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Introduction 

Fixedpoint theorems play a fundamental role in denotational semantics of pro- 

gramming languages. In 1955, Tarski [6] and Davis [l] showed that a lattice L is 

complete if and only if every monotonic function f: L + L has a fixedpoint. Since 

then, other fixedpoint properties are considered, by imposing either the function 

to be o-continuous or the fixedpoint to be the least fixedpoint. The key question 

is whether such fixedpoint properties can as well be characterized by some complete- 

ness properties of the given partially ordered set. In this direction, Markowsky [2] 

showed that a partially ordered set is chain-complete if and only if every monotonic 

function f: D + D has a least fixedpoint. Suppose we replace monotonic functions 

by o-continuous functions which play a prominent role in Scott’s theory of computa- 

tion [4,5]. A slight modification of Tarski’s proof shows that if a partially ordered 

set D with a least element 1 is o-chain complete, then every w-continuous function 

f: D + D has a least fixedpoint given by UnEWfn (I). The latter result is the well- 

known Tarski-Kleene-Knaster theorem. In 1978, Plotkin asked the validity of the 

converse of Tarski-Kleene-Knaster theorem beta use an affirmative answer would 

give us a characterization of w-chain complete pin-tially ordered sets in terms of 

the least fixedpoint property for o-continuous functions. 

Throughout the paper, D stands for a partially .3rdered set with a least element 

1. Let us consider Plotkin’s puzzle in the followirlg version: Given a D, if every 

o-continuous function f: D + D has a least fixedpoint given by UIltWf’*(l), is D 

o-chain complete? In this paper, we answer the problem negatively (Mashburn 

obtained the same result independently in [3j). Despite this negative answer, we 

show a rather astonishing result, namely: If D is either countable or countably 

algebraic, then the converse of Tarski-Kleene-Knaster theorem is true. This positive 

answer is rather pleasing because most of the D’s used in denotational semantics 

are either countable or countably algebraic. 
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During auk* studies, we introduce the notion of :i Kleene chain as follows: an 
w -chain {an}nEw is Kleene if there exists some w-continuous function f: D + D such 

that a,, = f”(l) for ev ery n. D is Kleene-chain complete if every Kleene chain has 
a icast upper bound. Using this notion of Kleene chains, we can rephrase the 
converse of Tar-ski-Kleene-Knaster theorem as follows: Is Kleene-chain complete- 
n:ss identical to w-chain completeness? The following seems to be the key question: 
When is a strict o-chair! Kleene? Clearly, if every strict w-chain is Kleene, then 
the two notions of chain completeness must coincide. To this end, we show 

(a) if D is w-chain complete, then every strict a-chain is Kleene; 
(b) if B is either countable or countably algebraic, then every strict o-chain is 

Kleene; and 
t c I non-Kleene o-chains exist. 
It follows from (b) that if D is either countable or countably algebraic, then the 

converse of Tarski-Kleene-Knaster theorem is valid. 

We also study the following question: Suppose every w-continuous function 

f:17 + D has a least fixedpoint, does it follow that the least fixedpoint is given by 

i_ j L e o, f ‘I (I)‘! An affirmative answer would clearly gifrre us a syntactic characterization 
of the least fixedpoint. However, we show that even if D is countable or countably 
algebraic, the answer may be negative. 

I. Notations 

An 6~-chuirt {L~,,},~~._~, in D is any ascending chain; {u,,},,~ CI) is strict if it is strictly 
increasing and Q() = 1. D is o-chain complete if every w-chain has a least upper 

bound Cu.b. 1. E’ is an o-chnirz semi-comp/etc subs&of D if the 1.u.b. (in D 1 of 

any wchain in f?, whenever it exists, lies in E. 

1’ : D + D is w-con~irwms if ‘d,I E.w f (n,, ) = f ( uI1 Ec,, a,, 1 for every co-chain {Q,, ),,c (,, 

whose 1.u.b. exists. A stronger notion of continuity is ni~~cfe~~-coIItiillli?~ which is 

_i fM-f ) = f(u H ) for every directed set H whose 1.u.b. exists. 

v in D is an algehrc~ic clement if whenever x c u H for some directed set H, we 

must have s c II for some h in H. D is a/gehroic if every s in D is the 1.u.h. of 

iijrnc directed set of algebraic elements. D is cnrtrztrrbly nlgehmic if D is algebraic 

;incf rhcre are countably many algebraic elements. An co-chain {o,,),,.,, is algebraic 

II ;rtl the (I,, ‘i arc ;Gpebraic tllemonts in D. 

