_{i}(k)\right)=u_{i}^{\prime}\left(k^{\prime}\right)$, otherwise $F_{i j}\left(u_{i}(k)\right)$ is undefined. We show the following properties of $F_{i j}$.

Lemma 4. (a) If $F_{i j}(t)$ is defined, then $F_{i j}(t)>t+i-j$.
(b) There exist $p, q \in \omega$ such that $F_{i i}(t)$ is defined and monotonic for every $t \geqslant p$ and $\{t \mid t \geqslant q\} \subseteq F_{i j}(\{t \mid t \geqslant p\})$.
(c) $\exists r, s \in \omega \forall t \geqslant r\left[F_{i j}(t)=t+s\right]$.

Proof. (a) If $F_{i j}\left(u_{i}(k)\right)=u_{i}\left(k^{\prime}\right)$, then $f\left(d_{i+u_{i}(k)}\right)=d_{h}$ with $h \leqslant j+u_{i}\left(k^{\prime}\right)$ by Lemma 3. Hence $i+u_{i}(k)<h \leqslant j+u_{i}\left(k^{\prime}\right)$ by Lemina 2(a); thus $u_{j}\left(k^{\prime}\right)>u_{i}(k)+i-j$.
(b) Define $p=\max _{1 * k \cdot m} u_{i}(k)+1$ and $q^{\prime}=\max _{1 \leqslant k \leqslant m^{\prime}} u_{j}\left(k^{\prime}\right)+1$ where m and m^{\prime} are the integers given in Lemma 3. Then by Lemma $3,\left\{t \mid t \geqslant q^{\prime}\right\}$ is a subset of $F_{i j}(\omega)$. Since $u_{i}(k) \geqslant p$ implies $k>m, F_{i j}(t)$ is defined for every $t \geqslant p$. Now:

$$
F_{i j}(\{t \mid t \geqslant p\}) \supseteq F_{i j}(\omega) \backslash F_{i j}(\{t \mid 0 \leqslant t<p\}) \supseteq\left\{t \mid t \geqslant q^{\prime}\right\} \backslash F_{i j}(\{t \mid 0 \leqslant t<p\}) .
$$

Since $F_{i j}\{t \mid 0 \leq t<p\}$) is finite and u_{j} is a bijection, there exists some q to give the required result. Finally we show that $F_{i j}$ is monotonic for $t \geqslant p$. By Lemma 3, if $u_{i}(k) \geqslant p, k>m$ and therefore $F_{i j}\left(u_{i}(k)\right)=u_{j}\left(k^{\prime}\right)$ if and only if $f\left(d_{i+u_{i}(k)}\right)=d_{i+u_{i}\left(k^{\prime}\right)}$ for some k^{\prime}. To demonstrate monotonicity of $F_{i j}$, it suffices to show that if $f\left(d_{\mathrm{s}}\right)=d_{h}$ and $f\left(d_{, ~ 1}\right)=d_{h^{\prime}}$, then $h \leqslant h^{\prime}$ for every $s>i$. Now if $f\left(d_{s}\right)=d_{h}$, there exists some r such that $f\left(y_{r}^{\prime}\right)$ belongs to H_{h}. Since $y_{r}^{\prime} \sqsubseteq d_{s+1}$, we have $f\left(y_{r}^{\prime}\right) \subseteq f\left(d_{s+1}\right)=d_{h^{\prime}}$, concluding $h \leqslant h^{\prime}$.
(c) By (b) of this lemma, it can be shown that $F_{i j}\left(t+p-q+\sum_{t=q}^{t}\left(\left|M_{v}\right|-1\right)\right)=$ $t(t \geqslant q)$ where $M_{v}=\left\{t^{\prime} \geqslant p \mid F_{i j}\left(t^{\prime}\right)=v\right\}$ and $\left|M_{\mathrm{r}}\right|$ is the cardinality of M_{r}. By (a) of this lemma, a constant K exists such that for every $t, \sum_{v=4}^{t}\left(\left|M_{v}\right|-1\right) \leqslant K$, proving the required result.

Now we are ready to complete the proof. Let r^{\prime} be the smallest integer such that $r^{\prime}=m$ and $u_{i}(k) \geqslant r$ for every $k \geqslant r^{\prime}$ where m and r are integers given in Lemmas 3 and 4 respectively. By Lemma $3(\mathrm{c}), F_{i j}$ is injective for all $t \geqslant r$; thus if $f\left(x_{k}^{i}\right)=x_{k}^{j}$ for $k \geqslant r^{\prime}$, then $f\left(x_{k+1}^{i}\right)=x_{k^{\prime}+1}^{j}$ or $x_{k^{\prime}-1}^{j}$ by Lemma 2(c). However, if $f\left(x_{k+1}^{i}\right)=x_{k^{\prime}-1}^{i}$, then $f\left(x_{k^{\prime \prime}}^{\prime}\right)=x_{k^{\prime}}^{i}$ for some $k^{\prime \prime}>k$ by Lemmas $2(\mathrm{c})$ and 3 , which is impossible since $F_{i j}$ is injective for $t \geqslant r$. Hence $f\left(x_{k+1}^{i}\right)=x_{k^{\prime}+1}^{j}$. This inductively shows $f\left(x_{k+v}^{i}\right)=x_{k+c}^{i}$ for all $v \subseteq \omega$. Thus $F_{i j}\left(u_{i}(k+v)\right)=u_{i}\left(k^{\prime}+v\right)$ for all $v \in \omega$ with fixed k (s.t. $u_{i}(k) \geqslant r$) and k^{\prime}. However, $F_{i j}\left(u_{i}(k+v)\right)=u_{i}(k+v)+s$ by Lemma $4(\mathrm{c})$. Thus $u_{i}\left(k^{\prime}+v\right)=$ $u_{i}\left(k+v^{\prime}\right)+s$ for every $v \in \omega$ with constants $k \geqslant r^{\prime}, k^{\prime}$ and s. This obviously contradicts the definitions of u_{1} and u_{i}, \square

References

[1] A.C. Davis, A characterization of complete lattices, Pacific J. Math. 5 (1955) 311-319.
[2] G. Markowsky, Chain-complete posets and directed sets with applications, Algebra Universalis 6 (1976) 53-68.
[3] J.D. Mashburn, Three counter-examples concerning ω-chain completeness and fixedpoint properties, Proc. Edinburgh Math. Soc. 24 (1981) 141-146.
[4] D. Scott, Data types as lattices, SIAM J. Comput. 5 (1976) 522-587.
[5] D. Scott, Lectures on a mathematical theory of computation, Technical Monograph PRG-19, Oxford University (1981).
[6] A. Tarski, A lattice-theoretical fixedpoint theorem and its applications, Pacific J. Math. 5 (1955) 285-309.