2. Kleene chains 

;j11 (&.+; .,,n (u,,},~_,, is k’leerzc if fci some co-continuous function f: D + D, (I,, = 
/’ 3 ,.L) fOi ~t’rv !I. In the study of chain completeness, we are only interested in 

wfirlitc’ chkn\. tkerv infinite Yleenc chain, according to our detinition, must be 
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strict. We can easily see that a strict w-chain {an},,Ew is Kleene if and only if for 

some o-continuous function f:o -)D, f(a,) = a,,+l. In this section, we study the 

following problem: when is a strict w-chain Kleene? First, we give some positive 

answers. 

Theorem 1. Given a strict o-chain (a,l)nEw in D, if t!ze 1.u.b. of (a,),,, exists, the/i 
(a, In EW is Kleene. 

Proof. Let a be the 1.u.b. of {a,,},,.,,. Define f: D -.b D as follows: 

a 
f( ) 

if x g a, for every 12, 
X = 

a,,+1 if otherwise and n is the smallest integer 

satisfying x C a,. 

The w-continuity off is obvious; in fact, f is directed-cortinuous. Clearly f@,, ) = a,, + 1 

for every tz, hence {a,,),,tW is Kleene. q 

Corollary 1. [f D is w-chain complete, then every w-chain is Weene. 

Theorem 2. If D is countable, then ez:ery strict m-chain is Kkenu. 

Proof. Let {a,,},, F w be any strict w-chain in D. Without loss of generality, assume 

that IaAEW does not have any 1.u.b. (otherwise, {a,,),,.,,, is Kieene by Theorem 1). 

Define the set C as follows: 

C = {x E D 1 r; C_ every upper bound of {a,},,.,}. 

Note that all the a,,‘~ are in C, c’ is an o-chain semi-complete set, and furthermore, 

C does not contain any upper bound of the chain {a,,},,.,. If {a,},,., does not have 

any upper bound at all, then C is equal to the entire set D. Since D is countable, 

we can find some countable enumeration of C, let it be {c,,),~~~. For every pair (i, j’> 
in (I) X(C): we define the set Bi.i as follows: 

where Jci is the principal ideal {x E D(s Ccj) determined by c,. Now we defix a 

partition {Cl)iFU) of the set C. 

ctt={l}, Jai+1 u J Bi+l.j I J Cf. 

i i+i I\ I- i 

C!airn 1. (C,l},lE(l, defines a partition of the set C. 
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Proof. Given an arbitrary cj in the set C, there exists some ai+l with j s i + 1 such 
that izi+l go-: (because the set C does not contain any upper bound of the chain 

(Q,},,~~). Hence cj E Bi+l,j. SO if cj is not in UI. i Ct, it must be in Ci7 1 

CZaim2. If.wryandy&-l?thenx&forsometai+l. 

Proof. Since y E Ci+l, y belongs to the set Jai+* UUjz i+l Bi+l,j which is closed 

downwards. Hence x muAt also belong to the set iai+l u Uj- i+l Bi+l,j. SO if x is 

not in CjI- i C,, it must be in Ci+l. 

Claim 3. ai E Ci for every i. 

Proof. We prove by induction. Clearly a()(= I) E Co. Assume ai E Ci. If ai+l k C’i+I, 

then ai- must belong to Ci by Claim 2, hence ai+l E Bi,j for some j s i. The 

non-emptiness of Li,,j implies ai gcj. However, ai+ 1 E Bi,j(= Jci) implies ai+l CC;, 
contradicting ai g cj. 

C/aim 4. Each Ci is an o-chain semi-complete set. 

Pruof. No:e that w-chain semi-complete sets are closed under Boolean operations. 

Since each Cl is some Boolean combination of w-chain semi-complete sets, the 

claim immediately follows. 

We are now ready to demonstrate that {a,,},,.,, is Kleene. If (a,},,,, does have 

an upper bolmd, let a be any one of them. Now define f: D + D as follows: 

ir. ) - { 
a if x#C, 

5: - 
a I+ 1 if x E C,. 

That f is well-defined follows from Claim 1. Claim 2 says that f is monobonic. The 

w-continuity of ,f follows from Claim 4. Finally f(ai) = ai+l follows from Claim 3, 

hence (n,J,,,,, is Kleene. Kl 

Now we turn to countably algebraic domains. First, we show the following. 

Theorem 3. Ewry strict algdvtric o-chnirl is Khre. 

Proof. Let {a,, lnr (I) be any strict algebraic w-chain. Without loss of generality, assume 

ihat ki,, L. $1, does not have any 1.u.b. If {a,,},., does have an upper bound, let a be 
;lny one of them. As in Theorem 2, we define C to be the set {s E D1.t cevery 

upper bound of (a,},,.,}. We remind the reader that C is o-chain semi-complete 

and does not contain any upper bound of the chain {a,,},,,,,. Now define the function 
f : 13 --* n as follcl’ws: 

f‘i .y I =- .! n if .ufL (: 

(1, + 1 if otherwise and i is the largest integer satisfying IJ;GS. 
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f is well-defined because when x E C, there is always a largest integer i satisfying 
UiGx, otherwise such an x would be an upper bound of the chain {a,},,.,. To check 
the o-continuity of f, suppose f(UnEU d,) = ai-+] for some w-chain {& }nEo,. Since 
aiEU nEw d, and ai is compact, we must have Ui Q& for some k, hencef&) = ai+l. 
Thus, the o-continuity of f follows from the o-chain semi-completenesr of C. a 

Theorem 4. If0 is countably algebraic, then every strict w-chain is Kleene. 

Proof. Let {bi}i., be any strict o-chain. Without loss of generality, assume. that 
1 

B 1 i iew does not have any 1.u.b. Since D is countably algebraic, we can find an 
algebraic w-chain {bi,,}, EW for each i satisfying the following properties: 

(i) each bi is the 1.u.b. of the chain {bi,“},,, ; 

(ii) bi.n C bi+l,, and 
(iii) bi+l,, g bi for every n. 
Consider the strict algebraic chain {a, (= bi,;)}i,,- that {Ci biE,, forms a chain follows 

from property (ii) above. Note that the chains {ai}i,, and {bi)iE, both have the same 
set of upper bounds; consequently, {ai}i,, does not have any Lu.b. in D. By Theorem 

3, we can find some o-continuous function f: D -, D such th at 
(1) f(ai) =ai+r for every i; 
(2) the range off is given by the set (ai 1 i E o)u {a} where a is some upper bound 

of the chain (ai}iEw whenever it exists; and 

(3) fCbA = ai+l - this follows from our definition off in Theorem 3 and property 

(iii! above. 

NOW define the function g : {ail i Z- I} u (a) -+ {bii i 2 1) u {a} as follows: 

g(a ) = a, g(ai) z him 

Clearly the composition function g of: D --+ D is o-continuous. Also R of( bi) = bi+ 1 

for every i, hence {bi}iEw is Kleene. Cl 

CoreMary 2. TfD is either countable or countably algebraic, theaz w-chain cornpleterzess 
coincides with Kleene chsli/l completeness, hence the validity of tCx conucrsc of’Tarski‘s 
fisedpoin t themem. 

Next we show that non-Kleene strict m-chains exist. We define the following 

partially ordered set D1. The un tierlying set of D1 consists of {n, 1 i E w } u 

{(i+Lj)li,jE 1 [ o u o + N] where IV is the ‘flat’ partially ordered set of natural 

numbers with the least element IN and [U +Nj stands fc; the set of all functions 

from cc) to IV. The partial order G on D1 is defined as follows: 

t 1) a0 is the bottom element 1 of D1; 

(2) aiGaj if and only if i ~j; 
(3) (i, j)c-ak if and only if i s k ; 
(4) ti, s)c(i, t) if and only if s s t; 

(5) (i, j)Gf for fE [ w *IQ] if and only if f(i) # IN and j s:f(i); and 
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(6) for h g EC o + N], f~ g if and only if f is ‘less defined than’ g, i.e., for every 

i E W, f(i)gNg(i) where t-N is the partial ordering on N. 

It should be clear that this relation c is indeed a partial order. The strict o-chain 

*[a&_, has no upper bound in D1, but for each i > 0, the chain (i, 0), (i, l), . . . , 

Ci, j), . . . has a least upper bound ai. Figure 1 illustrates this domain D1. 

0 b--N1 I 
t 

___---- 
-t 

at 
I 

Fig. 1, 

L), is not countably algebraic because elements like (i, j, which have to belong 

to any basis of D1 are not algebraic - the ascending chain (;i + 1, k ) 1 k E w) with 

tlx 1.u.b. II,, I is ~(i,j) but none of (i+ 1, k) is z(i,j). 

TPtwrem 5. T?wre exists a strict wchaill which is not k’leenc. 

Proof. Consider D1 in Fig. 1. We claim that any strict o-chain in D1 which has 

some dk !k > 0) in it cannot be Kleene. We prove by contradiction. Suppose 

(fU+z Ehrl)n{aJiEo)f(? for some o-continuous function f:&+Dl and 

{ j’” f l)rrlt ,,, is strict!\/ increasing. There are two cas,es to consider. 

Cizst~ I: &l_~ E {(;,I i Xl}. In this case, the chain {f” (l)}nEw must be of the form 

1, t7 ;7:0*. -4 pp’ ; . . . . , i7P,f,, . . . for some strictly increasing function p : o --, cc). For each 
i, since jl~~,~,) = CI[,,~, 1, and apti) is the 1.u.b. of the increasing chain {(p(i), s)),~,,, 
there c&s s3me q(i’,E w such that f[(p(i), q(i))] = IQ,,,+~~. Consider the following 
function I2 E [W --, Al]: 

hrx 1 =z 1 
qli) if s = p(i) for some i, 

_I v o?hern’ise. 

i-‘:orn tour definition of tr:t: partial ordering on D1, we can see that h is an upper 

b~urld of the set {I /I ii 1, q t i ‘b I j i E u}, Since f is monotonic and f maps each ( p (i 1, q tr )I 
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to a p(i-1 lJ9 f must map h to some upper bound of the chain {ai)iEcLI which, however, 

does not exist in D1. Contradicrion. 

Case 2: f(l)& {ai’ i :x 0). In this case, f(l) must be equal to some pair (i, jo) and 

the chain (f” (-L},Ec, must be of the form 1, (i, Jo), 6, ~‘11, l - . , (i, jA, L+,,~)), qjr 1 ,, 

. . . , a p(t), l ’ l 
where, we have j. <jl< l l * < j, and p is some strictly increasing function 

from 0 to 0 with i up. Also note that the range of f must be a subset of all 

the upper bouilds of the pair (i, ~‘0). As in Case 1, we can find some function 4: o + CO 

such that f inaps (p(i), q(i)) to a,(i+l\ for each i E o. The rest of the proof is similar 

to the proof in Case 1. 0 

Theorem 6. w-chain completeness is not identical to Kleene chain completeness, 
hence the conLvse of Tarski’s fixedpoint theorem is not valid. 

Proof. Consider D1 in Fig. 1. Clearly D1 is not o-chain complete. We claim that 

D 1 is Kleene-chain complete. Take any strictly increasing Kleene chain {f” II)},, F(,, 

in D1. Our proof in Theorem 5 says that {fn(l)),Ew cannot contain any ak(k >O). 
There are two possible cases: 

Case 1: Some f”(1) belongs to the function space [U -, N]; in this case, {f” (l~},,E(r, 

must have a 1.u.b. in D1 because [W +N] is o-chain complete. 

Case 2: Otherwise, the 1.u.b. of {f’l(l)}nEw must be ai, assuming f(1) = (i, k ) for 

some k E o. 
In either case, the 1.u.b. of {f”(l))nED, exists. U 

Remark. Say that x in D is weakly algebraic .if whenever x = UH for some directed 

set li_I, then x = h for some h in H. Obviousiy, if x is algebraic, then x is weakly 

algebraic. Now consider our D1 in Fig. 1. One can see that all the (i, j)‘s are weakly 

algebraic although they are not algebraic, as we pointed out earlier. Hence D1 has 

a countable basis of weakly algebraic elements. Therefore, the converse of Tarski’s 

fixedpoint theorem may be invalid in a D which has a countable basis of weakly 

algebraic elements (see Corollary 2). 

In our formulation of a Kleene chain, we imposed the function f to be O- 

continuous. It is known that the directed-continuitlr of a function coincides with 

the w-continuity for countably algebraic partially ordered sets. However, these two 

notions differ in general. In fact, we can show the following. 

Theorem 7. There exists a Kleene chain (a,),,,, in some D such that for no directed- 
continrroris fwlction f: D + D, we hatle a,, = f” (1) for eoery i E w. 

Proof, First, let us define our partially ordered set D2. The underlying set of D2 
COnsiStSOf {aili Ew}u{(i + 1, p))@ < cy, iEo}u{cplP <cu}wherecw issomeuncount- 

able regular ordinal. The partial order on D2 is defined as follows: (see Fig. 2) 

(1) a0 is the bottom element 1 of D2; 
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1 I 
(i, 0) (i, 1) 

ci:p 1 
W_---t_---‘“l 

I I I I 

Fig. 2. 

(2) li,~)c=(j,77)ifandonlyifh~~rl andi+; 

t3j u, ~a, if and only if i sj; and 
14) (i, fi)Gar, if and only if i sk for all p <cr. 

Note that rlJ is the 1.u.b. of the w-chain {!i, ,8}; >() for each ,6 CC-Y, (Ii is the 1.u.b. 

of the WC’ kn {(i, p J}~~.~, and the a-chain {c~}~~~ does not have any upper bound 

in LIZ.. We claim that for no directed-continuous function f: I&+&, we have 

LI,, = f” (1) for every n E W. Assume not. Then because f is directed-continuous, we 

can find pd i .S for each i > 0 such that f[(i, p(i))] = q + 1 ; we may also assume that p, 

tis ;i function from w to cy, is strictly increasing. Now the w-chain {Ci, p(i))}, -0 has 

;i 1.u.b. in Dz, namely, cA for some A car, because (Y is an uncountable regular 

ordinT1, hence the cofinality of Q! cannot be w. Since f is monotonic, f must map 

c LO some upper bound of the chain {Q,}~~~,,, which, however, does not exist in Dz. 

Contradiction. It remains to show that {a,),,, is Kleene. Define the following 

function f’: 19~ + D2: 

3. Notions weaker than Kleene-chain completeness 

:n this section, we study two properties of D which are weaker than Kleene-chain 

CC nrpl~t~~c\. Thev ;~re: 
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Property I. Every w-continuous function f: D + D has a least fixedpoint 

Property 2. Every w-continuous function f :D + D has a fixedpoint. 

Obviously, the following implications hold: 

o -chain completeness+Kleene-chain completeness 

+ Property 1 *Property 2. 

Theorem 6 shows that the reverse of the first implication is invalid. The following 

example shows that Property 2 does not imply Property 1. 

Description of D3 
We define the partially ordered set D3 (see Fig. 3). Essentially, D3 has a top 

element T, a strict w-chain {a,,},,, and two incomparable upper bounds b, c of 

( 1 a n f1EW’ 

Fig. 3. 

First we argue that every o-continuous function f: DA+ D3 has a fixedpoint. 

Consider the chain {f n (I)},,,. If this chain has a l.u.b., then this 1.u.b. must be the 

least fixedpoint of f. Now assume that this chain does not have a 1.u.b. Then it 

must be a strict o-chain, hence some subchain of {an},,ECll. Since b, c are both upper 

bounds of {a&,, f must map them to one of b, c or T. Hence at least one of them 

must be a fixedpoint of f because f(b) Cf (T) and f(c) cf(T). This proves Property 

2. Property 1 does not hold because the following function f does not have a least 

fixedpoint: , 

Qi+ 1 if x =a,, 

x otherwise. 

Next we show that Property 1 does not imply Kleene-chain completeness. It 

would be nice were it the case for the reason that Property 1 gives us no syntactical 

characterization of the least fixedpoint whereas Kleene-chain completeness says 

that the least fixedpoint is given by untw f” (1). It is not difhcult to find a counter- 

example for this. 
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Theorem 8. Property 1 does not imply Kleene-chain completeness. 

Proof. First we define Dd. Dq has 

( 1) a strict w-chain {a,},E, with two incomparable upper bounds b and c; 

(2) two ascending chains {&},,, and {cn}nEw whose l.u.b.‘s are b and c respec- 

tively; 
(3) a 1.u.b. of bi and ci for every i where dj and dk are incomparable for j # k. 

The diagram of D4 is given in Fig. 4. 

w \ \ 
di 

;; 

Fig. 4. 

Next wc show that every w-continuous function f has a least fixedpoint. Let us 

consider the chain {f” !I)), t ti. As argued in the previous theorem, if this chain has 

a I.u.b., then ~,IE,,,f’l(l) is the least fixedpoint of f: Thus let us assume that this 

chain does not have a 1.u.b. Then it must be some strict subchain of {u,,},,~~, since 

strictly increasing subchains of {a,,},,., are the only chains in DA with no l.u.b.‘s. 

As h and c arc the only upper bounds of {n,,},,,,, in Dd, we must have f(b) - P or 

c and fk I = b or c. Assume f(h ) = h. Since w -continuity of f implies h = ~!ltr,,f(b,t ) 
and fth,, ) zfcl) = ai for some 1.2 0 for all II, there must exist some k E w such that 

,Oh,, i = h for all n 2 k. Hence f(d,, ) = 6 for all rz a k and therefore f(c,,) c h for all 

II --T k, concluding that f(c) = 0 must hold. Similarly, from f(h) = c, we can show 

fG i = c. In either case, f has only one fixedpoint which must be the least fixedpoint. 

Ikrefore D, satisfies Property 1. Note that DA is countable, hence it is not 
Kkcne-chair, c:jmplete by Theorem 2. ‘3 

!n summary, we have shown: 

Prrjperty 2 + Property I ;-fr Kleene-chain completeness 3 cI) -chain con$etencss. 

~C.WW of the results we obtained on countable or countably algebraic D’s in 
C ‘( Irc)il:trk* 2, we ask the validity of the first two of these implications restricted to 
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such D’s, However, we note that 03 is countable and countably algebraic, hence 
the invalidity of the first implication is immediate. The question on the validity of 
the second implication is more difficult to settle. The following theorem gives us a 
negative answer. 

Theorem 9. There exists a countable and algebraic D such that every o-continuous 
function fi D -j D has a least fixedpoint but the least fixedpoint may not be given by 

LLewf’W 

Let us describe D5 as in Fig. 5. 

Fig. 5. 

/ / t 
# 

0 
/ 

Ds has threeascendingchains{a,,},,,, witha = 1, ~J!J,,),~~_~~ and{c,,),,,,; b = u,,tzCt, h,, 
and c = U,ltC,,~,l while {a,),.., has no 1.u.b.; ai E: bi and ai c ci for every i E w while 

n, g bj and Cli g ci if j < i; the b,‘s and the c,‘s are incomparable. For each i, there is 

an infinite set of elements 
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such that &r and ci c z for every z E Hi. Elements of Hi are ordered in the 

following way: 

Ci) c,~ G_& for every k EU; 
(ii) di is the largest element in Hi ; 

(iii) y6 C_di+l, yi &XL and y; r=~h+~ for i EOJ and k >O; and 

(iv) x~~d~+~i(k)where u,(k)=i*lk/i] +i-Rem(k,i); 

Rem(k, i) is the remainder of integer division of .k by i. Note that lli is a bijection 

from w to o for each i. The ordering on Ds is obtained by taking the reflexive- 

transitive closure of the relations defined above. 

The following properties of Ds are rather easy to verify: 

Properties of D5 
(i) Ds is countable and algebraic; the only non-algebraic elements are 6 and c. 

(ii ) The upper bounds.of the chain {a,),,, consist of 6, c and di for every i E w. 

(iii, For each z E Hi* there exists a largest i such that Hi contains some upper 

bound of z in it. 

(iv) If xi and s iS have a common lower bq)und in some Hj (j Xl), then i = i’ and 
k =k’ork’t’l orki-I. 

CN-~iousiy the following w-continuous function f has a least fixedpoint (namely, 

h1 different from iJnewffl(l): f(X)=ai+l if s = ni ; otherwise f(x) = b. It remains to 
provtz that every w-continuous function from Ds to Ds has a least tixedpoint. 

Let 1‘ be any w--contin uous function from DS to D5. Let us consider the chain 

i 1”’ ’ 11 I,, * ,r,* If this chain hz< a I.u.b., then this 1.u.b. must be the Ieirst fixedpoint of 
,f. Thus let u s assume that this chain does not have a l.u.b., hence it must be some 
suhchain of (u,~},,~~,). For simplicity, let us assume that this chain is {cI,,},,~~~; hence 

Otr,, I= a,, . l for every II E W. The case in which this chain is a proper subchain of 

(LI, i,i. I,, is proved essentially in the same way with a little more cotiplex terminology. 

Under this assumption, the followinir, lemma is easy to establish and proofs are 
omitted. 

1% corollary of i.emma 1 is that any fixedpoint of f, if it exists, must bc either ‘1, 

or C. or some ‘I, (i E w I. We now distinguish three cases. 

CUW I: ftc 1 f c. In this case, f(c) must be either b or some di. If f (4 = b, then 

W, I -1 h for every i because f (c ) = hEf (d,‘L Hence f (hi 1 G f (di) = b for every i : 

thtlrefore fth I = f(Ul, _, 6,) = ulg,,, f(bi) = b by Lemma l(b). By Lemma l(a), b must 

IX the oni? fixedpoint of /, hence the least fixedpoint. NOW if f Cc) = di for some i, 
then hf, t - ti, for ewry j since 11, =j(c)~f(d,). Hence f((l,)~f(d,) =di and then 
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f(b~=f(Ujcwbj)=Uj,,f(sj)rdi, concluding that f(6) Z 6. Thus di is the only fixed- 
point of f, hence the least fixedpoint. 

Case 2: f(c) = c but f(6) # 6. If z is any fixedpoint off other than c, thenz must 

be equal to some di (by Lemma 1) which is greater than c in the partial ordering. 
Hence c is the least fixedpoint off. 

Case 3: f(6) = 6 and f(c) = c. We want to show that Case 3 is impossible. This 
will, of course, conclude our claim that every o-continuous function f: D5 + D5 has 
a least fixedpoint. To this end, we need to establish a number of lemmas. First we 
note that there exists some integer n E w such that bi of c 6 and ci C&J CC for 
every i 2 n. (It is possible that f(bi) or f(ci) = aj for some j if i < n.) Throughout the 
rest of the proof, we fix this integer n. 

Lemma 2. (a) V’ianVz E Higj>i[f(z)E Hi]. 

(b) f({x ;i i k ’ 01) is infinite for every i 3 n. 
(c) Vi~nVk>OVj,j’>i[f(xh)=x~~andf(xik+1)=X1’,l’_Sj=j’alldk”=k’OTkrC 

1 or k’- 1~. 

PbY ‘<Pi. (a) Since ai+l = f (ai) C f (bi) C_ 6 for i a- n, we must have hi + 1 c f (6; ). Similarly, 
;j(~i). Take any z in Hi for i 2~. Then 6i c z and ci ~z. Hence 6, + 1 if and 

c’, + I G f (z ). Hence f (z ) belongs to Hi for some j > i. 
(b) Consider any h distinct elements f (x 2, ), . . . , f (_x;(,, ) for 6 1.5 0. By the definition 

of Ds, there exists a largest j > i and some z in Hj such that z is an upper bound 

ofsomeoff(_&)‘swhere l<s~/r.Letk=l4i ‘(j- i). Since x L c dj by our de tinition 

of the partial ordering, we have f (x L) tf(dj). From (a) above, f (dJ belongs to I$ 

for some j’ > j. From the way we pick the integer j, we conclude that f(_& ) must 

be different from all the f (x z,)‘s, 1 5 s s h. Hence f ({x ii k x-> 0)) is infinite. 
(c) Let f(xk)=xip and f(xi+l)=.x&. Since y;( CX~ and yk &.&+I, we have 

f(,.ik)Ef(X.L) =.& and f(yL)tf(xL+I) =.&. Since f!yi) belongs to D, for some 

s >i, we conclude j - j’ and k”= k’, or k’+ 1, or k’- 1 by Property (iv) of &. U 

The following is the key lemma of the whole proof. 

Proof. By Lemma 2(a) and (b), there is j >; for every i 3 n such that f(di j = d;. 

Since di is the largest element in Hi, for every .z in Hi, f(z ) belongs to Hi’ for some 

i <it -q’. Let y11 be the smallest integer satisfying r?z >j - i and 14, (k) asj -- i for every 

k -= rrr (existence of m follows from the definition of ui( k j). Hence x_Z zcj and 

dh =,I: for some 6 2 j for every k 2 m. Since _f(cj) Icj+ 1, f’lSi ) ECj-+.l and dh’ Zf(_r; 1 

for s3me h’ > j for every k 2 m. Thus for every k 2 m, f(_x~) = xi for some t >O 
and i < s s j. However by Lemma 2(c), this s does not depend on k. On the othl:r 

hand, f(& = [I, is an upper bound of :he set f((x ij k 2 &)) which is an infinite SE t 
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by Lemma 2(b). Thus s = j. Let m’ = min{tlx : =f(xi) for some k 2 m}. Then the 

lemma follows from Lemma 2(b) and (c). Cl 

Using this lemma, let us define a partial function Fiji 0 + o for i 2 n and 

corresponding j as follows: if f(xi) = xkt for some k and k’, then 

Fri(ui(k)) = uJ(k’), otherwise Fij(ui(k)) is undefined. We show the following 

properties of fii. 

Lemma 4. (a) If Fi;( t ) is defined, then Fii (t ) > t + i - j. 
(b) There exist p, q E w such that F,(t) is defined and monotonic for every t 2 p 

and (tl t aq)E Fii({tI t Zp)). 

(C) 3r-s EwVt zr[Fi,(t)=t+s]. 

Proof. (a) If F;j(nifk)j = u;(k’j, then f(di+ Icl(k) ) = dh with 11 si +ui(k’) by Lemma 3. 

HCWX i + ui(k 1 <h si + ui(k’j by Lemma 2(a); thus uj(k’) > ui(k) + i -i. 

lb) Define p = maxli k- m tii(k) + 1 and q’ = max]+s,n’ ui(k’) + 1 where m and 01’ 

arc the integers given in Lemma 3. Then by Lemma 3, {tit aq’} is a subset of 

F&O ), Since u,(k) *p implies k > m, Fii(t) is defined for every f up. NOW: 

Since F,,({t/Os t <p}) is finite and Ldj is a bijection, there exists some q to give the 

required result. Finally we show that Fi; is monotonic for tap. By Lemma 3, if 

rr,(k) ;zp, k >m and therefore Fii(l,i,(k))= ni(k’j if and only if f((:i+rc,tk))=di+!c,lk’l 
for some k ‘. To demonstrate monotonicity of Fi,y it suffices to show that if f(d,) = d,, 

and fU, . l 1 = &, then Iz s 12 ’ for every s > i. Now if f (d,) = dh, there exists some I 

such that /(p. : ) belongs to Hh. Since y : c d, + 1, we have f (y ‘z 1 c f (d, + 1) = dht, conclud- 
ing h 51 tt ‘. 

ic) By (b) of this lemma, it can be shown that Fi,(t+p -q +~b._j ((M,(- l)j = 

I it 2 q) where MC = {r’ z PI Flj(t’j = u) and IMJ is the cardinality of MU. By (a) of 

this lemma, a constant K exists such that for every t, xl) “1 #z,.I - 1) G K, proving 

the requi red result. fl 

Now UC arc ready to complete the proof. Let r’ be the smallest integer such that 

f’ -T trt and rl,(k ) 3 r for every k 2 r’ where MZ and r are integers given in Lemmas 

3 and 4 respectively. By Lemma 3(c), Fij is injective for all t a r; thus if f(xi) = XL, 
fork zr’,thenf(x-;i.l)= _I-/&~ or _& 1 by Lemma 2(c). However, if f(xi, 1) =,& I, 

then f~;(~,) =& for some k”> k by Lemmas 2(c) and 3, which is impossible since 
F,, is injective for t 2 r. Hence f(~ k + 1) = x Le+ 1. This inductively shows f(n- i +,) = x is+, 
for all t’ 5 W. Thus Fi,(lli(k + c)) = tii(k’+ C) for all L’ E o with fixed k (s.t. ui(k) 2 r) 
:ind k ‘. However, Fi;(u, (k + c )) = u,(k + u j + s by Lemma 4(c). Thus uitk’ + ~7) = 

14; 4 k + I* I+ .F for every L’ E w with constants k -3 r’, k’ and s. This obviously contra- 
dicts the definitions of II, and II,. Z 
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